US20020036015A1 - Connection structure and valved connection member - Google Patents
Connection structure and valved connection member Download PDFInfo
- Publication number
- US20020036015A1 US20020036015A1 US09/960,331 US96033101A US2002036015A1 US 20020036015 A1 US20020036015 A1 US 20020036015A1 US 96033101 A US96033101 A US 96033101A US 2002036015 A1 US2002036015 A1 US 2002036015A1
- Authority
- US
- United States
- Prior art keywords
- valve
- connection member
- diameter
- diameter portion
- circumferential surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L33/00—Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
- F16L33/30—Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses comprising parts inside the hoses only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/08—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
- F02M25/0872—Details of the fuel vapour pipes or conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
- F16K15/02—Check valves with guided rigid valve members
- F16K15/025—Check valves with guided rigid valve members the valve being loaded by a spring
- F16K15/026—Check valves with guided rigid valve members the valve being loaded by a spring the valve member being a movable body around which the medium flows when the valve is open
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7904—Reciprocating valves
- Y10T137/7922—Spring biased
- Y10T137/7929—Spring coaxial with valve
- Y10T137/7939—Head between spring and guide
Definitions
- the present invention relates to a valved connection member favorably usable in an evaporation piping system of an automobile fuel tank,etc. and to a connection structure using the valved connection member.
- the internal pressure of an automobile fuel tank built up by evaporated gasoline is controlled through connection of the fuel tank and a canister located on the engine side by means of piping. Specifically, a check valve is installed in an evaporation line connecting the fuel tank and the canister so as to allow flow of evaporated gasoline from the fuel tank to the engine but not in the reverse direction.
- the fuel tank and the check valve are connected by means of a rubber hose, and the check valve and the canister are also connected by means of a rubber hose. Connections are each clamped from outside the rubber hose by means of a clamp member, such as a clip.
- a clamp member such as a clip
- Resin tubes are used in the following manner. Resin tubes are connected to corresponding opposite ends of the check valve, and quick connectors are connected to the respective free ends of the resin tubes. The quick connectors are used for connection to the fuel tank and the canister.
- a conventionally used check valve is configured such that a valve body is movably disposed within a substantially cylindrical housing, while being biased toward a valve seat formed at one end of the housing by means of a valve spring. Accordingly, the conventional check valve is a separate member from the quick connector and the rubber hose or resin tube and is press-fitted, for use, into an end portion of the rubber hose or the resin tube. Also, assembly of the check valve is complicated in terms of process and accuracy; for example, welding upper and lower housing halves is required.
- the check valve to be installed in, for example, an evaporation piping system of an automobile fuel tank is a separate member from the quick connector and the rubber hose or resin tube, the number of components increases and connection work becomes complicated, resulting in difficulty in reducing cost.
- An object of the present invention is to solve the above-mentioned problems, and to provide a connection member of simple structure equipped with a check valve allowing a reduction in the number of components of a piping system, such as an evaporation piping system, that requires installation of a check valve, and a reduction in the number of connections, as well as to provide a connection structure of low gasoline permeability and low cost favorably usable in, for example, an evaporation piping system employing a valved connection member.
- a connection structure comprises a valved connection member and a flexible tube connected to the valved connection member.
- the valved connection member comprises a cylindrical connection member, a cylindrical valve cap, a cylindrical valve body, and a compression spring.
- the cylindrical connection member comprises a cylindrical nipple portion formed at one end and allowing the inner circumferential surface of an end portion of the flexible tube to be fitted thereto; and an annular first end face portion formed at an end part of the nipple portion in such a manner as to face toward the one end and to extend radially.
- the cylindrical valve cap comprises a small-diameter portion and a large-diameter portion, an axial bore formed in the small-diameter portion being smaller in diameter than an axial bore formed in the large-diameter portion; a valve seat portion having a valve seal surface formed on the inner circumferential surface of the cylindrical valve cap and located between the small-diameter portion and the large-diameter portion; and a fitting end portion formed at one end of the large-diameter portion away from the small-diameter portion and fitted to the outer circumferential surface of the end part of the nipple portion of the connection member.
- the cylindrical valve body comprises a bottom portion having an abutment part to abut the valve seal surface of the valve cap; a cylindrical open end portion extending from the bottom portion and opening toward the connection member; an annular second end face portion formed at the open end portion in such a manner as to face the first end face portion and to extend radially; a first sliding portion extending radially outward from the open end portion in an integral condition; and a first flow path portion provided in the first sliding portion and allowing flow of fluid.
- the valve body is accommodated within the large-diameter portion of the valve cap in such a manner as to be axially slidable by virtue of the first sliding portion.
- the compression spring is disposed between the first end face portion and the second end face portion and adapted to bias the valve body toward the valve seal surface.
- One end portion of the flexible tube is fitted to the outer circumferential surface of the valve cap fitted to the outer circumferential surface of the end part of the nipple portion of the connection member and is further fitted to the outer circumferential surface of the nipple portion extending away from the outer circumferential surface of the valve cap.
- the abutment part of the bottom portion of the valve body is in close contact with the valve seal surface of the valve cap. Accordingly, when the upstream fluid pressure of the connection structure is lower than the downstream fluid pressure, a flow path including the first flow path portion is closed to thereby disable flow of fluid. In contrast, when the upstream fluid pressure becomes higher than the downstream fluid pressure, the valve body moves toward the connection member against the compression spring. Thus, the abutment part of the bottom portion of the valve body moves away from the valve seal surface and toward the connection member, thereby forming a gap between the abutment part and the valve seal surface.
- the flow path including the first flow path portion is opened to thereby permit downstream flow of fluid.
- the valve body can smoothly move within the large-diameter portion in the axial direction by virtue of the first sliding portion.
- the first flow path portion provided in the first sliding portion smoothens flow of fluid.
- connection structure is configured such that the valve body is accommodated within the valve cap fitted to the connection member, the number of components as well as the number of connections can be reduced. Thus, the cost of the connection structure can be reduced, and assembly work time can be shortened.
- connection can exhibit low gasoline permeability. Since no welding is required for connection of the valve cap and the end part of the nipple portion of the connection member, the cost of connection can be reduced.
- the first sliding portion and the first flow path portion can be provided on the inner circumferential surface of the large-diameter portion of the valve cap in the vicinity of the boundary between the large-diameter and small-diameter portions.
- the first sliding portion provided on the valve cap allows smooth axial movement of the valve body within the large-diameter portion
- the first flow path portion provided in the first sliding portion allows smooth flow of fluid.
- the first aspect of the present invention allows the valve body to further comprise a second sliding portion extending from the bottom portion away from the open end portion and accommodated slidably within the small-diameter portion of the valve cap; and a second flow path portion formed in the second sliding portion and allowing flow of fluid.
- the second sliding portion allows further smooth axial movement of the valve body, and the second flow path portion allows smooth flow of fluid at the second sliding portion.
- the sliding portion can be provided in such a manner as to extend from the bottom portion away from the open end portion.
- the sliding portion allows smooth axial movement of the valve body within the small-diameter and large-diameter portions, and the flow path portion provided in the sliding portion allows smooth flow of fluid.
- the first aspect of the present invention can provide the connection structure of simple structure equipped with a valve limiting flow to a single direction (a check valve) and featuring a small number of components and a small number of connections with a tube, thereby reducing the cost of a connection structure to be used in, for example, an evaporation piping system as well as assembly work time.
- the valve cap is merely fitted to the outer circumferential surface of the end part of the nipple portion of the connection member, since one end portion of the flexible tube is fitted to the outer circumferential surface of the valve cap fitted to the connection member and is further fitted to the outer circumferential surface of the nipple portion extending away from the outer circumferential surface of the valve cap, the connection can exhibit low gasoline permeability. Since welding is not necessarily required for connection of the valve cap and the end part of the nipple portion of the connection member, low gasoline permeability can be achieved at low cost.
- connection structure allows a flow adjustment bore to be axially formed in the bottom portion of the valve body in such a manner as to extend through the bottom portion.
- a flow path including the flow path portion is closed.
- the flow adjustment bore formed in the bottom portion of the valve body permits upstream flow of fluid of very low flow rate.
- the upstream fluid pressure of the connection structure is slightly greater than the downstream fluid pressure but is not sufficiently great to move the valve body against the compression spring, the flow path including the flow path portion is closed, while fluid flows downstream at a very low flow rate through the flow adjustment bore formed in the bottom portion of the valve body.
- the abutment part of the bottom portion of the valve body moves away from the valve seal surface and toward the connection member, thereby forming a gap between the abutment part and the valve seal surface.
- the flow path including the flow path portion is opened to thereby permit downstream flow of fluid of high flow rate. That is, the flow adjustment bore formed in the bottom portion of the valve body enables adjustment of the rate of downstream flow of fluid according to the difference between upstream and downstream fluid pressures of the connection structure.
- a valved connection member to be connected with a flexible tube comprises a cylindrical connection member, a cylindrical valve cap, a valve body, and a compression spring.
- the cylindrical connection member comprises a cylindrical nipple portion formed at one end and allowing the inner circumferential surface of an end portion of the flexible tube to be fitted thereto.
- the cylindrical valve cap comprises a small-diameter portion and a large-diameter portion.
- a valve seal surface is formed on the inner circumferential surface of the cylindrical valve cap and located between the small-diameter portion and the large-diameter portion.
- the cylindrical valve cap is fitted to an end part of the nipple portion of the connection member with the large-diameter portion facing the connection member.
- the valve body comprises a bottom portion having an abutment part to abut the valve seal surface of the valve cap.
- the valve body is accommodated within the large-diameter portion of the valve cap in such a manner as to be axially slidable.
- the compression spring is disposed between the large-diameter portion of the valve cap and the nipple portion of the connection member and adapted to bias the valve body toward the valve seal surface of the valve cap.
- the valved connection member according to the second aspect of the present invention can form a connection structure through fitting of one end portion of the flexible tube to the outer circumferential surface of the valve cap fitted to the outer circumferential surface of the end part of the nipple portion of the connection member as well as to the outer circumferential surface of the nipple portion extending away from the outer circumferential surface of the valve cap.
- the upstream fluid pressure of the connection structure is lower than the downstream fluid pressure
- the abutment part of the bottom portion of the valve body is in contact with the valve seal surface of the valve cap to thereby close a flow path, thereby disabling flow of fluid.
- valve body moves toward the connection member against the compression spring.
- the abutment part of the bottom portion of the valve body moves away from the valve seal surface and toward the connection member, thereby opening the flow path, thereby permitting downstream flow of fluid.
- valved connection member is configured such that the valve body is accommodated within the valve cap fitted to the connection member, the number of components required to form a connection structure as well as the number of connections can be reduced. Thus, the cost of the connection structure can be reduced, and assembly work time can be shortened.
- the valved connection member is configured such that the valve cap is merely fitted to the outer circumferential surface of the end part of the nipple portion of the connection member.
- one end portion of the flexible tube is fitted to the outer circumferential surface of the valve cap fitted to the connection member and is further fitted to the outer circumferential surface of the nipple portion extending away from the outer circumferential surface of the valve cap, the connection can exhibit low gasoline permeability. Since welding is not necessarily required for connection of the valve cap and the end part of the nipple portion of the connection member, the cost of the valved connection member can be reduced.
- a valved connection member comprises a cylindrical connection member, a cylindrical valve cap, a cylindrical valve body, and a compression spring.
- the cylindrical connection member comprises a cylindrical nipple portion formed at one end and allowing the inner circumferential surface of an end portion of the flexible tube to be fitted thereto; and an annular first end face portion formed at an end part of the nipple portion in such a manner as to face toward the one end and to extend radially.
- the cylindrical valve cap comprises a small-diameter portion and a large-diameter portion, an axial bore formed in the small-diameter portion being smaller in diameter than an axial bore formed in the large-diameter portion; a valve seat portion having a valve seal surface formed on the inner circumferential surface of the cylindrical valve cap and located between the small-diameter portion and the large-diameter portion; and a fitting end portion formed at one end of the large-diameter portion away from the small-diameter portion and fitted to the outer circumferential surface of the end part of the nipple portion of the connection member.
- the cylindrical valve body comprises a bottom portion having an abutment part to abut the valve seal surface of the valve cap; a cylindrical open end portion extending from the bottom portion and opening toward the connection member; an annular second end face portion formed at the open end portion in such a manner as to face the first end face portion and to extend radially; a first sliding portion extending radially outward from the open end portion in an integral condition; and a first flow path portion provided in the first sliding portion and allowing flow of fluid.
- the valve body is accommodated within the large-diameter portion of the valve cap in such a manner as to be axially slidable by virtue of the first sliding portion.
- the compression spring is disposed between the first end face portion and the second end face portion and adapted to bias the valve body toward the valve seat portion of the valve cap.
- the valved connection member can form a connection structure through fitting of one end portion of the flexible tube to the outer circumferential surface of the valve cap fitted to the outer circumferential surface of the end part of the nipple portion of the connection member as well as to the outer circumferential surface of the nipple portion extending away from the outer circumferential surface of the valve cap.
- the valve body can axially move toward the connection member within the large-diameter portion of the valve cap in a smooth manner effected by the first sliding portion, and the first flow path portion provided in the first sliding portion permits smooth flow of fluid.
- the first sliding portion can be provided on the inner circumferential surface of the large-diameter portion of the valve cap in the vicinity of the boundary between the large-diameter and small-diameter portions.
- the first sliding portion provided on the valve cap allows smooth axial movement of the valve body within the large-diameter portion, and the first flow path portion provided in the first sliding portion allows smooth flow of fluid.
- the second aspect of the present invention allows the valve body to further comprise a second sliding portion extending from the bottom portion away from the open end portion and accommodated slidably within the small-diameter portion of the valve cap; and a second flow path portion formed in the second sliding portion and allowing flow of fluid.
- the second sliding portion allows further smooth axial movement of the valve body, and the second flow path portion allows smooth flow of fluid at the second sliding portion.
- the sliding portion can be provided in such a manner as to extend from the bottom portion away from the open end portion.
- the sliding portion allows smooth axial movement of the valve body within the small-diameter and large-diameter portions of the valve cap, and the flow path portion provided in the sliding portion allows smooth flow of fluid.
- valved connection member capable of forming at low cost a connection structure that exhibits low gasoline permeability suited for application to, for example, an evaporation piping system.
- the valved connection member allows a flow adjustment bore to be axially formed in the bottom portion of the valve body in such a manner as to extend through the bottom portion.
- the flow adjustment bore allows flow of fluid of a certain flow rate, which corresponds to the bore size.
- FIG. 1 is a schematic sectional view showing a valved connection member according to a first embodiment of the present invention
- FIG. 2 is a schematic side view of a valve body for use in the valved connection member
- FIG. 3 is a schematic sectional view showing a state of the valved connection member in which a flow path is opened;
- FIG. 4 is a schematic sectional view showing an embodiment of a connection structure using the valved connection member
- FIG. 5 is a schematic sectional view showing another embodiment of a connection structure using the valved connection member
- FIG. 6 is a schematic sectional view showing a modified valved connection member of the first embodiment
- FIG. 7 is a sectional view taken along line VII-VII of FIG. 6;
- FIG. 8 is a schematic sectional view showing a valved connection member according to a second embodiment of the present invention.
- FIG. 9 is a schematic sectional view showing a state of the valved connection member of the second embodiment in which a flow path is opened;
- FIG. 10 is a sectional view taken along line X-X of FIG. 9;
- FIG. 11 is a schematic sectional view showing a valved connection member according to a third embodiment of the present invention.
- FIG. 12 is a sectional view taken along line XII-XII of FIG. 11;
- FIG. 13 is a schematic sectional view showing a valved connection member according to a fourth embodiment of the present invention.
- a valved connection member of the preferred embodiment of the present invention has a nipple portion at one end for connection with a flexible tube, such as a resin tube.
- a valve that limits flow to a single direction is disposed at an end of the nipple portion.
- the valve is a check valve (a so-called one-way valve) and opens a flow path to thereby allow flow from one end thereof to the other end thereof, according to the pressure difference between the opposite ends thereof, whereas flow in the opposite direction is disabled.
- the valved connection member of this embodiment allows press-fitting of a flexible tube, such as a resin tube or a rubber tube, or any other tube or hose, to the nipple portion provided at one end of a connection member.
- the other end of the connection member is generally connected to a mating member by use of, for example, a known quick connector.
- the form of the connection member is not limited thereto.
- a pipe of mating equipment may serves as the connection member such that an end of the pipe is formed into the nipple portion.
- FIG. 1 shows a valved connection member according to a first embodiment of the present invention.
- a cylindrical connection member 10 of the valved connection member has a nipple portion 11 for connection with a flexible tube.
- a plurality of circumferential protrusions 11 a are formed on the outer circumferential surface of the nipple portion 11 .
- a valve 20 which is a check valve, is provided at an end of the nipple portion 11 .
- the valve 20 includes a valve cap 21 , a valve body 23 , and a compression spring 26 .
- the cylindrical valve cap 21 includes a small-diameter portion 21 a having an axial bore formed therein, a large-diameter portion 21 b having an axial bore formed therein, and a fitting end portion 21 c.
- An upstream portion of the cylindrical valve cap 21 is formed into the small-diameter portion 21 a, whereas a downstream portion is formed into the fitting end portion 21 c (hereinafter the terms “upstream” and “downstream” are used in relation to the direction of flow in the valve 20 ).
- the axial bore of the small-diameter portion 21 a is smaller in diameter than that of the large-diameter portion 21 b.
- the fitting end portion 21 c is fitted onto an end part of the nipple portion 11 of the connection member 10 in such a manner as to abut a flange portion 12 provided on the outer circumferential surface of the nipple portion 11 upstream of the circumferential protrusions 11 a, thereby being positioned.
- the valve cap 21 has a valve seal surface 22 formed on an inner surface of a valve seat portion located between the small-diameter portion 21 a and the large-diameter portion 21 b.
- the compression spring 26 biases the valve body 23 upstream such that the outer surface of the valve body 23 is in close contact with the valve seal surface 22 .
- the valve body 23 is curved at a certain curvature such that the diameter thereof increases toward the downstream side, and includes a bottom portion 23 a, which closes the upstream end of the valve body 23 .
- An abutment part 23 b is provided on the outer surface of the bottom portion 23 a and adapted to abut the valve seal surface 22 .
- the valve body 23 further includes a cylindrical open end portion 23 c, which opens downstream.
- a plurality of second end face portions 24 each extending radially are provided on the end face of the open end portion 23 c in such a manner as to be equally spaced along the circumferential direction.
- a plurality of first sliding portions 25 a are integrally provided on the outer circumferential surface of the open end portion 23 c along the end of the open end portion 23 c in such a condition as to project radially outward and adapted to slide on the inner circumferential surface of the large-diameter portion 21 b of the valve cap 21 . Accordingly, as shown in FIG. 1, first flow path portion 25 b is formed between the outer circumferential surface of the open end portion 23 c of the valve body 23 and the first sliding portions 25 a projecting radially outward from the outer circumferential surface of the open end portion 23 c.
- a plurality of second sliding portions 25 c are provided on the upstream side of the bottom portion 23 a in such a condition as to project axially and to be equally spaced along the circumferential direction, and are adapted to slide on the inner circumferential surface of the small-diameter portion 21 a of the valve cap 21 . Gaps between the second sliding portions 25 c serve as a second flow path portion 25 d and allow flow of fluid.
- the valve body 23 is accommodated within the large-diameter portion 21 b of the valve cap 21 in an axially movable condition, while the second sliding portions 25 c are inserted in the small-diameter portion 21 a of the valve cap 21 .
- the compression spring 26 is disposed between the second end face portions 24 of the valve body 23 and an annular first end face portion 13 formed on the inner circumferential surface of an end part of the nipple portion 11 of the connection member 10 in such a manner as to extend radially from the inner circumferential surface.
- the compression spring 26 is adapted to bias the valve body 23 upstream.
- valve body 23 In the normal state, as shown in FIG. 1, the valve body 23 is biased upstream by means of the compression spring 26 ; thus, the abutment part 23 b of the bottom portion 23 a of the valve body 23 is in close contact with the valve seal surface 22 of the valve cap 21 . Accordingly, when the upstream fluid pressure of the valve 20 is lower than the downstream fluid pressure, a flow path including the first flow path portion 25 b is closed, thereby disabling flow of fluid.
- the valve body 23 is provided with the first sliding portions 25 a, which slide on the inner circumferential surface of the large-diameter portion 21 b of the valve cap 21 , and preferably provided with the second sliding portions 25 c, which slide on the inner circumferential surface of the small-diameter portion 21 a of the valve cap 21 , thereby readily preventing inclination of the valve body 23 when the valve body 23 is in process of moving or resting on the valve seal surface 22 .
- the valve body 23 moves smoothly within the valve cap 21 along the axial direction, and fluid flows smoothly through the first and second flow path portions 25 b and 25 d.
- the valve 20 is attached to the end part of the nipple portion 11 of the connection member 10 .
- the valve cap 21 and the nipple portion 11 can be fixedly engaged through press-fitting or bonding.
- a resin or rubber tube or a like tube is connected to the nipple portion 11 .
- a tube 1 is press-fitted to the nipple portion 11 . Since the circumferential protrusions 11 a prevent slipping-out of the tube 1 , the valve cap 21 can be reliably held in place without use of press-fitting or adhesive.
- valve Since the valve is configured such that the valve body 23 is accommodated within the valve cap 21 fitted to the connection member 10 , the number of components as well as the number of connections can be reduced. Thus, the cost of the connection structure can be reduced, and assembly work time can be shortened. Furthermore, although the valve cap 21 is merely fitted to the outer circumferential surface of the end part of the nipple portion 11 of the connection member 10 , since one end portion of the tube is fitted to the outer circumferential surface of the valve cap 21 fitted to the connection member 10 and is further fitted to the outer circumferential surface of the nipple portion 11 extending downstream of the outer circumferential surface of the valve cap 21 , the connection can exhibit low gasoline permeability. Since welding is not required for connection of the valve cap 21 and the end part of the nipple portion 11 of the connection member 10 , the cost of connection can be reduced.
- connection member 11 As shown in FIG. 4, for example, a pipe of equipment 3 can serve as the nipple portion 11 of the connection member 10 . However, usually, as shown in FIG. 5, the downstream end of the connection member 11 assumes the form of a connector for connection with a mating member 2 .
- FIG. 5 shows another embodiment of a connection structure using a valved connection member.
- the valve 20 is attached to the nipple portion 11 located at the upstream end of the connection member 10 , and the resin tube 1 is connected to the nipple portion 11 in such a manner as to cover the valve 20 .
- the mating member 2 is connected to the connector portion located at the downstream end of the connection member 10 .
- the connector portion of the connection member 10 assumes the form of a known quick connector.
- the connector portion comprises a cylindrical housing 30 extending from the nipple portion 11 to the downstream end of the connection member 10 and an engagement member 31 which assumes a substantially cylindrical form having a gradually increasing diameter and which is cut in at least a single position so as to be elastically deformable.
- the engagement member 31 is attached to the housing 30 in the following manner.
- the engagement member 31 is inserted into the housing 30 through an end opening thereof while being squeezed, and is then snap-engaged with a window portion 33 formed in the housing 30 .
- seal members 32 such as O-rings, are disposed within the housing 30 in order to seal the space between the housing 30 and the mating member 2 .
- the mating member 2 is inserted into the housing 30 through a downstream end opening formed in the engagement member 31 .
- the upstream end of the engagement member 31 is expanded radially so as to allow passage of a circumferential protrusion 2 a of the mating member 2 and then narrowed radially so as to be engaged with the circumferential protrusion 2 a, thereby establishing engagement with the mating member 2 .
- the engagement member 31 includes an operation arm portion 34 located at the downstream end. When the mating member 2 is to be removed, a user presses the operation arm portion 34 radially inward so as to squeeze the entire engagement member 31 .
- a valved connection member of the modified embodiment includes a plurality of first sliding portions 21 A provided on the inner circumferential surface of the large-diameter portion 21 b in the vicinity of the boundary between the small-diameter portion 21 a and the large-diameter portion 21 b.
- the first sliding portions 21 A project radially inward from the inner circumferential surface of the large-diameter portion 21 b and are arranged along the circumferential direction.
- Gaps between the first sliding portions 21 A serve as a first flow path portion 21 B.
- the first sliding portions 21 A allow smooth axial movement of the valve body 23 within the large-diameter portion 21 b, and the first flow path portion 21 B provided in the first sliding portions 21 A allows smooth flow of fluid.
- a valved connection member of the present embodiment is not provided with a sliding portion on the upstream side of the valve body 23 but is provided only with a sliding portion on the downstream side of the valve body 23 .
- a valve cap 51 of a valve 50 of the present embodiment includes an upstream small-diameter portion 51 a and a downstream large-diameter portion 51 b.
- An end part of the large-diameter portion 51 b is fitted onto an end part of a nipple portion 41 of the connection member 10 in such a manner as to abut a flange portion 42 provided on the outer circumferential surface of the nipple portion 41 upstream of circumferential protrusions 41 a, thereby being positioned.
- the valve cap 51 has a valve seal surface 52 formed on its inner surface and located between the small-diameter portion 51 a and the large-diameter portion 51 b.
- a compression spring 56 biases a valve body 53 upstream such that an abutment part 53 b of the outer surface of the valve body 53 is in close contact with the valve seal surface 52 .
- the valve body 53 includes a bottom portion 53 a, which closes the upstream end of the valve body 53 .
- the abutment part 53 b is provided on the outer surface of the bottom portion 53 a and adapted to abut the valve seal surface 52 .
- a plurality of first sliding portions 55 a are formed on the downstream side of the bottom portion 53 a in such a condition as to be equally spaced along the circumferential direction and to project radially outward.
- the downstream side of each of the first sliding portions 55 a serves as a second end face portion 54 , which extend radially. Gaps between the first sliding portions 55 a serve as a first flow path portion 55 b, through which fluid flows.
- a plurality of axially projecting sliding portions 55 c are provided on the downstream side of the bottom portion 53 in such a condition as to be slidable on the inner circumferential surface of the nipple portion 41 and equally spaced along the circumferential direction and extending axially.
- the valve body 53 is accommodated within the large-diameter portion 51 b of the valve cap 51 in an axially slidable condition and such that the axially projecting sliding portions 55 c are inserted into the nipple portion 41 .
- the compression spring 56 is disposed between the second end face portions 54 of the valve body 53 and an annular first end face portion 43 formed on the inner circumferential surface of an end part of the nipple portion 41 in such a manner as to extend radially from the inner circumferential surface.
- the compression spring 56 is adapted to bias the valve body 53 upstream.
- the valve 50 of the second embodiment also operates in a manner similar to that of the first embodiment. Specifically, in the normal state, as shown in FIG. 8, the valve body 53 is biased upstream by means of the compression spring 56 ; thus, the abutment part 53 b of the bottom portion 53 a of the valve body 53 is in close contact with the valve seal surface 52 of the valve cap 51 . Accordingly, when the upstream fluid pressure of the valve 50 is lower than the downstream fluid pressure, a flow path is closed. When the upstream fluid pressure of the valve 50 becomes higher than the downstream fluid pressure, as shown in FIG. 9, the valve body 53 is moved downstream against the compression spring 56 .
- the abutment part 53 b moves downstream away from the valve seal surface 52 , thereby forming a gap between the abutment part 53 b and the valve seal surface 52 .
- the flow path of the valve 50 is opened. Therefore, as represented by the illustrated arrows, fluid flows downstream via the first flow path portion 55 b.
- the first sliding portions 55 a which slide on the inner circumferential surface of the large-diameter portion 51 b of the valve cap 51 —and the axially projecting sliding portions 55 c which slide on the inner circumferential surface of the nipple portion 41 of the connection member 40 —readily prevent inclination of the valve body 53 when the valve body 53 is in process of moving axially or resting on the valve seal surface 52 .
- the valve body 53 moves smoothly within the valve cap 51 along the axial direction, and fluid flows smoothly through the first flow path portion 55 b.
- a valved connection member of the present embodiment differs from that of the above-described first embodiment in that a sliding portion is not provided on the open end portion 23 c of the valve body 23 but is provided only on the upstream side of the bottom portion 23 a.
- a plurality of sliding portions 27 integrally project in an axial direction from the upstream side of the bottom portion 23 a in a circumferentially arranged condition. Gaps between the sliding portions 27 serve as a flow path portion 27 a.
- valved connection member of the third embodiment is simpler in structure than that of the first embodiment but yields actions and effects similar to those yielded by the valved connection member of the first embodiment.
- a valved connection member of the present embodiment differs from that of the above-described first embodiment in that a flow adjustment bore 28 is formed in the bottom portion 23 a of the valve body 23 in such a manner as to extend through the bottom portion 23 a.
- a flow path including the first flow path portion 25 b is closed.
- the flow adjustment bore 28 formed in the bottom portion 23 a permits downstream flow of fluid of very low flow rate.
- the upstream fluid pressure of the connection structure is slightly greater than the downstream fluid pressure but is not sufficiently great to move the valve body 23 against the compression spring 26 , the flow path including the first flow path portion 25 b is closed, while fluid flows downstream at a very low flow rate through the flow adjustment bore 28 .
- the abutment part 23 b of the bottom portion 23 a of the valve body 23 moves away from the valve seal surface 22 and downstream of the large-diameter portion 21 b, thereby forming a gap between the abutment part 23 b and the valve seal surface 22 .
- the flow path including the first flow path portion 25 b is opened to thereby permit downstream flow of fluid of high flow rate. That is, according to the present embodiment, the rate of downstream flow of fluid can be adjusted according to the difference between upstream and downstream fluid pressures of the connection structure.
- the above-described other embodiments and modified embodiment may have a similar flow adjustment bore formed in the bottom portion of the valve body to thereby yield the above-described effect.
- the spring can be made of synthetic resins.
- the connection member including the nipple portion is made of nylon, and the valve cap and the valve body are made of polyacetal.
- the spring is made of metal, such as stainless steel.
- a tube to be connected to the nipple portion of the connection member is not particularly limited.
- the tube is a resin or rubber tube.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Quick-Acting Or Multi-Walled Pipe Joints (AREA)
- Joints That Cut Off Fluids, And Hose Joints (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to a valved connection member favorably usable in an evaporation piping system of an automobile fuel tank,etc. and to a connection structure using the valved connection member.
- 2. Description of the Related Art
- The internal pressure of an automobile fuel tank built up by evaporated gasoline is controlled through connection of the fuel tank and a canister located on the engine side by means of piping. Specifically, a check valve is installed in an evaporation line connecting the fuel tank and the canister so as to allow flow of evaporated gasoline from the fuel tank to the engine but not in the reverse direction.
- Conventionally, the fuel tank and the check valve are connected by means of a rubber hose, and the check valve and the canister are also connected by means of a rubber hose. Connections are each clamped from outside the rubber hose by means of a clamp member, such as a clip. However, such connection practice involves an increase in the number of components and very complicated connection work, resulting in increased cost.
- According to recent tendencies, in order to suppress permeation of gasoline and to improve connection workability, a resin tube is used in place of a rubber hose. Resin tubes are used in the following manner. Resin tubes are connected to corresponding opposite ends of the check valve, and quick connectors are connected to the respective free ends of the resin tubes. The quick connectors are used for connection to the fuel tank and the canister.
- A conventionally used check valve is configured such that a valve body is movably disposed within a substantially cylindrical housing, while being biased toward a valve seat formed at one end of the housing by means of a valve spring. Accordingly, the conventional check valve is a separate member from the quick connector and the rubber hose or resin tube and is press-fitted, for use, into an end portion of the rubber hose or the resin tube. Also, assembly of the check valve is complicated in terms of process and accuracy; for example, welding upper and lower housing halves is required.
- As mentioned above, since the check valve to be installed in, for example, an evaporation piping system of an automobile fuel tank, is a separate member from the quick connector and the rubber hose or resin tube, the number of components increases and connection work becomes complicated, resulting in difficulty in reducing cost.
- In order to meet recent requirements for further reduction in gasoline permeability, even very small permeation from a connection between the rubber hose or the resin tube and the check valve cannot be disregarded. Thus, a reduction in connections between components is an effective means for suppression permeation of gasoline.
- An object of the present invention is to solve the above-mentioned problems, and to provide a connection member of simple structure equipped with a check valve allowing a reduction in the number of components of a piping system, such as an evaporation piping system, that requires installation of a check valve, and a reduction in the number of connections, as well as to provide a connection structure of low gasoline permeability and low cost favorably usable in, for example, an evaporation piping system employing a valved connection member.
- To achieve the above object, according to a first aspect of the present invention, a connection structure comprises a valved connection member and a flexible tube connected to the valved connection member. The valved connection member comprises a cylindrical connection member, a cylindrical valve cap, a cylindrical valve body, and a compression spring. The cylindrical connection member comprises a cylindrical nipple portion formed at one end and allowing the inner circumferential surface of an end portion of the flexible tube to be fitted thereto; and an annular first end face portion formed at an end part of the nipple portion in such a manner as to face toward the one end and to extend radially. The cylindrical valve cap comprises a small-diameter portion and a large-diameter portion, an axial bore formed in the small-diameter portion being smaller in diameter than an axial bore formed in the large-diameter portion; a valve seat portion having a valve seal surface formed on the inner circumferential surface of the cylindrical valve cap and located between the small-diameter portion and the large-diameter portion; and a fitting end portion formed at one end of the large-diameter portion away from the small-diameter portion and fitted to the outer circumferential surface of the end part of the nipple portion of the connection member. The cylindrical valve body comprises a bottom portion having an abutment part to abut the valve seal surface of the valve cap; a cylindrical open end portion extending from the bottom portion and opening toward the connection member; an annular second end face portion formed at the open end portion in such a manner as to face the first end face portion and to extend radially; a first sliding portion extending radially outward from the open end portion in an integral condition; and a first flow path portion provided in the first sliding portion and allowing flow of fluid. The valve body is accommodated within the large-diameter portion of the valve cap in such a manner as to be axially slidable by virtue of the first sliding portion. The compression spring is disposed between the first end face portion and the second end face portion and adapted to bias the valve body toward the valve seal surface. One end portion of the flexible tube is fitted to the outer circumferential surface of the valve cap fitted to the outer circumferential surface of the end part of the nipple portion of the connection member and is further fitted to the outer circumferential surface of the nipple portion extending away from the outer circumferential surface of the valve cap.
- According to the first aspect of the present invention, since the valve body is biased toward the valve seat portion by means of the compression spring, the abutment part of the bottom portion of the valve body is in close contact with the valve seal surface of the valve cap. Accordingly, when the upstream fluid pressure of the connection structure is lower than the downstream fluid pressure, a flow path including the first flow path portion is closed to thereby disable flow of fluid. In contrast, when the upstream fluid pressure becomes higher than the downstream fluid pressure, the valve body moves toward the connection member against the compression spring. Thus, the abutment part of the bottom portion of the valve body moves away from the valve seal surface and toward the connection member, thereby forming a gap between the abutment part and the valve seal surface. As a result, the flow path including the first flow path portion is opened to thereby permit downstream flow of fluid. In this case, the valve body can smoothly move within the large-diameter portion in the axial direction by virtue of the first sliding portion. Also, the first flow path portion provided in the first sliding portion smoothens flow of fluid.
- Since the connection structure is configured such that the valve body is accommodated within the valve cap fitted to the connection member, the number of components as well as the number of connections can be reduced. Thus, the cost of the connection structure can be reduced, and assembly work time can be shortened.
- Even though the valve cap is merely fitted to the outer circumferential surface of the end part of the nipple portion of the connection member, since one end portion of the flexible tube is fitted to the outer circumferential surface of the valve cap fitted to the connection member and is further fitted to the outer circumferential surface of the nipple portion extending away from the outer circumferential surface of the valve cap, the connection can exhibit low gasoline permeability. Since no welding is required for connection of the valve cap and the end part of the nipple portion of the connection member, the cost of connection can be reduced.
- In the first aspect of the present invention, instead of the first sliding portion and the first flow path portion being provided on the open end portion of the valve body, the first sliding portion and the first flow path can be provided on the inner circumferential surface of the large-diameter portion of the valve cap in the vicinity of the boundary between the large-diameter and small-diameter portions. When the upstream fluid pressure of the connection structure becomes higher than the downstream fluid pressure, so that the valve body moves toward the connection member against the compression spring, the first sliding portion provided on the valve cap allows smooth axial movement of the valve body within the large-diameter portion, and the first flow path portion provided in the first sliding portion allows smooth flow of fluid.
- The first aspect of the present invention allows the valve body to further comprise a second sliding portion extending from the bottom portion away from the open end portion and accommodated slidably within the small-diameter portion of the valve cap; and a second flow path portion formed in the second sliding portion and allowing flow of fluid. The second sliding portion allows further smooth axial movement of the valve body, and the second flow path portion allows smooth flow of fluid at the second sliding portion.
- In the first aspect of the present invention, instead of the first sliding portion being provided on the open end portion of the valve body or on the inner circumferential surface of the large-diameter portion of the valve cap in the vicinity of the boundary between the large-diameter and small-diameter portions, the sliding portion can be provided in such a manner as to extend from the bottom portion away from the open end portion. When the upstream fluid pressure of the connection structure becomes higher than the downstream fluid pressure, so that the valve body moves toward the connection member against the compression spring, the sliding portion allows smooth axial movement of the valve body within the small-diameter and large-diameter portions, and the flow path portion provided in the sliding portion allows smooth flow of fluid.
- As described above, the first aspect of the present invention can provide the connection structure of simple structure equipped with a valve limiting flow to a single direction (a check valve) and featuring a small number of components and a small number of connections with a tube, thereby reducing the cost of a connection structure to be used in, for example, an evaporation piping system as well as assembly work time. Furthermore, even though the valve cap is merely fitted to the outer circumferential surface of the end part of the nipple portion of the connection member, since one end portion of the flexible tube is fitted to the outer circumferential surface of the valve cap fitted to the connection member and is further fitted to the outer circumferential surface of the nipple portion extending away from the outer circumferential surface of the valve cap, the connection can exhibit low gasoline permeability. Since welding is not necessarily required for connection of the valve cap and the end part of the nipple portion of the connection member, low gasoline permeability can be achieved at low cost.
- According to the first aspect of the present invention, the connection structure allows a flow adjustment bore to be axially formed in the bottom portion of the valve body in such a manner as to extend through the bottom portion. When the upstream fluid pressure of the connection structure is lower than the downstream fluid pressure, a flow path including the flow path portion is closed. However, the flow adjustment bore formed in the bottom portion of the valve body permits upstream flow of fluid of very low flow rate. When the upstream fluid pressure of the connection structure is slightly greater than the downstream fluid pressure but is not sufficiently great to move the valve body against the compression spring, the flow path including the flow path portion is closed, while fluid flows downstream at a very low flow rate through the flow adjustment bore formed in the bottom portion of the valve body. When the upstream fluid pressure of the connection structure becomes sufficiently greater than the downstream fluid pressure to move the valve body against the compression spring, the abutment part of the bottom portion of the valve body moves away from the valve seal surface and toward the connection member, thereby forming a gap between the abutment part and the valve seal surface. As a result, the flow path including the flow path portion is opened to thereby permit downstream flow of fluid of high flow rate. That is, the flow adjustment bore formed in the bottom portion of the valve body enables adjustment of the rate of downstream flow of fluid according to the difference between upstream and downstream fluid pressures of the connection structure.
- According to a second aspect of the present invention, a valved connection member to be connected with a flexible tube comprises a cylindrical connection member, a cylindrical valve cap, a valve body, and a compression spring. The cylindrical connection member comprises a cylindrical nipple portion formed at one end and allowing the inner circumferential surface of an end portion of the flexible tube to be fitted thereto. The cylindrical valve cap comprises a small-diameter portion and a large-diameter portion. A valve seal surface is formed on the inner circumferential surface of the cylindrical valve cap and located between the small-diameter portion and the large-diameter portion. The cylindrical valve cap is fitted to an end part of the nipple portion of the connection member with the large-diameter portion facing the connection member. The valve body comprises a bottom portion having an abutment part to abut the valve seal surface of the valve cap. The valve body is accommodated within the large-diameter portion of the valve cap in such a manner as to be axially slidable. The compression spring is disposed between the large-diameter portion of the valve cap and the nipple portion of the connection member and adapted to bias the valve body toward the valve seal surface of the valve cap.
- The valved connection member according to the second aspect of the present invention can form a connection structure through fitting of one end portion of the flexible tube to the outer circumferential surface of the valve cap fitted to the outer circumferential surface of the end part of the nipple portion of the connection member as well as to the outer circumferential surface of the nipple portion extending away from the outer circumferential surface of the valve cap. When the upstream fluid pressure of the connection structure is lower than the downstream fluid pressure, the abutment part of the bottom portion of the valve body is in contact with the valve seal surface of the valve cap to thereby close a flow path, thereby disabling flow of fluid. In contrast, when the upstream fluid pressure becomes higher than the downstream fluid pressure, the valve body moves toward the connection member against the compression spring. Thus, the abutment part of the bottom portion of the valve body moves away from the valve seal surface and toward the connection member, thereby opening the flow path, thereby permitting downstream flow of fluid.
- Since the valved connection member is configured such that the valve body is accommodated within the valve cap fitted to the connection member, the number of components required to form a connection structure as well as the number of connections can be reduced. Thus, the cost of the connection structure can be reduced, and assembly work time can be shortened.
- The valved connection member is configured such that the valve cap is merely fitted to the outer circumferential surface of the end part of the nipple portion of the connection member. However, since one end portion of the flexible tube is fitted to the outer circumferential surface of the valve cap fitted to the connection member and is further fitted to the outer circumferential surface of the nipple portion extending away from the outer circumferential surface of the valve cap, the connection can exhibit low gasoline permeability. Since welding is not necessarily required for connection of the valve cap and the end part of the nipple portion of the connection member, the cost of the valved connection member can be reduced.
- According to the second aspect of the present invention, a valved connection member comprises a cylindrical connection member, a cylindrical valve cap, a cylindrical valve body, and a compression spring. The cylindrical connection member comprises a cylindrical nipple portion formed at one end and allowing the inner circumferential surface of an end portion of the flexible tube to be fitted thereto; and an annular first end face portion formed at an end part of the nipple portion in such a manner as to face toward the one end and to extend radially. The cylindrical valve cap comprises a small-diameter portion and a large-diameter portion, an axial bore formed in the small-diameter portion being smaller in diameter than an axial bore formed in the large-diameter portion; a valve seat portion having a valve seal surface formed on the inner circumferential surface of the cylindrical valve cap and located between the small-diameter portion and the large-diameter portion; and a fitting end portion formed at one end of the large-diameter portion away from the small-diameter portion and fitted to the outer circumferential surface of the end part of the nipple portion of the connection member. The cylindrical valve body comprises a bottom portion having an abutment part to abut the valve seal surface of the valve cap; a cylindrical open end portion extending from the bottom portion and opening toward the connection member; an annular second end face portion formed at the open end portion in such a manner as to face the first end face portion and to extend radially; a first sliding portion extending radially outward from the open end portion in an integral condition; and a first flow path portion provided in the first sliding portion and allowing flow of fluid. The valve body is accommodated within the large-diameter portion of the valve cap in such a manner as to be axially slidable by virtue of the first sliding portion. The compression spring is disposed between the first end face portion and the second end face portion and adapted to bias the valve body toward the valve seat portion of the valve cap.
- The valved connection member can form a connection structure through fitting of one end portion of the flexible tube to the outer circumferential surface of the valve cap fitted to the outer circumferential surface of the end part of the nipple portion of the connection member as well as to the outer circumferential surface of the nipple portion extending away from the outer circumferential surface of the valve cap. When the upstream fluid pressure of the connection structure becomes higher than the downstream fluid pressure, the valve body can axially move toward the connection member within the large-diameter portion of the valve cap in a smooth manner effected by the first sliding portion, and the first flow path portion provided in the first sliding portion permits smooth flow of fluid.
- In the valved connection member according to the second aspect of the present invention, instead of the first sliding portion being provided on the open end portion of the valve body, the first sliding portion can be provided on the inner circumferential surface of the large-diameter portion of the valve cap in the vicinity of the boundary between the large-diameter and small-diameter portions. When the valve body moves toward the connection member against the compression spring, the first sliding portion provided on the valve cap allows smooth axial movement of the valve body within the large-diameter portion, and the first flow path portion provided in the first sliding portion allows smooth flow of fluid.
- The second aspect of the present invention allows the valve body to further comprise a second sliding portion extending from the bottom portion away from the open end portion and accommodated slidably within the small-diameter portion of the valve cap; and a second flow path portion formed in the second sliding portion and allowing flow of fluid. The second sliding portion allows further smooth axial movement of the valve body, and the second flow path portion allows smooth flow of fluid at the second sliding portion.
- In the second aspect of the present invention, instead of the first sliding portion being provided on the open end portion of the valve body or on the inner circumferential surface of the large-diameter portion of the valve cap in the vicinity of the boundary between the large-diameter and small-diameter portions, the sliding portion can be provided in such a manner as to extend from the bottom portion away from the open end portion. When the upstream fluid pressure of the connection structure becomes higher than the downstream fluid pressure, so that the valve body moves toward the connection member against the compression spring, the sliding portion allows smooth axial movement of the valve body within the small-diameter and large-diameter portions of the valve cap, and the flow path portion provided in the sliding portion allows smooth flow of fluid.
- According to the second aspect of the present invention, there can be provided a valved connection member capable of forming at low cost a connection structure that exhibits low gasoline permeability suited for application to, for example, an evaporation piping system.
- According to the second aspect of the present invention, the valved connection member allows a flow adjustment bore to be axially formed in the bottom portion of the valve body in such a manner as to extend through the bottom portion. The flow adjustment bore allows flow of fluid of a certain flow rate, which corresponds to the bore size. When the upstream fluid pressure of the connection structure becomes sufficiently greater than the downstream fluid pressure to move the valve body against the compression spring, a flow path including the flow path portion is opened to thereby permit downstream flow of fluid of high flow rate. That is, the flow adjustment bore enables adjustment of the rate of downstream flow of fluid according to the difference between upstream and downstream fluid pressures of the connection structure.
- FIG. 1 is a schematic sectional view showing a valved connection member according to a first embodiment of the present invention;
- FIG. 2 is a schematic side view of a valve body for use in the valved connection member;
- FIG. 3 is a schematic sectional view showing a state of the valved connection member in which a flow path is opened;
- FIG. 4 is a schematic sectional view showing an embodiment of a connection structure using the valved connection member;
- FIG. 5 is a schematic sectional view showing another embodiment of a connection structure using the valved connection member;
- FIG. 6 is a schematic sectional view showing a modified valved connection member of the first embodiment;
- FIG. 7 is a sectional view taken along line VII-VII of FIG. 6;
- FIG. 8 is a schematic sectional view showing a valved connection member according to a second embodiment of the present invention;
- FIG. 9 is a schematic sectional view showing a state of the valved connection member of the second embodiment in which a flow path is opened;
- FIG. 10 is a sectional view taken along line X-X of FIG. 9;
- FIG. 11 is a schematic sectional view showing a valved connection member according to a third embodiment of the present invention;
- FIG. 12 is a sectional view taken along line XII-XII of FIG. 11; and
- FIG. 13 is a schematic sectional view showing a valved connection member according to a fourth embodiment of the present invention.
- A valved connection member of the preferred embodiment of the present invention has a nipple portion at one end for connection with a flexible tube, such as a resin tube. A valve that limits flow to a single direction is disposed at an end of the nipple portion. The valve is a check valve (a so-called one-way valve) and opens a flow path to thereby allow flow from one end thereof to the other end thereof, according to the pressure difference between the opposite ends thereof, whereas flow in the opposite direction is disabled.
- The valved connection member of this embodiment allows press-fitting of a flexible tube, such as a resin tube or a rubber tube, or any other tube or hose, to the nipple portion provided at one end of a connection member. The other end of the connection member is generally connected to a mating member by use of, for example, a known quick connector. However, the form of the connection member is not limited thereto. For example, a pipe of mating equipment may serves as the connection member such that an end of the pipe is formed into the nipple portion.
- Embodiments of the present invention will next be described with reference to the drawings. FIG. 1 shows a valved connection member according to a first embodiment of the present invention. A
cylindrical connection member 10 of the valved connection member has anipple portion 11 for connection with a flexible tube. A plurality ofcircumferential protrusions 11 a are formed on the outer circumferential surface of thenipple portion 11. Avalve 20, which is a check valve, is provided at an end of thenipple portion 11. Thevalve 20 includes avalve cap 21, avalve body 23, and acompression spring 26. - The
cylindrical valve cap 21 includes a small-diameter portion 21 a having an axial bore formed therein, a large-diameter portion 21 b having an axial bore formed therein, and afitting end portion 21 c. An upstream portion of thecylindrical valve cap 21 is formed into the small-diameter portion 21 a, whereas a downstream portion is formed into thefitting end portion 21 c (hereinafter the terms “upstream” and “downstream” are used in relation to the direction of flow in the valve 20). The axial bore of the small-diameter portion 21 a is smaller in diameter than that of the large-diameter portion 21 b. Thefitting end portion 21 c is fitted onto an end part of thenipple portion 11 of theconnection member 10 in such a manner as to abut aflange portion 12 provided on the outer circumferential surface of thenipple portion 11 upstream of thecircumferential protrusions 11 a, thereby being positioned. Thevalve cap 21 has avalve seal surface 22 formed on an inner surface of a valve seat portion located between the small-diameter portion 21 a and the large-diameter portion 21 b. Thecompression spring 26 biases thevalve body 23 upstream such that the outer surface of thevalve body 23 is in close contact with thevalve seal surface 22. - As shown in FIGS. 1 and 2, the
valve body 23 is curved at a certain curvature such that the diameter thereof increases toward the downstream side, and includes abottom portion 23 a, which closes the upstream end of thevalve body 23. Anabutment part 23 b is provided on the outer surface of thebottom portion 23 a and adapted to abut thevalve seal surface 22. Thevalve body 23 further includes a cylindricalopen end portion 23 c, which opens downstream. A plurality of secondend face portions 24 each extending radially are provided on the end face of theopen end portion 23 c in such a manner as to be equally spaced along the circumferential direction. - A plurality of first sliding
portions 25 a are integrally provided on the outer circumferential surface of theopen end portion 23 c along the end of theopen end portion 23 c in such a condition as to project radially outward and adapted to slide on the inner circumferential surface of the large-diameter portion 21 b of thevalve cap 21. Accordingly, as shown in FIG. 1, firstflow path portion 25 b is formed between the outer circumferential surface of theopen end portion 23 c of thevalve body 23 and the first slidingportions 25 a projecting radially outward from the outer circumferential surface of theopen end portion 23 c. A plurality of second slidingportions 25 c are provided on the upstream side of thebottom portion 23 a in such a condition as to project axially and to be equally spaced along the circumferential direction, and are adapted to slide on the inner circumferential surface of the small-diameter portion 21 a of thevalve cap 21. Gaps between the second slidingportions 25 c serve as a secondflow path portion 25 d and allow flow of fluid. - The
valve body 23 is accommodated within the large-diameter portion 21 b of thevalve cap 21 in an axially movable condition, while the second slidingportions 25 c are inserted in the small-diameter portion 21 a of thevalve cap 21. Thecompression spring 26 is disposed between the secondend face portions 24 of thevalve body 23 and an annular firstend face portion 13 formed on the inner circumferential surface of an end part of thenipple portion 11 of theconnection member 10 in such a manner as to extend radially from the inner circumferential surface. Thecompression spring 26 is adapted to bias thevalve body 23 upstream. - The operation of the
valve 20 will next be described. - In the normal state, as shown in FIG. 1, the
valve body 23 is biased upstream by means of thecompression spring 26; thus, theabutment part 23 b of thebottom portion 23 a of thevalve body 23 is in close contact with thevalve seal surface 22 of thevalve cap 21. Accordingly, when the upstream fluid pressure of thevalve 20 is lower than the downstream fluid pressure, a flow path including the firstflow path portion 25 b is closed, thereby disabling flow of fluid. - When the upstream fluid pressure of the
valve 20 becomes higher than the downstream fluid pressure, as shown in FIG. 3, thevalve body 23 is moved downstream against thecompression spring 26. Thus, theabutment part 23 b of thebottom portion 23 a of thevalve body 23 moves away from thevalve seal surface 22 and into the large-diameter portion 21 b of thevalve cap 21, thereby forming a gap between theabutment part 23 b and thevalve seal surface 22. As a result, the flow path of thevalve 20 is opened. Therefore, as represented by the illustrated arrows, fluid flows from the upstream side of thevalve 20 to the downstream side via the secondflow path portion 25 d and the firstflow path portion 25 b. - The
valve body 23 is provided with the first slidingportions 25 a, which slide on the inner circumferential surface of the large-diameter portion 21 b of thevalve cap 21, and preferably provided with the second slidingportions 25 c, which slide on the inner circumferential surface of the small-diameter portion 21 a of thevalve cap 21, thereby readily preventing inclination of thevalve body 23 when thevalve body 23 is in process of moving or resting on thevalve seal surface 22. Thus, thevalve body 23 moves smoothly within thevalve cap 21 along the axial direction, and fluid flows smoothly through the first and secondflow path portions - The
valve 20 according to the present embodiment is attached to the end part of thenipple portion 11 of theconnection member 10. Thevalve cap 21 and thenipple portion 11 can be fixedly engaged through press-fitting or bonding. A resin or rubber tube or a like tube is connected to thenipple portion 11. Thus, as shown in FIG. 4, after thevalve cap 21, into which, for example, thevalve body 23 and thecompression spring 26 are incorporated, is attached to thenipple portion 11 in a removable condition, atube 1 is press-fitted to thenipple portion 11. Since thecircumferential protrusions 11 a prevent slipping-out of thetube 1, thevalve cap 21 can be reliably held in place without use of press-fitting or adhesive. - Since the valve is configured such that the
valve body 23 is accommodated within thevalve cap 21 fitted to theconnection member 10, the number of components as well as the number of connections can be reduced. Thus, the cost of the connection structure can be reduced, and assembly work time can be shortened. Furthermore, although thevalve cap 21 is merely fitted to the outer circumferential surface of the end part of thenipple portion 11 of theconnection member 10, since one end portion of the tube is fitted to the outer circumferential surface of thevalve cap 21 fitted to theconnection member 10 and is further fitted to the outer circumferential surface of thenipple portion 11 extending downstream of the outer circumferential surface of thevalve cap 21, the connection can exhibit low gasoline permeability. Since welding is not required for connection of thevalve cap 21 and the end part of thenipple portion 11 of theconnection member 10, the cost of connection can be reduced. - As shown in FIG. 4, for example, a pipe of
equipment 3 can serve as thenipple portion 11 of theconnection member 10. However, usually, as shown in FIG. 5, the downstream end of theconnection member 11 assumes the form of a connector for connection with amating member 2. - FIG. 5 shows another embodiment of a connection structure using a valved connection member. The
valve 20 is attached to thenipple portion 11 located at the upstream end of theconnection member 10, and theresin tube 1 is connected to thenipple portion 11 in such a manner as to cover thevalve 20. Themating member 2 is connected to the connector portion located at the downstream end of theconnection member 10. - In FIG. 5, the connector portion of the
connection member 10 assumes the form of a known quick connector. The connector portion comprises acylindrical housing 30 extending from thenipple portion 11 to the downstream end of theconnection member 10 and anengagement member 31 which assumes a substantially cylindrical form having a gradually increasing diameter and which is cut in at least a single position so as to be elastically deformable. Theengagement member 31 is attached to thehousing 30 in the following manner. Theengagement member 31 is inserted into thehousing 30 through an end opening thereof while being squeezed, and is then snap-engaged with awindow portion 33 formed in thehousing 30. Notably,seal members 32, such as O-rings, are disposed within thehousing 30 in order to seal the space between thehousing 30 and themating member 2. - The
mating member 2 is inserted into thehousing 30 through a downstream end opening formed in theengagement member 31. The upstream end of theengagement member 31 is expanded radially so as to allow passage of acircumferential protrusion 2 a of themating member 2 and then narrowed radially so as to be engaged with thecircumferential protrusion 2 a, thereby establishing engagement with themating member 2. Theengagement member 31 includes anoperation arm portion 34 located at the downstream end. When themating member 2 is to be removed, a user presses theoperation arm portion 34 radially inward so as to squeeze theentire engagement member 31. - Next will be described a modified valved connection member of the above-described first embodiment. In contrast to the first embodiment, in which the first sliding
portions 2 a are provided on theopen end portion 23 c of thevalve body 23, as shown in FIGS. 6 and 7, a valved connection member of the modified embodiment includes a plurality of first slidingportions 21A provided on the inner circumferential surface of the large-diameter portion 21 b in the vicinity of the boundary between the small-diameter portion 21 a and the large-diameter portion 21 b. The first slidingportions 21A project radially inward from the inner circumferential surface of the large-diameter portion 21 b and are arranged along the circumferential direction. Gaps between the first slidingportions 21A serve as a firstflow path portion 21B. According to the present modified embodiment, when the upstream fluid pressure of the connection structure becomes higher than the downstream fluid pressure, so that thevalve body 23 moves downstream against thecompression spring 26, the first slidingportions 21A allow smooth axial movement of thevalve body 23 within the large-diameter portion 21 b, and the firstflow path portion 21B provided in the first slidingportions 21A allows smooth flow of fluid. - Next, a second embodiment of the present invention will be described with reference to FIGS.8 to 10. A valved connection member of the present embodiment is not provided with a sliding portion on the upstream side of the
valve body 23 but is provided only with a sliding portion on the downstream side of thevalve body 23. Avalve cap 51 of avalve 50 of the present embodiment includes an upstream small-diameter portion 51 a and a downstream large-diameter portion 51 b. An end part of the large-diameter portion 51 b is fitted onto an end part of anipple portion 41 of theconnection member 10 in such a manner as to abut aflange portion 42 provided on the outer circumferential surface of thenipple portion 41 upstream ofcircumferential protrusions 41 a, thereby being positioned. Thevalve cap 51 has avalve seal surface 52 formed on its inner surface and located between the small-diameter portion 51 a and the large-diameter portion 51 b. Acompression spring 56 biases avalve body 53 upstream such that anabutment part 53 b of the outer surface of thevalve body 53 is in close contact with thevalve seal surface 52. - The
valve body 53 includes abottom portion 53 a, which closes the upstream end of thevalve body 53. Theabutment part 53 b is provided on the outer surface of thebottom portion 53 a and adapted to abut thevalve seal surface 52. A plurality of first slidingportions 55 a are formed on the downstream side of thebottom portion 53 a in such a condition as to be equally spaced along the circumferential direction and to project radially outward. The downstream side of each of the first slidingportions 55 a serves as a secondend face portion 54, which extend radially. Gaps between the first slidingportions 55 a serve as a firstflow path portion 55 b, through which fluid flows. Also, a plurality of axially projecting slidingportions 55 c are provided on the downstream side of thebottom portion 53 in such a condition as to be slidable on the inner circumferential surface of thenipple portion 41 and equally spaced along the circumferential direction and extending axially. - The
valve body 53 is accommodated within the large-diameter portion 51 b of thevalve cap 51 in an axially slidable condition and such that the axially projecting slidingportions 55 c are inserted into thenipple portion 41. Thecompression spring 56 is disposed between the secondend face portions 54 of thevalve body 53 and an annular firstend face portion 43 formed on the inner circumferential surface of an end part of thenipple portion 41 in such a manner as to extend radially from the inner circumferential surface. Thecompression spring 56 is adapted to bias thevalve body 53 upstream. - The
valve 50 of the second embodiment also operates in a manner similar to that of the first embodiment. Specifically, in the normal state, as shown in FIG. 8, thevalve body 53 is biased upstream by means of thecompression spring 56; thus, theabutment part 53 b of thebottom portion 53 a of thevalve body 53 is in close contact with thevalve seal surface 52 of thevalve cap 51. Accordingly, when the upstream fluid pressure of thevalve 50 is lower than the downstream fluid pressure, a flow path is closed. When the upstream fluid pressure of thevalve 50 becomes higher than the downstream fluid pressure, as shown in FIG. 9, thevalve body 53 is moved downstream against thecompression spring 56. Thus, theabutment part 53 b moves downstream away from thevalve seal surface 52, thereby forming a gap between theabutment part 53 b and thevalve seal surface 52. As a result, the flow path of thevalve 50 is opened. Therefore, as represented by the illustrated arrows, fluid flows downstream via the firstflow path portion 55 b. - In the
valve body 53 of the second embodiment, the first slidingportions 55 a—which slide on the inner circumferential surface of the large-diameter portion 51 b of thevalve cap 51—and the axially projecting slidingportions 55 c which slide on the inner circumferential surface of thenipple portion 41 of theconnection member 40—readily prevent inclination of thevalve body 53 when thevalve body 53 is in process of moving axially or resting on thevalve seal surface 52. Thus, thevalve body 53 moves smoothly within thevalve cap 51 along the axial direction, and fluid flows smoothly through the firstflow path portion 55 b. - Next, a third embodiment of the present invention will be described with reference to FIGS.11 to 12. A valved connection member of the present embodiment differs from that of the above-described first embodiment in that a sliding portion is not provided on the
open end portion 23 c of thevalve body 23 but is provided only on the upstream side of thebottom portion 23 a. Specifically, a plurality of slidingportions 27 integrally project in an axial direction from the upstream side of thebottom portion 23 a in a circumferentially arranged condition. Gaps between the slidingportions 27 serve as aflow path portion 27 a. When the upstream fluid pressure of the connection structure becomes higher than the downstream fluid pressure; thus, thevalve body 23 is moved downstream against thecompression spring 26, the slidingportions 27 allow smooth axial movement of thevalve body 23 within the small-diameter portion 21 a and large-diameter portion 21 b, and theflow path portion 27 a provided in the slidingportions 27 allows smooth flow of fluid. Thus, the valved connection member of the third embodiment is simpler in structure than that of the first embodiment but yields actions and effects similar to those yielded by the valved connection member of the first embodiment. - Next, a fourth embodiment of the present invention will be described with reference to FIG. 13. A valved connection member of the present embodiment differs from that of the above-described first embodiment in that a flow adjustment bore28 is formed in the
bottom portion 23 a of thevalve body 23 in such a manner as to extend through thebottom portion 23 a. - According to the present embodiment, when the upstream fluid pressure of a connection structure is lower than the upstream fluid pressure, a flow path including the first
flow path portion 25 b is closed. However, the flow adjustment bore 28 formed in thebottom portion 23 a permits downstream flow of fluid of very low flow rate. When the upstream fluid pressure of the connection structure is slightly greater than the downstream fluid pressure but is not sufficiently great to move thevalve body 23 against thecompression spring 26, the flow path including the firstflow path portion 25 b is closed, while fluid flows downstream at a very low flow rate through the flow adjustment bore 28. - When the upstream fluid pressure of the connection structure becomes sufficiently greater than the downstream fluid pressure to move the
valve body 23 against thecompression spring 26, theabutment part 23 b of thebottom portion 23 a of thevalve body 23 moves away from thevalve seal surface 22 and downstream of the large-diameter portion 21 b, thereby forming a gap between theabutment part 23 b and thevalve seal surface 22. As a result, the flow path including the firstflow path portion 25 b is opened to thereby permit downstream flow of fluid of high flow rate. That is, according to the present embodiment, the rate of downstream flow of fluid can be adjusted according to the difference between upstream and downstream fluid pressures of the connection structure. Notably, the above-described other embodiments and modified embodiment may have a similar flow adjustment bore formed in the bottom portion of the valve body to thereby yield the above-described effect. - In the above-described valved connection members of the present invention, all components but the spring can be made of synthetic resins. For example, preferably, the connection member including the nipple portion is made of nylon, and the valve cap and the valve body are made of polyacetal. The spring is made of metal, such as stainless steel. A tube to be connected to the nipple portion of the connection member is not particularly limited. For example, the tube is a resin or rubber tube.
Claims (19)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-290172 | 2000-09-25 | ||
JP2000290172 | 2000-09-25 | ||
JP2001237012A JP3750572B2 (en) | 2000-09-25 | 2001-08-03 | Connection member with valve and connection structure |
JP2001-237012 | 2001-08-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020036015A1 true US20020036015A1 (en) | 2002-03-28 |
US6397884B1 US6397884B1 (en) | 2002-06-04 |
Family
ID=26600636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/960,331 Expired - Lifetime US6397884B1 (en) | 2000-09-25 | 2001-09-24 | Connection structure and valved connection member |
Country Status (2)
Country | Link |
---|---|
US (1) | US6397884B1 (en) |
JP (1) | JP3750572B2 (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040177882A1 (en) * | 2003-02-13 | 2004-09-16 | Dimce Vasilev | Valve for winterizing a pool |
FR2852660A1 (en) * | 2003-03-19 | 2004-09-24 | Schrader Sas | Valve mechanism for automobile air-conditioning system, has pretensioned spring exerting force of pretension on disc disposed in seat for closing up/liberating liquid passage through seat when pressure is exerted on disc |
US20050115615A1 (en) * | 2003-11-28 | 2005-06-02 | Akira Takayanagi | Connector having an embedded valve |
EP1555468A1 (en) * | 2004-01-15 | 2005-07-20 | PACCAR Inc | Pressure protection valve |
US20060016493A1 (en) * | 2004-07-20 | 2006-01-26 | Mike Hwang | Air tap assembly |
US20060185738A1 (en) * | 2005-02-23 | 2006-08-24 | Takahiro Nishiyama | Valve connector |
US20070120906A1 (en) * | 2005-11-30 | 2007-05-31 | Brother Kogyo Kabushiki Kaisha | Refill unit |
FR2899950A1 (en) * | 2006-04-12 | 2007-10-19 | Cahouet Sa | Connector for supplying medical gases comprises valve biased towards valve seat by spring around stem, valve moving in lower chamber of sleeve with aperture in its base of smaller diameter than valve, but larger diameter than spring |
WO2009015900A1 (en) * | 2007-08-01 | 2009-02-05 | Erwin Weh | Valve component |
WO2009051737A2 (en) * | 2007-10-17 | 2009-04-23 | Kohler Co. | Systems and methods for regulating purge flow rate in an internal combustion engine |
WO2011045793A1 (en) * | 2009-10-14 | 2011-04-21 | Lotan, Shira | Environmentally friendly system for replacing fluid in fluid-sumps |
US20110214645A1 (en) * | 2010-03-03 | 2011-09-08 | Kohler Co. | System and method for carburetor venting |
ITVR20100123A1 (en) * | 2010-06-16 | 2011-12-17 | Benetta Raimondo Antonio Dalla | NON-RETURN VALVE |
EP2458173A1 (en) * | 2010-11-29 | 2012-05-30 | Veritas Ag | Valve assembly |
CN103423463A (en) * | 2013-07-22 | 2013-12-04 | 茂泰(福建)鞋材有限公司 | Connecting valve, air changing bag with connecting valve and using method |
US20140000731A1 (en) * | 2012-06-29 | 2014-01-02 | Emerson Electric Co. | Flow Control Valve Assemblies with Check Valves |
US20150290449A1 (en) * | 2014-04-09 | 2015-10-15 | John Yanik | Intravenous Connection Site Protective Device |
US9651182B2 (en) | 2010-06-30 | 2017-05-16 | Erwin Weh | Quick-acting connection |
CN108869127A (en) * | 2018-07-24 | 2018-11-23 | 徐工集团工程机械股份有限公司科技分公司 | A kind of fuel tank inlet port control device and fuel tank |
CN110788597A (en) * | 2019-11-19 | 2020-02-14 | 眉山中车制动科技股份有限公司 | Tool and method for interference press fitting of valve cover and copper sleeve of brake valve of railway vehicle |
US10619535B2 (en) * | 2017-12-01 | 2020-04-14 | Volkswagen Aktiengesellschaft | Arrangement for removing blow-by gases from a crankcase of an internal combustion engine |
US11092124B2 (en) * | 2018-07-17 | 2021-08-17 | Sumitomo Riko Company Limited | Connector |
US11092123B2 (en) * | 2018-07-23 | 2021-08-17 | Sumitomo Riko Company Limited | Connector |
US20220307568A1 (en) * | 2021-03-24 | 2022-09-29 | AirSpayce Pty Ltd | Fluid-damped valve |
US20240302851A1 (en) * | 2021-03-17 | 2024-09-12 | Neoperl Gmbh | Pressure limiter |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6538807B2 (en) * | 2000-09-07 | 2003-03-25 | Sumitomo Electric Industries, Ltd. | Amplification optical fiber, fiber optic amplifier, optical transmitter, and optical communication system |
JP3984524B2 (en) * | 2002-09-27 | 2007-10-03 | 東海ゴム工業株式会社 | Connector with built-in valve |
US7296782B2 (en) * | 2004-10-01 | 2007-11-20 | Halkey-Roberts Corporation | Dome check valve |
JP2006234045A (en) * | 2005-02-24 | 2006-09-07 | Tokai Rubber Ind Ltd | Connector with built-in valve |
US20090289207A1 (en) * | 2008-03-27 | 2009-11-26 | Fabian Mauricio Barreda | Airflow regulating valve assembly |
US20100257916A1 (en) * | 2008-03-27 | 2010-10-14 | Ip Innovative Products, Llc | Accuracy enhancing valve assembly and related method of use |
JP2010048360A (en) | 2008-08-22 | 2010-03-04 | Sanoh Industrial Co Ltd | Pipe connector |
JP2009180377A (en) * | 2009-05-11 | 2009-08-13 | Tokai Rubber Ind Ltd | Connector with built-in valve |
US8944098B1 (en) | 2011-06-03 | 2015-02-03 | Juan Carlos Bocos | Airflow restricting valve assembly |
JP6510839B2 (en) * | 2015-03-16 | 2019-05-08 | 住友理工株式会社 | Resin filler port |
KR101734698B1 (en) | 2015-10-30 | 2017-05-11 | 현대자동차주식회사 | Quick connector of fuel line |
CA2995524C (en) * | 2017-02-16 | 2022-11-22 | 2479944 Ontario Ltd. | Urinary catheter connector |
US11420515B2 (en) * | 2017-06-29 | 2022-08-23 | Plastic Omnium Advanced Innovation And Research | Ventilation flow rate regulator for a pressurized vehicle tank |
EP3807115B1 (en) * | 2018-06-13 | 2022-09-28 | Volvo Truck Corporation | Flow regulation device, fuel managing system comprising such a device and automotive vehicle comprising such a system |
DE102020133047A1 (en) * | 2020-12-10 | 2022-06-15 | Röchling Automotive Se & Co.Kg | Injection molded plastic valve assembly for a motor vehicle |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB813783A (en) * | 1954-09-14 | 1959-05-21 | Jardine John Ltd | Improvements in and relating to lace machines |
US2912000A (en) * | 1956-04-20 | 1959-11-10 | Donald C Green | Check valves |
US3097666A (en) * | 1959-12-11 | 1963-07-16 | Weatherhead Co | Check valve |
US3029835A (en) * | 1960-05-17 | 1962-04-17 | Sealol Corp | Check valve with resilient auxiliary seal |
GB1132383A (en) * | 1966-03-29 | 1968-10-30 | Exactor Sterling Ltd | Fluid line self sealing coupling |
AT296703B (en) * | 1968-08-09 | 1972-02-25 | Wolf Geraete Gmbh | Plug-in coupling for hoses, in particular garden hoses |
US4035005A (en) * | 1976-05-24 | 1977-07-12 | General Motors Corporation | Quick connect coupling with weather seal |
FR2514855A1 (en) * | 1981-10-20 | 1983-04-22 | Staubli Sa Ets | IMPROVEMENTS ON QUICK COUPLINGS FOR REMOVABLE JOINING OF PIPES |
US4902043A (en) * | 1985-09-17 | 1990-02-20 | John T. Hoskins | Fluid coupling and seal assembly |
US4819908A (en) * | 1988-04-12 | 1989-04-11 | Edwards Industries, Inc. | Quick connect fluid coupling |
US5056756A (en) * | 1991-04-24 | 1991-10-15 | U.S. Plastics Corporation | Fluid connector |
US5161834A (en) * | 1990-09-27 | 1992-11-10 | Huron Products, Inc. | Fluid connector with cartridge member and release mechanism |
US5113900A (en) * | 1991-01-30 | 1992-05-19 | Bridge Products, Inc. | Check valve with quick lock attachment feature |
US5988705A (en) | 1993-05-24 | 1999-11-23 | Pilot Industries, Inc. | Quick connect coupling |
US5485982A (en) | 1994-09-16 | 1996-01-23 | Bundy Corporation | Quick connector with tube activated check valve |
US5785358A (en) * | 1994-09-26 | 1998-07-28 | Bundy Corporation | Connection verifier for a quick connector coupling |
JP3348568B2 (en) | 1994-12-13 | 2002-11-20 | トヨタ自動車株式会社 | Fuel evaporative emission control system |
JP3421828B2 (en) | 1995-08-19 | 2003-06-30 | 株式会社パイオラックス | Check valve structure |
US6340180B1 (en) * | 1999-01-19 | 2002-01-22 | David M. Wisniewski | Releasable coupling assembly for securing a vehicle fuel line |
US6042084A (en) * | 1999-02-16 | 2000-03-28 | Daimlerchrysler Corporation | Valve assembly having a valve spring retainer |
JP4324695B2 (en) | 1999-05-06 | 2009-09-02 | 株式会社パイオラックス | Fluid coupling |
-
2001
- 2001-08-03 JP JP2001237012A patent/JP3750572B2/en not_active Expired - Fee Related
- 2001-09-24 US US09/960,331 patent/US6397884B1/en not_active Expired - Lifetime
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040177882A1 (en) * | 2003-02-13 | 2004-09-16 | Dimce Vasilev | Valve for winterizing a pool |
US7370668B2 (en) * | 2003-02-13 | 2008-05-13 | Dimce Vasilev | Valve for winterizing a pool |
FR2852660A1 (en) * | 2003-03-19 | 2004-09-24 | Schrader Sas | Valve mechanism for automobile air-conditioning system, has pretensioned spring exerting force of pretension on disc disposed in seat for closing up/liberating liquid passage through seat when pressure is exerted on disc |
US20050115615A1 (en) * | 2003-11-28 | 2005-06-02 | Akira Takayanagi | Connector having an embedded valve |
EP1548270A1 (en) * | 2003-11-28 | 2005-06-29 | Tokai Rubber Industries, Ltd. | Connector having an embedded valve |
US7201184B2 (en) | 2004-01-15 | 2007-04-10 | Paccar Inc | Pressure protection valve |
EP1555468A1 (en) * | 2004-01-15 | 2005-07-20 | PACCAR Inc | Pressure protection valve |
US20050155652A1 (en) * | 2004-01-15 | 2005-07-21 | Paccar Inc | Pressure protection valve |
US20060016493A1 (en) * | 2004-07-20 | 2006-01-26 | Mike Hwang | Air tap assembly |
US7163027B2 (en) * | 2004-07-20 | 2007-01-16 | Mike Hwang | Air tap assembly |
US7552745B2 (en) * | 2005-02-23 | 2009-06-30 | Tokai Rubber Industries, Ltd. | Valve connector |
US20060185738A1 (en) * | 2005-02-23 | 2006-08-24 | Takahiro Nishiyama | Valve connector |
US20070120906A1 (en) * | 2005-11-30 | 2007-05-31 | Brother Kogyo Kabushiki Kaisha | Refill unit |
FR2899950A1 (en) * | 2006-04-12 | 2007-10-19 | Cahouet Sa | Connector for supplying medical gases comprises valve biased towards valve seat by spring around stem, valve moving in lower chamber of sleeve with aperture in its base of smaller diameter than valve, but larger diameter than spring |
US20100288961A1 (en) * | 2007-08-01 | 2010-11-18 | Erwin Weh | Valve component |
WO2009015900A1 (en) * | 2007-08-01 | 2009-02-05 | Erwin Weh | Valve component |
EA017208B1 (en) * | 2007-08-01 | 2012-10-30 | Эрвин Вех | Valve component |
US9334986B2 (en) | 2007-08-01 | 2016-05-10 | Erwin Weh | Valve component |
KR101504786B1 (en) | 2007-08-01 | 2015-03-23 | 어빈 베 | Valve component |
US20090100828A1 (en) * | 2007-10-17 | 2009-04-23 | Hudak Eric B | Systems and Methods for Regulating Purge Flow Rate in an Internal Combustion Engine |
WO2009051737A3 (en) * | 2007-10-17 | 2009-06-25 | Kohler Co | Systems and methods for regulating purge flow rate in an internal combustion engine |
WO2009051737A2 (en) * | 2007-10-17 | 2009-04-23 | Kohler Co. | Systems and methods for regulating purge flow rate in an internal combustion engine |
US8156924B2 (en) | 2007-10-17 | 2012-04-17 | Kohler Co. | Systems and methods for regulating purge flow rate in an internal combustion engine |
WO2011045793A1 (en) * | 2009-10-14 | 2011-04-21 | Lotan, Shira | Environmentally friendly system for replacing fluid in fluid-sumps |
US20110214645A1 (en) * | 2010-03-03 | 2011-09-08 | Kohler Co. | System and method for carburetor venting |
US8677978B2 (en) | 2010-03-03 | 2014-03-25 | Kohler Co. | System and method for carburetor venting |
ITVR20100123A1 (en) * | 2010-06-16 | 2011-12-17 | Benetta Raimondo Antonio Dalla | NON-RETURN VALVE |
EP2397733A1 (en) * | 2010-06-16 | 2011-12-21 | Raimondo Antonio Dalla Benetta | Check valve |
US9651182B2 (en) | 2010-06-30 | 2017-05-16 | Erwin Weh | Quick-acting connection |
EP2458173A1 (en) * | 2010-11-29 | 2012-05-30 | Veritas Ag | Valve assembly |
US20140000731A1 (en) * | 2012-06-29 | 2014-01-02 | Emerson Electric Co. | Flow Control Valve Assemblies with Check Valves |
CN103423463A (en) * | 2013-07-22 | 2013-12-04 | 茂泰(福建)鞋材有限公司 | Connecting valve, air changing bag with connecting valve and using method |
US20150290449A1 (en) * | 2014-04-09 | 2015-10-15 | John Yanik | Intravenous Connection Site Protective Device |
US9440061B2 (en) * | 2014-04-09 | 2016-09-13 | John Yanik | Intravenous connection site protective device |
US10619535B2 (en) * | 2017-12-01 | 2020-04-14 | Volkswagen Aktiengesellschaft | Arrangement for removing blow-by gases from a crankcase of an internal combustion engine |
US11092124B2 (en) * | 2018-07-17 | 2021-08-17 | Sumitomo Riko Company Limited | Connector |
US11092123B2 (en) * | 2018-07-23 | 2021-08-17 | Sumitomo Riko Company Limited | Connector |
CN108869127A (en) * | 2018-07-24 | 2018-11-23 | 徐工集团工程机械股份有限公司科技分公司 | A kind of fuel tank inlet port control device and fuel tank |
CN110788597A (en) * | 2019-11-19 | 2020-02-14 | 眉山中车制动科技股份有限公司 | Tool and method for interference press fitting of valve cover and copper sleeve of brake valve of railway vehicle |
US20240302851A1 (en) * | 2021-03-17 | 2024-09-12 | Neoperl Gmbh | Pressure limiter |
US20220307568A1 (en) * | 2021-03-24 | 2022-09-29 | AirSpayce Pty Ltd | Fluid-damped valve |
Also Published As
Publication number | Publication date |
---|---|
US6397884B1 (en) | 2002-06-04 |
JP3750572B2 (en) | 2006-03-01 |
JP2002168384A (en) | 2002-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6397884B1 (en) | Connection structure and valved connection member | |
US5615706A (en) | Coaxial breakaway coupling with vapor assist check valve | |
JPH08312863A (en) | Piping connection device | |
EP1602820A2 (en) | Fluid coupling | |
US5413077A (en) | Non-return fuel system with fuel pressure vacuum response | |
US20050061372A1 (en) | Pressure regulator assembly | |
US6422265B1 (en) | Valve seat for fuel pressure regulator | |
US20060289068A1 (en) | Check valve | |
SK17193A3 (en) | Check valve | |
US7552745B2 (en) | Valve connector | |
US5711508A (en) | Quick connect fluid coupling equipped with check valve and service valve | |
US9745933B2 (en) | Fuel pressure regulator | |
US9494268B2 (en) | Supply stop with connection verification | |
KR100530775B1 (en) | Gas-Pressure Relief Valve Unit | |
US20030084941A1 (en) | Check valve for fuel pump | |
JP3775656B2 (en) | Connector with built-in valve | |
US6488320B1 (en) | Quick connect coupling | |
US6306292B1 (en) | Fuel filter with internal pressure regulator | |
US6481418B1 (en) | Fuel pressure regulator | |
KR101246402B1 (en) | Check valve | |
US6994108B2 (en) | Check valve for fuel pump | |
US7389791B2 (en) | Backflow preventer | |
KR970008665B1 (en) | Pressure regulator device and fuel line receptor | |
US20120048237A1 (en) | Fuel pressure regulator | |
US20030051757A1 (en) | Check valve for fuel pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TOKAI RUBBER INDUSTRIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIYAJIMA, ATSUO;ITO, TOMOHIDE;REEL/FRAME:012394/0486 Effective date: 20010831 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: SUMITOMO RIKO COMPANY LIMITED, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:TOKAI RUBBER INDUSTRIES, LTD.;REEL/FRAME:034016/0613 Effective date: 20141001 |