JP6937051B2 - 3D printer and modeling method using it - Google Patents

3D printer and modeling method using it Download PDF

Info

Publication number
JP6937051B2
JP6937051B2 JP2020038836A JP2020038836A JP6937051B2 JP 6937051 B2 JP6937051 B2 JP 6937051B2 JP 2020038836 A JP2020038836 A JP 2020038836A JP 2020038836 A JP2020038836 A JP 2020038836A JP 6937051 B2 JP6937051 B2 JP 6937051B2
Authority
JP
Japan
Prior art keywords
voltage
heating plate
heat
temperature
dimensional printer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020038836A
Other languages
Japanese (ja)
Other versions
JP2021138082A (en
Inventor
谷口 秀夫
秀夫 谷口
Original Assignee
谷口 秀夫
秀夫 谷口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谷口 秀夫, 秀夫 谷口 filed Critical 谷口 秀夫
Priority to JP2020038836A priority Critical patent/JP6937051B2/en
Priority to JP2021135633A priority patent/JP2021185037A/en
Publication of JP2021138082A publication Critical patent/JP2021138082A/en
Application granted granted Critical
Publication of JP6937051B2 publication Critical patent/JP6937051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱溶解積層方式を用いた3次元プリンタ及び造形方法に関し、特に400℃以上の作業温度での立体造形でも好適な3次元プリンタ及び造形方法に関する。 The present invention relates to a three-dimensional printer and a modeling method using a fused deposition modeling method, and more particularly to a three-dimensional printer and a modeling method suitable for three-dimensional modeling at a working temperature of 400 ° C. or higher.

近年、コンピュータを利用して3次元プリンタにより立体造形物を製造することが盛んに行われている。このような3次元プリンタによる主要な造形方式として、熱溶解積層方式(FDM)がよく知られている。この種の3次元プリンタに用いられるホットエンド(吐出ヘッド)として、本出願人は、先に造形材料を融解するための加熱手段に、絶縁基板上に発熱抵抗体(層)を形成した加熱板を用いたものを提案している(特許文献1)。 In recent years, it has been actively carried out to manufacture a three-dimensional model by a three-dimensional printer using a computer. The Fused Deposition Modeling Method (FDM) is well known as a main modeling method using such a three-dimensional printer. As a hot end (discharge head) used in this type of 3D printer, the applicant has previously formed a heating plate (layer) on an insulating substrate as a heating means for melting the modeling material. (Patent Document 1).

このホットエンドは、従来のヒートブロックを加熱手段に用いたホットエンドを格段に小型化かつ省エネルギー化でき、しかもオンデマンド造形をも可能とするものである。 This hot end can significantly reduce the size and energy of a hot end using a conventional heat block as a heating means, and also enables on-demand modeling.

特開2018−66056号公報JP-A-2018-66056

しかしながら、3次元プリンタ用のホットエンドを加熱板を用いて加熱する場合、発熱抵抗体に一般に適用される直流電圧(DC)を印加するのだが、加熱板を400℃以上の高温で加熱を続けると、発熱抵抗体の抵抗値が大きく変化してしまうという現象が生じることがある。 However, when heating the hot end for a three-dimensional printer using a heating plate, a direct current voltage (DC) generally applied to the heating resistor is applied, but the heating plate continues to be heated at a high temperature of 400 ° C. or higher. Then, a phenomenon may occur in which the resistance value of the heat generating resistor changes significantly.

本発明は、このような状況に鑑みてなされたもので、その目的は、造形材料の加熱手段として加熱板を用いたホットエンドを搭載した3次元プリンタにおいて、PEEK等の高温で融解(溶解)する造形材料を用いたときであっても、つまりは加熱板を高温に加熱して使用したとしても、耐久性に優れた3次元プリンタ及びこれを用いた立体造形物の造形方法を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to melt (melt) at a high temperature such as PEEK in a three-dimensional printer equipped with a hot end using a heating plate as a means for heating a modeling material. To provide a three-dimensional printer having excellent durability and a method for modeling a three-dimensional model using the same, even when the modeling material is used, that is, even when the heating plate is heated to a high temperature and used. It is in.

本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、上記の発熱抵抗体の抵抗値の変化は、高温では絶縁抵抗体は導電体に近くなり、DC印加すると絶縁抵抗体へのリーク電流が増え荷電体の移動が多くなり一方方向に偏って集中する結果、発熱抵抗体が電蝕変質して抵抗値が大きく変化してしまうことに原因があると考え、高温時において絶縁抵抗体の荷電体が一方方向に移動して集中しないように、発熱抵抗体に交流電圧を印加すれば発熱抵抗体の抵抗値の変化を抑制し得ることを見出した。 As a result of diligent research to achieve the above object, the present inventor shows that the change in the resistance value of the heat generating resistor is such that the insulating resistor becomes closer to the conductor at high temperature, and when DC is applied, it becomes the insulating resistor. It is thought that the cause is that the leakage current increases, the movement of the charged body increases, and the charged body moves unevenly and concentrates in one direction. It has been found that the change in the resistance value of the heat-generating resistor can be suppressed by applying an AC voltage to the heat-generating resistor so that the charged body of the body does not move in one direction and concentrate.

すなわち、本発明は、矩形状の絶縁基板及び該絶縁基板上に短手方向に複数回折り返されてつづら折り状に形成された発熱抵抗体層を有する加熱板により造形材料を加熱し融解して吐出するホットエンドと、前記加熱板を発熱するために電圧を印加する電圧印加手段と、を備えた3次元プリンタであって、前記電圧印加手段は、前記発熱抵抗体層に極性交番電圧を印加することを特徴とする3次元プリンタに係るものである。 That is, in the present invention, the modeling material is heated, melted, and discharged by a heating plate having a rectangular insulating substrate and a heating plate having a heat generating resistor layer formed in a zigzag shape by being folded back in a plurality of directions in the lateral direction on the insulating substrate. A three-dimensional printer including a hot end for heating and a voltage applying means for applying a voltage to heat the heating plate, the voltage applying means applies a polar alternating voltage to the heating resistor layer. This relates to a three-dimensional printer characterized by the above.

本発明において極性交番電圧とは、正負の極性が周期的もしくは非周期的に変化する電圧のことを意味する。極性交番電圧は正弦波に限らず、パルス波、矩形波、三角波、鋸歯状波などを含み得る。このような極性交番電圧は、例えば、直流電圧をDC/ACインバータで交流化することで印加することができる。交流化された電圧はPFM(パルス周波数変調)又はPWM(パルス幅変調)などによって変調され、発熱抵抗体層に供給される電力が調整され得る。上記本発明の3次元プリンタによれば、発熱抵抗体層に交流電圧を印加するようにしているので、たとえ400℃以上への発熱を繰り返したとしても、発熱抵抗体層の抵抗値が大きく変化することを軽減でき、ホットエンドの耐久性を格段に向上することができる。これは、電圧印加時の発熱抵抗体層中の不純物、荷電体(イオン、電子)の移動をバランスよく行うことができ、直流電圧を印加して加熱する時に生じると考えられる可動電荷による不純物の移動集中による電解腐食の発生を防止できるためと考えられる。 In the present invention, the polar alternating voltage means a voltage in which the positive and negative polarities change periodically or aperiodically. The polar alternating voltage is not limited to a sine wave, but may include a pulse wave, a square wave, a triangular wave, a sawtooth wave, and the like. Such a polar alternating voltage can be applied, for example, by converting a DC voltage into an AC with a DC / AC inverter. The AC voltage is modulated by PFM (pulse frequency modulation), PWM (pulse width modulation), or the like, and the power supplied to the heat generating resistor layer can be adjusted. According to the above-mentioned three-dimensional printer of the present invention, since the AC voltage is applied to the heat generation resistor layer, the resistance value of the heat generation resistor layer changes significantly even if heat generation to 400 ° C. or higher is repeated. This can be reduced and the durability of the hot end can be significantly improved. This is because impurities in the heating resistor layer when a voltage is applied and charged substances (ions, electrons) can move in a well-balanced manner, and impurities due to movable charges that are thought to occur when heating is applied by applying a DC voltage. This is thought to be because the occurrence of electrolytic corrosion due to concentration of movement can be prevented.

また、本発明は、前記加熱板は、前記発熱抵抗体層を覆う絶縁保護板を有することを特徴とする上記3次元プリンタに係るものである。 The present invention also relates to the above three-dimensional printer, wherein the heating plate has an insulating protective plate that covers the heat generating resistor layer.

本発明において上記絶縁保護板としては、上記絶縁基板と同等の厚みのものを用いるのが好ましく、また、上記絶縁基板と同等の熱膨張率を有するものとするのが好ましい。絶縁保護板を用いることで発熱抵抗体層の一層の安定化を図ることができ、ホットエンドの耐久性をより一層向上することができる。 In the present invention, the insulating protective plate preferably has a thickness equivalent to that of the insulating substrate, and preferably has a thermal expansion coefficient equivalent to that of the insulating substrate. By using the insulating protective plate, the heat generation resistor layer can be further stabilized, and the durability of the hot end can be further improved.

また、本発明は、上記3次元プリンタにおいて、前記電圧印加手段は、前記極性交番電圧を印加することで前記加熱板を400℃以上に発熱できることを特徴とする3次元プリンタに係るものである。 Further, the present invention relates to the above-mentioned three-dimensional printer, wherein the voltage applying means can generate heat of the heating plate to 400 ° C. or higher by applying the polar alternating voltage.

この本発明の3次元プリンタによれば、加熱板を400℃以上といった高温での造形作業を行うことができるので、例えば、PEEK、フィラー含有PEEK等の高融点の熱可塑性樹脂、Pb、Al、Sn、Ag、Cu、In、アルミニウム合金、亜鉛合金等の金属類、低融点ガラスなどを造形材料に用いることができる。また、例えば、高低温材料の同時使用が可能となるといったように、融解温度が異なる複数種類の造形材料を用いた立体造形を行うことができる。 According to the three-dimensional printer of the present invention, the heating plate can be shaped at a high temperature of 400 ° C. or higher. Therefore, for example, PEEK, a filler-containing PEEK or other high melting point thermoplastic resin, Pb, Al, etc. Metals such as Sn, Ag, Cu, In, aluminum alloys and zinc alloys, low melting point glass and the like can be used as the molding material. Further, for example, it is possible to perform three-dimensional modeling using a plurality of types of modeling materials having different melting temperatures, such as enabling simultaneous use of high and low temperature materials.

さらに、本発明は、上記本発明の3次元プリンタを用い、前記造形材料として400℃以上に加熱融解される材料を用いて立体造形物を造形することを特徴とする造形方法に係るものである。 Further, the present invention relates to a modeling method characterized in that a three-dimensional model is modeled using the three-dimensional printer of the present invention and a material that is heated and melted at 400 ° C. or higher as the modeling material. ..

本発明の造形方法によれば、高温材料を用いた立体造形を有利に行うことができる。 According to the modeling method of the present invention, three-dimensional modeling using a high-temperature material can be advantageously performed.

本発明によれば、ホットエンドの耐久性を向上ででき、高温での造形作業を繰り返し行うことができる3次元プリンタ及び造形方法を提供することができる。 According to the present invention, it is possible to provide a three-dimensional printer and a modeling method capable of improving the durability of a hot end and repeatedly performing a modeling operation at a high temperature.

本発明の一実施形態の3次元プリンタにおけるホットエンドの(A)正面図及び(B)側面図である。It is (A) front view and (B) side view of the hot end in the 3D printer of one Embodiment of this invention. 本発明の一実施形態の3次元プリンタにおけるホットエンドの、ヘッド本体の(A)正面図及び(B)底面図である。It is (A) front view and (B) bottom view of the head body of the hot end in the 3D printer of one Embodiment of this invention. 本発明の一実施形態の3次元プリンタにおけるホットエンドの、加熱手段である加熱板を説明する(A)一部正面図、及び、(A)のB−B線に沿った(B)断面図である。A partially front view of the hot end of the three-dimensional printer according to the embodiment of the present invention, which is a heating means, and a cross-sectional view taken along the line BB of (A). Is. 電圧印加手段による電圧印加の制御を説明する回路ブロック図である。It is a circuit block diagram explaining the control of voltage application by a voltage application means. 図4の回路ブロック図における調整部に含まれる変換装置の具体的構成を示す図である。It is a figure which shows the specific structure of the conversion apparatus included in the adjustment part in the circuit block diagram of FIG.

以下に、図面を参照しながら本発明の一実施形態の3次元造形装置(3次元プリンタ)用のホットエンドを説明する。図1(A)には本発明の3次元プリンタに用いられるホットエンドの一例であるホットエンド10の正面図が、図1(B)にはホットエンド10の側面図が示され、図2(A)にはヘッド本体1の正面図が、図2(B)にはヘッド本体1の底面図が示されている。ホットエンド10は、フィラメント状の造形材料の供給口111を有する供給部11、供給されたフィラメント状の造形材料を融解する融解部13、融解された造形材料を吐出する吐出口141を有する吐出部14、供給部11と融解部13との間であって融解部13の熱が供給部11へ伝導するのを抑制する断熱部12、及び供給口111と吐出口141とを連通する通路2を有するヘッド本体1に、融解部13を加熱する加熱手段である加熱板15と、融解部13と断熱部12との間の境界部又は境界部近傍に温度調整部16が設けられている。図示される例では、一対の加熱板15がヘッド本体1の融解部13の対向する両面に接してヘッド本体1を挟むように設けられているが、加熱板15はいずれか一方にのみに設けられてもよい。なお、図1(A)及び(B)においては、加熱板15はその構成要素である、発熱抵抗体152、電極153、中間端子153c、シール材154、絶縁保護板155(図3参照)は省略され、図1(B)においてはリード150(図1(A)参照)は省略されて描かれている。 Hereinafter, a hot end for a three-dimensional modeling apparatus (three-dimensional printer) according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 (A) shows a front view of the hot end 10 which is an example of the hot end used in the three-dimensional printer of the present invention, and FIG. 1 (B) shows a side view of the hot end 10. A) shows a front view of the head main body 1, and FIG. 2 (B) shows a bottom view of the head main body 1. The hot end 10 has a supply unit 11 having a filament-shaped modeling material supply port 111, a melting unit 13 for melting the supplied filament-shaped modeling material, and a discharge unit having a discharge port 141 for discharging the melted modeling material. 14. A heat insulating portion 12 between the supply unit 11 and the melting unit 13 that suppresses the heat of the melting unit 13 from being conducted to the supply unit 11, and a passage 2 that communicates the supply port 111 and the discharge port 141. The head body 1 is provided with a heating plate 15 which is a heating means for heating the melting portion 13 and a temperature adjusting portion 16 at or near the boundary portion between the melting portion 13 and the heat insulating portion 12. In the illustrated example, a pair of heating plates 15 are provided so as to be in contact with both facing surfaces of the melting portion 13 of the head body 1 so as to sandwich the head body 1, but the heating plates 15 are provided on only one of them. May be done. In FIGS. 1A and 1B, the heating plate 15 is a component thereof, and the heat generating resistor 152, the electrode 153, the intermediate terminal 153c, the sealing material 154, and the insulating protective plate 155 (see FIG. 3) are It is omitted, and in FIG. 1 (B), the lead 150 (see FIG. 1 (A)) is omitted.

ホットエンド10は、3次元プリンタ又は3次元プリンタ用モジュール装置に、アダプター(図示せず)を介して取付けられ得る。例えば、アダプターに設けられた開口に、ホットエンド10の供給部11が挿入され、押しネジなどによって固定することができる。アダプターには供給口111に連通する通路が設けられ、フィラメント状の造形材料がこの通路を通じ、ホットエンド10の流路(通路)2に挿通される。供給部11の外周にネジ溝を切って螺合によってアダプターに取付けることもできる。 The hot end 10 can be attached to a 3D printer or a module device for a 3D printer via an adapter (not shown). For example, the supply portion 11 of the hot end 10 is inserted into the opening provided in the adapter and can be fixed by a set screw or the like. The adapter is provided with a passage communicating with the supply port 111, and the filament-shaped modeling material is inserted into the flow path (passage) 2 of the hot end 10 through this passage. It is also possible to cut a thread groove on the outer circumference of the supply unit 11 and attach it to the adapter by screwing.

続いて、ヘッド本体1について詳しく説明する。図2(A)にはヘッド本体1の正面図、図2(B)にはヘッド本体1の底面図が示されている。ヘッド本体1は、供給部11、断熱部12、融解部13及び吐出部14が、金属やセラミックス等の耐熱材料から一体的に形成されているものであってもよいし、一部又は全部が独立可能に形成されていてもよいし、各部の間のいずれか或いはすべてに他の部材を介在させるなど非連続的なものであってもよい。図示される例では、ヘッド本体1は、全長が例えば32mmで、直径が例えば4mmφの、例えば64チタン(チタンにアルミニウム6質量%、バナジウム4質量%を混ぜた合金)からなる円柱状の金属棒を、例えば切削加工してなるものである。 Subsequently, the head body 1 will be described in detail. FIG. 2A shows a front view of the head main body 1, and FIG. 2B shows a bottom view of the head main body 1. The head body 1 may have a supply portion 11, a heat insulating portion 12, a melting portion 13, and a discharge portion 14 integrally formed of a heat-resistant material such as metal or ceramics, or a part or all of the head main body 1. It may be formed independently, or it may be discontinuous, such as interposing another member between any or all of the parts. In the illustrated example, the head body 1 is a columnar metal rod having a total length of, for example, 32 mm and a diameter of, for example, 4 mmφ, made of, for example, 64 titanium (an alloy of titanium mixed with 6% by mass of aluminum and 4% by mass of vanadium). , For example, by cutting.

ヘッド本体1には、一端側のフィラメントの供給口111から他端側の融解された造形材料を吐出する吐出口141へ一直線に延びる、直径が例えば2mmφの通路(貫通孔)2が形成されている。なお、ヘッド本体1及び通路2のサイズは、フィラメントのサイズに応じて適宜変更され得る。 The head body 1 is formed with a passage (through hole) 2 having a diameter of, for example, 2 mmφ extending in a straight line from the filament supply port 111 on one end side to the discharge port 141 for discharging the melted molding material on the other end side. There is. The sizes of the head body 1 and the passage 2 can be appropriately changed according to the size of the filament.

ヘッド本体1の供給部11は、例えば長さ5mm、直径4mmφの円柱形状(円筒形状)とされている。供給部11は、先端に供給口111が形成され、例えば2mmφの通路2が供給口111近傍において供給口111側に向けて、例えば3mmφまで拡がるようにテーパ状に形成されている。供給部11は、3次元プリンタに取付けるためのアダプター(図示せず)への取付部としての役割も兼ねている。 The supply unit 11 of the head body 1 has, for example, a cylindrical shape (cylindrical shape) having a length of 5 mm and a diameter of 4 mmφ. The supply port 11 is formed with a supply port 111 at the tip thereof, and is formed in a tapered shape so that, for example, a passage 2 having a diameter of 2 mmφ extends toward the supply port 111 side in the vicinity of the supply port 111, for example, to 3 mmφ. The supply unit 11 also serves as a mounting unit for an adapter (not shown) for mounting on a three-dimensional printer.

断熱部12は、融解部13よりも熱抵抗が大きくなるように形成されており、図示される例では、断熱部12は、供給部11と融解部13との間に位置し、例えば長さ11mm、直径3mmφの円柱形状(円筒形状)とされている。断熱部12は、上述のように直径3mmφとされ、その中心部を貫通する直径2mmφの通路2が形成されることから、外壁の肉厚が0.5mmの肉薄部とされている。また、断熱部12の中央部には、断熱部12の断面積を小さくしてその熱抵抗を高くし得る、例えば長さ8mm、幅1.8mmの開口部121が、通路2に対向して一対で形成され得る。開口部121は、ヘッド本体1の長さ方向及び/又は幅方向に1つ又は複数設けてもよく、サイズも適宜決定すればよい。熱抵抗との関係で断面積を、強度が保証される範囲内で適宜決定することができる。 The heat insulating portion 12 is formed so as to have a higher thermal resistance than the melting portion 13, and in the illustrated example, the heat insulating portion 12 is located between the supply portion 11 and the melting portion 13, and has a length, for example. It has a cylindrical shape (cylindrical shape) with a diameter of 11 mm and a diameter of 3 mmφ. As described above, the heat insulating portion 12 has a diameter of 3 mmφ, and since a passage 2 having a diameter of 2 mmφ penetrating the central portion thereof is formed, the heat insulating portion 12 is a thin portion having a wall thickness of 0.5 mm. Further, in the central portion of the heat insulating portion 12, for example, an opening 121 having a length of 8 mm and a width of 1.8 mm, which can reduce the cross-sectional area of the heat insulating portion 12 and increase its thermal resistance, faces the passage 2. It can be formed in pairs. One or a plurality of openings 121 may be provided in the length direction and / or the width direction of the head body 1, and the size may be appropriately determined. The cross-sectional area can be appropriately determined within the range in which the strength is guaranteed in relation to the thermal resistance.

融解部13は、例えば長さ13mm、直径4mmφとされている。融解部13には、平面側(図2(A)における紙面の表面側)と背面側(図2(A)における紙面の裏面側)が切削されて2つの平面部が、例えば3mm隔てて対向するように形成されている。平面部の中央部には、例えば長さ8mm、幅1mmの開口部131が、通路2を露出するように形成されている。開口部131は、長さ方向に複数並設するようにしてもよい。なお、加えて、平面部の表面を粗面化してもよいし、開口部131を形成せずに粗面化のみしてもよい。また、融解部13の吐出部14近傍において、通路2は吐出部14に向かってテーパ状に狭くされ、吐出部14内で例えば直径0.6mmφ程度とされる。 The melting portion 13 has, for example, a length of 13 mm and a diameter of 4 mmφ. The flat surface side (front surface side of the paper surface in FIG. 2 (A)) and the back surface side (back surface side of the paper surface in FIG. 2 (A)) are cut into the melting portion 13 so that the two flat surface portions face each other with a distance of, for example, 3 mm. It is formed to do. At the center of the flat surface portion, for example, an opening 131 having a length of 8 mm and a width of 1 mm is formed so as to expose the passage 2. A plurality of openings 131 may be arranged side by side in the length direction. In addition, the surface of the flat surface may be roughened, or the surface of the flat surface may be roughened without forming the opening 131. Further, in the vicinity of the discharge portion 14 of the melting portion 13, the passage 2 is narrowed in a taper shape toward the discharge portion 14, and has a diameter of, for example, about 0.6 mmφ in the discharge portion 14.

吐出部14は、例えば長さ3mmとされ、正面側と背面側から切削されて、例えば幅3mmとされ、吐出部14の長さ方向の途中まで、吐出口141に向かってテーパ状に細められ、吐出口141が形成された先端部は、例えば直径1.5mmφとされ、吐出口141は、例えば直径0.6mmφとされる。 The discharge portion 14 has, for example, a length of 3 mm, is cut from the front side and the back side, has a width of, for example, 3 mm, and is tapered toward the discharge port 141 halfway in the length direction of the discharge portion 14. The tip portion on which the discharge port 141 is formed has a diameter of, for example, 1.5 mmφ, and the discharge port 141 has a diameter of, for example, 0.6 mmφ.

ホットエンド10における融解部13を加熱する加熱手段としては、例えば絶縁基板上に厚膜抵抗体層を形成した加熱板(加熱ヘッド)、ヒートブロック等公知のものを広く使用することができるが、応答性やサイズの点において加熱板を用いるのが好ましい。本実施形態のホットエンド10に用いられる加熱板15の構造の一例を図3に示す。ヘッド本体1の融解部13に取付けられる加熱板15は、図3(A)の平面図に示されるように、例えば厚さ0.3mm、長さ12mm、幅5mmの矩形板状のアルミナ、ジルコニア、又はそれらの複合材料などのセラミック基板(絶縁基板151)と、絶縁基板151の表面に形成された帯状の、例えば厚さ20μm発熱抵抗体(層)152と、絶縁基板151の表面において発熱抵抗体152の両端部のそれぞれに接続するように形成された電極153を有する。発熱抵抗体152における2つの電極153の中間部には、中間端子153cが設けられ得る。この中間端子153cは発熱抵抗体152における部分的な電圧印加を可能にするために設けられ、これにより加熱板15の部位によって温度を異ならせる(温度勾配形成する)ことが可能となる。例えば、加熱板15の吐出部14に近い側の温度が、断熱部12に近い側の温度よりも高い状態にする温度制御が可能となる。 As a heating means for heating the melting portion 13 in the hot end 10, for example, a heating plate (heating head) having a thick film resistor layer formed on an insulating substrate, a heat block, or the like can be widely used. It is preferable to use a heating plate in terms of responsiveness and size. FIG. 3 shows an example of the structure of the heating plate 15 used for the hot end 10 of the present embodiment. As shown in the plan view of FIG. 3A, the heating plate 15 attached to the melting portion 13 of the head body 1 is, for example, a rectangular plate-shaped alumina or zirconia having a thickness of 0.3 mm, a length of 12 mm, and a width of 5 mm. , Or a ceramic substrate (insulated substrate 151) such as a composite material thereof, a strip-shaped heat-generating resistor (layer) 152 having a thickness of, for example, 20 μm formed on the surface of the insulating substrate 151, and heat-generating resistance on the surface of the insulating substrate 151. It has electrodes 153 formed to connect to each of both ends of the body 152. An intermediate terminal 153c may be provided at an intermediate portion between the two electrodes 153 in the heat generation resistor 152. The intermediate terminal 153c is provided to enable partial voltage application in the heating resistor 152, which makes it possible to make the temperature different (form a temperature gradient) depending on the portion of the heating plate 15. For example, it is possible to control the temperature so that the temperature on the side of the heating plate 15 close to the discharge portion 14 is higher than the temperature on the side close to the heat insulating portion 12.

図3(A)の平面図では省略されているが、図3(B)の断面図には示されているように、発熱抵抗体152の上には、発熱抵抗体152を覆うように、ガラス状シール材154を介して、例えば厚さ0.3mmの矩形板状のアルミナなどのセラミック基板(絶縁保護板155)が貼着されている。なお、シール材(保護層)154及び絶縁保護板155に代えて、発熱抵抗体152の表面を、例えばフィラーを含むガラス等の保護層(誘電体層)でコートしてもよい。 Although omitted in the plan view of FIG. 3 (A), as shown in the cross-sectional view of FIG. 3 (B), the heat generating resistor 152 is covered with the heat generating resistor 152 so as to cover the heat generating resistor 152. A ceramic substrate (insulation protective plate 155) such as a rectangular plate-shaped alumina having a thickness of 0.3 mm is attached via the glass-like sealing material 154. Instead of the sealing material (protective layer) 154 and the insulating protective plate 155, the surface of the heat generating resistor 152 may be coated with a protective layer (dielectric layer) such as glass containing a filler, for example.

本実施形態において、絶縁基板151として市販のニッコー株式会社製のアルミナジルコニア基板であるアルザ(登録商標)を、上部に貼り合わせる絶縁保護板155として市販のニッコー株式会社製のアルミナ基板である96%アルミナ基板を用いているが、これらの厚みはほぼ同程度とするのが好ましい。アルミナジルコニア基板の機械的強度は96%アルミナ基板よりも2倍程度強い。これら基板の体積抵抗率は、いずれも常温で1014Ω・cm程度であり、500℃で1010Ω・cm程度である。ガラス状シール材154は、市販の石英ガラス系のものとされ、その体積抵抗率は300℃で109Ω・cm程度である。さらに、アルミナジルコニア基板の熱膨張係数は、25〜400℃で7.0×10-6/℃程度で、25〜800℃で8.1×10-6/℃程度である。96%アルミナ基板の熱膨張係数は、25〜400℃で6.8×10-6/℃程度で、25〜800℃で7.8×10-6/℃程度であり、アルミナジルコニア基板とほぼ同等とされている。 In the present embodiment, 96% of Nikko Corporation's commercially available alumina zirconia substrate Alza (registered trademark), which is a commercially available Nikko Co., Ltd. alumina zirconia substrate as the insulating substrate 151, is attached to the upper portion of the commercially available Nikko Corporation's alumina zirconia substrate as the insulating protective plate 155. Alumina substrates are used, but it is preferable that these thicknesses are about the same. The mechanical strength of the alumina zirconia substrate is about twice as strong as that of the 96% alumina substrate. The volume resistivity of these substrates is about 10 14 Ω · cm at room temperature and about 10 10 Ω · cm at 500 ° C. Glassy sealing material 154 is a commercially available quartz glass system, the volume resistivity is about 10 9 Ω · cm at 300 ° C.. Further, the coefficient of thermal expansion of the alumina zirconia substrate is about 7.0 × 10 -6 / ° C. at 25 to 400 ° C. and about 8.1 × 10 -6 / ° C. at 25 to 800 ° C. The coefficient of thermal expansion of the 96% alumina substrate is about 6.8 × 10 -6 / ° C at 25-400 ° C and about 7.8 × 10 -6 / ° C at 25-800 ° C, which is almost the same as that of the alumina zirconia substrate. It is considered to be equivalent.

加熱板15は、絶縁基板151に、例えばAg、Pd、Pt等の合金粉末や酸化ルテニウムを含む厚膜用ペースト等を所定のパターンに印刷、乾燥後、所定温度で焼成することで発熱抵抗体152、電極153を形成することができる。シール材154は、ガラスとセラミックの中間でペースト状とされ、発熱抵抗体152上に塗布され、絶縁保護板155で覆ったのちに加熱処理されることで一体化される。 The heating plate 15 is a heat generating resistor by printing, for example, an alloy powder such as Ag, Pd, Pt, or a thick film paste containing ruthenium oxide on an insulating substrate 151 on a predetermined pattern, drying, and firing at a predetermined temperature. 152, the electrode 153 can be formed. The sealing material 154 is formed into a paste between glass and ceramic, coated on a heat generating resistor 152, covered with an insulating protective plate 155, and then heat-treated to be integrated.

また、絶縁基板151の電極153の形成部には、電極153とリード150(図1(A)参照)との接続強度を向上させるために切欠部が形成されてもよい。切欠部に代えて貫通孔(スルーホール)を1つ若しくは複数設けてもよいし、切欠部と貫通孔とを組み合わせて用いるようにしてもよい。つまり、切欠部や貫通孔を設けるのは、電極153とリード150との接続強度を向上させるために、接続面積を増やしたり、アンカー効果等機械的係合が得られる対策をとることで、高温に加熱したり、ホットエンド10を2次元的又は3次元的に移動操作させた場合であっても接続不良が生じ難いようにし得る。 Further, a notch may be formed in the forming portion of the electrode 153 of the insulating substrate 151 in order to improve the connection strength between the electrode 153 and the lead 150 (see FIG. 1A). One or a plurality of through holes may be provided in place of the notch, or the notch and the through hole may be used in combination. That is, the notch and the through hole are provided at a high temperature by increasing the connection area and taking measures such as an anchor effect to obtain mechanical engagement in order to improve the connection strength between the electrode 153 and the lead 150. Even when the hot end 10 is moved two-dimensionally or three-dimensionally, it is possible to prevent connection failure from occurring.

ヘッド本体1に加熱板15が取付けられた状態では、加熱板15は、その裏面(絶縁基板151の発熱抵抗体152が形成されていない面)側をヘッド本体1の融解部13の平面部に、開口部131を覆うように、例えば銀系の厚膜ペースト(Agに例えばガラス、Cuが含有されたもの)を接合材料として塗布、焼成して、接合されている。このとき、接合材料が開口部131に入り込み、アンカー効果が得られることで、加熱板15をヘッド本体1の融解部13に強固に接合して取付けることができる。また、開口部131を設けておくことで、加熱板15の裏面(絶縁基板151)でフィラメント(造形材料)により直接的に熱を伝導することができる。なお、本発明において、開口部131を設けなくてもよい。ここでは、融解部13の外壁面に対向するように研削して設けられた平面部に、一対の加熱板15を対向配置するようにしているが、加熱板15は、1つであってもよいし3つ以上であってもよい。例えば、融解部13の外周に研削平面を4面設け、3つ乃至4つの加熱板15を設けてもよく、さらに、加熱板15のサイズや設置位置を一部乃至全部の面を変えたり、ヘッド本体1の長さ方向にも複数の加熱板を並設したり、長さ方向の設置位置を変えたりして、融解部13の平面部により適切な温度勾配を形成するようにしてもよい。 In the state where the heating plate 15 is attached to the head body 1, the back surface (the surface of the insulating substrate 151 on which the heat generating resistor 152 is not formed) side of the heating plate 15 is the flat surface portion of the melting portion 13 of the head body 1. , For example, a silver-based thick film paste (Ag containing, for example, glass or Cu) is applied and fired as a bonding material so as to cover the opening 131, and the bonding is performed. At this time, the joining material enters the opening 131 and an anchor effect is obtained, so that the heating plate 15 can be firmly joined and attached to the melting portion 13 of the head body 1. Further, by providing the opening 131, heat can be directly conducted by the filament (modeling material) on the back surface (insulating substrate 151) of the heating plate 15. In the present invention, the opening 131 may not be provided. Here, a pair of heating plates 15 are arranged to face each other on a flat surface portion provided by grinding so as to face the outer wall surface of the melting portion 13, but even if there is only one heating plate 15. It may be 3 or more. For example, four grinding planes may be provided on the outer periphery of the melting portion 13, and three to four heating plates 15 may be provided. Further, the size and installation position of the heating plates 15 may be partially or completely changed. A plurality of heating plates may be arranged side by side in the length direction of the head body 1 or the installation position in the length direction may be changed so that an appropriate temperature gradient is formed by the flat portion of the melting portion 13. ..

本実施の形態では、加熱板の幅(5mm)を、ヘッド本体1の融解部13の平面部の幅(4mm)よりも僅かに広くし、加熱板15とリード150との接続部をヘッド本体1の融解部13の平面部の一方側の側縁から外方へ飛び出させて、ヘッド本体1に加熱板15を接合させるようにしている。 In the present embodiment, the width of the heating plate (5 mm) is slightly wider than the width of the flat surface portion (4 mm) of the melting portion 13 of the head body 1, and the connection portion between the heating plate 15 and the lead 150 is connected to the head body. The heating plate 15 is joined to the head body 1 by protruding outward from one side edge of the flat surface portion of the melting portion 13 of 1.

図4は、ホットエンド10において、測定された加熱板15の温度に応じて、電圧印加手段から発熱抵抗体152に供給される電力を制御することによって加熱を調整し、温度制御をする場合の駆動回路の一例を示すブロック図である。すなわち、この駆動回路は、電圧印加手段である電源21及び調整部から供給される電力で加熱板15を駆動する例で、電源21としては、例えば、60Hz又は50Hzの商用の交流電圧、又は、商用の交流電圧をトランスで変圧した交流電圧が用いられ、この場合、電源21から入力された交流電圧を直流電圧に変換するAC/DCコンバータ、変換された直流電圧を平滑化する平滑コンデンサ、及び、平滑化された直流電圧をパルス化して変調(例えば、周波数変調、又は、パルス幅変調)し交流化するDC/ACインバータを含む変換装置Cを備える調整部により、印加電圧や印加時間が調整された電力(交番電圧)が、発熱抵抗体152に供給される。また、電源21を直流電圧としてもよく、この場合、直流電圧をパルス化して変調し得るDC/ACインバータである変換装置Cを備える調整部で交流(交番)電圧化した電力(交番電圧)が発熱抵抗体152に供給される。 FIG. 4 shows a case where the temperature is controlled by adjusting the heating by controlling the electric power supplied from the voltage applying means to the heat generating resistor 152 according to the measured temperature of the heating plate 15 at the hot end 10. It is a block diagram which shows an example of a drive circuit. That is, this drive circuit is an example of driving the heating plate 15 with the power supply 21 which is a voltage applying means and the power supplied from the adjusting unit, and the power supply 21 is, for example, a commercial AC voltage of 60 Hz or 50 Hz, or a commercial AC voltage of 60 Hz or 50 Hz. An AC voltage obtained by transforming a commercial AC voltage with a transformer is used. In this case, an AC / DC converter that converts the AC voltage input from the power supply 21 into a DC voltage, a smoothing capacitor that smoothes the converted DC voltage, and a smoothing capacitor. The applied voltage and applied time are adjusted by an adjusting unit including a conversion device C including a DC / AC inverter that pulses and modulates a smoothed DC voltage (for example, frequency modulation or pulse width modulation) to convert alternating current. The generated power (alternating current voltage) is supplied to the heat generating resistor 152. Further, the power supply 21 may be a DC voltage, and in this case, the power (alternating voltage) converted into an alternating current (alternating current) voltage by the adjusting unit including the conversion device C which is a DC / AC inverter capable of pulsing and modulating the direct current voltage is generated. It is supplied to the heat generating resistor 152.

図5に、電源21が交流電圧である場合の、変換装置Cの具体的な構成を示す。AC/DCコンバータC1は入力された交流電圧VINを全波整流し極性を一方向にして平滑コンデンサC2に提供する。平滑コンデンサC2は整流された入力電圧を平滑化し直流電圧をDC/ACインバータに供給する。DC/ACインバータC3は直流電圧をパルス化すると共にパルス幅、又は、パルス周波数の変調を行い、変調された交番電圧VOUTを出力する。すなわち、調整部はPFM(パルス周波数変調)又はPWM(パルス幅変調)などによって、発熱抵抗体152に供給される実効印加電力を制御し得る。 FIG. 5 shows a specific configuration of the conversion device C when the power supply 21 has an AC voltage. The AC / DC converter C1 full-wave rectifies the input AC voltage V IN to make the polarity unidirectional and provides it to the smoothing capacitor C2. The smoothing capacitor C2 smoothes the rectified input voltage and supplies a DC voltage to the DC / AC inverter. The DC / AC inverter C3 pulses the DC voltage, modulates the pulse width or the pulse frequency, and outputs the modulated alternating voltage V OUT. That is, the adjusting unit can control the effective applied power supplied to the heat generating resistor 152 by PFM (pulse frequency modulation), PWM (pulse width modulation), or the like.

駆動回路における制御手段は、測定された加熱板15の温度(融解部13の温度)に応じて、加熱板15(融解部13)が所望の温度となるように、調整部に対して、発熱抵抗体152への実行印加電力を制御するように制御信号を出力する。加熱板15の温度は、例えば、加熱板15に取り付けられるサーミスタや熱電対によって測定され得る。発熱抵抗体152の駆動回路中の電流値を検出し、その電流値と発熱抵抗体152に印加される電圧値から算出される発熱抵抗体152の抵抗値によって温度を測定してもよい。図4では、発熱抵抗体152の調整部と反対側にシャント抵抗22が設けられ、周期的に調整部から入力される温度測定用のパルス電圧値に対する、シャント抵抗22を流れる電流値を検出して制御手段へ入力する例が示されている。 The control means in the drive circuit generates heat from the adjusting unit so that the heating plate 15 (melting unit 13) reaches a desired temperature according to the measured temperature of the heating plate 15 (temperature of the melting unit 13). A control signal is output so as to control the execution applied power to the resistor 152. The temperature of the heating plate 15 can be measured, for example, by a thermistor or thermocouple attached to the heating plate 15. The temperature may be measured by detecting the current value in the drive circuit of the heating resistor 152 and measuring the resistance value of the heating resistor 152 calculated from the current value and the voltage value applied to the heating resistor 152. In FIG. 4, a shunt resistor 22 is provided on the side opposite to the adjusting portion of the heat generating resistor 152, and the current value flowing through the shunt resistor 22 is detected with respect to the pulse voltage value for temperature measurement periodically input from the adjusting portion. An example of inputting to the control means is shown.

制御手段による加熱板15の温度制御においては、造形材料としてフィラメントを用いる場合、フィラメントが送り込まれると、その時に目標作業温度になるように熱量を加える。送り込みが止まると温度が目標値よりも上昇するので、目標値よりも上がらないように加熱量を減らす。再度フィラメントを送り込んでも目標温度を維持できるように制御する。このように、フィラメントの送り込みのタイミングによる温度変化に応じて加熱量を調整して行うことができる。 In the temperature control of the heating plate 15 by the control means, when the filament is used as the modeling material, when the filament is fed, the amount of heat is applied so as to reach the target working temperature at that time. When the feeding is stopped, the temperature rises above the target value, so reduce the amount of heating so that the temperature does not rise above the target value. It is controlled so that the target temperature can be maintained even if the filament is fed again. In this way, the amount of heating can be adjusted according to the temperature change due to the timing of feeding the filament.

温度調整部16はリング状の部材であり、その中空部にヘッド本体1が嵌め込まれ、融解部13と断熱部12との境界部付近の外周部を覆うように設けられる。温度調整部16は、融解部13と断熱部12との境界部付近の熱容量を増大させ温度上昇を抑制する。この境界部付近の温度上昇が抑制されることで、通路2内における造形材料の高い流動性を有する部分(例えば融解状態)と、流動性が低い部分(例えば固体状態)との境界が断熱部12側へ移動することが抑制され、ホットエンド10の通路2内の造形材料の詰まりが抑制され得る。この温度上昇の抑制の程度は温度調整部16のサイズ及び形状によって調整され得る。温度調整部16には融解部13と断熱部12との境界部付近の温度を検出する温度監視手段が取り付けられてよい。上述の駆動回路における調整部から発熱抵抗体152に印加される電力は、制御手段に入力される温度監視手段での検出温度に基づいて、所定の温度を上回らないように制御され得る。 The temperature adjusting portion 16 is a ring-shaped member, and the head main body 1 is fitted in the hollow portion thereof, and is provided so as to cover the outer peripheral portion near the boundary portion between the melting portion 13 and the heat insulating portion 12. The temperature adjusting unit 16 increases the heat capacity near the boundary between the melting unit 13 and the heat insulating unit 12 and suppresses the temperature rise. By suppressing the temperature rise near this boundary portion, the boundary between the portion having high fluidity (for example, the molten state) and the portion having low fluidity (for example, the solid state) of the modeling material in the passage 2 is the heat insulating portion. The movement to the 12 side can be suppressed, and the clogging of the modeling material in the passage 2 of the hot end 10 can be suppressed. The degree of suppression of this temperature rise can be adjusted by the size and shape of the temperature adjusting unit 16. The temperature adjusting unit 16 may be provided with a temperature monitoring means for detecting the temperature near the boundary between the melting unit 13 and the heat insulating unit 12. The electric power applied to the heat generating resistor 152 from the adjusting unit in the drive circuit described above can be controlled so as not to exceed a predetermined temperature based on the temperature detected by the temperature monitoring means input to the control means.

上述した実施形態のホットエンド、3次元プリンタは、400〜500℃、或いはそれ以上の高温に迅速昇温可能で、耐久性に優れていることから、造形材料としてPEEKやカーボンファイバーなどの混合物を含有するPEEKなどの樹脂類の他、低融点金属類や低融点ガラス類にも使用することができる。400℃以上に加熱融解される造形材料を用いる3次元造形に好適に使用され得る。 Since the hot-end three-dimensional printer of the above-described embodiment can quickly raise the temperature to a high temperature of 400 to 500 ° C. or higher and has excellent durability, a mixture such as PEEK or carbon fiber can be used as a molding material. In addition to the contained resins such as PEEK, it can also be used for low melting point metals and low melting point glasses. It can be suitably used for three-dimensional modeling using a modeling material that is heated and melted at 400 ° C. or higher.

1 ヘッド本体
2 通路
10 ホットエンド
11 供給部
111 供給口
12 断熱部
121 開口部
13 融解部
131 開口部
14 吐出部
141 吐出口
15 加熱板
150 リード
151 絶縁基板
152 発熱抵抗体(発熱抵抗体層)
153 電極
153c 中間端子
154 シール材(保護層)
155 絶縁保護板
16 温度調整部
21 電源
22 シャント抵抗
C 変換装置
C1 AC/DCコンバータ
C2 平滑コンデンサ
C3 DC/ACインバータ
1 Head body 2 Passage 10 Hot end 11 Supply part 111 Supply port 12 Insulation part 121 Opening part 13 Melting part 131 Opening part 14 Discharge part 141 Discharge port 15 Heating plate 150 Lead 151 Insulation substrate 152 Heat generation resistor (heat resistance layer)
153 Electrode 153c Intermediate terminal 154 Sealing material (protective layer)
155 Insulation protection plate 16 Temperature control unit 21 Power supply 22 Shunt resistance C converter C1 AC / DC converter C2 Smoothing capacitor C3 DC / AC inverter

Claims (4)

矩形状の絶縁基板及び該絶縁基板上に短手方向に複数回折り返されてつづら折り状に形成された発熱抵抗体層を有する加熱板により造形材料を加熱し融解して吐出するホットエンドと、
前記加熱板を発熱するために電圧を印加する電圧印加手段と、を備えた3次元プリンタであって、
前記電圧印加手段は、前記発熱抵抗体層に極性交番電圧を印加することを特徴とする3次元プリンタ。
A hot end that heats and melts the molding material with a rectangular insulating substrate and a heating plate having a heat generating resistor layer formed in a zigzag shape by being folded back in a plurality of directions in the lateral direction on the insulating substrate.
A three-dimensional printer provided with a voltage applying means for applying a voltage to generate heat in the heating plate.
The voltage applying means is a three-dimensional printer characterized in that a polar alternating voltage is applied to the heat generating resistor layer.
前記加熱板は、前記発熱抵抗体層を覆う絶縁保護板を有することを特徴とする請求項1に記載の3次元プリンタ。 The three-dimensional printer according to claim 1, wherein the heating plate has an insulating protective plate that covers the heat generation resistor layer. 前記電圧印加手段は、前記極性交番電圧を印加することで前記加熱板を400℃以上に発熱できることを特徴とする請求項1又は2に記載の3次元プリンタ。 The three-dimensional printer according to claim 1 or 2, wherein the voltage applying means can generate heat of the heating plate to 400 ° C. or higher by applying the polar alternating voltage. 請求項1〜3のいずれかに記載の3次元プリンタを用い、前記造形材料として400℃以上に加熱融解される材料を用いて立体造形物を造形することを特徴とする造形方法。 A modeling method characterized by using the three-dimensional printer according to any one of claims 1 to 3 to model a three-dimensional model using a material that is heated and melted at 400 ° C. or higher as the modeling material.
JP2020038836A 2020-03-06 2020-03-06 3D printer and modeling method using it Active JP6937051B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020038836A JP6937051B2 (en) 2020-03-06 2020-03-06 3D printer and modeling method using it
JP2021135633A JP2021185037A (en) 2020-03-06 2021-08-23 Hot plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020038836A JP6937051B2 (en) 2020-03-06 2020-03-06 3D printer and modeling method using it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021135633A Division JP2021185037A (en) 2020-03-06 2021-08-23 Hot plate

Publications (2)

Publication Number Publication Date
JP2021138082A JP2021138082A (en) 2021-09-16
JP6937051B2 true JP6937051B2 (en) 2021-09-22

Family

ID=77667504

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020038836A Active JP6937051B2 (en) 2020-03-06 2020-03-06 3D printer and modeling method using it
JP2021135633A Pending JP2021185037A (en) 2020-03-06 2021-08-23 Hot plate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021135633A Pending JP2021185037A (en) 2020-03-06 2021-08-23 Hot plate

Country Status (1)

Country Link
JP (2) JP6937051B2 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210588A (en) * 1982-04-23 1982-12-24 Kyocera Corp Heating element
JPS6391194U (en) * 1986-12-03 1988-06-13
JP2586180B2 (en) * 1990-05-10 1997-02-26 東芝機器株式会社 Planar heating element
JPH10238795A (en) * 1997-02-21 1998-09-08 Daiken Trade & Ind Co Ltd Manufacture of panel embedding heater for floor heating
US6519835B1 (en) * 2000-08-18 2003-02-18 Watlow Polymer Technologies Method of formable thermoplastic laminate heated element assembly
JP2004022486A (en) * 2002-06-20 2004-01-22 Canon Inc Heating body, heating device and image forming apparatus
JP2009245729A (en) * 2008-03-31 2009-10-22 Konica Minolta Business Technologies Inc Sheet heater and fixing device using the same, electrostatic latent image support body and image forming device
JP5430997B2 (en) * 2009-03-30 2014-03-05 太平洋セメント株式会社 Ceramic heater
JP2012045716A (en) * 2010-08-24 2012-03-08 Seiko Epson Corp Liquid discharge head
CN105579220B (en) * 2013-07-17 2017-09-08 马克弗盖德公司 Device for fibre-reinforced addition manufacture
KR101608209B1 (en) * 2014-05-28 2016-04-01 울산과학기술원 Printing method for 3-dimentional printing apparatus using electrohydrodynamic phenomena
CN113635555A (en) * 2015-05-19 2021-11-12 谷口秀夫 Molding material discharge head
US10703044B2 (en) * 2017-07-27 2020-07-07 Robert Bosch Tool Corporation Removable build plate with evenly heated build surface of 3D printer
JP6566535B1 (en) * 2018-07-27 2019-08-28 谷口 秀夫 Hot end of modeling material for 3D modeling equipment

Also Published As

Publication number Publication date
JP2021138082A (en) 2021-09-16
JP2021185037A (en) 2021-12-09

Similar Documents

Publication Publication Date Title
CN104411203B (en) Hair style mo(u)lding equipment
KR102024965B1 (en) Electrostatic chuck and method of manufacturing electrostatic chuck
JP2715193B2 (en) Method and apparatus for controlling and limiting power on a heated surface made of glass ceramic or similar material
SE459172B (en) PROCEDURES SHOULD LOW TRANSFER RESISTANCE THROUGH LINING GRAPHITE PLATE AASTADKOMMA
CA1220807A (en) Heating element
JP6393856B1 (en) Discharge head for modeling material for 3D modeling equipment
JP2019064090A (en) Heating device for 3D printer and head module for 3D printer
JP6635560B1 (en) Hot end of modeling material for 3D modeling apparatus and 3D modeling apparatus equipped with hot end
JP6937051B2 (en) 3D printer and modeling method using it
JPH0113057B2 (en)
EP3618663B1 (en) Barrel for hair styling appliance
WO2021038721A1 (en) Hot end of shaping material for three-dimensional shaping device and three-dimensional shaping device in which hot end is loaded
EP0105993B1 (en) Heater with solid electrolyte
JP7057616B2 (en) Discharge head of modeling material for 3D modeling device and 3D modeling device
JP6566535B1 (en) Hot end of modeling material for 3D modeling equipment
JP2022051177A (en) Hot end for three-dimensional printer, three-dimensional printer, and heating means
CN207721216U (en) Electronic cigarette and its heating device
JP6530088B2 (en) Heater, fixing device including the same, image forming apparatus and heating device
JP6420521B1 (en) Discharge head for modeling material for 3D modeling apparatus and 3D modeling apparatus
JPWO2019039072A1 (en) Particle count detector
JPH087731A (en) Resistance/temperature fuse for board
JP2003236675A (en) Welding power source
JP2021026985A (en) Manufacture method of heater unit
JP2024037422A (en) Aerosol generator
WO2023067308A1 (en) Apparatus and method for styling hair

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210405

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210405

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210823

R150 Certificate of patent or registration of utility model

Ref document number: 6937051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350