US20020040901A1 - Heated food service shelf for warming cookies and the like - Google Patents
Heated food service shelf for warming cookies and the like Download PDFInfo
- Publication number
- US20020040901A1 US20020040901A1 US09/782,352 US78235201A US2002040901A1 US 20020040901 A1 US20020040901 A1 US 20020040901A1 US 78235201 A US78235201 A US 78235201A US 2002040901 A1 US2002040901 A1 US 2002040901A1
- Authority
- US
- United States
- Prior art keywords
- heating element
- heating
- resistance heating
- thermoplastic sheets
- thermoplastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 235000013305 food Nutrition 0.000 title abstract description 29
- 235000014510 cooky Nutrition 0.000 title abstract description 11
- 238000010792 warming Methods 0.000 title abstract description 3
- 238000010438 heat treatment Methods 0.000 claims abstract description 306
- 239000000463 material Substances 0.000 claims abstract description 65
- 230000000712 assembly Effects 0.000 claims abstract description 31
- 238000000429 assembly Methods 0.000 claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 claims abstract description 25
- 229920001169 thermoplastic Polymers 0.000 claims description 123
- 239000004416 thermosoftening plastic Substances 0.000 claims description 123
- 239000000758 substrate Substances 0.000 claims description 71
- 238000000034 method Methods 0.000 claims description 45
- 239000000853 adhesive Substances 0.000 claims description 11
- 230000001070 adhesive effect Effects 0.000 claims description 11
- 238000005520 cutting process Methods 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 239000004697 Polyetherimide Substances 0.000 claims description 4
- 229920001601 polyetherimide Polymers 0.000 claims description 4
- 238000003856 thermoforming Methods 0.000 claims description 4
- 230000006698 induction Effects 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- 238000010030 laminating Methods 0.000 claims 7
- 239000002482 conductive additive Substances 0.000 claims 1
- 235000012489 doughnuts Nutrition 0.000 abstract description 4
- 238000012423 maintenance Methods 0.000 abstract description 4
- 235000012459 muffins Nutrition 0.000 abstract description 4
- 235000013550 pizza Nutrition 0.000 abstract description 3
- 235000011890 sandwich Nutrition 0.000 abstract description 3
- 230000000007 visual effect Effects 0.000 abstract description 3
- 238000010257 thawing Methods 0.000 abstract 1
- 238000009958 sewing Methods 0.000 description 26
- 238000013461 design Methods 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 8
- -1 polypropylene Polymers 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 239000000835 fiber Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000004744 fabric Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000012815 thermoplastic material Substances 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 229920006393 polyether sulfone Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000002964 rayon Substances 0.000 description 3
- 238000012827 research and development Methods 0.000 description 3
- 229920002379 silicone rubber Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229920004747 ULTEM® 1000 Polymers 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000004761 kevlar Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000007567 mass-production technique Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 229920000784 Nomex Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 241000203482 Polyscias Species 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229920004738 ULTEM® Polymers 0.000 description 1
- 229920010741 Ultra High Molecular Weight Polyethylene (UHMWPE) Polymers 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005112 continuous flow technique Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 239000004763 nomex Substances 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/16—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
- B32B37/20—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
- B32B37/203—One or more of the layers being plastic
- B32B37/206—Laminating a continuous layer between two continuous plastic layers
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J36/00—Parts, details or accessories of cooking-vessels
- A47J36/24—Warming devices
- A47J36/2483—Warming devices with electrical heating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C51/00—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
- B29C51/02—Combined thermoforming and manufacture of the preform
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C51/00—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
- B29C51/12—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor of articles having inserts or reinforcements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C53/00—Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
- B29C53/02—Bending or folding
- B29C53/04—Bending or folding of plates or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/1429—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
- B29C65/1445—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface heating both sides of the joint
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/1429—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
- B29C65/1454—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface scanning at least one of the parts to be joined
- B29C65/1458—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface scanning at least one of the parts to be joined once, i.e. contour welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/1429—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
- B29C65/1464—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface making use of several radiators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3404—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
- B29C65/3408—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
- B29C65/3412—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3404—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
- B29C65/342—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3404—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
- B29C65/342—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
- B29C65/3428—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding said at least a single wire having a waveform, e.g. a sinusoidal form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3404—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
- B29C65/3444—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint being a ribbon, band or strip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3404—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
- B29C65/3444—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint being a ribbon, band or strip
- B29C65/3448—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint being a ribbon, band or strip said ribbon, band or strip being perforated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3404—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
- B29C65/346—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint being a coating or being printed, e.g. being applied as a paint or forming a printed circuit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/13—Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
- B29C66/133—Fin-type joints, the parts to be joined being flexible
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
- B29C66/431—Joining the articles to themselves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
- B29C66/431—Joining the articles to themselves
- B29C66/4312—Joining the articles to themselves for making flat seams in tubular or hollow articles, e.g. transversal seams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
- B29C66/432—Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
- B29C66/432—Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
- B29C66/4326—Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms for making hollow articles or hollow-preforms, e.g. half-shells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
- B29C66/433—Casing-in, i.e. enclosing an element between two sheets by an outlined seam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/45—Joining of substantially the whole surface of the articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
- B29C66/73921—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/83—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
- B29C66/834—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
- B29C66/8341—Roller, cylinder or drum types; Band or belt types; Ball types
- B29C66/83411—Roller, cylinder or drum types
- B29C66/83413—Roller, cylinder or drum types cooperating rollers, cylinders or drums
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/912—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
- B29C66/9121—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
- B29C66/91211—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
- B29C66/91218—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods using colour change, e.g. using separate colour indicators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/912—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
- B29C66/9121—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
- B29C66/91221—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9141—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
- B29C66/91411—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9141—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
- B29C66/91421—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9161—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
- B29C66/91641—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
- B29C66/91643—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
- B29C66/91645—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile by steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9161—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
- B29C66/91651—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
- B29C66/91655—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the current intensity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/68—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
- B29C70/82—Forcing wires, nets or the like partially or completely into the surface of an article, e.g. by cutting and pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/88—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
- B29C70/882—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
- B29C70/885—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding with incorporated metallic wires, nets, films or plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/02—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
- B32B3/06—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions for securing layers together; for attaching the product to another member, e.g. to a support, or to another product, e.g. groove/tongue, interlocking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/02—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
- B32B3/08—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/06—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/34—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package
- B65D81/3476—Packages provided with an electrical circuit, e.g. resistances, for heating the contents
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/34—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
- H05B3/36—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heating conductor embedded in insulating material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2793/00—Shaping techniques involving a cutting or machining operation
- B29C2793/0081—Shaping techniques involving a cutting or machining operation before shaping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C51/00—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/1403—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
- B29C65/1406—Ultraviolet [UV] radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3468—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special electrical connectors of windings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3472—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
- B29C65/3476—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
- B29C65/348—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic with a polymer coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3472—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
- B29C65/3484—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic
- B29C65/3488—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic being an electrically conductive polymer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3472—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
- B29C65/3484—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic
- B29C65/3492—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic being carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/729—Textile or other fibrous material made from plastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/81—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
- B29C66/818—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
- B29C66/8183—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the thermal conducting constructional aspects
- B29C66/81831—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the thermal conducting constructional aspects of the welding jaws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/81—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
- B29C66/818—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
- B29C66/8187—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the electrical insulating constructional aspects
- B29C66/81871—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the electrical insulating constructional aspects of the welding jaws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/82—Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
- B29C66/826—Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps without using a separate pressure application tool, e.g. the own weight of the parts to be joined
- B29C66/8266—Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps without using a separate pressure application tool, e.g. the own weight of the parts to be joined using fluid pressure directly acting on the parts to be joined
- B29C66/82661—Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps without using a separate pressure application tool, e.g. the own weight of the parts to be joined using fluid pressure directly acting on the parts to be joined by means of vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/912—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
- B29C66/9121—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
- B29C66/91211—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
- B29C66/91214—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods by measuring the electrical resistance of a resistive element belonging to one of the parts to be welded, said element acting, e.g. as a thermistor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/779—Heating equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/34—Inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2310/00—Treatment by energy or chemical effects
- B32B2310/021—Treatment by energy or chemical effects using electrical effects
- B32B2310/022—Electrical resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2310/00—Treatment by energy or chemical effects
- B32B2310/08—Treatment by energy or chemical effects by wave energy or particle radiation
- B32B2310/0806—Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2581/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D2581/34—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
- B65D2581/3401—Cooking or heating method specially adapted to the contents of the package
- B65D2581/3402—Cooking or heating method specially adapted to the contents of the package characterised by the type of product to be heated or cooked
- B65D2581/3428—Cooking unusual food, i.e. none of the above foods
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/002—Heaters using a particular layout for the resistive material or resistive elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/002—Heaters using a particular layout for the resistive material or resistive elements
- H05B2203/003—Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/002—Heaters using a particular layout for the resistive material or resistive elements
- H05B2203/004—Heaters using a particular layout for the resistive material or resistive elements using zigzag layout
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/013—Heaters using resistive films or coatings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/014—Heaters using resistive wires or cables not provided for in H05B3/54
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/017—Manufacturing methods or apparatus for heaters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/037—Heaters with zones of different power density
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49082—Resistor making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49082—Resistor making
- Y10T29/49083—Heater type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49082—Resistor making
- Y10T29/49085—Thermally variable
Definitions
- This invention relates to electrical resistance heating elements, and more particularly to formable thermoplastic laminate heating element assemblies.
- display cabinets are commonly used to display food products for retail sale.
- many convenience stores have display cabinets that may feature varied food products such as donuts, muffins, cookies and the like.
- Heated food service cabinets are also used in nursing homes and hospitals and in food service applications on board airliners and cruise ships. Often times, these cabinets are fitted with heated shelves, which keep the foods warmed to desired serving temperatures.
- the present method for applying heat to shelving is to attach tubular elements to a sheet metal framework that is attached to the bottom side of a shelf.
- the sheet metal framework provides a means of electrical enclosure, preventing exposure to live electrical parts.
- the resulting heatable shelf assemblies average approximately 2 inches in thickness, thus providing an inefficient use of limited cabinet space. Further, such assemblies are expensive to manufacture, distribute and maintain.
- Electrically heated steel shelves may also pose significant safety risks to food service workers and consumers. Because heated steel shelves typically lack visible features to indicate the presence of heat, workers and consumers are susceptible to burn injuries as they remove foods from the heated steel shelves. Moreover, humans may be exposed to significant electrical hazards through contact with the electrically charged metal shelves.
- the ideal heating shelf would eliminate the risk of electrical hazard by insulating the user from direct contact with resistance heating elements.
- the preferred shelf design would also include one or more visible features that change with heat, to provide a readily perceptible heat indicia.
- the preferred heating shelf would include multiple resistance heating elements to provide both temperature boosting for initial heating, and maintenance heating for maintaining heated foods at a serving temperature.
- the preferred design would also be adaptable to for use with existing cabinet designs, while providing for improved utilization of existing cabinet space.
- the improved heatable shelf design would be cost effective to produce and operate.
- the present invention provides a heating element assembly in the form of a heating shelf and a method of manufacturing heating shelf assemblies.
- the heating shelf may be used in existing food service transport and display cabinets and shelves for controlled heating of ready made food products such as cookies, muffins, donuts, pizza, sandwiches and the like.
- the preferred heating shelf optionally includes thermochromic materials (i.e, the materials change color with temperature), or lighted displays, such as an LED warning light, thus providing a visual indication of heating shelf temperature.
- Other features may include varied surface watt density for accurate heat placement and multiple resistance elements for initial temperature boosting and temperature maintenance.
- One or more intricate resistance circuit paths of one or more resistance heating materials such as NiCr wire, graphite scrim, conductive polymers etc.
- the planar resistance heating element may then be reformed, as by thermoforming, drawing, or moldings, with the laminated structure to provide heat on one or more heat planes.
- heating structures provide intimate contact between the contents of the heating structures and the heat source, thereby providing inherent energy consumption advantages as well as the ability to intimately locate secondary devices such as thermistors, sensors, thermocouples, RTDs, etcetera, in proximity to the contents being heated or conditions being observed or recorded.
- the heating element assembly also allows for an infinite number of circuit path shapes, and designs, allowing the circuit path to correspond to the general shape of a desired end product utilizing the heating element assembly.
- the heating element assembly may be folded to occupy a predefined space in an end product and to provide heat in more than one plane, thermoformed into a desired three dimensional heated plane, or stamped or die cut into a predetermined flat shape which may, then, be folded or thermoformed into a desired three dimensional heated shape.
- the heating element assembly thereby emulates well known sheet metal processing or known plastic forming processes and techniques.
- the heating element assembly according to the present invention may also be over molded in a molding process whereby the resistance heating element is energized to soften the thermoplastic sheets and the heating element assembly is over molded with a thermoplastic to form a detailed molded structure.
- the energizing and overmolding steps may be timed such that the thermoplastic sheets and over molded thermoplastic form a substantially homogenous structure accurately capturing and positioning the resistance heating element within the structure.
- the heating element assembly may soften during mold flow without additional energizing.
- thermochromic materials or lighted displays, such as colored LEDs and thermometers, may be integrally formed with the heating shelf to provide a visual indicia of shelf temperatures.
- a sheet of heating element assemblies comprises a first thermoplastic sheet, a second thermoplastic sheet affixed to the first thermoplastic sheet, and a sheet of resistance heating elements secured between and to the first and second thermoplastic sheets.
- the sheet of resistance heating elements includes a supporting substrate having a first surface thereon and a plurality spaced circuit paths, each of the circuit paths comprising at least one electrical resistance heating material attached to the supporting substrate wherein at least one of the circuit paths has terminal end portions.
- the sheet of heating element assemblies of this embodiment provides several benefits.
- the sheet may be inexpensively and efficiently produced using mass production techniques.
- the sheet may be collected into a roll, allowing the later separation and use of individual heating element assemblies or group of heated element assemblies as described above.
- the sheet may be further, or alternatively, processed using various secondary fabrication techniques, such as stamping, die cutting, or overmolding.
- FIG. 1 is a top plan view of a pair of resistance wires disposed in predetermined circuit paths according to an exemplary embodiment of the invention
- FIG. 2 is a front perspective view of a preferred programmable sewing machine and computer for manufacturing resistance heating elements
- FIG. 3 is an isometric view of a first embodiment of the heating element assembly according to the invention, with a portion of a top laminate surface removed to reveal a portion of the resistance heating element;
- FIG. 4 is a partial cross-sectional elevation view of the heating element assembly shown in FIG. 3, taken along line 4 - 4 ;
- FIG. 5 is a partial cross-sectional view of a multi-layered heating element assembly according to the invention.
- FIG. 6 is a diagram of an exemplary method of manufacturing a sheet of heated element assemblies according to the invention.
- FIG. 7 is a diagram of a sheet of resistance heating elements shown in partial view according to the invention.
- FIG. 8 is a top plan view of a resistance heating element assembly wherein the laminated structure has been cut to form a profile for a heating container which may be folded to form a three dimensional heater assembly;
- FIG. 9 is a top plan view of a heating element assembly including the resistance heating element of FIG. 8 wherein a portion the top laminated surface has been removed to show the resistance heating element, before being formed into a final configuration;
- FIG. 10 is as a performance graph of a heating assembly according to the invention, in which the heating assembly is used to heat prepackaged, baked cookies.
- thermoplastic laminate heating element assembly including resistance heating elements, in the form of a heating shelf.
- resistance heating elements in the form of a heating shelf.
- Laminate means to unite, for example, layers of laminate via bonding them together, usually with heat, pressure and/or adhesive. It normally is used to refer to flat sheets, but also can include rods and tubes. The term refers to a product made by such bonding;
- “Serpentine Path” means a path which has one or more curves for increasing the amount of electrical resistance material in a given volume of polymeric matrix, for example, for controlling the thermal expansion of the element;
- Melting Temperature means the point at which a fusible substance begins to melt
- Melting Temperature Range means the temperature range over which a fusible substance starts to melt and then becomes a liquid or semi-liquid
- Degradation Temperature means the temperature at which a thermoplastic begins to permanently lose its mechanical or physical properties because of thermal damage to the polymer's molecular chains
- “Evacuating” means reducing air or trapped air bubbles by, for example, vacuum or pressurized inert gas, such as argon, or by bubbling the gas through a liquid polymer.
- Fusion Bond means the bond between two fusible members integrally joined, whereby the polymer molecules of one member mix with the molecules of the other. A Fusion Bond can occur, even in the absence of any direct or chemical bond between individual polymer chains contained within said members;
- “Fused” means the physical flowing of a material, such as ceramic, glass, metal or polymer, hot or cold, caused by heat, pressure or both;
- Electrode means to cause a portion of a fusible material to flow and fuse by resistance heating
- Stress Relief means reducing internal stresses in a fusible material by raising the temperature of the material or material portion above its stress relief temperature, but preferably below its Heat Deflection Temperature;
- “Flap” or “Flap Portion” means a portion of an element which can be folded without damaging the element structure.
- a resistance heating element 10 preferably having about 50-95% of the surface area of the heated shelf.
- the preferred resistance heating element 10 may include a regulating device for controlling electric current.
- a thermistor for controlling electric current.
- thermocouple for preventing overheating of the polymeric materials disclosed in this invention.
- the resistance heating elements 10 of this invention can take on any number of shapes and sizes, including squares, ovals, irregular circumference shapes, tubes, cup shapes and container shapes. Sizes can range from less than one inch square to 21 in. ⁇ 26 in. with a single sewing operation, and greater sizes can be available if multiple elements are joined together. Greater sizes are also available with roll or continuous element forms.
- a first embodiment of a resistance heating element 10 includes a resistance wire 12 disposed in spiral circuit path.
- the ends of the resistance wire 12 are coupled to a pair of electrical connectors 15 and 16 using known techniques such as, riveting, grommeting, brazing, clinching, compression fitting or welding.
- the circuit includes a resistance heating material, which may be a resistance heating wire 12 wound into a serpentine path containing, for example, about 3-200 windings, or, a resistance heating material, such as ribbon, a foil or printed circuit, or a conductive coating or ink.
- the resistance heating wire 12 includes a Ni—Cr alloy, although certain copper, steel, and stainless-steel alloys could be suitable.
- a positive temperature coefficient wire may also be suitable.
- the resistance heating material can be provided in separate parallel paths, or in separate layers. Whatever material is selected, it should be electrically conductive, and heat resistant. It should also be resilient to subsequent forming operations, either on its owns, as in the case of a wire or scrim, or encapsulated with a polymer. A tensile strength of at least about 10,000 psi, and preferably at least about 50,000 psi, for the fiber or resulting composite is helpful. (See ASTM D 3379, D3039).
- continuous or closed loop heating wires may be provided, in which case current is induced into the heating element by means such as high frequency radiation or magnetic induction.
- the term “supporting substrate” refers to the base material on which the resistance material, such as wires, are applied, or impregnated within, as is the case with graphite powder, for example.
- the supporting substrate 11 of this invention should be capable of being pierced, penetrated, or surrounded, by a sewing needle for permitting the sewing operation.
- the substrates of this invention can take on many shapes and sizes. Flat flexible substrates are preferably used for attaching an electrical resistance wire with a thread.
- Non-plastic materials such as glasses, semiconductive materials, and metals
- a pierceable cross-sectional thickness e.g., less than a 0.010 inch-0.020 inch, or a high degree of porosity or openings therethrough, such as a grid, scrim, woven or non-woven fabric, for permitting the sewing needle of this invention to form an adequate stitch.
- the supporting substrate 11 of this invention need not necessarily contribute to the mechanical properties of the final heating element, but may contain high strength fibers. Such fibers could contain glass, aramid fibers melt-bonded or joined with an adhesive to form a scrim, woven or non-woven mat.
- the supporting substrate 11 of this invention may contain ordinary, natural, or synthetic fibers, such as cotton, wool, silk, rayon, nylon, polyester, polypropylene, polyethylene, etc.
- the supporting substrate may also comprise a synthetic fiber such as Kevlar that has good thermal uniformity and strength.
- Kevlar that has good thermal uniformity and strength.
- the advantage of using ordinary textile fibers, is that they are available in many thicknesses and textures and can provide an infinite variety of chemistry, porosity and melt-bonding ability.
- the fibers of this invention whether they be plastic, natural, ceramic or metal, can be woven, or spun-bonded to produce non-woven textile fabrics.
- supporting substrates 11 useful in this invention include polymer, ceramic, glass, or metallic films, such as non-woven fiberglass mats bonded with an adhesive or sizing material such as model 8440 glass mat available from Johns Manville, Inc. Additional substrates can include polymer impregnated fabric organic fabric weaves, such as those containing nylon, rayon, or hemp etc., porous mica-filled plate or sheet, and thermoplastic sheet film material.
- the supporting substrate 11 contains a polymeric resin which is also used in either the first thermoplastic sheet 110 or second thermoplastic sheet 105 , or both of a heated element assembly 100 described below. Such a resin can be provided in woven or non-woven fibrous form, or in thin sheet material having a thickness of 0.020 inch or less. Thermoplastic materials can be used for the supporting substrate 11 which will melt-bond or liquefy with the thermoplastic sheets 110 , 105 , so as to blend into a substantially uniform structure.
- the preferred programmable sewing machine 20 is one of a number of powerful embroidery design systems that use advanced technology to guide an element designer through design creation, set-up and manufacturing.
- the preferred programmable sewing machine 20 is linked with a computer 22 , such as a personal computer or server, adapted to activate the sewing operations.
- the computer 22 preferably contains or has access to, embroidery or CAD software for creating thread paths, borders, stitch effects, etc.
- the programmable sewing machine 20 includes a series of bobbins 24 for loading thread and resistance heating wire or fine resistance heating ribbon.
- the bobbins 24 are pre-wound to control tension since tension, without excessive slack, in both the top and bottom bobbins 24 is very important to the successful capturing of resistance heating wire on a substrate.
- the thread used should be of a size recommended for the preferred programmable sewing machine. It must have consistent thickness since thread breakage is a common mode of failure in using programmable sewing machines. An industrial quality nylon, polyester or rayon thread is highly desirable. Also, a high heat resistant thread may be used, such as a Kevlar thread or Nomex thread known to be stable up to 500° F. and available from Saunders Thread Co. of Gastonia, N.C.
- the programmable sewing machine preferably has 1-20 heads and can measure 6 ft in width by 19 feet long.
- the sewing range of each head is about 10.6 inches by 26 inches, and with every other head shut off, the sewing range is about 21 inches by 26 inches.
- An acceptable programmable sewing machine is the Tajima Model No. TMLG116-627W (LT Version) from Tajima, Inc., Japan.
- a proper resistive element material for example, Ni-Cr wire
- a proper supporting substrate 11 such as 8440 glass mat
- the design for the element is preprogrammed into the computer 22 prior to initiating operation of the programmable sewing machine 20 .
- the programmable sewing machine 20 of this invention contains at least two threads, one thread is directed through the top surface of the supporting substrate, and the other is directed from below.
- the two threads are intertwined or knotted, ideally somewhere in the thickness of the supporting substrate 11 , so that one cannot view the knot when looking at the stitch and the resulting resistance heating element 10 .
- the resistance heating wire 12 is provided from a bobbin in tension.
- the preferred programmable sewing machine 20 of this invention provides a third thread bobbin for the electrical resistance wire 12 , so that the programmable sewing machine 20 can lay the resistance wire 12 , down just in front of the top needle.
- the preferred operation of this invention provides a zig zag or cross stitch pattern, whereby the top needle criss-crosses back and forth as the supporting substrate 11 is moved, similar to the way an ornamental rope is joined to a fabric in an embroidery operation.
- a simple looping stitch with a thread 14 is also shown.
- the programmable sewing machine 20 can sew an electrical resistance heating wire 12 having a diameter or thickness of 0.005 inch -0.25 inch, onto a supporting substrate 11 at a rate of about 10-500 stitches per minute, saving valuable time and associated cost in making resistance heating elements.
- resistive elements such as wires, films and ribbons
- substrates provide a multitude of design possibilities in both shape and material selection.
- Designers may mix and match substrate materials by selecting their porosity, thickness, density and contoured shape with selected resistance heating materials ranging in cross-section from very small diameters of about 0.005 inch to rectangular and irregular shapes, to thin films.
- secondary devices such as circuits, including microprocessors, fiberoptic fibers or optoelectronic devices, (LEDs, lasers) microwave devices (power amplifiers, radar) and antenna, high temperature sensors, power supply devices (power transmission, motor controls) and memory chips, could be added for controlling temperature, visual inspection of environments, communications, and recording temperature cycles, for example.
- the overall thickness of the resistance heating element is merely limited by the vertical maximum position of the needle end, less the wire feed, which is presently about 0.5 inch, but may be designed in the future to be as great as 1 inch or more. Resistive element width is not nearly so limited, since the transverse motion of the needle can range up to one foot or more.
- FIG. 3 shows an exemplary heating element assembly 100 , in the form of a heating shelf, according to the invention.
- the heating element assembly 100 includes a resistance heating element 10 disposed between laminated first and second thermoplastic sheets 105 , 110 .
- the first thermoplastic sheet 105 is shown partially removed from the second thermoplastic sheet 110 .
- the resistance heating element 10 described above, at least substantially encompasses the circuit path, defined by resistance wire 12 .
- the supporting substrate of the resistance heating element 10 has a thickness between 0.005 inch and 0.25 inch, and is preferably 0.025 inch thick.
- the supporting substrate should be flexible, either under ambient conditions or under heat or mechanical stress, or both.
- a thin semi-rigid heating element assembly 100 allows for closer proximity of the resistance heating wire 12 to an object to be heated when the heating element assembly is formed into a final element assembly, such as a heating shelf. Because less heat needs to be generated by the resistance heating element 10 to provide heat to the outer surfaces of a thin heating element assembly 100 , materials having lower RTI (Relative Thermal Index) ratings can be successfully used in thin heating element assemblies.
- RTI Relative Thermal Index
- thermoplastic sheets 105 , 110 are laminated to each other to secure resistance heating element 10 and to form a reformable continuous element structure.
- the thermoplastic sheets 105 , 110 may be heated and compressed under sufficient pressure to effectively fuse the thermoplastic sheets together. A portion of this heat may come from energizing the resistance heating element 10 .
- thermosetting polymer layers could be employed, such as B-stage epoxy sheet or pre-preg material.
- thermoplastic materials include, for example: fluorocarbons, polypropylene, polycarbonate, polyetherimide, polyether sulfone, polyaryl-sulfones, polyimides, and polyetherkeytones, polyphenylene sulfides, polyether sulfones, and mixtures and co-polymers of these thermoplastics.
- An acceptable thermoplastic polyetherimide is available from the General Electric Company under the trademark ULTEM.
- thermoplastic materials are preferable for forming fusible layers because they are generally heat-flowable, some thermoplastics, notably polytetraflouroethylene (PTFE) and ultra high-molecular-weight polyethylene (UHMWPE) do not flow under heat alone. Also, many thermoplastics are capable of flowing without heat, under mechanical pressure only.
- PTFE polytetraflouroethylene
- UHMWPE ultra high-molecular-weight polyethylene
- thickness is the thickness of the thermoplastic sheets in inches
- pressure represents the amount of pressure (in psi) applied to the assembly during lamination
- temperature is the temperature applied during lamination
- time is the length of time that the pressure and heat were applied.
- the first and second thermoplastic sheets 105 , 110 and resistance heating element 10 of the heating element assembly 100 may also be laminated to each other using an adhesive.
- an adhesive to hold the materials together which may be an ultraviolet curable adhesive, may be disposed between the resistance heating element 10 and the first thermoplastic sheet 105 and between the resistance heating element 10 and the second thermoplastic sheet 110 , as well as between areas of the thermoplastic sheets 105 , 110 which are aligned to be in direct contact.
- An ultraviolet curable adhesive may be used that is activated by ultraviolet light and then begins to gradually cure.
- the adhesive may be activated by exposing it to ultraviolet light before providing the second of the thermoplastic sheets 105 , 110 .
- the thermoplastic sheets 105 , 110 may then be compressed to substantially remove any air from between the sheets 105 , 110 and to secure resistance heating element 10 therebetween.
- FIG. 5 illustrates that a heating element assembly 100 a may include a plurality of heated layers.
- a second resistance heating element 10 a may be laminated between one of thermoplastic sheets 105 , 110 and a third thermoplastic sheet 115 .
- thermoplastic sheets 105 , 110 and the thickness of supporting substrate 11 and resistance heating wire 12 are preferably selected to form a reformable continuous element structure that maintains its integrity when the element is formed into a final element structure.
- the preferred heating element assembly 100 according to the invention is a semi-rigid structure in that it may be reformed, such as by simply molding, folding or unfolding under heat, pressure, or a combination thereof as required by the chosen thermoplastics, into a desired shape without sacrificing structural integrity.
- Heating shelves 100 provide several advantages over non-rigid and rigid shelves or containers, which do not include a heat source.
- the heat source i.e., the resistance heating element 10
- intimately surrounds the contents of a shelf 100 which may be, for example, a food product such as cookies, muffins, donuts, pizza, sandwiches, or other contents, whether they be solid, semi-solid or liquid.
- secondary devices as described above, such as temperature gauges, sensors, thermocouples, and RTD's may be disposed more intimately with the contents or conditions that are being monitored.
- a heating shelf 100 may also be positioned in a mold, over molded, or both, to form a selected molded heated structure. Some plastics may be energized prior to and/or during over molding for improved bonding with the over molding material.
- a heating shelf 100 may optionally be thermoformed to conform to at least a part of the mold structure and to preferentially align the resistance heating element within the mold. Once the heating shelf is positioned within a mold, the resistance heating element 10 of the heating shelf 100 may be energized to soften the thermoplastic sheets, and the heating shelf may be over molded with a thermoplastic. The energizing and overmolding may be timed such that the thermoplastic sheets and over molded thermoplastic form a substantially homogenous structure when solidified.
- thermoplastic sheets may be allowed to soften as a result of mold flow alone.
- the thermoplastic materials of the sheets and over molded thermoplastic are preferably matched to further facilitate the creation of a homogenous structure.
- the supporting substrate 11 may also be selected to be a thermoplastic to better promote the formation of a homogenous structure.
- the energizing may be timed to soften the thermoplastic sheets before, after, or during the overmolding process, depending upon the standard molding parameters, such as the flow characteristic of the selected thermoplastics, the injection molding fill time, the fill velocity, and mold cycle.
- the assembly is also amenable to other molding processes, such as injection molding, compression molding, thermoforming, and injection-compression molding.
- FIG. 8 is a top plan view of an exemplary resistance heating element 400 .
- the resistance heating element 400 includes a supporting substrate 405 shaped in the profile of a flattened container. The profile may either be initially shaped in this profile shape or cut to the profile shape from a larger supporting substrate. Resistance heating material is affixed to the supporting substrate 405 and is preferably resistance wire 410 sewn to supporting substrate 405 .
- the resistance heating element 400 shown in FIG. 8 includes a plurality of flap portions 420 capable of rotation about a first axis of rotation indicated generally at fold lines 425 .
- the circuit path 415 formed by resistance wire 410 terminates at terminal end portions 412 .
- FIG. 9 is a top plan view of a heating element assembly 500 .
- the resistance heating element 400 is laminated between two thermoplastic sheets, only the top sheet 505 of which is shown, to form a reformable continuous element structure. A portion of the thermoplastic sheet 505 is shown removed in order to show the resistance heating element 400 .
- the dashed lines 530 indicate portions of the laminated structure that may be removed, such as by stamping or die cutting, from the laminated structure to leave a foldable profile which may be formed into a non-planar shelf.
- the heating shelf may be formed without foldable flap portions.
- the remaining dashed lines of FIG. 9 indicate fold lines.
- Other alternatives may include integrally forming geometry features, which facilitate the assembly of the heating shelf with existing display cabinet configurations.
- a heating shelf 100 may be formed by folding the heating element 500 along the dashed lines of FIG. 9 and in the direction of the arrows shown in FIG. 3.
- the flaps 420 of the resistance heating element 400 are laminated between thermoplastic layers and are folded into the shelf shape shown in FIG. 3.
- the folding step may include rethermalizing the thermoplastic structure while folding in order to thermoform the structure into the desired heat planes, or, alternatively, folding the thermoplastic structure into the desired heat planes and then rethermalizing the structure, although it is recognized that the latter method introduces residual stresses in the bend areas.
- the heating shelf 100 may optionally be formed with outwardly flared sides. This feature permits multiple shelves to be stacked in nested engagement, which reduces spatial requirements for both storage and shipping.
- the heating shelf 100 can optionally provide heat on five different interior planes may, but is formed from an easily manufactured planar heating element 500 . It should further be apparent that the present invention is not limited in any way to the heating shelf configuration 100 or heating element 500 described above. Rather, the above describe method of manufacturing and heating element structure may be used to forms cups, enclosed containers, boxes, or any other structure which may be formed from a planar profile.
- the heating shelves and other configurations can include planar elements made from resistance heating wires, scrim, woven and nonwoven fabric and conductive filing such as conductive polymers, inks and foils. Such planar forms should have sufficient tensile strength to resist mechanical distortion of the circuit path, or heater distribution profile, during forming of the final product.
- a sheet of heating element assemblies 225 is provided, as shown in FIG. 6.
- the sheet of heating element assemblies 225 includes first and second affixed thermoplastic sheets, as described above, and a sheet of resistance heating elements 200 (FIG. 7) secured between and to the first and second thermoplastic sheets.
- the sheet of resistance heating elements 200 comprises a plurality of connected resistance heating elements 10 .
- the sheet of resistance heating elements 200 comprises a supporting substrate 205 and a plurality of spaced circuit paths 207 , each of the circuit paths 207 comprising an electrical resistance heating material attached to the supporting substrate 205 to define a circuit path, which includes a pair of terminal end portions 208 , 209 .
- the shape of the circuit paths 207 is merely illustrative of circuit path shapes, and any circuit path shape may be chosen to support the particular end use for a heating element assembly included in the sheet of heated element assemblies 225 . Alternatively, conductive polymers or fabrics made from resistance heating material could be employed.
- the dashed lines of FIG. 7 indicate where an individual resistance heating element may be removed from the sheets of resistance heating elements 225 .
- a sheet 225 of heating element assemblies may be manufactured using conventional mass production and continuous flow techniques, such as are described in U.S. Pat. No. 5,184,969 to Sharpless et al., the entirety of which is incorporated herein by reference.
- first and second thermoplastic sheets 210 , 212 may be provided from a source, such as rolls 214 , 216 of thermoplastic sheets, or extruded using known extrusion techniques as a part of the manufacturing process.
- a source such as rolls 214 , 216 of thermoplastic sheets, or extruded using known extrusion techniques as a part of the manufacturing process.
- a sheet of resistance heating elements 200 may be provided from a source, such as roll 218 .
- Sheet 200 may be manufactured as described above in the “Sewing Operation” section.
- the sheets 200 , 212 , 214 may be made to converge, such as by rollers 224 , between a heat source, such as radiant heating panels 220 , to soften the thermoplastic sheets 210 , 212 .
- a series of rollers 222 compresses the three sheets 200 , 212 , 214 into a sheet of heated element assemblies 225 , thereby also removing air from between the sheets 200 , 212 , 214 .
- the rollers 222 may also provide heat to help fuse the sheets 200 , 212 , 214 and/or may be used to cool freshly laminated sheets 200 , 212 , 214 to help solidify the heated sheets into the sheet of heated element assemblies 225 after compression.
- a sheet of a plurality of multiple-layered heating element assemblies such as a sheet including a plurality of heating element assemblies 100 a of FIG. 5, may also be manufactured simply by including a third thermoplastic sheet and a second sheet of resistance heating elements to the process described above.
- the sheet of heating element assemblies 225 may be collected into a roll 230 .
- the roll 230 may then be used by an original equipment manufacture (OEM) for any desired manufacturing purpose.
- OEM may separate or cut individual heating element assemblies from the roll and include the heating element assembly in a desired product, by molding, adhesive or ultrasonic bonding, for example, into a container or molded product.
- An individually manufactured heating element assembly as mentioned above or a heating element assembly removed from a sheet of heating element assemblies 225 because of its resiliency and good mechanical properties, is amenable to secondary manufacturing techniques, such as die cutting, stamping, or thermoforming to a desired shape or combination thereof as described above.
- Each heating element assembly may be cut or stamped into a preselected shape for use in a particular end product even while still a part of sheet 225 and then collected into a roll 230 .
- the circuit paths of the resistance heating element of the heating element assembly may be appropriately shaped to conform to the desired shape of a selected product and heat planes in which the heating element assembly is to be included or formed.
- the formable semi-rigid feature of the heating element assemblies of the present invention provides a designer the opportunity to include the assembly in complex heat planes.
- the assembly may be cut to a desired formable shape, and the circuit path is preferably designed to substantially conform to this shape or the desired heat planes.
- the assembly may then be rethermalized and folded to conform to the heat planes designed for the assembly to occupy.
- a preferred thermoplastic sheet may range from approximately 0.004 inch to 0.100 inch.
- the thickness of the thermoplastic sheets of a heating element assembly may be chosen to effectively bias heat generated by a resistance heating element in a selected direction.
- the supporting substrate itself also may provide an insulation barrier when the circuit path is oriented towards, for example, contents to be heated and the supporting substrate is oriented toward an outer or gripping surface.
- thermoplastic sheets of a heating element assembly 100 or heating element assembly 500 may be coated with a thermally conductive coating that promotes a uniform heat plane on the heated element assembly.
- a thermally conductive coating may be found on anti-static bags or Electrostatic Interference (ESI) resistive bags used to package and protect semiconductor chips.
- thermally conductive, but preferably not electrically conductive, additive may be added to the thermoplastic sheets to promote heat distribution.
- thermally conductive, but preferably not electrically conductive, additive may be added to the thermoplastic sheets to promote heat distribution.
- such additive may be ceramic powders, such as, for example, Al 2 O 3 , MgO, ZrO 2 , boron nitride, silicon nitride, Y 2 O 3 , SiC, SiO 2 , TiO 2 , etcetera.
- a thermally conductive layer and/or additive is useful because a resistance wire typically does not cover all of the surface area of a resistance heating element 10 .
- a heating assembly formed in accordance with the invention, may be provided having varying surface watt densities, to provide for accurate heat placement.
- Other alternatives include providing a heating shelf having a plurality of resistance heating elements, in which case one element could be used for initial temperature boosting, while a second resistance element could be used for maintenance heating.
- a heating shelf was formed having a resistance heating circuit path sandwiched between laminated layers of thermoplastic.
- the thermoplastic material used for both the top and bottom of the heating shelf assembly was ULTEM 1000.
- the top of the heating shelf was formed with two sheets of ULTEM 1000 having a total thickness of 0.02 inch.
- the bottom of the heating shelf was formed from laminated sheets having a total thickness of 0.095 inch. It will be understood that materials used in forming the heating shelf are not limited to the precise thicknesses defined herein, which are merely provided by way of example.
- a resistance heating circuit path was formed using resistance heating wire having a total impedance of approximately 289 ohms.
- the resistance heating wire may comprise a plurality of twisted, braided or parallel individual wires having a collective diameter of between about 0.010 inch to 0.050 inch.
- the resistance heating wire was sewn to a fiberglass scrim substrate having an uncompressed thickness of approximately 0.030 inch. It will be understood that materials used in forming the heating shelf are not limited to the precise thicknesses defined herein, which are merely provided by way of example.
- the resistance heating wire was patterned in a spiral design starting in the center of the shelf with 1 ⁇ 2 inch spacing, which is progressively reduced to 1 ⁇ 4 inch.
- the substrate having a resistance heating wire sewn thereto, was placed between the top and bottom thermoplastic sheets to form a heating element assembly.
- the heating element assembly was sandwiched in a manufacturing assembly.
- a Teflon sheet was placed adjacent to the exposed surface of each thermoplastic sheet, a layer of silicon rubber was placed adjacent each Teflon sheet, and a stainless steel plate was placed adjacent each silicon rubber sheet.
- the Teflon prevents the thermoplastic sheets from adhering to the manufacturing assembly, while the silicon rubber sheets provide a cushion which allows for even distribution of the hydraulic pressure applied by the heat press.
- the stainless steel sheets act as stiffening agents to facilitate handling of the otherwise pliable assembly.
- the resulting manufacturing assembly was then placed in a conventional heated press, with temperature platens preheated to 450 degrees Fahrenheit. The assembly was heated for 20 minutes at a pressure of 20,000 lbs. The assembly was then air cooled for 20 minutes, followed by a 2 minute water cooling period. The heater was then trimmed to final dimensions using a belt sander.
- the assembly was reheated along bend lines, about which the two flap portions were folded to reform the assembly into a heating shelf.
- FIG. 10 A performance graph for the above-described heating shelf is shown in FIG. 10.
- the heating shelf was placed on two laterally spaced wood strips, each having a width 0.75 inch.
- the baked cookies for testing, packaged in pairs in polyethylene bags, were placed on the heating shelf and warmed to a desired serving temperature. The cookies were then removed from the shelf.
- the performance graph shows that the cookie temperature at the center of the shelf stabilized at 133 degrees Fahrenheit, and the cookie temperature at the edge stabilized at 128 degrees Fahrenheit.
- the loaded heater temperature was 155 degrees Fahrenheit. After the cookies were removed, the heater stabilized at 124 degrees Fahrenheit.
- a heating shelf in accordance with the invention provides more efficient heating of food products. Indeed, experimental results have shown that the present invention consumes 1 ⁇ 3 less wattage than traditional heating methods. This significant power savings is attributed in part to the intimate contact achievable between the heating shelf and the food product as compared to conventional heating methods. Another factor attributing to improved heating efficiency is the ability to design and manufacture the product with a varied watt density, thereby allowing the accurate placement of heat such that the food product can evenly warmed throughout, while preventing over warming of food product.
- the heating shelf is hermetically sealed, making the shelf suitable for direct contact with food products, and allowing for the utilization of conventional cleaning techniques such as dishwashers etcetera, without compromising the integrity of the shelf.
- Yet another advantage of the invention is the thin yet rigid shelf geometry for more efficient utilization of existing cabinet space.
- the preferred heating shelf has an operating voltage of 120 Vac, thereby making the heating shelf mobile as compared to other comparable devices requiring 240 Vac supply source.
- the heating shelf of the present invention lends itself to many automated and secondary manufacturing techniques, such as stamping, die cutting, and overmolding, to name a few.
- Designers can easily choose thermoplastics and other materials for their designs that meet required RTI (relative thermal index) requirements for specific applications by following standard design techniques and parameters set by materials manufacturers
- RTI relative thermal index
- heating shelves such as described above allow the food industry to efficiently and effectively reheat prepared foods, as is often required of businesses that operate large or small food service venues or that purchase from distributors of prepared foods.
- thermoplastic sheets such as a memory device or other data collector
- a secondary device captured between the thermoplastic sheets, such as a memory device or other data collector within close proximity to a food product, thereby allowing more accurate data collection, such as disclosed in commonly owned U.S. Pat. No. 6,417,335, herein incorporated in its entirety by reference.
- This data may be used to prove that a food was prepared at a temperature and for a time period sufficient to kill the E. coli bacteria.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Composite Materials (AREA)
- Food Science & Technology (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Surface Heating Bodies (AREA)
- Laminated Bodies (AREA)
- Resistance Heating (AREA)
Abstract
A heating element assembly in the form of a heating shelf and a method of manufacturing heating shelf assemblies. The heating shelf may be used in display cabinets to heat ready made foods such as cookies, muffins, donuts, pizza, sandwiches and the like. The preferred heating shelf includes thermochromic materials, or an LED indicator, which provide a visual indica of shelf temperature. The preferred heating shelf provides intimate contact with the heated food products, thus optimizing heat transfer between the heating shelf and the food products. Optionally provided, varied surface watt density in the heating shelf allows for accurate heat placement such that the food products can be evenly warmed while avoiding over warming. In another embodiment, the heating shelf includes two resistance heating elements. The first heating element is a temperature booster used for defrosting and heating, while the second heating element is a maintenance heater to maintain heated food at a serving temperature.
Description
- This invention relates to electrical resistance heating elements, and more particularly to formable thermoplastic laminate heating element assemblies.
- Methods for providing reformable heating element assemblies are described in Applicant's co-pending application Ser. No. 09/642,215, herein incorporated in its entirety by reference.
- In the food service industry, display cabinets are commonly used to display food products for retail sale. As an example, many convenience stores have display cabinets that may feature varied food products such as donuts, muffins, cookies and the like. Heated food service cabinets are also used in nursing homes and hospitals and in food service applications on board airliners and cruise ships. Often times, these cabinets are fitted with heated shelves, which keep the foods warmed to desired serving temperatures. The present method for applying heat to shelving is to attach tubular elements to a sheet metal framework that is attached to the bottom side of a shelf. The sheet metal framework provides a means of electrical enclosure, preventing exposure to live electrical parts. However, the resulting heatable shelf assemblies average approximately 2 inches in thickness, thus providing an inefficient use of limited cabinet space. Further, such assemblies are expensive to manufacture, distribute and maintain.
- Electrically heated steel shelves may also pose significant safety risks to food service workers and consumers. Because heated steel shelves typically lack visible features to indicate the presence of heat, workers and consumers are susceptible to burn injuries as they remove foods from the heated steel shelves. Moreover, humans may be exposed to significant electrical hazards through contact with the electrically charged metal shelves.
- Therefore, improved apparatus and methods for heated cabinet shelving are desirable. The ideal heating shelf would eliminate the risk of electrical hazard by insulating the user from direct contact with resistance heating elements. The preferred shelf design would also include one or more visible features that change with heat, to provide a readily perceptible heat indicia. In addition, the preferred heating shelf would include multiple resistance heating elements to provide both temperature boosting for initial heating, and maintenance heating for maintaining heated foods at a serving temperature. The preferred design would also be adaptable to for use with existing cabinet designs, while providing for improved utilization of existing cabinet space. Finally, the improved heatable shelf design would be cost effective to produce and operate.
- The present invention provides a heating element assembly in the form of a heating shelf and a method of manufacturing heating shelf assemblies. The heating shelf may be used in existing food service transport and display cabinets and shelves for controlled heating of ready made food products such as cookies, muffins, donuts, pizza, sandwiches and the like. The preferred heating shelf optionally includes thermochromic materials (i.e, the materials change color with temperature), or lighted displays, such as an LED warning light, thus providing a visual indication of heating shelf temperature. Other features may include varied surface watt density for accurate heat placement and multiple resistance elements for initial temperature boosting and temperature maintenance.
- The present invention as described above provides several benefits. One or more intricate resistance circuit paths of one or more resistance heating materials, such as NiCr wire, graphite scrim, conductive polymers etc., may be laminated between thermoplastic sheets, wherein the planar resistance heating element may then be reformed, as by thermoforming, drawing, or moldings, with the laminated structure to provide heat on one or more heat planes.
- These heating structures provide intimate contact between the contents of the heating structures and the heat source, thereby providing inherent energy consumption advantages as well as the ability to intimately locate secondary devices such as thermistors, sensors, thermocouples, RTDs, etcetera, in proximity to the contents being heated or conditions being observed or recorded.
- The heating element assembly also allows for an infinite number of circuit path shapes, and designs, allowing the circuit path to correspond to the general shape of a desired end product utilizing the heating element assembly. The heating element assembly may be folded to occupy a predefined space in an end product and to provide heat in more than one plane, thermoformed into a desired three dimensional heated plane, or stamped or die cut into a predetermined flat shape which may, then, be folded or thermoformed into a desired three dimensional heated shape. The heating element assembly thereby emulates well known sheet metal processing or known plastic forming processes and techniques.
- The heating element assembly according to the present invention may also be over molded in a molding process whereby the resistance heating element is energized to soften the thermoplastic sheets and the heating element assembly is over molded with a thermoplastic to form a detailed molded structure. The energizing and overmolding steps may be timed such that the thermoplastic sheets and over molded thermoplastic form a substantially homogenous structure accurately capturing and positioning the resistance heating element within the structure. Alternatively, the heating element assembly may soften during mold flow without additional energizing.
- In addition, thermochromic materials, or lighted displays, such as colored LEDs and thermometers, may be integrally formed with the heating shelf to provide a visual indicia of shelf temperatures.
- In another embodiment of the present invention, a sheet of heating element assemblies comprises a first thermoplastic sheet, a second thermoplastic sheet affixed to the first thermoplastic sheet, and a sheet of resistance heating elements secured between and to the first and second thermoplastic sheets. The sheet of resistance heating elements includes a supporting substrate having a first surface thereon and a plurality spaced circuit paths, each of the circuit paths comprising at least one electrical resistance heating material attached to the supporting substrate wherein at least one of the circuit paths has terminal end portions.
- The sheet of heating element assemblies of this embodiment provides several benefits. The sheet may be inexpensively and efficiently produced using mass production techniques. The sheet may be collected into a roll, allowing the later separation and use of individual heating element assemblies or group of heated element assemblies as described above. The sheet, may be further, or alternatively, processed using various secondary fabrication techniques, such as stamping, die cutting, or overmolding.
- The above and other features of the present invention will be better understood from the following detailed description of the preferred embodiments of the invention which is provided in connection with the accompanying drawings.
- The accompanying drawings illustrate preferred embodiments of the invention, as well as other information pertinent to the disclosure, in which:
- FIG. 1 is a top plan view of a pair of resistance wires disposed in predetermined circuit paths according to an exemplary embodiment of the invention;
- FIG. 2 is a front perspective view of a preferred programmable sewing machine and computer for manufacturing resistance heating elements;
- FIG. 3 is an isometric view of a first embodiment of the heating element assembly according to the invention, with a portion of a top laminate surface removed to reveal a portion of the resistance heating element;
- FIG. 4 is a partial cross-sectional elevation view of the heating element assembly shown in FIG. 3, taken along line4-4;
- FIG. 5 is a partial cross-sectional view of a multi-layered heating element assembly according to the invention;
- FIG. 6 is a diagram of an exemplary method of manufacturing a sheet of heated element assemblies according to the invention;
- FIG. 7 is a diagram of a sheet of resistance heating elements shown in partial view according to the invention;
- FIG. 8 is a top plan view of a resistance heating element assembly wherein the laminated structure has been cut to form a profile for a heating container which may be folded to form a three dimensional heater assembly;
- FIG. 9 is a top plan view of a heating element assembly including the resistance heating element of FIG. 8 wherein a portion the top laminated surface has been removed to show the resistance heating element, before being formed into a final configuration; and
- FIG. 10 is as a performance graph of a heating assembly according to the invention, in which the heating assembly is used to heat prepackaged, baked cookies.
- The present invention provides a thermoplastic laminate heating element assembly including resistance heating elements, in the form of a heating shelf. As used herein, the following terms are defined:
- “Laminate” means to unite, for example, layers of laminate via bonding them together, usually with heat, pressure and/or adhesive. It normally is used to refer to flat sheets, but also can include rods and tubes. The term refers to a product made by such bonding;
- “Serpentine Path” means a path which has one or more curves for increasing the amount of electrical resistance material in a given volume of polymeric matrix, for example, for controlling the thermal expansion of the element;
- “Melting Temperature” means the point at which a fusible substance begins to melt;
- “Melting Temperature Range” means the temperature range over which a fusible substance starts to melt and then becomes a liquid or semi-liquid;
- “Degradation Temperature” means the temperature at which a thermoplastic begins to permanently lose its mechanical or physical properties because of thermal damage to the polymer's molecular chains;
- “Evacuating” means reducing air or trapped air bubbles by, for example, vacuum or pressurized inert gas, such as argon, or by bubbling the gas through a liquid polymer.
- “Fusion Bond” means the bond between two fusible members integrally joined, whereby the polymer molecules of one member mix with the molecules of the other. A Fusion Bond can occur, even in the absence of any direct or chemical bond between individual polymer chains contained within said members;
- “Fused” means the physical flowing of a material, such as ceramic, glass, metal or polymer, hot or cold, caused by heat, pressure or both;
- “Electrofused” means to cause a portion of a fusible material to flow and fuse by resistance heating;
- “Stress Relief” means reducing internal stresses in a fusible material by raising the temperature of the material or material portion above its stress relief temperature, but preferably below its Heat Deflection Temperature; and
- “Flap” or “Flap Portion” means a portion of an element which can be folded without damaging the element structure.
- With reference to FIGS.1-9, there is shown a first embodiment of a
resistance heating element 10, preferably having about 50-95% of the surface area of the heated shelf. The preferredresistance heating element 10 may include a regulating device for controlling electric current. Such a device can include, for example, a thermistor, a thermocouple, or a RTD, for preventing overheating of the polymeric materials disclosed in this invention. Theresistance heating elements 10 of this invention can take on any number of shapes and sizes, including squares, ovals, irregular circumference shapes, tubes, cup shapes and container shapes. Sizes can range from less than one inch square to 21 in.×26 in. with a single sewing operation, and greater sizes can be available if multiple elements are joined together. Greater sizes are also available with roll or continuous element forms. - As shown in FIG. 1, a first embodiment of a
resistance heating element 10 includes aresistance wire 12 disposed in spiral circuit path. The ends of theresistance wire 12 are coupled to a pair ofelectrical connectors resistance heating wire 12 wound into a serpentine path containing, for example, about 3-200 windings, or, a resistance heating material, such as ribbon, a foil or printed circuit, or a conductive coating or ink. Preferably theresistance heating wire 12 includes a Ni—Cr alloy, although certain copper, steel, and stainless-steel alloys could be suitable. A positive temperature coefficient wire may also be suitable. The resistance heating material can be provided in separate parallel paths, or in separate layers. Whatever material is selected, it should be electrically conductive, and heat resistant. It should also be resilient to subsequent forming operations, either on its owns, as in the case of a wire or scrim, or encapsulated with a polymer. A tensile strength of at least about 10,000 psi, and preferably at least about 50,000 psi, for the fiber or resulting composite is helpful. (See ASTM D 3379, D3039). - Alternatively, continuous or closed loop heating wires may be provided, in which case current is induced into the heating element by means such as high frequency radiation or magnetic induction.
- As used herein, the term “supporting substrate” refers to the base material on which the resistance material, such as wires, are applied, or impregnated within, as is the case with graphite powder, for example. The supporting
substrate 11 of this invention should be capable of being pierced, penetrated, or surrounded, by a sewing needle for permitting the sewing operation. Other than this mechanical limitation, the substrates of this invention can take on many shapes and sizes. Flat flexible substrates are preferably used for attaching an electrical resistance wire with a thread. Non-plastic materials, such as glasses, semiconductive materials, and metals, can be employed so long as they have a pierceable cross-sectional thickness, e.g., less than a 0.010 inch-0.020 inch, or a high degree of porosity or openings therethrough, such as a grid, scrim, woven or non-woven fabric, for permitting the sewing needle of this invention to form an adequate stitch. The supportingsubstrate 11 of this invention need not necessarily contribute to the mechanical properties of the final heating element, but may contain high strength fibers. Such fibers could contain glass, aramid fibers melt-bonded or joined with an adhesive to form a scrim, woven or non-woven mat. - Alternatively, the supporting
substrate 11 of this invention may contain ordinary, natural, or synthetic fibers, such as cotton, wool, silk, rayon, nylon, polyester, polypropylene, polyethylene, etc. The supporting substrate may also comprise a synthetic fiber such as Kevlar that has good thermal uniformity and strength. The advantage of using ordinary textile fibers, is that they are available in many thicknesses and textures and can provide an infinite variety of chemistry, porosity and melt-bonding ability. The fibers of this invention, whether they be plastic, natural, ceramic or metal, can be woven, or spun-bonded to produce non-woven textile fabrics. - Specific examples of supporting
substrates 11 useful in this invention include polymer, ceramic, glass, or metallic films, such as non-woven fiberglass mats bonded with an adhesive or sizing material such as model 8440 glass mat available from Johns Manville, Inc. Additional substrates can include polymer impregnated fabric organic fabric weaves, such as those containing nylon, rayon, or hemp etc., porous mica-filled plate or sheet, and thermoplastic sheet film material. In one embodiment, the supportingsubstrate 11 contains a polymeric resin which is also used in either thefirst thermoplastic sheet 110 orsecond thermoplastic sheet 105, or both of aheated element assembly 100 described below. Such a resin can be provided in woven or non-woven fibrous form, or in thin sheet material having a thickness of 0.020 inch or less. Thermoplastic materials can be used for the supportingsubstrate 11 which will melt-bond or liquefy with thethermoplastic sheets - With reference to FIG. 2, the preferred
programmable sewing machine 20 will now be described. The preferred programmable sewing machine is one of a number of powerful embroidery design systems that use advanced technology to guide an element designer through design creation, set-up and manufacturing. The preferredprogrammable sewing machine 20 is linked with a computer 22, such as a personal computer or server, adapted to activate the sewing operations. The computer 22 preferably contains or has access to, embroidery or CAD software for creating thread paths, borders, stitch effects, etc. - The
programmable sewing machine 20 includes a series of bobbins 24 for loading thread and resistance heating wire or fine resistance heating ribbon. Preferably, the bobbins 24 are pre-wound to control tension since tension, without excessive slack, in both the top and bottom bobbins 24 is very important to the successful capturing of resistance heating wire on a substrate. The thread used should be of a size recommended for the preferred programmable sewing machine. It must have consistent thickness since thread breakage is a common mode of failure in using programmable sewing machines. An industrial quality nylon, polyester or rayon thread is highly desirable. Also, a high heat resistant thread may be used, such as a Kevlar thread or Nomex thread known to be stable up to 500° F. and available from Saunders Thread Co. of Gastonia, N.C. - The programmable sewing machine preferably has 1-20 heads and can measure 6 ft in width by 19 feet long. The sewing range of each head is about 10.6 inches by 26 inches, and with every other head shut off, the sewing range is about 21 inches by 26 inches. An acceptable programmable sewing machine is the Tajima Model No. TMLG116-627W (LT Version) from Tajima, Inc., Japan.
- The preferred method of capturing a
resistance heating wire 12 onto a supportingsubstrate 11 in this invention will now be described. First, an operator selects a proper resistive element material, for example, Ni-Cr wire, in its proper form. Next, a proper supportingsubstrate 11, such as 8440 glass mat, is provided in a form suitable for sewing. The design for the element is preprogrammed into the computer 22 prior to initiating operation of theprogrammable sewing machine 20. As with any ordinary sewing machine, theprogrammable sewing machine 20 of this invention contains at least two threads, one thread is directed through the top surface of the supporting substrate, and the other is directed from below. The two threads are intertwined or knotted, ideally somewhere in the thickness of the supportingsubstrate 11, so that one cannot view the knot when looking at the stitch and the resultingresistance heating element 10. As a top needle penetrates thesubstrate 11 and picks up a loop of thread mechanically with the aid of the mechanical device underneath, it then pulls it upward toward the center of thesubstrate 11 and if the substrate is consistent and the thread tension is consistent, the knots will be relatively hidden. In a preferred embodiment of this invention, theresistance heating wire 12 is provided from a bobbin in tension. The preferredprogrammable sewing machine 20 of this invention provides a third thread bobbin for theelectrical resistance wire 12, so that theprogrammable sewing machine 20 can lay theresistance wire 12, down just in front of the top needle. The preferred operation of this invention provides a zig zag or cross stitch pattern, whereby the top needle criss-crosses back and forth as the supportingsubstrate 11 is moved, similar to the way an ornamental rope is joined to a fabric in an embroidery operation. A simple looping stitch with athread 14 is also shown. By guiding the top needle over either side of theresistance heating wire 12, theheating wire 12, is captured in a very effective manner, the process being computer controlled so that the pattern can be electronically downloaded into the computer 22 and automatically sewn onto a substrate of choice. - The
programmable sewing machine 20 can sew an electricalresistance heating wire 12 having a diameter or thickness of 0.005 inch -0.25 inch, onto a supportingsubstrate 11 at a rate of about 10-500 stitches per minute, saving valuable time and associated cost in making resistance heating elements. - The ability to mechanically attach resistive elements, such as wires, films and ribbons, to substrates provides a multitude of design possibilities in both shape and material selection. Designers may mix and match substrate materials by selecting their porosity, thickness, density and contoured shape with selected resistance heating materials ranging in cross-section from very small diameters of about 0.005 inch to rectangular and irregular shapes, to thin films. Also, secondary devices such as circuits, including microprocessors, fiberoptic fibers or optoelectronic devices, (LEDs, lasers) microwave devices (power amplifiers, radar) and antenna, high temperature sensors, power supply devices (power transmission, motor controls) and memory chips, could be added for controlling temperature, visual inspection of environments, communications, and recording temperature cycles, for example. The overall thickness of the resistance heating element is merely limited by the vertical maximum position of the needle end, less the wire feed, which is presently about 0.5 inch, but may be designed in the future to be as great as 1 inch or more. Resistive element width is not nearly so limited, since the transverse motion of the needle can range up to one foot or more.
- The use of known embroidery machinery in the fabrication of resistance heating elements allows for a wide variety of raw materials and substrates to be combined with various resistance heating materials. The above construction techniques and sewing operation also provide the ability to manufacture multi-layered substrates, including embedded metallic and thermally conductive layers with resistance wires wrapped in an electrically insulating coating, so as to avoid shorting of electric current. This permits the application of a resistance heating wire to both sides of the thermally conductive metallic layer, such as aluminum foil, for more homogeneously distributing resistance heat.
- FIG. 3 shows an exemplary
heating element assembly 100, in the form of a heating shelf, according to the invention. Theheating element assembly 100 includes aresistance heating element 10 disposed between laminated first and secondthermoplastic sheets first thermoplastic sheet 105 is shown partially removed from thesecond thermoplastic sheet 110. Theresistance heating element 10, described above, at least substantially encompasses the circuit path, defined byresistance wire 12. - The supporting substrate of the
resistance heating element 10 has a thickness between 0.005 inch and 0.25 inch, and is preferably 0.025 inch thick. The supporting substrate should be flexible, either under ambient conditions or under heat or mechanical stress, or both. A thin semi-rigidheating element assembly 100 allows for closer proximity of theresistance heating wire 12 to an object to be heated when the heating element assembly is formed into a final element assembly, such as a heating shelf. Because less heat needs to be generated by theresistance heating element 10 to provide heat to the outer surfaces of a thinheating element assembly 100, materials having lower RTI (Relative Thermal Index) ratings can be successfully used in thin heating element assemblies. - The
thermoplastic sheets resistance heating element 10 and to form a reformable continuous element structure. Thethermoplastic sheets resistance heating element 10. Alternatively, thermosetting polymer layers could be employed, such as B-stage epoxy sheet or pre-preg material. - Preferred thermoplastic materials include, for example: fluorocarbons, polypropylene, polycarbonate, polyetherimide, polyether sulfone, polyaryl-sulfones, polyimides, and polyetherkeytones, polyphenylene sulfides, polyether sulfones, and mixtures and co-polymers of these thermoplastics. An acceptable thermoplastic polyetherimide is available from the General Electric Company under the trademark ULTEM.
- It is further understood that, although thermoplastic materials are preferable for forming fusible layers because they are generally heat-flowable, some thermoplastics, notably polytetraflouroethylene (PTFE) and ultra high-molecular-weight polyethylene (UHMWPE) do not flow under heat alone. Also, many thermoplastics are capable of flowing without heat, under mechanical pressure only.
- Acceptable results were achieved when forming a heating element assembly under the conditions indicated in TABLE 1 as follows:
TABLE THICKNESS OF SHEET PRESSURE TIME TEMP. MATERIAL (inch) (PSI) (minutes) (° F.) Polypropylene 0.009 22 10 350 Polycarbonate 0.009 22 10 380 Polysulfone 0.019 22 15 420 Polyetherimide 0.009 44 10 430 Polyethersulfone 0.009 44 10 460 - Where no vacuum was applied, “thickness” is the thickness of the thermoplastic sheets in inches, “pressure” represents the amount of pressure (in psi) applied to the assembly during lamination, “temperature” is the temperature applied during lamination, and “time” is the length of time that the pressure and heat were applied. It will be understood the above-identified material thicknesses used in forming exemplary embodiments of the assembly described herein are merely provided by way of example. Materials of differing thicknesses may also be used to achieve acceptable results without departing from the scope of the invention.
- The first and second
thermoplastic sheets resistance heating element 10 of theheating element assembly 100 may also be laminated to each other using an adhesive. In one embodiment of the present invention, an adhesive to hold the materials together, which may be an ultraviolet curable adhesive, may be disposed between theresistance heating element 10 and thefirst thermoplastic sheet 105 and between theresistance heating element 10 and thesecond thermoplastic sheet 110, as well as between areas of thethermoplastic sheets thermoplastic sheets thermoplastic sheets sheets resistance heating element 10 therebetween. - FIG. 5 illustrates that a
heating element assembly 100 a may include a plurality of heated layers. A secondresistance heating element 10 a may be laminated between one ofthermoplastic sheets third thermoplastic sheet 115. - The thicknesses of
thermoplastic sheets substrate 11 andresistance heating wire 12 are preferably selected to form a reformable continuous element structure that maintains its integrity when the element is formed into a final element structure. The preferredheating element assembly 100 according to the invention, then, is a semi-rigid structure in that it may be reformed, such as by simply molding, folding or unfolding under heat, pressure, or a combination thereof as required by the chosen thermoplastics, into a desired shape without sacrificing structural integrity. -
Heating shelves 100 according to the present invention provide several advantages over non-rigid and rigid shelves or containers, which do not include a heat source. The heat source, i.e., theresistance heating element 10, intimately surrounds the contents of ashelf 100, which may be, for example, a food product such as cookies, muffins, donuts, pizza, sandwiches, or other contents, whether they be solid, semi-solid or liquid. Also, secondary devices as described above, such as temperature gauges, sensors, thermocouples, and RTD's may be disposed more intimately with the contents or conditions that are being monitored. - A
heating shelf 100 may also be positioned in a mold, over molded, or both, to form a selected molded heated structure. Some plastics may be energized prior to and/or during over molding for improved bonding with the over molding material. Aheating shelf 100 may optionally be thermoformed to conform to at least a part of the mold structure and to preferentially align the resistance heating element within the mold. Once the heating shelf is positioned within a mold, theresistance heating element 10 of theheating shelf 100 may be energized to soften the thermoplastic sheets, and the heating shelf may be over molded with a thermoplastic. The energizing and overmolding may be timed such that the thermoplastic sheets and over molded thermoplastic form a substantially homogenous structure when solidified. Alternatively, the thermoplastic sheets may be allowed to soften as a result of mold flow alone. The thermoplastic materials of the sheets and over molded thermoplastic are preferably matched to further facilitate the creation of a homogenous structure. The supportingsubstrate 11 may also be selected to be a thermoplastic to better promote the formation of a homogenous structure. The energizing may be timed to soften the thermoplastic sheets before, after, or during the overmolding process, depending upon the standard molding parameters, such as the flow characteristic of the selected thermoplastics, the injection molding fill time, the fill velocity, and mold cycle. The assembly is also amenable to other molding processes, such as injection molding, compression molding, thermoforming, and injection-compression molding. - FIGS. 8 and 9 illustrate an exemplary heating element assembly, which may be formed into a
heating shelf 100 final element assembly. FIG. 8 is a top plan view of an exemplaryresistance heating element 400. Theresistance heating element 400 includes a supportingsubstrate 405 shaped in the profile of a flattened container. The profile may either be initially shaped in this profile shape or cut to the profile shape from a larger supporting substrate. Resistance heating material is affixed to the supportingsubstrate 405 and is preferably resistance wire 410 sewn to supportingsubstrate 405. - The
resistance heating element 400 shown in FIG. 8 includes a plurality offlap portions 420 capable of rotation about a first axis of rotation indicated generally at fold lines 425. Thecircuit path 415 formed by resistance wire 410 terminates atterminal end portions 412. - FIG. 9 is a top plan view of a
heating element assembly 500. Theresistance heating element 400 is laminated between two thermoplastic sheets, only thetop sheet 505 of which is shown, to form a reformable continuous element structure. A portion of thethermoplastic sheet 505 is shown removed in order to show theresistance heating element 400. - The dashed
lines 530 indicate portions of the laminated structure that may be removed, such as by stamping or die cutting, from the laminated structure to leave a foldable profile which may be formed into a non-planar shelf. Alternatively, the heating shelf may be formed without foldable flap portions. The remaining dashed lines of FIG. 9 indicate fold lines. Other alternatives may include integrally forming geometry features, which facilitate the assembly of the heating shelf with existing display cabinet configurations. - A
heating shelf 100 may be formed by folding theheating element 500 along the dashed lines of FIG. 9 and in the direction of the arrows shown in FIG. 3. Theflaps 420 of theresistance heating element 400 are laminated between thermoplastic layers and are folded into the shelf shape shown in FIG. 3. The folding step may include rethermalizing the thermoplastic structure while folding in order to thermoform the structure into the desired heat planes, or, alternatively, folding the thermoplastic structure into the desired heat planes and then rethermalizing the structure, although it is recognized that the latter method introduces residual stresses in the bend areas. Theheating shelf 100 may optionally be formed with outwardly flared sides. This feature permits multiple shelves to be stacked in nested engagement, which reduces spatial requirements for both storage and shipping. - It should be apparent that the
heating shelf 100 can optionally provide heat on five different interior planes may, but is formed from an easily manufacturedplanar heating element 500. It should further be apparent that the present invention is not limited in any way to theheating shelf configuration 100 orheating element 500 described above. Rather, the above describe method of manufacturing and heating element structure may be used to forms cups, enclosed containers, boxes, or any other structure which may be formed from a planar profile. The heating shelves and other configurations can include planar elements made from resistance heating wires, scrim, woven and nonwoven fabric and conductive filing such as conductive polymers, inks and foils. Such planar forms should have sufficient tensile strength to resist mechanical distortion of the circuit path, or heater distribution profile, during forming of the final product. - A sheet of heating element assemblies and a method of manufacturing the same is described hereafter. In another exemplary embodiment of the present invention, a sheet of
heating element assemblies 225 is provided, as shown in FIG. 6. The sheet ofheating element assemblies 225 includes first and second affixed thermoplastic sheets, as described above, and a sheet of resistance heating elements 200 (FIG. 7) secured between and to the first and second thermoplastic sheets. Essentially, the sheet ofresistance heating elements 200 comprises a plurality of connectedresistance heating elements 10. The sheet ofresistance heating elements 200 comprises a supportingsubstrate 205 and a plurality of spacedcircuit paths 207, each of thecircuit paths 207 comprising an electrical resistance heating material attached to the supportingsubstrate 205 to define a circuit path, which includes a pair ofterminal end portions 208, 209. The shape of thecircuit paths 207 is merely illustrative of circuit path shapes, and any circuit path shape may be chosen to support the particular end use for a heating element assembly included in the sheet ofheated element assemblies 225. Alternatively, conductive polymers or fabrics made from resistance heating material could be employed. The dashed lines of FIG. 7 indicate where an individual resistance heating element may be removed from the sheets ofresistance heating elements 225. - A
sheet 225 of heating element assemblies may be manufactured using conventional mass production and continuous flow techniques, such as are described in U.S. Pat. No. 5,184,969 to Sharpless et al., the entirety of which is incorporated herein by reference. For example, as illustrated in FIG. 6, first and secondthermoplastic sheets rolls resistance heating elements 200 may be provided from a source, such asroll 218.Sheet 200 may be manufactured as described above in the “Sewing Operation” section. Thesheets rollers 224, between a heat source, such asradiant heating panels 220, to soften thethermoplastic sheets rollers 222 compresses the threesheets heated element assemblies 225, thereby also removing air from between thesheets rollers 222 may also provide heat to help fuse thesheets laminated sheets heated element assemblies 225 after compression. - It should be apparent that a sheet of a plurality of multiple-layered heating element assemblies, such as a sheet including a plurality of
heating element assemblies 100 a of FIG. 5, may also be manufactured simply by including a third thermoplastic sheet and a second sheet of resistance heating elements to the process described above. - Regardless of the specific manufacturing technique, the sheet of
heating element assemblies 225 may be collected into aroll 230. Theroll 230 may then be used by an original equipment manufacture (OEM) for any desired manufacturing purpose. For example, the OEM may separate or cut individual heating element assemblies from the roll and include the heating element assembly in a desired product, by molding, adhesive or ultrasonic bonding, for example, into a container or molded product. An individually manufactured heating element assembly as mentioned above or a heating element assembly removed from a sheet ofheating element assemblies 225, because of its resiliency and good mechanical properties, is amenable to secondary manufacturing techniques, such as die cutting, stamping, or thermoforming to a desired shape or combination thereof as described above. Each heating element assembly may be cut or stamped into a preselected shape for use in a particular end product even while still a part ofsheet 225 and then collected into aroll 230. The circuit paths of the resistance heating element of the heating element assembly may be appropriately shaped to conform to the desired shape of a selected product and heat planes in which the heating element assembly is to be included or formed. - The formable semi-rigid feature of the heating element assemblies of the present invention provides a designer the opportunity to include the assembly in complex heat planes. The assembly may be cut to a desired formable shape, and the circuit path is preferably designed to substantially conform to this shape or the desired heat planes. The assembly may then be rethermalized and folded to conform to the heat planes designed for the assembly to occupy.
- A preferred thermoplastic sheet may range from approximately 0.004 inch to 0.100 inch. Thus, the thickness of the thermoplastic sheets of a heating element assembly may be chosen to effectively bias heat generated by a resistance heating element in a selected direction. The supporting substrate itself also may provide an insulation barrier when the circuit path is oriented towards, for example, contents to be heated and the supporting substrate is oriented toward an outer or gripping surface.
- Similarly, one or both of the thermoplastic sheets of a
heating element assembly 100 orheating element assembly 500 may be coated with a thermally conductive coating that promotes a uniform heat plane on the heated element assembly. An example of such a coating may be found on anti-static bags or Electrostatic Interference (ESI) resistive bags used to package and protect semiconductor chips. Also, thermally conductive, but preferably not electrically conductive, additive may be added to the thermoplastic sheets to promote heat distribution. Examples of such additive may be ceramic powders, such as, for example, Al2O3, MgO, ZrO2, boron nitride, silicon nitride, Y2O3, SiC, SiO2, TiO2, etcetera. A thermally conductive layer and/or additive is useful because a resistance wire typically does not cover all of the surface area of aresistance heating element 10. - Advantageously, a heating assembly, formed in accordance with the invention, may be provided having varying surface watt densities, to provide for accurate heat placement. Other alternatives include providing a heating shelf having a plurality of resistance heating elements, in which case one element could be used for initial temperature boosting, while a second resistance element could be used for maintenance heating.
- A heating shelf was formed having a resistance heating circuit path sandwiched between laminated layers of thermoplastic. The thermoplastic material used for both the top and bottom of the heating shelf assembly was ULTEM 1000. The top of the heating shelf was formed with two sheets of ULTEM 1000 having a total thickness of 0.02 inch. The bottom of the heating shelf was formed from laminated sheets having a total thickness of 0.095 inch. It will be understood that materials used in forming the heating shelf are not limited to the precise thicknesses defined herein, which are merely provided by way of example. A resistance heating circuit path was formed using resistance heating wire having a total impedance of approximately 289 ohms. The resistance heating wire may comprise a plurality of twisted, braided or parallel individual wires having a collective diameter of between about 0.010 inch to 0.050 inch. The resistance heating wire was sewn to a fiberglass scrim substrate having an uncompressed thickness of approximately 0.030 inch. It will be understood that materials used in forming the heating shelf are not limited to the precise thicknesses defined herein, which are merely provided by way of example. The resistance heating wire was patterned in a spiral design starting in the center of the shelf with ½ inch spacing, which is progressively reduced to ¼ inch.
- The substrate, having a resistance heating wire sewn thereto, was placed between the top and bottom thermoplastic sheets to form a heating element assembly. Next, the heating element assembly was sandwiched in a manufacturing assembly. To this end, a Teflon sheet was placed adjacent to the exposed surface of each thermoplastic sheet, a layer of silicon rubber was placed adjacent each Teflon sheet, and a stainless steel plate was placed adjacent each silicon rubber sheet. The Teflon prevents the thermoplastic sheets from adhering to the manufacturing assembly, while the silicon rubber sheets provide a cushion which allows for even distribution of the hydraulic pressure applied by the heat press. The stainless steel sheets act as stiffening agents to facilitate handling of the otherwise pliable assembly.
- The resulting manufacturing assembly was then placed in a conventional heated press, with temperature platens preheated to 450 degrees Fahrenheit. The assembly was heated for 20 minutes at a pressure of 20,000 lbs. The assembly was then air cooled for 20 minutes, followed by a 2 minute water cooling period. The heater was then trimmed to final dimensions using a belt sander.
- After forming and cooling the heating element assembly, the assembly was reheated along bend lines, about which the two flap portions were folded to reform the assembly into a heating shelf.
- A performance graph for the above-described heating shelf is shown in FIG. 10. The heating shelf was placed on two laterally spaced wood strips, each having a width 0.75 inch. The baked cookies for testing, packaged in pairs in polyethylene bags, were placed on the heating shelf and warmed to a desired serving temperature. The cookies were then removed from the shelf.
- The performance graph shows that the cookie temperature at the center of the shelf stabilized at 133 degrees Fahrenheit, and the cookie temperature at the edge stabilized at 128 degrees Fahrenheit. The loaded heater temperature was 155 degrees Fahrenheit. After the cookies were removed, the heater stabilized at 124 degrees Fahrenheit.
- A heating shelf in accordance with the invention provides more efficient heating of food products. Indeed, experimental results have shown that the present invention consumes ⅓ less wattage than traditional heating methods. This significant power savings is attributed in part to the intimate contact achievable between the heating shelf and the food product as compared to conventional heating methods. Another factor attributing to improved heating efficiency is the ability to design and manufacture the product with a varied watt density, thereby allowing the accurate placement of heat such that the food product can evenly warmed throughout, while preventing over warming of food product.
- Also, the heating shelf is hermetically sealed, making the shelf suitable for direct contact with food products, and allowing for the utilization of conventional cleaning techniques such as dishwashers etcetera, without compromising the integrity of the shelf.
- Yet another advantage of the invention is the thin yet rigid shelf geometry for more efficient utilization of existing cabinet space.
- The preferred heating shelf has an operating voltage of 120 Vac, thereby making the heating shelf mobile as compared to other comparable devices requiring 240 Vac supply source.
- Further, as described above, the heating shelf of the present invention lends itself to many automated and secondary manufacturing techniques, such as stamping, die cutting, and overmolding, to name a few. Designers can easily choose thermoplastics and other materials for their designs that meet required RTI (relative thermal index) requirements for specific applications by following standard design techniques and parameters set by materials manufacturers Also, heating shelves such as described above allow the food industry to efficiently and effectively reheat prepared foods, as is often required of businesses that operate large or small food service venues or that purchase from distributors of prepared foods. Also, among the many advantages of the present invention is the ability to intimately locate a secondary device captured between the thermoplastic sheets, such as a memory device or other data collector within close proximity to a food product, thereby allowing more accurate data collection, such as disclosed in commonly owned U.S. Pat. No. 6,417,335, herein incorporated in its entirety by reference. This data, as an example, may be used to prove that a food was prepared at a temperature and for a time period sufficient to kill theE. coli bacteria.
- Although various embodiments have been illustrated, this is for the purpose of describing, but not limiting the invention. The assembly line described above is merely illustrative of one means of forming a sheet of heated element assemblies. Further, the supporting substrate shapes and circuit paths described above and shown in the drawings are merely illustrative of possible circuit paths, and one of ordinary skill should appreciate that these shapes and circuit patterns may be designed in other manners to accommodate the great flexibility in uses and number of uses for the heating element assembly of the present invention. Therefore, various modifications which will become apparent to one skilled in the art, are within the scope of this invention described in the attached claims.
Claims (48)
1. A method of manufacturing a heating shelf, comprising the steps of:
(a) disposing at least one resistance heating element between first and second thermoplastic sheets, at least of the thermoplastic sheets having a visible feature that changes with temperature, each of the at least one resistance heating elements comprising:
(i) a supporting substrate; and
(ii) an electrical resistance heating material, wherein the electrical resistance heating material is one of attached to and supported in the substrate, the electrical resistance heating material forming a circuit path;
(b) laminating the first and second thermoplastic sheets such that each of the at least one resistance heating element is secured between the first and second thermoplastic sheets to form a reformable structure; and
(c) forming the structure into a heating shelf.
2. The method of claim 1 wherein the at least one thermoplastic sheet, having a visible feature that changes with temperature, is one of a thermochromic material and an LED indicator.
3. The method of claim 1 wherein each heating element further comprises:
at least one flap portion, capable of rotation about a first axis of rotation, at least one of the circuit paths continuing onto the flap portion, wherein the step of forming includes rotating the flap portion about the first axis to provide resistance heating in at least two planes.
4. The method of claim 1 , wherein said step of laminating includes the steps of heating said thermoplastic sheets and compressing said thermoplastic sheets to laminate the resistance heating elements between the thermoplastic sheets.
5. The method of claim 1 , wherein said step of forming includes the step of thermoforming the reformable structure into the heating shelf, whereby said supporting substrate and electrical resistance material resist forces which are capable of breaking or shorting said circuit path.
6. The method of claim 1 , further comprising the step of cutting the continuous element structure into a foldable profile before forming the continuous reformable structure into the heating shelf.
7. The method of claim 1 , further comprising the steps of:
(d) energizing at least one of the resistance heating elements to soften the thermoplastic sheets; and
(e) overmolding the heating shelf with a thermoplastic, the steps of energizing and overmolding timed such that the thermoplastic sheets and over molded thermoplastic form a substantially homogenous structure.
8. A method of manufacturing a heating shelf, comprising the steps of:
(a) disposing at least one resistance heating element between first and second thermoplastic sheets, the at least one resistance heating element comprising:
(i) a supporting substrate; and
(ii) at least one circuit path, each of the circuit paths comprising an electrical resistance heating material attached to the supporting substrate, at least one of the circuit paths having terminal end portions, at least one of the circuit paths continuing onto a first flap portion of the substrate capable of rotation about a first axis of rotation; and
(b) laminating the first and second thermoplastic sheets such that the at least one resistance heating element is secured between the first and second thermoplastic sheets;
(c) attaching a material having a visible feature that changes with temperature to the heating shelf.
9. The method of claim 8 wherein the material having a visible feature that changes with temperature is one of a thermochromic material and LED indicator.
10. The method of claim 8 wherein the step of attaching comprises laminating the material having a visible feature that changes with temperature to the heating shelf.
11. The method of claim 9 , wherein the thermochromic material is disposed between the first and second thermoplastic sheets.
12. A method of manufacturing a sheet of heating element assemblies, comprising the steps of:
(a) disposing at least one sheet of resistance heating elements between first and second thermoplastic sheets, at least one of the thermoplastic sheets having a visible feature that changes with temperature, each of the resistance heating elements attached to a supporting substrate and forming a circuit path, at least one of the circuit paths having terminal end portions, at least one of the circuit paths continuing onto a first flap portion of the substrate capable of rotation about a first axis of rotation; and
(b) laminating the first and second thermoplastic sheets such that the at least one sheet of resistance heating elements is secured between the first and second thermoplastic sheets to form a reformable structure.
13. The method of claim 12 wherein the at least one thermoplastic sheet having a visible feature that changes with temperature, is one of a thermochromic material and LED indicator.
14. The method of claim 12 , further comprising the steps of removing at least one heating element assembly from the sheet of heating element assemblies, the removed heating element assembly being a reformable structure, and forming the reformable structure into a final element assembly configuration wherein at least the first flap portion of the substrate is rotated about the first axis to provide resistance heating in at least two planes.
15. The method of claim 12 , further comprising the steps of cutting at least one of the heating element assemblies into a foldable profile before forming the reformable structure into the final element assembly configuration.
16. The method of claim 15 , wherein said step of cutting includes the step of stamping or die cutting at least one of the heating element assemblies into the profile.
17. A heating element assembly, comprising:
(a) a first thermoplastic sheet;
(b) a second thermoplastic sheet, at least one of the thermoplastic sheets having a visible feature that changes with temperature; and
(c) a resistance heating element secured between the first and second thermoplastic sheets, the resistance heating element being attached to a supporting substrate and forming a at least one circuit path having terminal end portions, at least one of the circuit paths continuing onto a first flap portion of the substrate capable of rotation about a first axis of rotation,
wherein the thermoplastic sheets and resistance heating element are laminated together to form a reformable structure, the reformable structure formed into a final element assembly configuration wherein at least the flap portions is rotated about the first axis to provide resistance heating in at least two planes.
18. The heating element assembly of claim 17 wherein the at least one thermoplastic sheet having a visible feature that changes with temperature, is one of a thermochromic material and LED indicator.
19. The heating element assembly of claim 18 , wherein the thermoplastic sheets are affixed with an adhesive.
20. The heating element assembly of claim 18 , wherein the thermoplastic sheets are attached by one of fusing and laminating.
21. The heating element assembly of claim 17 , wherein the reformable structure is thermoformed into said final element assembly configuration.
22. The heating element assembly of claim 17 , wherein the reformable structure is cut into a foldable profile.
23. The heating element assembly of claim 17 , wherein the electrical resistance heating material is at least one of glued, sewn and fused to the supporting substrate.
24. The heating element assembly of claim 17 , wherein the electrical resistance heating material is sewn to said supporting substrate with a thread.
25. The heating element assembly of claim 17 , wherein the supporting substrate comprises at least one of a woven and non-woven fibrous layer.
26. The heating element assembly of claim 17 , wherein the supporting substrate is a thermoplastic sheet.
27. The heating element assembly of claim 17 , wherein the supporting substrate includes thermally conductive additives.
28. The heating element assembly of claim 17 , wherein at least one of the thermoplastic sheets includes a thermally conductive coating.
29. The heating element assembly of claim 17 , further comprising a secondary device secured between the first and second thermoplastic sheets.
30. The heated element assembly of claim 17 , wherein one of the thermoplastic sheets is thicker than the other thermoplastic sheet.
31. The heating element assembly of claim 17 , wherein the heating element assembly is over molded with a thermoplastic such that the over molded thermoplastic and thermoplastic sheets form a substantially homogenous structure.
32. The heating assembly of claim 17 , wherein at least one circuit path is a continuous loop, which is capable of being energized by at least one of high frequency radiation and magnetic induction.
33. The heating assembly of claim 28 , wherein the secondary device is one of, a thermistor, a sensor and a thermocouple.
34. The heating assembly of claim 17 , wherein at least one of the thermoplastic sheets is Polyetherimide.
35. The heating assembly of claim 17 wherein the final element assembly is hermetically sealed.
36. The heating assembly of claim 17 , wherein the heating element assembly has a bottom and the circuit path density in the bottom of the heating element assembly is greater than the circuit path density in the flap portions.
37. The heating assembly of claim 17 , wherein the flap portions are outwardly flared to provide for nested engagement with a second identical heating element assembly.
38. A method of manufacturing a sheet of heating element assemblies, comprising the steps of:
(a) disposing at least one sheet of resistance heating elements between first and second thermoplastic sheets, the at least one sheet of resistance heating elements being attached to a supporting substrate and forming a plurality of spaced apart circuit paths each of the circuit paths having terminal end portions and each of the circuit paths continuing onto a first flap portion of the substrate capable of rotation about a first axis of rotation,
wherein the thermoplastic sheets and resistance heating element are laminated together to form a reformable structure, the reformable structure formed into a final element assembly configuration where the flap portion is rotated about the first axis to provide resistance heating in at least two planes.
(i) a supporting substrate; and
(ii) at least one circuit path, each of the circuit paths comprising an electrical resistance heating material attached to the supporting substrate, at least one of the circuit paths having terminal end portions, at least one of the circuit paths continuing onto a first flap portion onto a first flap portion of a resistance heating element capable of rotation about a first axis of rotation; and
(b) disposing a sheet of material having a visible feature that changes with temperature between the first and second thermoplastic sheets.
(c) attaching the first and second thermoplastic sheets such that the at least one sheet of resistance heating elements is secured between the first and second thermoplastic sheets to form a continuous element structure,
wherein the first and second thermoplastic sheets and resistance heating elements are laminated such that the sheet of resistance heating elements is secured between the first and second thermoplastic sheets to form a reformable structure.
39. The method of claim 38 wherein the sheet of material having a visible feature that changes with temperature, is thermochromic.
40. The method of claim 38 wherein the sheet of heating element asemblies further compries an adhesive attaching said first and second thermoplastic sheets. changes with temperature, is thermochromic.
41. The method of claim 38 wherein the first and second thermoplastic sheets are attached by one of fusing and laminating.
42. The method of claim 38 wherein the electrical resistance heating material is at least one of glued, sewn and fused to the supporting substrate.
43. The method of claim 38 wherein said electrical resistance heating material is sewn to said supporting substrate with a thread.
42. The method of claim 38 wherein the supporting substrate comprises at least one of a woven and non-woven fibrous layer.
43. The method of claim 38 , wherein the supporting substrate is an extruded thermoplastic sheet.
44. The method of claim 38 wherein the heating element assembly further comprises a plurality of secondary devices, each of said secondary devices disposed between said first and second thermoplastic sheets and associated with one of said circuit paths.
45. The method of claim 38 wherein at least one of the thermoplastic sheets includes a thermally conductive coating.
46. A heating shelf, comprising:
(a) a first thermoplastic sheet;
(b) a second thermoplastic sheet;
(c) a resistance heating element disposed between the first and second thermoplastic sheets, the resistance heating element comprising:
(i) a supporting substrate including at least one circuit path, comprising an electrical resistance heating material attached to, or disposed within, the supporting substrate, said circuit path having terminal end portions and continuing onto the flap portion of the substrate; and
(d) a material having a visible feature that changes with temperature attached to the heating shelf,
wherein the thermoplastic sheets and said electrical resistance heating material are laminated together to form a reformable structure, the reformable structure formed into a final element assembly wherein the flap portion is rotated about the first axis to provide resistance heating in at least two planes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/782,352 US20020040901A1 (en) | 2000-08-18 | 2001-02-12 | Heated food service shelf for warming cookies and the like |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/642,215 US6519835B1 (en) | 2000-08-18 | 2000-08-18 | Method of formable thermoplastic laminate heated element assembly |
US09/782,352 US20020040901A1 (en) | 2000-08-18 | 2001-02-12 | Heated food service shelf for warming cookies and the like |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/642,215 Continuation-In-Part US6519835B1 (en) | 2000-08-18 | 2000-08-18 | Method of formable thermoplastic laminate heated element assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020040901A1 true US20020040901A1 (en) | 2002-04-11 |
Family
ID=24575681
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/642,215 Expired - Lifetime US6519835B1 (en) | 2000-08-18 | 2000-08-18 | Method of formable thermoplastic laminate heated element assembly |
US09/782,351 Abandoned US20020038801A1 (en) | 2000-08-18 | 2001-02-12 | Formable thermoplastic laminate heating tray assembly suitable for heating frozen food |
US09/782,352 Abandoned US20020040901A1 (en) | 2000-08-18 | 2001-02-12 | Heated food service shelf for warming cookies and the like |
US09/782,350 Abandoned US20020038799A1 (en) | 2000-08-18 | 2001-02-12 | Formable thermoplastic laminate heating assembly useful in heating cheese and hot fudge |
US09/781,457 Expired - Fee Related US6541744B2 (en) | 2000-08-18 | 2001-02-12 | Packaging having self-contained heater |
US09/829,509 Abandoned US20020040898A1 (en) | 2000-08-18 | 2001-04-10 | Wound and themoformed element and method of manufacturing same |
US10/323,173 Abandoned US20030121140A1 (en) | 2000-08-18 | 2002-12-18 | Formable thermoplastic laminate heated element assembly |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/642,215 Expired - Lifetime US6519835B1 (en) | 2000-08-18 | 2000-08-18 | Method of formable thermoplastic laminate heated element assembly |
US09/782,351 Abandoned US20020038801A1 (en) | 2000-08-18 | 2001-02-12 | Formable thermoplastic laminate heating tray assembly suitable for heating frozen food |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/782,350 Abandoned US20020038799A1 (en) | 2000-08-18 | 2001-02-12 | Formable thermoplastic laminate heating assembly useful in heating cheese and hot fudge |
US09/781,457 Expired - Fee Related US6541744B2 (en) | 2000-08-18 | 2001-02-12 | Packaging having self-contained heater |
US09/829,509 Abandoned US20020040898A1 (en) | 2000-08-18 | 2001-04-10 | Wound and themoformed element and method of manufacturing same |
US10/323,173 Abandoned US20030121140A1 (en) | 2000-08-18 | 2002-12-18 | Formable thermoplastic laminate heated element assembly |
Country Status (3)
Country | Link |
---|---|
US (7) | US6519835B1 (en) |
AU (1) | AU2001285030A1 (en) |
WO (1) | WO2002017687A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10355491A1 (en) * | 2003-11-27 | 2005-07-07 | Electrolux Home Products Corporation N.V. | A cooker has heating elements, which are optimized regarding their distances to achieve an even temperature distribution |
US20070034096A1 (en) * | 2005-07-13 | 2007-02-15 | Hyperion Innovations, Inc. | Method and apparatus for maintaining an elevated food temperature |
US20070241916A1 (en) * | 2006-04-10 | 2007-10-18 | Rosemount, Inc. | Temperature responsive indicators for process control instruments |
US20100151090A1 (en) * | 2008-12-12 | 2010-06-17 | Arthur Thomas J | Packaged frozen precooked dough or batter-based food products and methodes |
US20110171355A1 (en) * | 2010-01-13 | 2011-07-14 | Prince Castle, Inc | Food warming cabinet |
US20120043310A1 (en) * | 2010-08-20 | 2012-02-23 | Wuchert David B | Roll-out thermal envelope roof de-icing system |
US20130098351A1 (en) * | 2011-10-24 | 2013-04-25 | E.G.O. Elektro-Gerätebau GmbH | Cooking Appliance |
US20150163863A1 (en) * | 2012-06-13 | 2015-06-11 | Webasto SE | Electrical heating system for a motor vehicle |
US20150327707A1 (en) * | 2014-05-14 | 2015-11-19 | Hansol Technics Inc. | Heating container |
WO2016026564A1 (en) * | 2014-08-19 | 2016-02-25 | Friedrich-Wilhelm Struve | Wood heating element for drying wood lamella |
WO2016191699A1 (en) * | 2015-05-27 | 2016-12-01 | Enodis Corporation | Energy efficient open pass through holding device |
CN106255244A (en) * | 2016-08-17 | 2016-12-21 | 电子科技大学 | A kind of thin film heater improving temperature field uniformity |
CN107589155A (en) * | 2017-09-12 | 2018-01-16 | 华南师范大学 | A kind of capacitance type sensor and preparation method thereof |
USD811802S1 (en) | 2016-07-15 | 2018-03-06 | Spring (U.S.A.) Corporation | Food server |
US20180310363A1 (en) * | 2017-04-21 | 2018-10-25 | Robert Varnedoe | Color-changing heat mats |
Families Citing this family (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2416831C (en) * | 2000-06-14 | 2007-07-24 | Elias Russegger | Electric heating device |
US20020038800A1 (en) * | 2000-08-18 | 2002-04-04 | Keith Laken | Formable thermoplastic laminate heating assembly useful in heating cheese and hot fudge |
US7804044B2 (en) * | 2000-12-23 | 2010-09-28 | Braincom Ag | Heating device and method for the production thereof and heatable object and method for producing same |
DE10065723A1 (en) * | 2000-12-29 | 2002-07-04 | Bosch Gmbh Robert | Arrangement for temperature measurement and control |
US20050172950A1 (en) * | 2001-02-15 | 2005-08-11 | Integral Technologies, Inc. | Low cost heated clothing manufactured from conductive loaded resin-based materials |
US20050205551A1 (en) * | 2001-02-15 | 2005-09-22 | Integral Technologies, Inc. | Low cost heated clothing manufactured from conductive loaded resin-based materials |
US20030011381A1 (en) * | 2001-06-22 | 2003-01-16 | George Arndt | Container for fluid material |
DE60228087D1 (en) * | 2001-06-22 | 2008-09-18 | Compumedics Ltd | ASYMMETRIC INDUCTIVE BAND |
WO2004040943A1 (en) * | 2002-10-23 | 2004-05-13 | Braincom Ag | Panel heating system, method for producing the same, heatable object, seat occupancy recognition system, seat provided with the same and seat occupancy recognition method |
AU2003293334A1 (en) * | 2002-12-02 | 2004-06-23 | Santa Fe Science And Technology, Inc. | Resistive heating using polyaniline fiber |
US6852954B1 (en) * | 2002-12-23 | 2005-02-08 | J Sheng Co., Ltd. | Built-in electric heating structure for a travel mug or thermos bottle |
US6734398B1 (en) * | 2003-01-29 | 2004-05-11 | Michael D. Cecchi | Bladder system for controlling the temperature of laboratory fume hoods and working surfaces |
US7223941B2 (en) * | 2003-02-08 | 2007-05-29 | Walker Ip And Business Enterprises, Llc | Reduced-volume commercial space heating system and method for manufacturing same |
US7123826B2 (en) * | 2003-07-16 | 2006-10-17 | Wellstream International Ltd. | Temperature controlled pipe and method of manufacturing same |
US6991003B2 (en) * | 2003-07-28 | 2006-01-31 | M.Braun, Inc. | System and method for automatically purifying solvents |
US7407498B2 (en) * | 2003-09-02 | 2008-08-05 | Boston Scientific Scimed, Inc. | Construction of medical components using gas assisted microcellular foaming |
CN100374801C (en) * | 2003-10-30 | 2008-03-12 | 乐金电子(天津)电器有限公司 | Planar heater |
CA2544287C (en) * | 2003-11-06 | 2014-06-17 | Serge Saadoun | Heating bag for bakery products |
EP1680943A1 (en) | 2003-11-07 | 2006-07-19 | Celerity, Inc. | Surface mount heater |
US7163967B2 (en) * | 2003-12-01 | 2007-01-16 | Cryovac, Inc. | Method of increasing the gas transmission rate of a film |
US7335327B2 (en) * | 2003-12-31 | 2008-02-26 | Cryovac, Inc. | Method of shrinking a film |
EP1709213A4 (en) * | 2004-01-15 | 2012-09-05 | Nanocomp Technologies Inc | Systems and methods for synthesis of extended length nanostructures |
US20050230547A1 (en) * | 2004-01-26 | 2005-10-20 | Giamati Michael J | Aircraft drainmast assembly |
US7247822B2 (en) * | 2004-02-05 | 2007-07-24 | Methode Electronics, Inc. | Carbon fiber heating element assembly and methods for making |
WO2005119930A2 (en) * | 2004-04-13 | 2005-12-15 | Integral Technologies, Inc. | Low cost heated clothing manufacturing fro conductive loaded resin-based materials |
US20050248250A1 (en) * | 2004-05-07 | 2005-11-10 | Steris Inc | Cathode structure for explosive electron emission and method of forming the same |
US7047626B2 (en) * | 2004-07-15 | 2006-05-23 | Bulk Molding Compounds, Inc. | Encapsulated electrically resistive heater |
DE05819580T1 (en) | 2004-09-01 | 2008-04-24 | Bell Helicopter Textron, Inc., Fort Worth | Press-formed parts with an embedded conductor layer and manufacturing method therefor |
US7783361B2 (en) * | 2004-09-03 | 2010-08-24 | Ct Investments Ltd. | Radiant therapeutic heater |
DE102004044352B4 (en) * | 2004-09-09 | 2010-09-02 | E.G.O. Elektro-Gerätebau GmbH | Heating device for an electric heating device |
WO2006044772A1 (en) * | 2004-10-15 | 2006-04-27 | Duke Manufacturing Company | A food serving bar |
WO2007086909A2 (en) * | 2005-05-03 | 2007-08-02 | Nanocomp Technologies, Inc. | Nanotube composite materials and methods of manufacturing the same |
US7898079B2 (en) * | 2005-05-26 | 2011-03-01 | Nanocomp Technologies, Inc. | Nanotube materials for thermal management of electronic components |
CA2897320A1 (en) | 2005-07-28 | 2007-01-28 | Nanocomp Technologies, Inc. | Systems and methods for formation and harvesting of nanofibrous materials |
US7678841B2 (en) * | 2005-08-19 | 2010-03-16 | Cryovac, Inc. | Increasing the gas transmission rate of a film comprising fullerenes |
US7220947B2 (en) * | 2005-09-30 | 2007-05-22 | Global Heating Solutions, Inc. | Pipe heater |
TW200721880A (en) * | 2005-11-29 | 2007-06-01 | Kumtek Internat Co Ltd | Flexible heating thin sheet and method of manufacturing the same |
KR100749886B1 (en) * | 2006-02-03 | 2007-08-21 | (주) 나노텍 | Heating element using Carbon Nano tube |
WO2007112044A2 (en) | 2006-03-24 | 2007-10-04 | Medtronic, Inc | Implantable medical device |
US20080023871A1 (en) * | 2006-07-28 | 2008-01-31 | Gm Global Technology Operations, Inc. | Methods of forming polymeric articles having continuous support structures |
US20080056694A1 (en) * | 2006-08-29 | 2008-03-06 | Richard Cooper | Radiant heater |
US20080103543A1 (en) * | 2006-10-31 | 2008-05-01 | Medtronic, Inc. | Implantable medical device with titanium alloy housing |
US7731689B2 (en) * | 2007-02-15 | 2010-06-08 | Baxter International Inc. | Dialysis system having inductive heating |
CA2679401A1 (en) * | 2007-02-27 | 2008-09-04 | Nanocomp Technologies, Inc. | Materials for thermal protection and methods of manufacturing same |
US8574738B2 (en) * | 2007-03-14 | 2013-11-05 | Enerdel, Inc. | Battery pack assembly with integrated heater |
WO2008127330A1 (en) * | 2007-04-12 | 2008-10-23 | Duke Manufacturing Co. | A food serving bar |
US9061913B2 (en) * | 2007-06-15 | 2015-06-23 | Nanocomp Technologies, Inc. | Injector apparatus and methods for production of nanostructures |
FR2918485B1 (en) * | 2007-07-04 | 2010-09-10 | Arjowiggins Licensing Sas | FIBROUS INSERT MEDIUM WITH ANTENNA |
JP2010534772A (en) * | 2007-07-09 | 2010-11-11 | ナノコンプ テクノロジーズ インコーポレイテッド | Nanotube alignment in chemically promoted stretchable structures |
JP5496887B2 (en) | 2007-07-25 | 2014-05-21 | ナノコンプ テクノロジーズ インコーポレイテッド | System and method for controlling nanotube chirality |
WO2009021069A1 (en) * | 2007-08-07 | 2009-02-12 | Nanocomp Technologies, Inc. | Electrically and thermally non-metallic conductive nanostructure-based adapters |
US20090044848A1 (en) * | 2007-08-14 | 2009-02-19 | Nanocomp Technologies, Inc. | Nanostructured Material-Based Thermoelectric Generators |
CN101400198B (en) * | 2007-09-28 | 2010-09-29 | 北京富纳特创新科技有限公司 | Surface heating light source, preparation thereof and method for heat object application |
CN101409961B (en) * | 2007-10-10 | 2010-06-16 | 清华大学 | Surface heat light source, preparation method thereof and method for heating object using the same |
CN101409962B (en) * | 2007-10-10 | 2010-11-10 | 清华大学 | Surface heat light source and preparation method thereof |
GB2453933A (en) * | 2007-10-18 | 2009-04-29 | Gkn Aerospace Services Ltd | Aircraft leading edge ice protection system comprising a thermoplastic heater mat |
GB2453934B (en) * | 2007-10-18 | 2012-09-05 | Gkn Aerospace Services Ltd | Aircraft leading edge component with thermoplastic heater |
TW200925344A (en) * | 2007-12-12 | 2009-06-16 | Everest Textile Co Ltd | Electric heating fabric device |
US20090223945A1 (en) * | 2008-03-04 | 2009-09-10 | Taylor Precision Products, Inc. | Temperature controlled food storage compartment |
US8145047B2 (en) * | 2008-03-27 | 2012-03-27 | Michel Gagnon | Self-regulating electric heating system |
CN104313529A (en) * | 2008-05-01 | 2015-01-28 | 萨莫希雷梅克斯公司 | Method of fabricating cooking apparatus |
EP2279512B1 (en) | 2008-05-07 | 2019-10-23 | Nanocomp Technologies, Inc. | Carbon nanotube-based coaxial electrical cables and wiring harness |
JP5968621B2 (en) * | 2008-05-07 | 2016-08-10 | ナノコンプ テクノロジーズ インコーポレイテッド | Nanostructure-based heating device and method of use thereof |
DE102008062199A1 (en) * | 2008-05-29 | 2009-12-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method and heater for thermoforming |
US20100122980A1 (en) * | 2008-06-13 | 2010-05-20 | Tsinghua University | Carbon nanotube heater |
US20100000669A1 (en) * | 2008-06-13 | 2010-01-07 | Tsinghua University | Carbon nanotube heater |
US20100126985A1 (en) * | 2008-06-13 | 2010-05-27 | Tsinghua University | Carbon nanotube heater |
EP2157831A3 (en) * | 2008-07-11 | 2011-02-09 | Tsing Hua University | Hollow heater |
US9266307B2 (en) * | 2008-09-10 | 2016-02-23 | Solutia Inc. | Heated multiple layer glazings |
EP2352974B1 (en) * | 2008-12-03 | 2016-07-27 | Illinois Tool Works Inc. | Combination seat heater and occupant sensor antenna |
US20100176118A1 (en) * | 2009-01-14 | 2010-07-15 | David Lee | Electric heating film and method of producing the same |
US8354593B2 (en) * | 2009-07-10 | 2013-01-15 | Nanocomp Technologies, Inc. | Hybrid conductors and method of making same |
KR100955861B1 (en) * | 2009-08-05 | 2010-05-04 | 송범식 | Apparatus for heating pipe |
EP2339138A1 (en) * | 2009-12-24 | 2011-06-29 | Inergy Automotive Systems Research (Société Anonyme) | Flange equipped with a heating element |
DE102010019777B4 (en) * | 2010-05-07 | 2019-08-22 | Airbus Operations Gmbh | Aircraft with a fluid line system |
WO2011163217A1 (en) * | 2010-06-21 | 2011-12-29 | Egc Enterprises, Incorporated | Hermetically encapsulated electric heater |
US20120055651A1 (en) * | 2010-09-08 | 2012-03-08 | Creative Hydronics International | Baseboard Heater Radiator Cover |
US20120061051A1 (en) * | 2010-11-15 | 2012-03-15 | General Electric Company | Dispenser heater for an appliance |
JP6014603B2 (en) | 2011-01-04 | 2016-10-25 | ナノコンプ テクノロジーズ インコーポレイテッド | Nanotube-based insulator |
GB2490132A (en) * | 2011-04-19 | 2012-10-24 | Tectonic Internat Ltd | Heated container |
US20120315430A1 (en) * | 2011-06-13 | 2012-12-13 | Roberts Christopher D | Decorated Part of an Assembly and Manufacturing Process Therefor |
US10479478B2 (en) * | 2012-03-30 | 2019-11-19 | Mbda Uk Limited | Composite material suitable for a morphing skin |
US20140124500A1 (en) * | 2012-11-05 | 2014-05-08 | Betacera Inc. | Insulated heater |
ES2656097T3 (en) * | 2012-12-25 | 2018-02-23 | Kurabe Industrial Co., Ltd | Cord-shaped heater and sheet-shaped heater |
IL224132A (en) * | 2013-01-08 | 2017-04-30 | Harel Alex | Supplying and heating water system comprising flexible tank and heating system |
EP3010853B1 (en) | 2013-06-17 | 2023-02-22 | Nanocomp Technologies, Inc. | Exfoliating-dispersing agents for nanotubes, bundles and fibers |
FR3012570B1 (en) * | 2013-10-28 | 2016-07-01 | Seiv | FLAMMABLE LIQUID TANK INTEGRATING A PREHEATING SYSTEM |
EP2903111A1 (en) * | 2014-01-29 | 2015-08-05 | Inergy Automotive Systems Research (Société Anonyme) | Method for fixing a cable to a part, assembly comprising a cable fixed to a part, and tank comprising such an assembly |
EP3107353B1 (en) * | 2014-02-13 | 2018-06-20 | Korea Electronics Technology Institute | Heating paste composition, surface type heating element using same, and potable low-power heater |
JP6609094B2 (en) * | 2014-05-27 | 2019-11-20 | 株式会社クラベ | Heating device and vehicle seat |
US20150366003A1 (en) * | 2014-06-16 | 2015-12-17 | Sceiba Intelligent Fashion Co., Ltd. | Electric heating module |
US9565918B2 (en) * | 2014-06-19 | 2017-02-14 | Elc Management Llc | Heating system for single-use packettes |
CA2951105A1 (en) * | 2014-07-11 | 2016-01-14 | Philip Morris Products S.A. | Aerosol-forming cartridge comprising a tobacco-containing material |
US9770386B2 (en) * | 2014-08-23 | 2017-09-26 | High Tech Health International Inc. | Sauna heating apparatus and methods |
US10765597B2 (en) | 2014-08-23 | 2020-09-08 | High Tech Health International, Inc. | Sauna heating apparatus and methods |
KR102435336B1 (en) | 2014-09-12 | 2022-08-22 | 머서 테크놀로지스 리미티드 | A sterilisation container, method of sterilisation and sterilisation apparatus |
US9327923B1 (en) * | 2014-11-17 | 2016-05-03 | Quintin S. Marx | Portable heated ramp and method |
FI10797U1 (en) * | 2014-12-04 | 2015-03-10 | Wicetec Oy | A conductor joint for connecting a copper conductor |
JP6821575B2 (en) | 2015-02-03 | 2021-01-27 | ナノコンプ テクノロジーズ,インク. | Carbon Nanotube Structures and Methods for Their Formation |
WO2016137951A1 (en) | 2015-02-23 | 2016-09-01 | Exotex, Inc. | Method and apparatus of making porous pipes and panels using a treated fiber thread to weave, braid or spin products |
DE102015205656A1 (en) * | 2015-03-27 | 2016-09-29 | Bayerische Motoren Werke Aktiengesellschaft | Resistance element, component arrangement and method for resistance welding of thermoplastic components and composite component |
US9668301B2 (en) * | 2015-07-03 | 2017-05-30 | Ndt Engineering & Aerospace Co., Ltd. | Wet-use plane heater using PTC constant heater-ink polymer |
US11913592B2 (en) | 2015-09-21 | 2024-02-27 | Exotex, Inc. | Thermally insulating pipes |
US20180317554A1 (en) | 2015-10-30 | 2018-11-08 | British American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
KR101741786B1 (en) * | 2015-11-11 | 2017-05-30 | 주식회사 창민테크론 | Planar Heater |
US10834786B2 (en) * | 2016-01-12 | 2020-11-10 | 3M Innovative Properties Company | Heating tape and system |
US10247445B2 (en) * | 2016-03-02 | 2019-04-02 | Watlow Electric Manufacturing Company | Heater bundle for adaptive control |
US20210190379A1 (en) * | 2016-03-02 | 2021-06-24 | Watlow Electric Manufacturing Company | Heater bundles with local power switching |
US20210199345A1 (en) * | 2016-03-02 | 2021-07-01 | Watlow Electric Manufacturing Company | Heater bundles for thermal gradient compensation |
US20210190378A1 (en) * | 2016-03-02 | 2021-06-24 | Watlow Electric Manufacturing Company | Heater bundles having variable power output within zones |
EP3244692B1 (en) * | 2016-05-10 | 2021-06-23 | Airbus Operations GmbH | Electrically heatable layer stack |
ES2830745T3 (en) * | 2016-07-05 | 2021-06-04 | Int Engineered Environmental Solutions Inc | Heat generating device and method of producing the same |
CN107662384B (en) * | 2016-07-27 | 2020-06-16 | 佛山金万达科技股份有限公司 | Liquid-impermeable sewing method for seam of vapor-permeable and virus-isolating fabric |
US10397983B2 (en) * | 2016-10-17 | 2019-08-27 | David Fortenbacher | Water heating elements |
US11297692B2 (en) * | 2016-11-01 | 2022-04-05 | Goodrich Corporation | Multilayered panels |
US10581082B2 (en) | 2016-11-15 | 2020-03-03 | Nanocomp Technologies, Inc. | Systems and methods for making structures defined by CNT pulp networks |
EP3547796B1 (en) * | 2016-11-28 | 2022-08-03 | Lintec of America, Inc. | Conductive sheet for three-dimensional molding |
US11279836B2 (en) | 2017-01-09 | 2022-03-22 | Nanocomp Technologies, Inc. | Intumescent nanostructured materials and methods of manufacturing same |
US20180213608A1 (en) * | 2017-01-20 | 2018-07-26 | Applied Materials, Inc. | Electrostatic chuck with radio frequency isolated heaters |
EP3384987A3 (en) * | 2017-04-03 | 2018-10-24 | CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement | Vessel for performing electrochemical measurements and method for manufacturing such vessel |
GB2561228B (en) | 2017-04-06 | 2019-07-31 | Gkn Aerospace Services Ltd | Heater element and method of manufacture thereof |
EP3618566B1 (en) * | 2017-04-26 | 2021-11-03 | Kyocera Corporation | Heater |
IT201700048690A1 (en) * | 2017-05-05 | 2018-11-05 | Eltek Spa | ELECTRIC HEATER DEVICE, PARTICULARLY A PTC EFFECT |
CN106927121A (en) * | 2017-05-19 | 2017-07-07 | 王筱天 | A kind of vehicle-mounted incubator |
US10993557B2 (en) | 2018-08-03 | 2021-05-04 | American Sterilizer Company | Pressure management warming headrest |
US11633549B2 (en) * | 2017-08-28 | 2023-04-25 | Jabil Inc. | Apparatus, system and method of providing a fluid bag heater |
US11291283B2 (en) | 2017-08-29 | 2022-04-05 | Richard Glenn Rhett, JR. | Heated storage device |
ES2946239T3 (en) * | 2017-11-24 | 2023-07-14 | Airbus Operations Sl | Joining method for thermoplastic elements |
DE102017222983A1 (en) * | 2017-12-18 | 2019-06-19 | Bayerische Motoren Werke Aktiengesellschaft | Process for producing a fiber composite component |
US10932326B2 (en) * | 2018-05-24 | 2021-02-23 | Goodrich Aerospace Services Private Limited | Flexible heated hose assembly with printed positive temperature co-efficient heater |
DE102018114801A1 (en) * | 2018-06-20 | 2019-12-24 | Biotronik Se & Co. Kg | Diffusion barrier for implantable electrode lines |
US10899427B2 (en) | 2018-07-03 | 2021-01-26 | Goodrich Corporation | Heated floor panel with impact layer |
US10920994B2 (en) | 2018-07-03 | 2021-02-16 | Goodrich Corporation | Heated floor panels |
US11273897B2 (en) | 2018-07-03 | 2022-03-15 | Goodrich Corporation | Asymmetric surface layer for floor panels |
US10875623B2 (en) | 2018-07-03 | 2020-12-29 | Goodrich Corporation | High temperature thermoplastic pre-impregnated structure for aircraft heated floor panel |
US11376811B2 (en) | 2018-07-03 | 2022-07-05 | Goodrich Corporation | Impact and knife cut resistant pre-impregnated woven fabric for aircraft heated floor panels |
US10730004B2 (en) * | 2018-08-03 | 2020-08-04 | Messer Industries Usa, Inc. | Recovery of oxygen used in ozone production |
FR3098785A1 (en) * | 2019-07-15 | 2021-01-22 | Compagnie Plastic Omnium Se | Method of manufacturing a bodywork element provided with a conductive track |
US11613383B2 (en) | 2019-10-07 | 2023-03-28 | Rohr, Inc. | Tool for fabricating an aircraft control surface |
CA3166393A1 (en) | 2020-01-31 | 2021-08-05 | American Sterilizer Company | Patient warming system |
JP6937051B2 (en) * | 2020-03-06 | 2021-09-22 | 谷口 秀夫 | 3D printer and modeling method using it |
EP4122289A4 (en) * | 2020-03-16 | 2024-08-21 | Neptec Inc | Heated blanket |
NL2025473B1 (en) * | 2020-04-30 | 2021-11-18 | Kok & Van Engelen Composite Structures B V | Fiber-reinforced composite laminate for use in electromagnetic welding and method of electromagnetic welding of molded parts of said laminates |
US11688224B2 (en) * | 2021-04-08 | 2023-06-27 | Kamakura Foods Limited | Vending machine for hot packaged food |
US11311664B1 (en) | 2021-04-12 | 2022-04-26 | Denicia Dread Rankin | Shapeable intravenous tubing |
EP4124174A1 (en) * | 2021-07-19 | 2023-01-25 | B/E Aerospace, Inc. | Thin-lightweight-smart heater for freeze protection of aircraft waste fluid systems |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2804533A (en) * | 1956-02-27 | 1957-08-27 | Nathanson Max | Heater |
US3573430A (en) * | 1966-12-30 | 1971-04-06 | Paul Eisler | Surface heating device |
US3869596A (en) * | 1973-09-28 | 1975-03-04 | Safeway Products Inc | Cookware heater |
US4247756A (en) * | 1979-06-29 | 1981-01-27 | Victor Cucinotta | Heated floor mat |
US4421560A (en) * | 1981-04-08 | 1983-12-20 | Pilot Ink Company Ltd. | Thermochromatic materials |
US4429215A (en) * | 1981-03-27 | 1984-01-31 | Totoku Electric Co., Ltd. | Planar heat generator |
US4560428A (en) * | 1984-08-20 | 1985-12-24 | Rockwell International Corporation | System and method for producing cured composites |
US4919983A (en) * | 1988-04-04 | 1990-04-24 | Fremin Kit C | Thermochromatic infant feeding container |
US5052369A (en) * | 1985-12-13 | 1991-10-01 | Johnson Kendrick A | Heat retaining food container |
US5432322A (en) * | 1992-11-13 | 1995-07-11 | Bruder Healthcare Company | Electric heating pad |
US6222160B1 (en) * | 1999-02-26 | 2001-04-24 | Atd Corporation | Food transport container with integral heater |
Family Cites Families (259)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2255527A (en) | 1941-09-09 | Heating device | ||
US579611A (en) | 1897-03-30 | Electric heater | ||
US2593459A (en) | 1952-04-22 | Sheetsxsheet i | ||
US1046465A (en) | 1912-12-10 | Adrian H Hoyt | Electric shunt connection. | |
US1043922A (en) | 1910-12-23 | 1912-11-12 | Gold Car Heating & Lighting Co | Heating system. |
US1058270A (en) | 1912-03-26 | 1913-04-08 | Elmer E Stephens | Seat. |
US1281157A (en) | 1913-01-28 | 1918-10-08 | Cutler Hammer Mfg Co | Fluid-heater. |
US1477602A (en) | 1921-04-25 | 1923-12-18 | Simon Maurice | Electrical heating unit |
US1674488A (en) | 1922-12-20 | 1928-06-19 | Gen Electric | Electric heating unit |
US1987119A (en) | 1932-06-20 | 1935-01-08 | Richard H Long | Heater for fluids |
US1992593A (en) | 1932-06-27 | 1935-02-26 | Flexo Heat Company Inc | Portable electric heater |
US2104848A (en) | 1935-11-11 | 1938-01-11 | Hoffman Gas & Electric Heater | Electric switch |
US2146402A (en) | 1937-05-25 | 1939-02-07 | Power Patents Co | Immersion heater |
US2202095A (en) | 1938-12-23 | 1940-05-28 | Roy J Delhaye | Sanitary water closet seat |
US2274445A (en) | 1940-05-16 | 1942-02-24 | Edwin L Wiegand | Heating means |
US2456343A (en) | 1944-12-06 | 1948-12-14 | Tuttle & Kift Inc | Electric heater and method of making same |
US2426976A (en) | 1945-07-27 | 1947-09-02 | Francis L Taulman | Pipe thawing device |
US2464052A (en) | 1947-01-13 | 1949-03-08 | Numrich John | Heating unit for pipes |
US2593087A (en) | 1951-05-31 | 1952-04-15 | Baggett Leonard Paul | Electrically heated toilet seat |
US2719907A (en) | 1952-04-19 | 1955-10-04 | Connecticut Hard Rubber Co | Heating tape and method of making same |
US2710909A (en) | 1953-11-16 | 1955-06-14 | Richard W Logan | Electric heating element |
US2889439A (en) | 1955-07-29 | 1959-06-02 | Albert C Nolte | Electric heating devices and the like |
US3061501A (en) | 1957-01-11 | 1962-10-30 | Servel Inc | Production of electrical resistor elements |
US3296415A (en) | 1963-08-12 | 1967-01-03 | Eisler Paul | Electrically heated dispensable container |
US2938992A (en) | 1958-04-18 | 1960-05-31 | Electrofilm Inc | Heaters using conductive woven tapes |
US3211203A (en) | 1960-09-14 | 1965-10-12 | Fmc Corp | Fruit trimming apparatus |
US3238489A (en) | 1962-06-11 | 1966-03-01 | Dale Electronics | Electrical resistor |
US3173419A (en) | 1962-07-10 | 1965-03-16 | Dubilier William | Relaxer device |
US3191005A (en) | 1962-10-01 | 1965-06-22 | John L Cox | Electric circuit arrangement |
US3201738A (en) | 1962-11-30 | 1965-08-17 | Gen Electric | Electrical heating element and insulation therefor |
US3268846A (en) | 1963-08-26 | 1966-08-23 | Templeton Coal Company | Heating tape |
FR1379701A (en) | 1963-09-23 | 1964-11-27 | heating element for corrosive baths | |
US3277231A (en) * | 1964-01-17 | 1966-10-04 | Electrolux Corp | Conductor-carrying flexible conduit |
NL130393C (en) | 1964-05-29 | |||
US3352999A (en) | 1965-04-28 | 1967-11-14 | Gen Electric | Electric water heater circuit |
US3374338A (en) | 1965-09-29 | 1968-03-19 | Templeton Coal Company | Grounded heating mantle |
US3535494A (en) | 1966-11-22 | 1970-10-20 | Fritz Armbruster | Electric heating mat |
US3496517A (en) | 1967-09-12 | 1970-02-17 | Malco Mfg Co Inc | Connector |
US3584198A (en) * | 1968-02-29 | 1971-06-08 | Matsushita Electric Works Ltd | Flexible electric surface heater |
US3725645A (en) | 1968-12-04 | 1973-04-03 | Shevlin T | Casserole for storing and cooking foodstuffs |
GB1296398A (en) | 1969-03-06 | 1972-11-15 | ||
US3621566A (en) | 1969-05-07 | 1971-11-23 | Standard Motor Products | Method of making an electrical heating element |
US3597591A (en) | 1969-09-25 | 1971-08-03 | Delta Control Inc | Bonded flexible heater structure with an electric semiconductive layer sealed therein |
US3564589A (en) | 1969-10-13 | 1971-02-16 | Henry M Arak | Immersion-type aquarium heater with automatic temperature control and malfunction shut-off |
US3657516A (en) | 1969-11-10 | 1972-04-18 | Kansai Hoon Kogyo Kk | Flexible panel-type heating unit |
US3623471A (en) | 1969-12-15 | 1971-11-30 | John C Bogue | Wraparound battery and heater |
US3614386A (en) | 1970-01-09 | 1971-10-19 | Gordon H Hepplewhite | Electric water heater |
DE2007866A1 (en) | 1970-02-20 | 1971-09-09 | Hoechst Ag | Process for the production of flat heat conductors and flat heat conductors produced by this process |
US3933550A (en) | 1970-05-28 | 1976-01-20 | Austral-Erwin Engineering Co. | Heat bonding fluorocarbon and other plastic films to metal surfaces |
US3648659A (en) | 1970-06-08 | 1972-03-14 | Roy A Jones | Article of manufacture |
US3888711A (en) | 1970-06-19 | 1975-06-10 | Wilhelm Breitner | Method of applying metal filaments to surfaces |
JPS513097B1 (en) | 1970-09-21 | 1976-01-31 | ||
GB1325084A (en) | 1971-02-22 | 1973-08-01 | Singleton Sa | Glasscased immersion heaters |
US3678248A (en) | 1971-03-15 | 1972-07-18 | Yves P Tricault | Household dish-heating appliance |
US3657517A (en) | 1971-04-26 | 1972-04-18 | Rama Ind Heater Co | Releasable clamp-on heater band |
US3707618A (en) | 1971-07-12 | 1972-12-26 | Edward J Zeitlin | Electric immersion heater assembly |
US3900654A (en) | 1971-07-15 | 1975-08-19 | Du Pont | Composite polymeric electric heating element |
US3808403A (en) | 1971-07-20 | 1974-04-30 | Kohkoku Chemical Ind Co | Waterproof electrical heating unit sheet |
US4060710A (en) | 1971-09-27 | 1977-11-29 | Reuter Maschinen-And Werkzeugbau Gmbh | Rigid electric surface heating element |
US3781526A (en) | 1971-10-26 | 1973-12-25 | Dana Int Ltd | Heating apparatus |
JPS5110892B2 (en) | 1972-04-06 | 1976-04-07 | ||
US3976855A (en) | 1972-08-22 | 1976-08-24 | Firma Wilhelm Haupt | Electrical heating mat |
US4102256A (en) | 1972-09-27 | 1978-07-25 | Engineering Inventions Inc. | Cooking apparatus |
US3806701A (en) | 1972-11-03 | 1974-04-23 | Rival Manufacturing Co | Electric cooking utensil having a removable vessel |
JPS5148815B2 (en) | 1973-03-09 | 1976-12-23 | ||
US3831129A (en) | 1973-09-14 | 1974-08-20 | Thomas & Betts Corp | Deflectable jumper strip |
US3860787A (en) | 1973-11-05 | 1975-01-14 | Rheem International | Immersion type heating element with a plastic head for a storage water heater tank |
NL7414546A (en) | 1973-11-15 | 1975-05-20 | Rhone Poulenc Sa | SMOOTH HEATING TUBE AND PROCESS FOR MANUFACTURING IT. |
US3952182A (en) | 1974-01-25 | 1976-04-20 | Flanders Robert D | Instantaneous electric fluid heater |
US3875373A (en) | 1974-02-14 | 1975-04-01 | Boeing Co | Vacuum-applied heating pad |
US3878362A (en) | 1974-02-15 | 1975-04-15 | Du Pont | Electric heater having laminated structure |
US3908749A (en) | 1974-03-07 | 1975-09-30 | Standex Int Corp | Food service system |
US4055526A (en) * | 1974-03-29 | 1977-10-25 | Shin Kiyokawa | Planar heating element and production thereof |
US3924100A (en) | 1974-05-09 | 1975-12-02 | Anthony C Mack | Mobile food serving system |
US3968348A (en) | 1974-05-31 | 1976-07-06 | Stanfield Phillip W | Container heating jacket |
JPS535920B2 (en) | 1974-06-03 | 1978-03-02 | ||
NL176301C (en) | 1974-08-24 | Schwank Gmbh | APPLIANCE WITH AT LEAST ONE GAS BURNER FOR A HOB. | |
US3943328A (en) | 1974-12-11 | 1976-03-09 | Emerson Electric Co. | Electric heating elements |
GB1498792A (en) | 1974-12-13 | 1978-01-25 | Hobbs R Ltd | Liquid heating vessels |
US3974358A (en) | 1975-01-10 | 1976-08-10 | Teckton, Inc. | Portable food heating device |
US4021642A (en) | 1975-02-28 | 1977-05-03 | General Electric Company | Oven exhaust system for range with solid cooktop |
US4658121A (en) | 1975-08-04 | 1987-04-14 | Raychem Corporation | Self regulating heating device employing positive temperature coefficient of resistance compositions |
US4094297A (en) | 1976-02-02 | 1978-06-13 | Ballentine Earle W | Ceramic-glass burner |
US3987275A (en) | 1976-02-02 | 1976-10-19 | General Electric Company | Glass plate surface heating unit with sheathed heater |
DE2710998C2 (en) | 1976-03-22 | 1984-08-02 | Sturm, Werner, 4614 Hägendorf | Thermoplastic sleeve with an electrical resistance heating wire |
JPS52133321U (en) * | 1976-04-06 | 1977-10-11 | ||
US4058702A (en) | 1976-04-26 | 1977-11-15 | Electro-Thermal Corporation | Fluid heating apparatus |
YU109677A (en) | 1976-05-15 | 1982-05-31 | Spezialglas Gmbh | Glass ceramic surface for cooking by means of the radiating gas-heated surface |
FR2353381A1 (en) | 1976-06-03 | 1977-12-30 | Pont A Mousson | ASSEMBLY PROCESS BY WELDING PLASTIC TUBES AND CONNECTING FOR SUCH ASSEMBLY |
US4364308A (en) | 1976-06-07 | 1982-12-21 | Engineering Inventions, Inc. | Apparatus for preparing food |
US4046989A (en) | 1976-06-21 | 1977-09-06 | Parise & Sons, Inc. | Hot water extraction unit having electrical immersion heater |
FR2371117A2 (en) | 1976-07-06 | 1978-06-09 | Rhone Poulenc Ind | RADIANT ELEMENT FOR HEATING DEVICE |
US4119834A (en) | 1976-07-23 | 1978-10-10 | Joseph D. Losch | Electrical radiant heat food warmer and organizer |
US4217483A (en) | 1976-10-27 | 1980-08-12 | Electro-Therm, Inc. | Terminal block for single phase or three phase wiring of an immersion heater assembly and methods of wiring |
US4112410A (en) | 1976-11-26 | 1978-09-05 | Watlow Electric Manufacturing Company | Heater and method of making same |
US4388607A (en) | 1976-12-16 | 1983-06-14 | Raychem Corporation | Conductive polymer compositions, and to devices comprising such compositions |
US4250397A (en) | 1977-06-01 | 1981-02-10 | International Paper Company | Heating element and methods of manufacturing therefor |
CH622870A5 (en) | 1977-06-03 | 1981-04-30 | Werner Sturm | |
CA1116676A (en) | 1977-06-10 | 1982-01-19 | Lambert Egger | Heat strip or panel |
US4152578A (en) | 1977-10-03 | 1979-05-01 | Emerson Electric Co. | Electric heating elements |
CA1089904A (en) | 1978-02-03 | 1980-11-18 | Joseph M. Bender | Radiant therapeutic heater |
SE7902118L (en) | 1978-03-16 | 1979-09-17 | Braude E Ltd | ELECTRICAL BAPTISM HEATER |
CH627249A5 (en) | 1978-04-21 | 1981-12-31 | Werner Sturm | |
CH627962A5 (en) | 1978-04-28 | 1982-02-15 | Werner Sturm | METHOD AND DEVICE FOR CONNECTING THERMOPLASTIC LINE ELEMENTS. |
FR2430847A1 (en) | 1978-07-13 | 1980-02-08 | Saint Gobain | HEATING AND / OR ALARM GLASS |
US4294643A (en) | 1978-09-05 | 1981-10-13 | Uop Inc. | Heater assembly and method of forming same |
JPS5541646A (en) * | 1978-09-18 | 1980-03-24 | Shinetsu Polymer Co | Hollow tubular heater |
US4304987A (en) | 1978-09-18 | 1981-12-08 | Raychem Corporation | Electrical devices comprising conductive polymer compositions |
US4233495A (en) | 1978-12-15 | 1980-11-11 | Lincoln Manufacturing Company, Inc. | Food warming cabinet |
US4245149A (en) | 1979-04-10 | 1981-01-13 | Fairlie Ian F | Heating system for chairs |
US4296311A (en) | 1979-08-15 | 1981-10-20 | The Kanthal Corporation | Electric hot plate |
US4313777A (en) | 1979-08-30 | 1982-02-02 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | One-step dual purpose joining technique |
US4346277A (en) | 1979-10-29 | 1982-08-24 | Eaton Corporation | Packaged electrical heating element |
US4313053A (en) | 1980-01-02 | 1982-01-26 | Von Roll A.G. | Welding sleeve of thermoplastic material |
FR2474802A1 (en) | 1980-01-29 | 1981-07-31 | Gloria Sa | HEATING RESISTORS AND THERMOSTATS FOR AQUARIOPHILIA |
CH645449A5 (en) | 1980-03-04 | 1984-09-28 | Von Roll Ag | ELECTRICALLY WELDABLE SLEEVE FOR CONNECTING PIPE ELEMENTS. |
US4346287A (en) | 1980-05-16 | 1982-08-24 | Watlow Electric Manufacturing Company | Electric heater and assembly |
CH648393A5 (en) | 1980-08-29 | 1985-03-15 | Werner Sturm | ELECTRIC WELDING SOCKET FROM A THERMOPLAST FOR CONNECTING PIPE ELEMENTS FROM THERMOPLAST. |
US4534886A (en) | 1981-01-15 | 1985-08-13 | International Paper Company | Non-woven heating element |
US4390551A (en) | 1981-02-09 | 1983-06-28 | General Foods Corporation | Heating utensil and associated circuit completing pouch |
US4419567A (en) | 1981-03-02 | 1983-12-06 | Apcom, Inc. | Heating element for electric water heater |
US4337182A (en) | 1981-03-26 | 1982-06-29 | Phillips Petroleum Company | Poly (arylene sulfide) composition suitable for use in semi-conductor encapsulation |
US4387293A (en) | 1981-03-30 | 1983-06-07 | The Belton Corporation | Electric heating appliance |
US4482239A (en) | 1981-04-25 | 1984-11-13 | Canon Kabushiki Kaisha | Image recorder with microwave fixation |
US4358552A (en) | 1981-09-10 | 1982-11-09 | Morton-Norwich Products, Inc. | Epoxy resinous molding compositions having low coefficient of thermal expansion and high thermal conductivity |
US4436988A (en) | 1982-03-01 | 1984-03-13 | R & G Sloane Mfg. Co., Inc. | Spiral bifilar welding sleeve |
US4606787A (en) | 1982-03-04 | 1986-08-19 | Etd Technology, Inc. | Method and apparatus for manufacturing multi layer printed circuit boards |
JPS58166252A (en) | 1982-03-26 | 1983-10-01 | Toyota Motor Corp | Oxygen sensor element having ceramic heater and its manufacture |
ATE27053T1 (en) | 1982-05-12 | 1987-05-15 | Geberit Ag | WELDING SLEEVE. |
US4501951A (en) | 1982-08-16 | 1985-02-26 | E. I. Du Pont De Nemours And Company | Electric heating element for sterilely cutting and welding together thermoplastic tubes |
US4845343A (en) | 1983-11-17 | 1989-07-04 | Raychem Corporation | Electrical devices comprising fabrics |
US4986870A (en) | 1984-03-09 | 1991-01-22 | R.W.Q., Inc. | Apparatus for laminating multilayered printed circuit boards having both rigid and flexible portions |
US4569564A (en) * | 1984-04-09 | 1986-02-11 | Ahmann John E | Compact portable voting booth |
JPS6119284A (en) | 1984-07-05 | 1986-01-28 | Mitsubishi Electric Corp | Vertical deflection circuit |
US4641012A (en) | 1984-07-23 | 1987-02-03 | Bloomfield Industries, Inc. | Thermostat sensing tube and mounting system for electric beverage making device |
AU581014B2 (en) | 1984-08-28 | 1989-02-09 | Von Roll Ag | Weldable connecting member for connecting or joining thermoplastic pipe elements |
US4640226A (en) | 1984-10-18 | 1987-02-03 | Liff Walter H | Bird watering apparatus |
US4633063A (en) | 1984-12-27 | 1986-12-30 | E. I. Du Pont De Nemours And Company | Vented heating element for sterile cutting and welding together of thermoplastic tubes |
DE3512659A1 (en) | 1985-04-06 | 1986-10-09 | Robert Bosch Gmbh, 7000 Stuttgart | Heater for electrically operated hot-water apparatuses |
FR2580887B1 (en) | 1985-04-19 | 1989-04-14 | Seb Sa | ELECTRIC RESISTANCE FLAT HEATING ELEMENT AND HEATING ARTICLE COMPRISING SUCH AN ELEMENT |
US4878765A (en) * | 1985-06-03 | 1989-11-07 | Golden Valley Microwave Foods, Inc. | Flexible packaging sheets and packages formed therefrom |
US4912288A (en) | 1985-09-04 | 1990-03-27 | Allen-Bradley International Limited | Moulded electric circuit package |
US4725717A (en) | 1985-10-28 | 1988-02-16 | Collins & Aikman Corporation | Impact-resistant electrical heating pad with antistatic upper and lower surfaces |
JPS62100968A (en) | 1985-10-29 | 1987-05-11 | 東レ株式会社 | String heater element and manufacture of the same |
SE8505911L (en) | 1985-12-13 | 1987-06-14 | Kanthal Ab | Foil elements |
US4687905A (en) | 1986-02-03 | 1987-08-18 | Emerson Electric Co. | Electric immersion heating element assembly for use with a plastic water heater tank |
US4707590A (en) | 1986-02-24 | 1987-11-17 | Lefebvre Fredrick L | Immersion heater device |
EP0245067B1 (en) | 1986-05-06 | 1990-09-12 | N.V. Raychem S.A. | Heat recoverable article |
US4762980A (en) | 1986-08-07 | 1988-08-09 | Thermar Corporation | Electrical resistance fluid heating apparatus |
US4784054A (en) | 1986-08-28 | 1988-11-15 | Restaurant Technology, Inc. | Equipment for holding or staging packaged sandwiches |
US4756781A (en) | 1986-09-29 | 1988-07-12 | Etheridge David R | Method of connecting non-contaminating fluid heating element to a power source |
US4927999A (en) | 1986-10-14 | 1990-05-22 | Georg Fischer Ag | Apparatus for fusion joining plastic pipe |
DE3637378A1 (en) | 1986-11-03 | 1988-05-05 | Braun Ag | ELECTRIC WATER HEATER FOR DEVICES OF PERSONAL NEED |
GB8710634D0 (en) | 1987-05-05 | 1987-06-10 | Hill R G Q S | Electric heaters |
US4880435A (en) * | 1987-05-20 | 1989-11-14 | Sanyo Electric Co., Ltd. | Alkaline storage cell and manufacturing method therefor |
GB8719430D0 (en) | 1987-08-17 | 1987-09-23 | Glynwed Tubes & Fittings | Manufacturing electrofusion coupler |
US4972197A (en) | 1987-09-03 | 1990-11-20 | Ford Aerospace Corporation | Integral heater for composite structure |
US4751528A (en) | 1987-09-09 | 1988-06-14 | Spectra, Inc. | Platen arrangement for hot melt ink jet apparatus |
WO1989008542A1 (en) * | 1988-03-18 | 1989-09-21 | Takai International Yacht Design Incorporated | Molding method and apparatus for laminated molded article |
US4913666A (en) | 1988-04-15 | 1990-04-03 | Apcom, Inc. | Wiring terminal construction |
JPH01301235A (en) | 1988-05-30 | 1989-12-05 | Sekisui Plastics Co Ltd | Laminated foamed sheet suitable for vacuum molding |
US5184969A (en) | 1988-05-31 | 1993-02-09 | Electroluminscent Technologies Corporation | Electroluminescent lamp and method for producing the same |
JPH0262275A (en) | 1988-08-30 | 1990-03-02 | Brother Ind Ltd | Recording apparatus |
US4865674A (en) | 1988-10-06 | 1989-09-12 | Elkhart Products Corporation | Method of connecting two thermoplastic pipes using a barbed metal welding sleeve |
DE3836387C1 (en) | 1988-10-26 | 1990-04-05 | Norton Pampus Gmbh, 4156 Willich, De | Heating device for use in aggressive liquids |
US4970528A (en) | 1988-11-02 | 1990-11-13 | Hewlett-Packard Company | Method for uniformly drying ink on paper from an ink jet printer |
US5162634A (en) | 1988-11-15 | 1992-11-10 | Canon Kabushiki Kaisha | Image fixing apparatus |
MY106607A (en) | 1988-12-16 | 1995-06-30 | Hewlett Packard Company A Delaware Corp | Heater assembly for printers. |
JP2719946B2 (en) | 1988-12-24 | 1998-02-25 | 繁之 安田 | Self-regulating heating element and flexible planar heating element using the same |
DE3844082A1 (en) | 1988-12-28 | 1990-07-05 | Cramer Gmbh & Co Kg | COOKER WITH AT LEAST ONE GLASS-CERAMIC COOKER |
US4865014A (en) | 1989-02-16 | 1989-09-12 | Nelson Thomas E | Water heater and method of fabricating same |
US5038458A (en) | 1989-02-22 | 1991-08-13 | Heaters Engineering, Inc. | Method of manufacture of a nonuniform heating element |
US5111032A (en) | 1989-03-13 | 1992-05-05 | Raychem Corporation | Method of making an electrical device comprising a conductive polymer |
US5252157A (en) | 1989-05-01 | 1993-10-12 | Central Plastics Company | Electrothermal fusion of large diameter pipes by electric heating wire wrapping and sleeve connector |
US4948948A (en) | 1989-05-23 | 1990-08-14 | Claude Lesage | Water heater with multiple heating elements having different power |
US5023433A (en) | 1989-05-25 | 1991-06-11 | Gordon Richard A | Electrical heating unit |
US4982064A (en) | 1989-06-20 | 1991-01-01 | James River Corporation Of Virginia | Microwave double-bag food container |
US5013890A (en) | 1989-07-24 | 1991-05-07 | Emerson Electric Co. | Immersion heater and method of manufacture |
DE3931652A1 (en) | 1989-09-22 | 1991-04-04 | Basf Ag | METHOD FOR PRODUCING THERMOPLASTIC PLASTICS FILLED WITH CERAMIC POWDERS |
US5051275A (en) | 1989-11-09 | 1991-09-24 | At&T Bell Laboratories | Silicone resin electronic device encapsulant |
US5111025A (en) | 1990-02-09 | 1992-05-05 | Raychem Corporation | Seat heater |
US5129033A (en) | 1990-03-20 | 1992-07-07 | Ferrara Janice J | Disposable thermostatically controlled electric surgical-medical irrigation and lavage liquid warming bowl and method of use |
GB9012535D0 (en) | 1990-06-05 | 1990-07-25 | Townsend David W | Coated heating element |
US5113480A (en) | 1990-06-07 | 1992-05-12 | Apcom, Inc. | Fluid heater utilizing dual heating elements interconnected with conductive jumper |
US5066852A (en) | 1990-09-17 | 1991-11-19 | Teledyne Ind. Inc. | Thermoplastic end seal for electric heating elements |
US5208080A (en) | 1990-10-29 | 1993-05-04 | Ford Motor Company | Lamination of semi-rigid material between glass |
US5389184A (en) | 1990-12-17 | 1995-02-14 | United Technologies Corporation | Heating means for thermoplastic bonding |
GB9101914D0 (en) | 1991-01-29 | 1991-03-13 | Fusion Group Plc | Pipe joints |
US5221419A (en) | 1991-02-19 | 1993-06-22 | Beckett Industries Inc. | Method for forming laminate for microwave oven package |
US5155800A (en) | 1991-02-27 | 1992-10-13 | Process Technology Inc. | Panel heater assembly for use in a corrosive environment and method of manufacturing the heater |
US5293446A (en) | 1991-05-28 | 1994-03-08 | Owens George G | Two stage thermostatically controlled electric water heating tank |
US5136143A (en) | 1991-06-14 | 1992-08-04 | Heatron, Inc. | Coated cartridge heater |
US5313034A (en) | 1992-01-15 | 1994-05-17 | Edison Welding Institute, Inc. | Thermoplastic welding |
US5271085A (en) | 1992-02-20 | 1993-12-14 | Carballo Rodolfo A | Temperature-controlled laboratory beaker comprising a heating element and temperature sensor bonded to the outer surface of the beaker by a silicone-rubber molding |
US5213750A (en) * | 1992-03-11 | 1993-05-25 | Cooper Power Systems, Inc. | Method to straighten cross linked polyethylene high voltage power cable |
US5255595A (en) | 1992-03-18 | 1993-10-26 | The Rival Company | Cookie maker |
US5406316A (en) | 1992-05-01 | 1995-04-11 | Hewlett-Packard Company | Airflow system for ink-jet printer |
US5287123A (en) | 1992-05-01 | 1994-02-15 | Hewlett-Packard Company | Preheat roller for thermal ink-jet printer |
US5221810A (en) | 1992-05-14 | 1993-06-22 | The United States Of America As Represented By The Secretary Of The Navy | Embedded can booster |
DE69322269T2 (en) * | 1992-05-27 | 1999-04-22 | Conagra, Inc., Omaha, Nebr. | FOOD CONTAINERS AND THE LIKE WITH PRESSURIZED LAYERS |
US5408070A (en) | 1992-11-09 | 1995-04-18 | American Roller Company | Ceramic heater roller with thermal regulating layer |
US5521357A (en) | 1992-11-17 | 1996-05-28 | Heaters Engineering, Inc. | Heating device for a volatile material with resistive film formed on a substrate and overmolded body |
US5304778A (en) | 1992-11-23 | 1994-04-19 | Electrofuel Manufacturing Co. | Glow plug with improved composite sintered silicon nitride ceramic heater |
US5691756A (en) | 1992-11-25 | 1997-11-25 | Tektronix, Inc. | Printer media preheater and method |
US5302807A (en) | 1993-01-22 | 1994-04-12 | Zhao Zhi Rong | Electrically heated garment with oscillator control for heating element |
US5335820A (en) * | 1993-02-26 | 1994-08-09 | Christianson Systems, Inc. | Container and dispenser system for flowable solids |
US5779870A (en) | 1993-03-05 | 1998-07-14 | Polyclad Laminates, Inc. | Method of manufacturing laminates and printed circuit boards |
US5461408A (en) | 1993-04-30 | 1995-10-24 | Hewlett-Packard Company | Dual feed paper path for ink-jet printer |
US5581289A (en) | 1993-04-30 | 1996-12-03 | Hewlett-Packard Company | Multi-purpose paper path component for ink-jet printer |
US5406321A (en) | 1993-04-30 | 1995-04-11 | Hewlett-Packard Company | Paper preconditioning heater for ink-jet printer |
JP3441507B2 (en) | 1993-04-30 | 2003-09-02 | ヒューレット・パッカード・カンパニー | Printing equipment |
US5397873A (en) | 1993-08-23 | 1995-03-14 | Emerson Electric Co. | Electric hot plate with direct contact P.T.C. sensor |
US5477033A (en) | 1993-10-19 | 1995-12-19 | Ken-Bar Inc. | Encapsulated water impervious electrical heating pad |
US5582754A (en) | 1993-12-08 | 1996-12-10 | Heaters Engineering, Inc. | Heated tray |
US5453599A (en) | 1994-02-14 | 1995-09-26 | Hoskins Manufacturing Company | Tubular heating element with insulating core |
IT1267400B1 (en) | 1994-02-22 | 1997-02-05 | Monetti Spa | THERMOREGULATED GROUP FOR THE DISTRIBUTION OF HOT MEALS IN ISOTHERMAL CONTAINERS. |
IT1267401B1 (en) * | 1994-02-22 | 1997-02-05 | Monetti Spa | ISOTHERMAL CONTAINER OF HOT MEALS, ESPECIALLY FOR COLLECTIVE CATERING. |
US6056157A (en) | 1994-03-14 | 2000-05-02 | Gehl's Guernsey Farms, Inc. | Device for dispensing flowable material from a flexible package |
GB9408461D0 (en) | 1994-04-28 | 1994-06-22 | Glynwed Plastics | Method of manufacturing and electrofusion coupler |
US5618065A (en) | 1994-07-21 | 1997-04-08 | Hitachi Metals, Ltd. | Electric welding pipe joint having a two layer outer member |
JP3322008B2 (en) | 1994-08-05 | 2002-09-09 | 日立工機株式会社 | Continuous paper duplex printing system |
US5552112A (en) | 1995-01-26 | 1996-09-03 | Quiclave, Llc | Method and system for sterilizing medical instruments |
US5703998A (en) | 1994-10-20 | 1997-12-30 | Energy Convertors, Inc. | Hot water tank assembly |
US5586214A (en) | 1994-12-29 | 1996-12-17 | Energy Convertors, Inc. | Immersion heating element with electric resistance heating material and polymeric layer disposed thereon |
US5835679A (en) | 1994-12-29 | 1998-11-10 | Energy Converters, Inc. | Polymeric immersion heating element with skeletal support and optional heat transfer fins |
US5930459A (en) | 1994-12-29 | 1999-07-27 | Energy Converters, Inc. | Immersion heating element with highly thermally conductive polymeric coating |
US5619240A (en) | 1995-01-31 | 1997-04-08 | Tektronix, Inc. | Printer media path sensing apparatus |
US5932129A (en) * | 1995-02-27 | 1999-08-03 | Vesture Corporation | Thermal retention device |
JP3239671B2 (en) | 1995-03-08 | 2001-12-17 | 松下電器産業株式会社 | Film heaters, heated seats, evaporation boats and heating furnaces |
US5571435A (en) | 1995-04-26 | 1996-11-05 | Neeco, Inc. | Welding rod having parallel electrical pathways |
US6119587A (en) | 1995-05-11 | 2000-09-19 | Restaurant Technology, Inc. | Cooked food staging device and method |
US5714738A (en) | 1995-07-10 | 1998-02-03 | Watlow Electric Manufacturing Co. | Apparatus and methods of making and using heater apparatus for heating an object having two-dimensional or three-dimensional curvature |
FR2737380B1 (en) | 1995-07-26 | 1997-09-05 | Serigraphie Ind Soc Nouv | HEATING ELECTRIC RESISTOR AND AN ENCLOSURE INTENDED TO BE HEATED OR THE CONTENT OF WHICH IS INTENDED TO BE HEATED, COMPRISING AT LEAST ONE SUCH HEATING ELECTRIC RESISTOR |
US5708251A (en) | 1995-10-30 | 1998-01-13 | Compucraft Ltd. | Method for embedding resistance heating wire in an electrofusion saddle coupler |
US5806177A (en) | 1995-10-31 | 1998-09-15 | Sumitomo Bakelite Company Limited | Process for producing multilayer printed circuit board |
US5961869A (en) | 1995-11-13 | 1999-10-05 | Irgens; O. Stephan | Electrically insulated adhesive-coated heating element |
GB9602873D0 (en) | 1996-02-13 | 1996-04-10 | Dow Corning Sa | Heating elements and process for manufacture thereof |
US5780817A (en) | 1996-02-27 | 1998-07-14 | Eckman; Hanford L. | Retrofittable glass-top electric stove element |
US5954977A (en) | 1996-04-19 | 1999-09-21 | Thermion Systems International | Method for preventing biofouling in aquatic environments |
SE506974C2 (en) | 1996-07-12 | 1998-03-09 | Scandmec Ab | Arrangement and procedure for the manufacture of a heated seat |
US5883364A (en) | 1996-08-26 | 1999-03-16 | Frei; Rob A. | Clean room heating jacket and grounded heating element therefor |
US5824996A (en) | 1997-05-13 | 1998-10-20 | Thermosoft International Corp | Electroconductive textile heating element and method of manufacture |
US5892202A (en) * | 1996-09-06 | 1999-04-06 | Vesture Corporation | Thermal storage and transport |
US5829171A (en) | 1996-10-01 | 1998-11-03 | Perfect Impression Footwear Company | Custom-fitting footwear |
US5880435A (en) * | 1996-10-24 | 1999-03-09 | Vesture Corporation | Food delivery container |
US5781412A (en) | 1996-11-22 | 1998-07-14 | Parker-Hannifin Corporation | Conductive cooling of a heat-generating electronic component using a cured-in-place, thermally-conductive interlayer having a filler of controlled particle size |
DE19718504A1 (en) | 1997-05-02 | 1998-11-05 | Huels Chemische Werke Ag | Composite of a molding compound based on polyamide on the one hand and vulcanizable fluorine elastomers on the other |
US6229123B1 (en) * | 1998-09-25 | 2001-05-08 | Thermosoft International Corporation | Soft electrical textile heater and method of assembly |
US5910266A (en) * | 1997-05-28 | 1999-06-08 | The B.F. Goodrich Company | Helical electrical heater |
US5902518A (en) | 1997-07-29 | 1999-05-11 | Watlow Missouri, Inc. | Self-regulating polymer composite heater |
US6147335A (en) | 1997-10-06 | 2000-11-14 | Watlow Electric Manufacturing Co. | Electrical components molded within a polymer composite |
US6037574A (en) | 1997-11-06 | 2000-03-14 | Watlow Electric Manufacturing | Quartz substrate heater |
JP3129694B2 (en) | 1998-04-03 | 2001-01-31 | 立川ブラインド工業株式会社 | Hanger rail of partition panel |
US5940895A (en) | 1998-04-16 | 1999-08-24 | Kohler Co. | Heated toilet seat |
US6137098A (en) | 1998-09-28 | 2000-10-24 | Weaver Popcorn Company, Inc. | Microwave popcorn bag with continuous susceptor arrangement |
US6150635A (en) | 1999-03-08 | 2000-11-21 | Hannon; Georgia A. | Single serving pizza cooker |
AU5010700A (en) * | 1999-05-14 | 2000-12-05 | Pizza Hut Inc. | Pizza delivery bags and methods |
US6089406A (en) | 1999-06-01 | 2000-07-18 | Server Products | Packaged food warmer and dispenser |
US6294761B1 (en) * | 1999-12-01 | 2001-09-25 | Raymond David Diederich | Heat-resisting package for hot-melt adhesive |
-
2000
- 2000-08-18 US US09/642,215 patent/US6519835B1/en not_active Expired - Lifetime
-
2001
- 2001-02-12 US US09/782,351 patent/US20020038801A1/en not_active Abandoned
- 2001-02-12 US US09/782,352 patent/US20020040901A1/en not_active Abandoned
- 2001-02-12 US US09/782,350 patent/US20020038799A1/en not_active Abandoned
- 2001-02-12 US US09/781,457 patent/US6541744B2/en not_active Expired - Fee Related
- 2001-04-10 US US09/829,509 patent/US20020040898A1/en not_active Abandoned
- 2001-08-16 WO PCT/US2001/025800 patent/WO2002017687A1/en active Application Filing
- 2001-08-16 AU AU2001285030A patent/AU2001285030A1/en not_active Abandoned
-
2002
- 2002-12-18 US US10/323,173 patent/US20030121140A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2804533A (en) * | 1956-02-27 | 1957-08-27 | Nathanson Max | Heater |
US3573430A (en) * | 1966-12-30 | 1971-04-06 | Paul Eisler | Surface heating device |
US3869596A (en) * | 1973-09-28 | 1975-03-04 | Safeway Products Inc | Cookware heater |
US4247756A (en) * | 1979-06-29 | 1981-01-27 | Victor Cucinotta | Heated floor mat |
US4429215A (en) * | 1981-03-27 | 1984-01-31 | Totoku Electric Co., Ltd. | Planar heat generator |
US4421560A (en) * | 1981-04-08 | 1983-12-20 | Pilot Ink Company Ltd. | Thermochromatic materials |
US4560428A (en) * | 1984-08-20 | 1985-12-24 | Rockwell International Corporation | System and method for producing cured composites |
US5052369A (en) * | 1985-12-13 | 1991-10-01 | Johnson Kendrick A | Heat retaining food container |
US4919983A (en) * | 1988-04-04 | 1990-04-24 | Fremin Kit C | Thermochromatic infant feeding container |
US5432322A (en) * | 1992-11-13 | 1995-07-11 | Bruder Healthcare Company | Electric heating pad |
US6222160B1 (en) * | 1999-02-26 | 2001-04-24 | Atd Corporation | Food transport container with integral heater |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10355491B4 (en) * | 2003-11-27 | 2009-10-15 | Electrolux Home Products Corporation N.V. | heater |
DE10355491A1 (en) * | 2003-11-27 | 2005-07-07 | Electrolux Home Products Corporation N.V. | A cooker has heating elements, which are optimized regarding their distances to achieve an even temperature distribution |
US20070034096A1 (en) * | 2005-07-13 | 2007-02-15 | Hyperion Innovations, Inc. | Method and apparatus for maintaining an elevated food temperature |
US20070241916A1 (en) * | 2006-04-10 | 2007-10-18 | Rosemount, Inc. | Temperature responsive indicators for process control instruments |
US7528737B2 (en) * | 2006-04-10 | 2009-05-05 | Rosemount Inc. | Temperature responsive indicators for process control instruments |
US20100151090A1 (en) * | 2008-12-12 | 2010-06-17 | Arthur Thomas J | Packaged frozen precooked dough or batter-based food products and methodes |
US20110171355A1 (en) * | 2010-01-13 | 2011-07-14 | Prince Castle, Inc | Food warming cabinet |
US8598499B2 (en) * | 2010-08-20 | 2013-12-03 | David B. Wuchert | Roll-out thermal envelope roof de-icing system |
US20120043310A1 (en) * | 2010-08-20 | 2012-02-23 | Wuchert David B | Roll-out thermal envelope roof de-icing system |
US20130098351A1 (en) * | 2011-10-24 | 2013-04-25 | E.G.O. Elektro-Gerätebau GmbH | Cooking Appliance |
US20150163863A1 (en) * | 2012-06-13 | 2015-06-11 | Webasto SE | Electrical heating system for a motor vehicle |
US10939505B2 (en) * | 2012-06-13 | 2021-03-02 | Webasto SE | Electrical heating system for a motor vehicle |
US20150327707A1 (en) * | 2014-05-14 | 2015-11-19 | Hansol Technics Inc. | Heating container |
WO2016026564A1 (en) * | 2014-08-19 | 2016-02-25 | Friedrich-Wilhelm Struve | Wood heating element for drying wood lamella |
WO2016191699A1 (en) * | 2015-05-27 | 2016-12-01 | Enodis Corporation | Energy efficient open pass through holding device |
USD811802S1 (en) | 2016-07-15 | 2018-03-06 | Spring (U.S.A.) Corporation | Food server |
CN106255244A (en) * | 2016-08-17 | 2016-12-21 | 电子科技大学 | A kind of thin film heater improving temperature field uniformity |
US20180310363A1 (en) * | 2017-04-21 | 2018-10-25 | Robert Varnedoe | Color-changing heat mats |
CN107589155A (en) * | 2017-09-12 | 2018-01-16 | 华南师范大学 | A kind of capacitance type sensor and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
US6519835B1 (en) | 2003-02-18 |
US20020038801A1 (en) | 2002-04-04 |
US20020040900A1 (en) | 2002-04-11 |
AU2001285030A1 (en) | 2002-03-04 |
US6541744B2 (en) | 2003-04-01 |
US20020040898A1 (en) | 2002-04-11 |
US20020038799A1 (en) | 2002-04-04 |
WO2002017687A1 (en) | 2002-02-28 |
US20030121140A1 (en) | 2003-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020040901A1 (en) | Heated food service shelf for warming cookies and the like | |
US20020043525A1 (en) | Formable thermoplastic laminate heating tray assembly suitable for heating frozen food | |
US6433317B1 (en) | Molded assembly with heating element captured therein | |
US6415501B1 (en) | Heating element containing sewn resistance material | |
US6392206B1 (en) | Modular heat exchanger | |
US20020038800A1 (en) | Formable thermoplastic laminate heating assembly useful in heating cheese and hot fudge | |
US7622695B2 (en) | Multi-layered carrier | |
US20060278631A1 (en) | Laminate fabric heater and method of making | |
EP0596996B1 (en) | Method for induction heating of composite materials | |
JPH01163283A (en) | Bonding method by adhesive | |
JP2005536583A (en) | How to accelerate joint hardening | |
JP5696189B2 (en) | Heating device for electric blanket or carpet, method for producing the same, and heating system | |
US4846916A (en) | Method of manufacturing electric carpet via induction heating | |
KR101657749B1 (en) | Apparatus for making continuous fiber reinforced thermoplastic composite | |
JP2014055258A (en) | Thermoplastic resin-based fiber-reinforced composite material for press molding and method for producing the material | |
US20180014360A1 (en) | Dual heating apparatus | |
NL2025473B1 (en) | Fiber-reinforced composite laminate for use in electromagnetic welding and method of electromagnetic welding of molded parts of said laminates | |
US20050175825A1 (en) | Fibre reinforced heat element | |
TW201134287A (en) | Manufacturing method of flexible flat bar heater by using carbon fiber filament as heating head | |
JP2005188677A (en) | Heater for piping | |
JP6924685B2 (en) | Composite material molding method | |
JPH0327378B2 (en) | ||
KR100193109B1 (en) | Manufacturing method of plastic laminate for printed circuit | |
JP2002039558A (en) | Method for manufacturing waterproof floor | |
KR101953609B1 (en) | Manufacturing method for continuous fiber reinforced thermoplastic composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WATLOW POLYMER TECHNOLOGIES, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VON ARX, THEODORE;LAKEN, KEITH;SCHLESSELMAN, JOHN W.;REEL/FRAME:011550/0707;SIGNING DATES FROM 20010208 TO 20010209 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |