JP2003236675A - Welding power source - Google Patents
Welding power sourceInfo
- Publication number
- JP2003236675A JP2003236675A JP2002037809A JP2002037809A JP2003236675A JP 2003236675 A JP2003236675 A JP 2003236675A JP 2002037809 A JP2002037809 A JP 2002037809A JP 2002037809 A JP2002037809 A JP 2002037809A JP 2003236675 A JP2003236675 A JP 2003236675A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- voltage
- power source
- current
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Generation Of Surge Voltage And Current (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、微細被覆線の端子
への接合に使用するインバータ方式電源またはトランジ
スタ式電源に係り、特にその制御方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter type power supply or a transistor type power supply used for joining a fine coated wire to a terminal, and more particularly to a control method thereof.
【0002】[0002]
【従来の技術】従来微細被覆線の端子への接合にはパル
スヒート方式が用いられていた。このパルスヒート方式
はモリブデン、チタン等の高抵抗材料によって板状に形
成されたヒータチップと、このヒータチップの先端部に
接続された熱電対とを備えており、ヒータチップがパル
スヒート方式で加熱される。パルスヒート方式はパルス
状の大電流を流し、この時発生するジュール熱を利用し
て加熱する方式である。2. Description of the Related Art Conventionally, a pulse heating method has been used for joining finely coated wires to terminals. The pulse heating method includes a heater chip formed in a plate shape with a high resistance material such as molybdenum or titanium, and a thermocouple connected to the tip of the heater chip. The heater chip is heated by the pulse heating method. To be done. The pulse heating method is a method in which a large pulse current is passed and the Joule heat generated at this time is used for heating.
【0003】微細被覆線は直径が数10μm〜1mmで
心線の表面がウレタン樹脂等の絶縁皮膜によって被覆さ
れている。このような微細被覆線を端子に接合するに
は、端子に予めはんだを塗布しておき、その上に接合す
べき微細被覆線を載置する。しかる後にヒータチップの
先端を微細被覆線に接触させてパルス状の大電流を10
0ms〜数100msの間隔で流すと、ヒータチップは
ジュール熱により加熱され、絶縁皮膜およびはんだを溶
融し、微細被覆線の心線を端子へ接合する。The fine coated wire has a diameter of several tens of μm to 1 mm, and the surface of the core wire is coated with an insulating film such as urethane resin. In order to bond such a fine coated wire to the terminal, solder is applied to the terminal in advance, and the fine coated wire to be bonded is placed thereon. After that, the tip of the heater chip is brought into contact with the finely coated wire to apply a large pulse current 10
When flowing at an interval of 0 ms to several 100 ms, the heater chip is heated by Joule heat, melts the insulating film and the solder, and joins the core wire of the fine coated wire to the terminal.
【0004】図3は、このようなパルスヒート電源のブ
ロック図である。図3において、41はトライアック、
42はトライアック41の出力を低電圧、大電流に変換
してヒータチップ43に供給するためのトランス、44
はヒータチップ43の先端に取り付けられた熱電対、4
5は熱電対44で得られた熱起電力を増幅する差動増幅
器、46はヒータチップ44の温度を設定するための温
度設定スイッチ、47は増幅器45の出力電圧とスイッ
チ46の出力電圧の差分をとる加算回路、48はトライ
アック41をオン/オフさせることによってヒータチッ
プ43に流れる電流を制御する位相制御回路、51は端
子、52ははんだ、53は微細被覆線である。FIG. 3 is a block diagram of such a pulse heat power supply. In FIG. 3, 41 is a triac,
42 is a transformer for converting the output of the triac 41 into low voltage and large current and supplying it to the heater chip 43;
Is a thermocouple attached to the tip of the heater chip 43, 4
5 is a differential amplifier for amplifying the thermoelectromotive force obtained by the thermocouple 44, 46 is a temperature setting switch for setting the temperature of the heater chip 44, 47 is the difference between the output voltage of the amplifier 45 and the output voltage of the switch 46. Is a phase control circuit for controlling the current flowing through the heater chip 43 by turning on / off the triac 41, 51 is a terminal, 52 is a solder, and 53 is a fine coated wire.
【0005】次に、このようなパルスヒート電源の動作
を説明する。最初に、位相制御回路48が動作を開始し
てトライアック41がオンとなり、図示しない単相商用
交流電源からの交流電圧(AC100V)がトランス4
2に印加され、ヒータチップ43に電流が流れ始める。
これにより、ヒータチップ43の温度は上昇し、ヒータ
チップ43の温度は熱電対44によって電圧に変換され
る。Next, the operation of such a pulse heat power supply will be described. First, the phase control circuit 48 starts to operate, the triac 41 is turned on, and the AC voltage (AC100V) from the single-phase commercial AC power supply (not shown) is applied to the transformer 4.
2 is applied to the heater chip 43, and a current starts flowing through the heater chip 43.
As a result, the temperature of the heater chip 43 rises, and the temperature of the heater chip 43 is converted into a voltage by the thermocouple 44.
【0006】次いで、加算回路47は、熱電対44の熱
起電力を増幅した増幅器45の出力電圧と、設定温度に
対応するスイッチ46からの電圧の差を出力する。そし
て、位相制御回路48は加算回路47の出力に基づきヒ
ータチップ43の温度が設定温度となるようにトライア
ック41を制御する。Next, the adder circuit 47 outputs the difference between the output voltage of the amplifier 45 which amplifies the thermoelectromotive force of the thermocouple 44 and the voltage from the switch 46 corresponding to the set temperature. Then, the phase control circuit 48 controls the triac 41 based on the output of the adding circuit 47 so that the temperature of the heater chip 43 becomes the set temperature.
【0007】このようにヒータチップ43の温度は熱電
対44からの熱起電力をフィードバックすることによっ
て制御されるので、熱電対の熱起電力の応答遅れるが生
じる。また熱電対には寿命がある。また単相の商用交流
電源をトランスの一次電源として用いているために時間
の解像度が粗い(50Hzの場合10ms、60Hzの
場合8.33ms)。As described above, since the temperature of the heater chip 43 is controlled by feeding back the thermoelectromotive force from the thermocouple 44, the response of the thermoelectromotive force of the thermocouple is delayed. Thermocouples also have a life. Further, since the single-phase commercial AC power supply is used as the primary power supply of the transformer, the time resolution is rough (10 ms at 50 Hz, 8.33 ms at 60 Hz).
【0008】[0008]
【発明が解決しようとする課題】以上のように、従来の
パルスヒート電源は、熱電対による熱起電力のフィード
バック制御であり、かつ商用周波数の位相制御でヒータ
チップの温度を制御しているためその応答遅れや時間の
解像度の粗さのためヒータチップの接合部近傍に不必要
な熱を加えてしまうという欠点があった。本発明は、上
記課題を解決するためになされたもので、制御の応答速
度が早く、時間解像度の高い溶接電源を提供することを
目的とする。As described above, the conventional pulse heat power source is the feedback control of the thermoelectromotive force by the thermocouple, and the temperature of the heater chip is controlled by the phase control of the commercial frequency. There is a drawback in that unnecessary heat is applied to the vicinity of the joint portion of the heater chip due to the response delay and the coarseness of time resolution. The present invention has been made to solve the above problems, and an object of the present invention is to provide a welding power source having a high control response speed and a high time resolution.
【0009】[0009]
【課題を解決するための手段】本発明は、抵抗値が温度
の関数であることに着目してなされたものである。すな
わち抵抗値は次の式で表現することができる。
R=ρ×{1+α×(T−T25)}×(L/A)
ここで、ρは抵抗体を構成する材料の抵抗率。αは抵抗
体を構成する材料の温度係数、T25は基準温度(ここ
では、摂氏25度)、Lは抵抗体の長さ、Aは抵抗体の
断面積である。この式から、抵抗値を測定することがで
きれば温度を算出することが可能であり、抵抗値その物
を制御パラメータとして溶接電流を制御することが可能
となる。The present invention has been made focusing on the fact that the resistance value is a function of temperature. That is, the resistance value can be expressed by the following equation. R = ρ × {1 + α × (T−T25)} × (L / A) where ρ is the resistivity of the material forming the resistor. α is the temperature coefficient of the material forming the resistor, T25 is the reference temperature (here, 25 degrees Celsius), L is the length of the resistor, and A is the cross-sectional area of the resistor. From this equation, if the resistance value can be measured, the temperature can be calculated, and the welding current can be controlled using the resistance value itself as a control parameter.
【0010】本発明になる第1の溶接電源は、商用交流
電圧を整流する電源部と、この電源部の出力を前記商用
交流電圧よりも高い周波数の交流電圧に変換するインバ
ータ部と、このインバータ部の交流出力が一次側に入力
され、その二次側に誘起される交流低電圧を一対の溶接
電極に印加する溶接トランスと、この溶接トランスの二
次側の溶接電流を検出する電流検出手段と、前記一対の
溶接電極間の溶接電圧を検出する電圧検出手段と、これ
ら溶接電流および溶接電圧から溶接抵抗を算出し、この
溶接抵抗を前記インバータ部の制御回路にフィードバッ
クする帰還回路とを有することを特徴とするものであ
る。A first welding power source according to the present invention includes a power source section for rectifying a commercial AC voltage, an inverter section for converting an output of the power source section into an AC voltage having a frequency higher than the commercial AC voltage, and this inverter. AC output of the welding part is input to the primary side, a welding transformer for applying an AC low voltage induced on the secondary side to the pair of welding electrodes, and a current detecting means for detecting the welding current on the secondary side of the welding transformer. And a voltage detection means for detecting a welding voltage between the pair of welding electrodes, and a feedback circuit for calculating a welding resistance from these welding current and welding voltage and feeding back the welding resistance to the control circuit of the inverter section. It is characterized by that.
【0011】本発明になる第2の溶接電源は、商用交流
電圧を降圧し、整流し、その電圧で充電する電源部と、
この電源部の出力を一定時間幅に制限して一対の溶接電
極に溶接電流を通電する通電制御部と、この通電制御部
からの溶接電流を検出する電流検出手段と、前記一対の
溶接電極間の溶接電圧を検出する電圧検出手段と、これ
ら溶接電流および溶接電圧から溶接抵抗を算出し、この
溶接抵抗を前記通電制御部の制御回路にフィードバック
する帰還回路とを有することを特徴とするものである。A second welding power source according to the present invention comprises a power source section for stepping down commercial AC voltage, rectifying it, and charging it with the voltage.
Between the pair of welding electrodes, an energization controller that limits the output of the power source to a fixed time width to energize the welding current to the pair of welding electrodes, a current detection unit that detects the welding current from the energization controller, And a feedback circuit for calculating a welding resistance from the welding current and the welding voltage and feeding back the welding resistance to the control circuit of the energization control unit. is there.
【0012】[0012]
【作用】本発明によれば、熱電対の代わりに温度の関数
となる抵抗を算出してその結果で溶接電流を制御するこ
ととしたので応答遅れが少ない。また、インバータ方式
の溶接電源または連続波で溶接電流を制御できるトラン
ジスタ方式の溶接電源を使用したので時間解像度の高い
溶接制御が可能となる。According to the present invention, the resistance which is a function of temperature is calculated instead of the thermocouple and the welding current is controlled based on the result, so that the response delay is small. Moreover, since the inverter type welding power source or the transistor type welding power source capable of controlling the welding current by continuous wave is used, welding control with high time resolution can be performed.
【0013】[0013]
【発明の実施の形態】以下、本発明について図面を用い
て詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings.
【0014】実施の形態1
図1は本発明の1実施形態を示す溶接電源であるインバ
ータ方式の溶接電源の要部ブロック図である。図1にお
いて、1は電源部であるAC200Vの三相交流電源を
整流し、平滑化する整流平滑部、2は整流平滑部1から
の直流電源を後述するPWM制御部10の制御によりA
C200Vの三相交流電源より高い周波数の交流電源に
変換するインバータ部、3はインバータ部2からの交流
電圧を受けて低電圧で大電流の交流出力電圧を得る溶接
トランス、4は溶接トランス3からの交流電圧電源を整
流する整流部、5は電流検出手段である溶接電流検出素
子、6a、6bは溶接電極、7は溶接電流検出素子5で
得られた溶接電流と溶接電極6a、6b間に設けられた
電圧検出手段12で検出された電圧を受けて所定の増幅
を行い、その増幅後の電圧を電流で除算して溶接抵抗を
算出する増幅除算部、9は溶接条件として抵抗の変化プ
ロファイルを設定する溶接条件設定部、10は溶接条件
設定部9からの設定抵抗プロファイルと増幅除算部7か
らの抵抗値を受けて、この抵抗値が設定抵抗プロファイ
ルに一致するようにインバータ2の駆動信号を生成する
PWM制御部である。なお、図示しないが溶接電極6
a、6b間に微細被覆線とこの微細被覆線が溶接される
端子が挟み込まれる。Embodiment 1 FIG. 1 is a block diagram of a main part of an inverter type welding power source which is a welding power source showing an embodiment of the present invention. In FIG. 1, 1 is a rectifying / smoothing unit that rectifies and smoothes an AC 200 V three-phase AC power source, which is a power source unit, and 2 is a DC power source from the rectifying / smoothing unit 1, which is controlled by a PWM control unit 10 described later to
An inverter section 3 for converting into an AC power source having a higher frequency than the three-phase AC power source of C200V, a welding transformer 3 for receiving an AC voltage from the inverter section 2 to obtain an AC output voltage of a large current at a low voltage, 4 a welding transformer 3 Rectifying part for rectifying the AC voltage power supply of 5 is a welding current detecting element which is a current detecting means, 6a and 6b are welding electrodes, 7 is a welding current obtained by the welding current detecting element 5 and the welding electrodes 6a and 6b. An amplification division unit that receives a voltage detected by the voltage detection means 12 provided, performs a predetermined amplification, and divides the amplified voltage by a current to calculate welding resistance, and 9 is a resistance change profile as a welding condition. The welding condition setting unit 10 that receives the set resistance profile from the welding condition setting unit 9 and the resistance value from the amplification division unit 7 are set so that the resistance value matches the set resistance profile. A PWM control unit for generating a drive signal of the inverter 2. Although not shown, the welding electrode 6
The fine coated wire and the terminal to which the fine coated wire is welded are sandwiched between a and 6b.
【0015】次に、このようなインバータ方式の溶接電
源の動作について説明する。商用三相AC200Vの電
源が整流平滑部1に入力され、整流、平滑されてインバ
ータ部2に入力される。インバータ部は4つのトランジ
スタからなり、PWM制御部10からの商用交流周波数
よりも十分に高い所定の周波数のインバータ駆動信号S
1、S2によって、この4つのトランジスタを2組のト
ランジスタに分けて交互にオン/オフすることにより高
周波の交流矩形波を出力する。Next, the operation of such an inverter type welding power source will be described. A commercial three-phase AC200V power source is input to the rectifying / smoothing unit 1, rectified and smoothed, and input to the inverter unit 2. The inverter unit is composed of four transistors, and has an inverter drive signal S of a predetermined frequency sufficiently higher than the commercial AC frequency from the PWM control unit 10.
By 1 and S2, the four transistors are divided into two sets of transistors and alternately turned on / off to output a high-frequency AC rectangular wave.
【0016】インバータ部2から出力された前記高周波
の交流矩形波はトランス3の一次側コイルに供給され、
二次側コイルに低電圧で大電流の矩形波を生成する。こ
の二次側コイルに生じた低電圧で大電流の矩形波は一対
のダイオードからなる整流部4で直流に変換されて、こ
れに応じた溶接電流が溶接電極6a、6bに流れ、被溶
接物で抵抗発熱が発生する。この抵抗発熱によって被溶
接物である微細被覆線が端子に溶接されるのである。The high frequency AC rectangular wave output from the inverter unit 2 is supplied to the primary coil of the transformer 3.
A low voltage, high current rectangular wave is generated in the secondary coil. The low-voltage, large-current rectangular wave generated in the secondary coil is converted into direct current by the rectifying unit 4 composed of a pair of diodes, and a welding current corresponding to the rectangular current flows into the welding electrodes 6a, 6b, and the object to be welded. Generates resistance heat. Due to this resistance heat generation, the fine coated wire which is the object to be welded is welded to the terminal.
【0017】次に、PWM制御部10のインバータ駆動
信号S1、S2の生成について説明する。溶接電流検出
のために検出素子5を設け、この検出素子5で検出され
る溶接電流Iを増幅除算部7の一方に入力する。また溶
接電極6a、6b間には被溶接物の抵抗値に応じた電圧
降下が発生する。この電圧降下Vも同じように増幅除算
部7のもう一方に入力する。この増幅除算部7では溶接
電流Iと降下電圧Vを増幅除算して溶接抵抗Rを求め
る。Next, the generation of the inverter drive signals S1 and S2 of the PWM control section 10 will be described. A detection element 5 is provided for detecting the welding current, and the welding current I detected by the detection element 5 is input to one of the amplification division units 7. Further, a voltage drop occurs between the welding electrodes 6a and 6b according to the resistance value of the object to be welded. This voltage drop V is similarly input to the other side of the amplification division unit 7. In the amplification division unit 7, the welding current I and the drop voltage V are amplified and divided to obtain the welding resistance R.
【0018】PWM制御部10は市販のPWM ICを
使用し、外付けのタイミング用の抵抗で決定される周波
数のランプ信号を生成し、溶接条件設定部9の設定抵抗
プロファイルと増幅除算部7からの溶接抵抗Rとが一致
するようにインバータ駆動信号S1、S2を生成する。The PWM control section 10 uses a commercially available PWM IC to generate a ramp signal having a frequency determined by an external timing resistor, and outputs from the set resistance profile of the welding condition setting section 9 and the amplification division section 7. Inverter drive signals S1 and S2 are generated so that the welding resistance R of 1 is matched.
【0019】このようにして、溶接条件設定部9の設定
温度プロファイルに応じた溶接が可能となるから、熱電
対を用いて温度を監視することなく微細被覆線を適切に
端子に溶接することができる。また、インバータを使用
しているので、商用電源の周波数より高い周波数で制御
できるから時間分解能が高い制御が可能となる。In this way, welding according to the set temperature profile of the welding condition setting section 9 is possible, so that it is possible to appropriately weld the fine coated wire to the terminal without using a thermocouple to monitor the temperature. it can. Further, since the inverter is used, the control can be performed at a frequency higher than the frequency of the commercial power source, so that the control with high time resolution can be performed.
【0020】実施の形態2
図2は本発明のもう1つの実施の形態を示す溶接電源で
あるトランジスタ方式の溶接電源の要部ブロック図であ
る。図2において、21、22、23は電源部であり、
21は商用の単相AC100Vの交流電圧を所定の交流
電圧に降圧するトランス、22はトランス21からの交
流電圧を整流する整流部、23は整流部22からの整流
電圧で充電するコンデンサ、24はコンデンサ23への
充電電圧を制御する充電制御部、25は溶接ヘッド、2
6は後述するゲート制御部29からの制御のもとに溶接
ヘッド25に溶接電流を流す通電制御部であるトランジ
スタ、30は電流検出手段である電流検出素子、31は
電圧検出手段、27は溶接電流と溶接電圧を所定量増幅
するとともに増幅後の電圧を電流で除算して溶接抵抗を
算出する増幅除算部、28は溶接条件となる抵抗のプロ
ファイルを設定する溶接条件設定部、29は増幅除算部
27の溶接抵抗と溶接条件設定部28の抵抗プロファイ
ルを受けて、溶接抵抗が設定抵抗プロファイルと一致す
るようにトランジスタ26のゲート電圧幅を決定するゲ
ート制御部である。なお、図示しないが溶接ヘッド25
間に微細被覆線とこの微細被覆線が溶接される端子が挟
み込まれる。Embodiment 2 FIG. 2 is a block diagram of a main part of a transistor type welding power source which is a welding power source showing another embodiment of the present invention. In FIG. 2, reference numerals 21, 22, 23 denote power supply units,
Reference numeral 21 is a transformer that steps down a commercial single-phase AC 100V AC voltage to a predetermined AC voltage, 22 is a rectifying unit that rectifies the AC voltage from the transformer 21, 23 is a capacitor that is charged with the rectified voltage from the rectifying unit 22, and 24 is A charging control unit for controlling the charging voltage to the capacitor 23, 25 is a welding head, 2
Reference numeral 6 is a transistor which is an energization control unit for supplying a welding current to the welding head 25 under the control of a gate control unit 29 which will be described later, 30 is a current detection element which is current detection means, 31 is voltage detection means, and 27 is welding. An amplification division unit that amplifies the current and the welding voltage by a predetermined amount and divides the amplified voltage by the current to calculate the welding resistance, 28 is a welding condition setting unit that sets a resistance profile that is a welding condition, and 29 is amplification division The gate control unit receives the welding resistance of the section 27 and the resistance profile of the welding condition setting section 28 and determines the gate voltage width of the transistor 26 so that the welding resistance matches the set resistance profile. Although not shown, the welding head 25
A fine coated wire and a terminal to which the fine coated wire is welded are sandwiched between them.
【0021】次に、このような、トランジスタ式の溶接
電源の動作について説明する。商用交流電圧AC100
Vをトランス21で適宜の電圧に降圧し、整流部(ブリ
ッジ)22で全波整流してコンデンサ23に充電する。
ここでコンデンサ23の充電電圧は、整流部22の整流
素子の一部となるスイッチング素子(サイリスタ)22
a、22aの点弧位相を充電制御部24で制御すること
により制御する。こうしてコンデンサ23には常に所定
の充電電圧で充電されることとなる。Next, the operation of such a transistor-type welding power source will be described. Commercial AC voltage AC100
V is stepped down to an appropriate voltage by the transformer 21, and full-wave rectified by the rectifying unit (bridge) 22 to charge the capacitor 23.
Here, the charging voltage of the capacitor 23 is a switching element (thyristor) 22 which is a part of the rectifying element of the rectifying unit 22.
The charging control unit 24 controls the ignition phases of a and 22a. In this way, the capacitor 23 is always charged with the predetermined charging voltage.
【0022】コンデンサ23から溶接ヘッド25に導か
れる電流はトランジスタ26により電流制御される。す
なわち、溶接電流および溶接電圧が増幅除算部27に入
力され、ここで溶接抵抗が求められてゲート制御回路2
9にフィードバックされる。ゲート制御回路29は溶接
条件設定部28で設定された抵抗プロファイルに従って
トランジスタ26のゲート電圧を決め、トランジスタ2
6を制御する。こうして溶接電流が溶接ヘッド25に流
れ、被溶接物で抵抗発熱が発生する。この抵抗発熱によ
って被溶接物である微細被覆線が端子に溶接されるので
ある。The current led from the capacitor 23 to the welding head 25 is current controlled by the transistor 26. That is, the welding current and the welding voltage are input to the amplification division unit 27, where the welding resistance is obtained and the gate control circuit 2
It is fed back to 9. The gate control circuit 29 determines the gate voltage of the transistor 26 according to the resistance profile set by the welding condition setting unit 28,
Control 6 In this way, the welding current flows through the welding head 25, and resistance heat is generated in the workpiece. Due to this resistance heat generation, the fine coated wire which is the object to be welded is welded to the terminal.
【0023】このようにして、溶接条件設定部9の設定
温度プロファイルに応じた溶接が可能となるから、熱電
対を用いて温度を監視することなく微細被覆線を適切に
端子に溶接することができる。また、一定時間幅連続し
て溶接電流を流しているので時間分解能が高い制御が可
能となる。In this way, welding can be performed in accordance with the temperature profile set by the welding condition setting section 9. Therefore, it is possible to properly weld the fine coated wire to the terminal without monitoring the temperature using a thermocouple. it can. Further, since the welding current is continuously supplied for a fixed time width, control with high time resolution becomes possible.
【0024】[0024]
【発明の効果】本発明によれば、以上説明したように、
熱電対の代わりに温度の関数となる抵抗を算出してその
結果で溶接電流を制御することとしたので応答遅れが少
なくなり、また、インバータ方式の溶接電源または連続
波で溶接電流を制御できるトランジスタ方式の溶接電源
を使用したので時間解像度の高い溶接制御が可能となる
るから溶接部に余分な熱が加わることがない信頼性の高
い溶接電源を提供できる。According to the present invention, as described above,
Transistor that can control the welding current by calculating resistance as a function of temperature instead of thermocouple and controlling the welding current based on the result, and can control the welding current by inverter type welding power source or continuous wave. Since a welding power source of the type is used, it is possible to perform welding control with high time resolution, and therefore it is possible to provide a highly reliable welding power source that does not add extra heat to the welded portion.
【図1】本発明の1実施形態を示す溶接電源であるイン
バータ方式の溶接電源の要部ブロック図である。FIG. 1 is a block diagram of a main part of an inverter-type welding power source that is a welding power source according to an embodiment of the present invention.
【図2】本発明のもう1つの実施の形態を示す溶接電源
であるトランジスタ方式の電源の要部ブロック図であ
る。FIG. 2 is a block diagram of a main part of a transistor-type power source that is a welding power source according to another embodiment of the present invention.
【図3】従来の微細被覆線の溶接に使用される溶接電源
であるパルスヒート電源のブロック図である。FIG. 3 is a block diagram of a pulse heat power source which is a welding power source used for welding a conventional fine coated wire.
1 整流平滑部 2 インバータ部 3 溶接トランス 4 整流部 5 電流検出素子 6a、6b 溶接電極 7 増幅除算部 9 溶接条件設定部 10 PWM制御部 12 電圧検出手段 1 Rectifying and smoothing section 2 Inverter section 3 welding transformer 4 Rectifier 5 Current detection element 6a, 6b Welding electrode 7 amplification division 9 Welding condition setting section 10 PWM control unit 12 Voltage detection means
Claims (2)
の交流電圧に変換するインバータ部と、 このインバータ部の交流出力が一次側に入力され、その
二次側に誘起される交流低電圧を一対の溶接電極に印加
する溶接トランスと、 この溶接トランスの二次側の溶接電流を検出する電流検
出手段と、 前記一対の溶接電極間の溶接電圧を検出する電圧検出手
段と、 これら溶接電流および溶接電圧から溶接抵抗を算出し、
この溶接抵抗を前記インバータ部の制御回路にフィード
バックする帰還回路とを有することを特徴とする溶接電
源。1. A power supply section for rectifying a commercial AC voltage, an inverter section for converting an output of the power supply section into an AC voltage having a frequency higher than the commercial AC voltage, and an AC output of the inverter section is input to a primary side. And a welding transformer for applying an AC low voltage induced on the secondary side to the pair of welding electrodes, a current detecting means for detecting a welding current on the secondary side of the welding transformer, and a welding electrode between the pair of welding electrodes. Welding resistance is calculated from the voltage detection means that detects the welding voltage and these welding current and welding voltage.
A welding power source having a feedback circuit for feeding back the welding resistance to the control circuit of the inverter section.
圧で充電する電源部と、 この電源部の出力を一定時間幅に制限して一対の溶接電
極に溶接電流を通電する通電制御部と、 この通電制御部からの溶接電流を検出する電流検出手段
と、 前記一対の溶接電極間の溶接電圧を検出する電圧検出手
段と、 これら溶接電流および溶接電圧から溶接抵抗を算出し、
この溶接抵抗を前記通電制御部の制御回路にフィードバ
ックする帰還回路とを有することを特徴とする溶接電
源。2. A power supply unit for stepping down and rectifying commercial AC voltage, and charging with the voltage, and an energization control unit for restricting the output of the power supply unit to a constant time width and supplying a welding current to a pair of welding electrodes. A current detecting means for detecting a welding current from the energization control section, a voltage detecting means for detecting a welding voltage between the pair of welding electrodes, and a welding resistance calculated from these welding current and welding voltage,
A welding power source having a feedback circuit for feeding back the welding resistance to the control circuit of the energization control unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002037809A JP3691797B2 (en) | 2002-02-15 | 2002-02-15 | Welding power source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002037809A JP3691797B2 (en) | 2002-02-15 | 2002-02-15 | Welding power source |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003236675A true JP2003236675A (en) | 2003-08-26 |
JP3691797B2 JP3691797B2 (en) | 2005-09-07 |
Family
ID=27779294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002037809A Expired - Lifetime JP3691797B2 (en) | 2002-02-15 | 2002-02-15 | Welding power source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3691797B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006159292A (en) * | 2004-12-04 | 2006-06-22 | Bosch Rexroth Ag | Resistance welding apparatus with energy supply unit and robot with resistance welding apparatus |
JP2013099758A (en) * | 2011-11-08 | 2013-05-23 | Honda Motor Co Ltd | Resistance welding method and device for the same |
CN103399597A (en) * | 2013-08-11 | 2013-11-20 | 中南林业科技大学 | Thermostatic control circuit and method for intelligent electric soldering iron |
KR102261538B1 (en) * | 2020-03-24 | 2021-06-09 | (주)이에스일렉 | Digital burning device and method for controlling temperature of burning pen using the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3374119B1 (en) | 2015-11-09 | 2019-08-28 | Fronius International GmbH | Method for data transmission in the case of a resistance welding current source and resistance welding current source for carrying out the method |
-
2002
- 2002-02-15 JP JP2002037809A patent/JP3691797B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006159292A (en) * | 2004-12-04 | 2006-06-22 | Bosch Rexroth Ag | Resistance welding apparatus with energy supply unit and robot with resistance welding apparatus |
JP2013099758A (en) * | 2011-11-08 | 2013-05-23 | Honda Motor Co Ltd | Resistance welding method and device for the same |
CN103399597A (en) * | 2013-08-11 | 2013-11-20 | 中南林业科技大学 | Thermostatic control circuit and method for intelligent electric soldering iron |
KR102261538B1 (en) * | 2020-03-24 | 2021-06-09 | (주)이에스일렉 | Digital burning device and method for controlling temperature of burning pen using the same |
Also Published As
Publication number | Publication date |
---|---|
JP3691797B2 (en) | 2005-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6011235A (en) | Method and apparatus for controlling resistance welding | |
JPH0694078B2 (en) | Resistance welder | |
KR100727377B1 (en) | Metal unite method and solder method | |
JP2002321068A (en) | Resistance welding device for covered wire | |
US6423950B2 (en) | Reflow soldering apparatus | |
JPH11285852A (en) | Resistance welding controller | |
JP3691797B2 (en) | Welding power source | |
EP1055477A2 (en) | Fusing processing method | |
JP2006187791A (en) | Power source apparatus for inverter type resistance welding | |
JP3669559B2 (en) | Resistance welding machine | |
JPH1085947A (en) | Method and device for controlling resistance welding | |
JP2006026683A (en) | Inverter controlled pulse heat power source | |
JPH08330050A (en) | Pulse heat power source | |
JP5451158B2 (en) | Heater chip, thermocompression bonding apparatus, and thermocompression bonding method | |
JPH1024377A (en) | Welding power unit for parallel gap welding | |
JPH11194840A (en) | Heater power controller for bonding device | |
JPH0780056B2 (en) | Welding power supply | |
JP2002210566A (en) | Metal member joining method, and ac waveform inverter type power source device | |
JP2001275224A (en) | Jointing apparatus | |
JP3619700B2 (en) | Transistor-type AC welding power supply | |
JP2005169429A (en) | Resistance welding method, and resistance welding power supply device | |
JP6813298B2 (en) | Joining device | |
KR19980032384A (en) | Resistance welding control method and device | |
JPH0677851B2 (en) | Resistance welder | |
JP2022137453A (en) | Resistance-welding electric power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050614 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050616 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3691797 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080624 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090624 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090624 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100624 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110624 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110624 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120624 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120624 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130624 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |