US20020016688A1 - Oil field management system - Google Patents

Oil field management system Download PDF

Info

Publication number
US20020016688A1
US20020016688A1 US09/935,346 US93534601A US2002016688A1 US 20020016688 A1 US20020016688 A1 US 20020016688A1 US 93534601 A US93534601 A US 93534601A US 2002016688 A1 US2002016688 A1 US 2002016688A1
Authority
US
United States
Prior art keywords
flow rate
mass flow
recited
method
multiphase flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/935,346
Other versions
US6622574B2 (en
Inventor
James Fincke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Energy Alliance LLC
Original Assignee
Fincke James R.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US93712097A priority Critical
Priority to US09/401,375 priority patent/US6332111B1/en
Application filed by Fincke James R. filed Critical Fincke James R.
Priority to US09/935,346 priority patent/US6622574B2/en
Publication of US20020016688A1 publication Critical patent/US20020016688A1/en
Application granted granted Critical
Publication of US6622574B2 publication Critical patent/US6622574B2/en
Assigned to BATTELLE ENERGY ALLIANCE, LLC reassignment BATTELLE ENERGY ALLIANCE, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BECHTEL BWXT IDAHO, LLC
Adjusted expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of the preceding groups insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/08Air or gas separators in combination with liquid meters; Liquid separators in combination with gas meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details or construction of the flow constriction devices
    • G01F1/44Venturi tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • G01F1/88Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure with differential pressure measurement to determine the volume flow

Abstract

Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 09/401,375, entitled IMPROVED METHOD AND SYSTEM FOR MEASURING MULTIPHASE FLOW USING MULTIPLE PRESSURE DIFFERENTIALS (which is a continuation-in-part of U.S. patent application Ser. No. 08/937,120 filed Sep. 24, 1997, now abandoned), filed Sep. 22, 1999, and incorporated herein in its entirety by this reference.[0001]
  • [0002] This invention was made with United States Government support under Contract No. DE-AC07 94ID13223, now Contract No. DE-AC07-99ID13727 awarded by the United States Department of Energy. The United States Government has certain rights in the invention.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0003]
  • The present invention relates to a flow meter for measuring the flow of very high void fraction multi-phase fluid streams. More particularly, the present invention relates to an apparatus and method in which multiple pressure differentials are used to determine flow rates of gas and liquid phases of a predominantly gas fluid stream to thereby determine the mass flow rate of each phase. [0004]
  • 2. State of the Art [0005]
  • There are many situations where it is desirable to monitor multi-phase fluid streams prior to separation. For example, in oil well or gas well management, it is important to know the relative quantities of gas and liquid in a multi-phase fluid stream, to thereby enable determination of the amount of gas, etc. actually obtained. This is of critical importance in situations, such as off-shore drilling, in which it is common for the production lines of several different companies to be tied into a common distribution line to carry the fuel back to shore. While a common method for metering a gas is to separate out the liquid phase, such a system in not desirable for fiscal reasons. When multiple production lines feed into a common distribution line, it is important to know the flow rates from each production line to thereby provide an accurate accounting for the production facilities. [0006]
  • In recent years, the metering of multi-phase fluid streams prior to separation has achieved increased attention. Significant progress has been made in the metering of multi-phase fluids by first homogenizing the flow in a mixer then metering the pseudo single phase fluid in a venturi in concert with a gamma densitometer or similar device. This approach relies on the successful creation of a homogenous mixture with equal phase velocities, which behaves as if it were a single phase fluid with mixture density {overscore (ρ)}=αρ[0007] g+(1−α)ρl where α is the volume fraction of the gas phase, and ρg is the gas phase density and ρ1 is the liquid phase density. This technique works well for flows which after homogenizing the continuous phase is a liquid phase. While the upper limit of applicability of this approach is ill defined, it is generally agreed that for void fractions greater than about ninety to ninety-five percent (90-95%) a homogenous mixture is difficult to create or sustain. The characteristic undisturbed flow regime in this void fraction range is that of an annular or ring shaped flow configuration. The gas phase flows in the center of the channel and the liquid phase adheres to and travels along the sidewall of the conduit as a thick film. Depending on the relative flow rates of each phase, significant amounts of the denser phase may also become entrained in the gas phase and be conveyed as dispersed droplets. Nonetheless, a liquid film is always present on the wall of the conduit. While the liquid generally occupies less than five percent (5%) of the cross-sectional volume of the flow channel, the mass flow rate of the liquid may be comparable to or even several times greater than that of the gas phase due to its greater density.
  • The fact that the phases are partially or fully separated, and consequently have phase velocities which are significantly different (slip), complicates the metering problem. The presence of the liquid phase distorts the gas mass flow rate measurements and causes conventional meters, such as orifice plates or venturi meters, to overestimate the flow rate of the gas phase. For example the gas mass flow can be estimated using the standard equation [0008] m g = A C c Y 1 - β 4 2 ρ g Δ P [ 7 ]
    Figure US20020016688A1-20020207-M00001
  • where m[0009] g is the gas mass flow rate, A is the area of the throat, ΔP is the measured pressure differential, ρg the gas density at flow conditions, Cc the discharge coefficient, and Y is the expansion factor. In test samples using void fractions ranging from 0.997 to 0.95, the error in the measured gas mass flow rate ranges from 7% to 30%. It is important to note that the presence of the liquid phase increases the pressure drop in the venturi and results in over-predicting the true gas mass flow rate. The pressure drop is caused by the interaction between the gas and liquid phases. Liquid droplet acceleration by the gas, irreversible drag force work done by the gas phase in accelerating the liquid film and wall losses determine the magnitude of the observed pressure drop. In addition, the flow is complicated by the continuous entrainment of liquid into the gas, the redeposition of liquid from the gas into the liquid film along the venturi length, and also by the presence of surface waves on the surface of the annular or ringed liquid phase film. The surface waves on the liquid create a roughened surface over which the gas must flow increasing the momentum loss due to the addition of drag at the liquid/gas interface.
  • Other simple solutions have been proposed to solve the overestimation of gas mass flow rate under multi-phase conditions. For example, Murdock, ignores any interaction (momentum exchange) between the gas and liquid phases and proposed to calculate the gas mass flow if the ratio of gas to liquid mass flow is known in advance. See Murdock, J. W. (1962). Two Phase Flow Measurement with Orifices, ASME Journal of Basic Engineering, December, 419-433. Unfortunately this method still has up to a 20% error rate or more. [0010]
  • While past attempts at metering multi-phase fluid streams have produced acceptable results below the ninety to ninety five percent (90-95%) void fraction range, they have not provided satisfactory metering for the very high void multi-phase flows which have less than five to ten (5-10%) non-gas phase by volume. When discussing large amounts of natural gas or other fuel, even a few percent difference in the amount of non-gas phase can mean substantial differences in the value of a production facility. For example, if there are two wells which produce equal amounts of natural gas per day. The first well produces, by volume, 1% liquid and the second well produces 5% liquid. If a conventional mass flow rate meter is relied upon to determine the amount of gas produced, the second well will erroneously appear to produce as much as 20 - 30% more gas than the first well. Suppose further that the liquid produced is a light hydrocarbon liquid (e.g. a gas condensate such as butane or propane) which is valuable in addition to the natural gas produced. Conventional meters will provide no information about the amount of liquid produced. Then if the amount of liquid produced is equally divided between the two wells, the value of the production from the first well will be overestimated while the production from the second well will be underestimated. To properly value the gas and liquid production from both wells, a method of more accurately determining the mass flow rate of both the gas and liquid phases is required. [0011]
  • The prior art, however, has been generally incapable of accurately metering the very high void multi-phase fluid streams. In light of the problems of the prior art, there is a need for an apparatus and method that is less complex and provides increased accuracy for very high void multi-phase fluid streams. Such an apparatus and method should be physically rugged, simple to use, and less expensive than current technology. [0012]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide an improved apparatus and method for metering very high void multi-phase fluid streams. [0013]
  • It is another object of the present invention to provide an apparatus and method which increases the accuracy of metering with respect to both the gas phase and the liquid phase when measuring very high void multi-phase fluid streams. [0014]
  • It is still another object of the present invention to provide such an apparatus and method which does not require homogenization or separation of the multi-phase fluid in order to determine flow rate for each of the phases. [0015]
  • The above and other objects of the invention are realized in a specific method for metering the phases of a multiple phase fluid. The flow meter includes a cross-sectional area change in the flow conduit such as a venturi with an elongate passage. Disposed along the elongate passage is a converging section, an extended throat section, and a diffuser. The flow meter also includes a plurality of pressure monitoring sites which are used to monitor pressure changes which occur as the multi-phase fluid passes through the elongate passage. These pressure changes, in turn, can be processed to provide information as to the respective flow rates of the phases of the multi-phase fluid. By determining the flow rates of the components of the multi-phase fluid, the amount of natural gas, etc., can be accurately determined and accounting improved. [0016]
  • In accordance with another aspect of the present invention a method for determining the mass flow of the high void fraction fluid flow and the gas flow includes a number of steps. The first step is calculating a gas density for the gas flow. The next two steps are finding the normalized gas mass flow rate through the venturi and then computing the actual gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the additional pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point at the end of the venturi contraction or throat. Yet another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then, the friction loss is computed between the liquid phase and the conduit wall in the venturi tube using the liquid velocity. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the liquid mass flow rate is calculated by subtracting the total mass flow rate and the gas mass flow rate.[0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and advantages of the invention will become apparent from a consideration of the following detailed description presented in connection with the accompanying drawings in which: [0018]
  • FIG. 1 shows a side, cross-sectional view of a differential pressure flow meter with pressure measuring ports; [0019]
  • FIG. 2 is a flow chart showing the steps required to calculate the mass flow in a multiphase flow.[0020]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Reference will now be made to the drawings in which the various elements of the present invention will be given numeral designations and in which the invention will be discussed so as to enable one skilled in the art to make and use the invention. It is to be understood that the following description is only exemplary of the principles of the present invention, and should not be viewed as narrowing the pending claims. [0021]
  • Turning now to FIG. 1, there is shown another differential pressure flow meter, generally indicated at [0022] 110. The differential pressure flow meter 110 includes a venturi 114 formed by a sidewall 118 which defines a fluid flow passage 122. The fluid flow passage 122 is segmented into an inlet section 126, a converging section 130, an extended throat section 134, a diffuser section 138 and an outlet section 140.
  • The geometry and conduit diameter of the flow obstruction will vary depending on the particular application. The conduit may be larger or smaller depending on the specific flow rate, pressure, temperature and other similar factors. One important characteristic of the flow meter is that the preferred contraction ratio in the conduit should be between 0.4 and 0.75. The contraction ratio is defined as the ratio of the throat diameter [0023] 134 to the upstream conduit diameter 122. It is also important that the length of the throat is at least ten times the diameter of the throat. Of course, other throat lengths may be used.
  • An example of one possible set of conduit measurements will now be given, but it should be realized that the actual geometry will depend on the volume and size of the specific application. In one embodiment of the invention, the inlet section [0024] 126 has a diameter of about 3.8 cm adjacent the opening 142 at the upstream, proximal end 114 a of the venturi 114. The converging section 130 tapers inwardly from the inlet section 126 at an angle of about ten degrees (10°) until it connects with the extended throat section 134, which has a diameter of about 2.5 cm. The extended throat section 134 remains substantially the same diameter throughout its length and may be about 30 cm long to provide ample length to determine acceleration differences between the various phases. At the end of the extended throat section 134 b, the diffuser section 138 tapers outwardly at an angle of about three degrees (3°) until the diameter of the outlet section passage 140 is substantially the same as that at the inlet section 126 (i.e. 3 cm). It should be realized that many other specific geometric configurations could be defined which have characteristics similar to the example above.
  • In order to monitor the pressure differentials caused by the changes in fluid velocity, the differential pressure flow meter shown in FIG. 1 utilizes up to four different measurement points. Each pair of pressure measurement points defines a pressure differential. Only two pressure differential measurements are required to determine the gas and liquid flow rates. The preferred pressure differentials are ΔP[0025] 3 and ΔP2. Pressure differential number three (ΔP3) is defined as the pressure change between points 150 and 154. Pressure differential number two (ΔP2) is between points 154 and 158. It should also be apparent based on this disclosure, that pressure differentials ΔP3 and ΔP0 or ΔP2 and ΔP0 may be used instead. Each of these combinations work equally well, with the exception that the numerical constants in the algorithm change. It is also important that an absolute pressure and temperature measurement will be provided at the venturi inlet 142.
  • Now the pressure ports will be described more specifically. A first pressure measuring port [0026] 150 is disposed to measure the pressure in the inlet section 142. The first pressure measuring port 150 is connected to a pressure monitoring means, such as a pressure transducer 151, to provide a pressure reading.
  • A second pressure measuring port [0027] 154 is provided at the entrance of the extended throat section 134. The second pressure measuring port 154 is disposed adjacent the upstream, proximal end 134 a of the extended throat section 134. A pressure transducer 151 is also coupled to the second pressure measuring port 154.
  • Distally from the second pressure measuring port [0028] 154, but still within the extended throat section 134, is a third pressure monitoring port 158. Preferably, the third pressure monitoring port 158 is disposed adjacent the distal end 134 b of the extended throat section 134, and adjacent the beginning 138 a of the diffuser section 138.
  • The respective pressure measuring ports [0029] 150, 154, and 158 are disposed in communication with a flow processor 153 or similar mechanism through the pressure monitoring means or pressure transducers 151, 155, and 159. The flow processor 153 enables the acquisition of the measured pressure differentials, and thus fluid flow rates in accordance with the present invention. Further, an accurate determination of the relative acceleration of the two phases can also be obtained by comparing the pressure drop between the inlet section 126 (through measuring port 150) and the distal end 134 b of the extended throat section 134 (through measuring port 158), as indicated at ΔP0
  • In an alternative embodiment of the invention, a fourth pressure measuring port [0030] 161 is disposed at the end of the extended throat 134 b. A fifth pressure measuring port 162 is disposed in the outlet section 140 adjacent to the distal end 138 b of the diffuser section 138. Both of these pressure measuring ports are coupled to pressure monitoring means or pressure transducer 163. The fourth and fifth monitoring ports allow a pressure differential ΔP1 to be measured. The pressure differential (ΔP1) between the extended throat section 134 and the distal end 138 b of the diffuser section 138 can also be analyzed.
  • It should also be realized that different angles and lengths can be used for the venturi constriction and the extended throat of the venturi tube. In fact, the converging section of the venturi is not required to gradually taper. Rather the converging section can be formed by an annular shoulder to reduce the cross-sectional area of the inlet section. The preferred size of the radius of curvature for an annular shoulder is about 0.652 cm. The converging section can also be formed by placing a solid object in the conduit which occupies part but not all of the conduit cross-section. [0031]
  • It is vital that the correct method be used in the current invention to estimate the gas and fluid mass flow. Otherwise errors in the range of 20% or more will be introduced into the measurements, as in the prior art. Reliable metering of high void fraction multi-phase flows over a wide range of conditions (liquid loading, pressure, temperature, and gas and liquid composition) without prior knowledge of the liquid and gas mass flow rates requires a different approach than the simple modification of the single phase meter readings as done in the prior art. Conceptually, the method of metering a fluid flow described here is to impose an acceleration or pressure drop on the flow field via a structure or venturi constriction and then observe the pressure response of the device across two pressure differentials as described above. Because the multi-phase pressure response differs significantly from that of a single-phase fluid, the measured pressure differentials are a unique function of the mass flow rates of each phase. [0032]
  • As described above, the gas and liquid phases are strongly coupled. When the gas phase accelerates in the converging section of the nozzle, the denser liquid phase velocity appreciably lags that of the lighter gas phase. In the extended throat region, the liquid phase continues to accelerate, ultimately approaching its equilibrium velocity with respect to the gas phase. Even at equilibrium, significant velocity differences or slip will exist between the gas and liquid phases. [0033]
  • A method for accurately calculating the gas and liquid mass flows in an extended venturi tube will now be described. (A derivation of the method is shown later.) This method uses the four values which are determined though testing. These values are: ΔP[0034] 3 which is the measured pressure differential across the venturi contraction, ΔP2 which is the measured pressure differential across the extended venturi throat, P which is the absolute pressure upstream from the venturi (psi), and T which is the temperature of the upstream flow. These measured values are used with a number of predefined constants which will be defined as they are used. Alternatively, the pressure differentials ΔP3 and ΔP0, or the pressure differentials ΔP0 and ΔP2 may be used.
  • First, the gas density for the gas flow must be calculated based on the current gas well pressure and temperature. This is done using the following equation which uses English units. Any other consistent set of units may also be used with appropriate modifications to the equations. [0035] rho gw = rho g ( P + 14.7 14.7 ) ( 60 + 459.67 T + 459.67 ) Equation  1
    Figure US20020016688A1-20020207-M00002
  • where [0036]
  • rho[0037] g is the density of natural gas (i.e. a mixture methane and other hydrocarbon and non-hydrocarbon gases) at standard temperature (60° F.) and pressure (1 atmosphere) for a specific well;
  • P is the pressure upstream from the venturi in pounds per square inch (psi); and [0038]
  • T is the temperature upstream from the venturi in degrees Fahrenheit. [0039]
  • The value of rho[0040] g will be different for various natural gas compositions and must be supplied by the well operator. At the standard temperature (60° F.) and pressure (1 atmosphere) the value of rhog for pure methane is 0.044 lb/ft3.
  • The second step is finding a normalized gas mass flow rate based on the square root of a pressure difference across the contraction multiplied by a first predetermined coefficient, and the square root of a measured pressure differential across a venturi throat. The normalized gas mass flow rate is found using the following equation: [0041]
  • Equation 2 [0042]
  • mgm=A+B{square root}{square root over (ΔP3)}+ C{square root}{square root over (ΔP2)}
  • where [0043]
  • A, B, and C are experimentally determined constants required to calculate gas mass flow rate; [0044]
  • ΔP[0045] 3 is the measured pressure differential across a venturi contraction; and
  • ΔP[0046] 2 is the measured pressure differential across a venturi throat. The preferred values for the constants in the equation above are as follows: A is −0.0018104, B is 0.008104 and C is −0.0026832 when pressure is in pounds per square inch (psi), density in lbs/ft3 and mass flow rate in thousands of mass lbs/minute. Of course, these numbers are determined experimentally and may change depending on the geometry of the venturi, the fluids used, and the system of units used.
  • Calculating the normalized gas mass flow rate is important because it allows the meter to be applied to the wells or situations where the pressure or meter diameter for the liquids present are different than the conditions under which the meter was originally calibrated. This means that the meter does not need to be calibrated under conditions identical to those present in a particular application and that the meter may be sized to match the production rate from a particular well. [0047]
  • The functional form of Equation 2 is arrived at by derivation from the conservation of mass and energy followed by a simplifying approximation. Other functional forms of Equation 2 can be used with equivalent results. The functional form of Equation 2 is consistent with the conservation laws and provides a good representation of the calibration data. [0048]
  • The third step is computing a gas mass flow rate using the normalized gas mass flow rate, the gas density, and a contraction ratio of the venturi tube. The equation for calculating the gas mass flow rate from these quantities is [0049] mg = mgm · A t · rho gw 1 - β 4 Equation  3
    Figure US20020016688A1-20020207-M00003
  • where mgm is the normalized gas mass flow rate; [0050]
  • A[0051] t is the venturi throat area;
  • β is the contraction ratio of the throat area; and [0052]
  • rho[0053] gw is the gas density at current well conditions.
  • The fourth step is estimating the gas velocity in the venturi tube throat. The equation for estimating the gas velocity is: [0054] u g = m g rho g · A t Equation  4
    Figure US20020016688A1-20020207-M00004
  • where m[0055] g is the gas mass flow rate;
  • rho[0056] g is the density of the gas phase for a specific well; and
  • A[0057] t is the venturi throat area.
  • The fifth step is calculating the pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase between an upstream pressure measuring point and a pressure measuring point in the distal end of the venturi throat. The pressure drop is calculated as follows: [0058] Δ P gl3 = Δ P 3 - 1 2 · rho gw · u g 2 · ( 1 - β 4 ) Equation  5
    Figure US20020016688A1-20020207-M00005
  • where ΔP[0059] 3 is the measured pressure differential across a venturi contraction;
  • rho[0060] gw is gas density at well conditions;
  • u[0061] g is the gas velocity in the venturi throat; and
  • β is the contraction ratio of the throat area to the upstream area. [0062]
  • It is important to note that the calculations outlined in steps two and five are important because they allow for estimating the mass flow of each phase. [0063]
  • Step six is estimating the liquid velocity (μl) in the venturi throat using the calculated pressure drop experienced by the gas phase due to work performed by the gas phase. This is performed as follows [0064] u l = 2 ( Δ P 3 - Δ P gl3 ) rho l · [ ( 1 + β 4 ) + gcfw ] Equation  6
    Figure US20020016688A1-20020207-M00006
  • where [0065]
  • ΔP[0066] 3 is the measured pressure differential across a venturi contraction;
  • ΔP[0067] g13 is the pressure drop experienced by the gas-phase due to work performed by the gas phase on the liquid phase;
  • rho[0068] l is the liquid density; and
  • gcfw is a constant which characterizes wall friction. The preferred value for gcfw is defined as 0.062. This value may be adjusted depending on different venturi geometries or different fluids. [0069]
  • The seventh step is computing the friction between the liquid phase and a wall in the venturi which is performed: [0070] f = gcfw · 1 2 · rho l · u l 2 Equation  7
    Figure US20020016688A1-20020207-M00007
  • where [0071]
  • gcfw is a constant which characterizes wall friction; [0072]
  • rho[0073] l is the liquid density; and
  • u[0074] l is the liquid velocity in the venturi throat.
  • The eighth step is calculating the total mass flow rate based on the measured pressure in the venturi throat, the calculated friction and the gas velocity. The equation for this is: [0075] m t = 2 ( Δ P 3 - f ) ( 1 - β 4 ) · u g · A t Equation  8
    Figure US20020016688A1-20020207-M00008
  • where [0076]
  • ΔP[0077] 3 is the measured pressure differential across a venturi contraction;
  • β is the contraction ratio of the throat diameter to the upstream diameter; and [0078]
  • u[0079] g is the gas velocity in the venturi throat.
  • The liquid mass flow rate can now be calculated as the difference between the total and gas mass flow rates. [0080]
  • Equation 9 [0081]
  • m l=(m t−m g)
  • wherein [0082]
  • m[0083] t is the total mass flow rate; and
  • m[0084] g is the gas mass flow rate.
  • Calculating the gas mass flow rate, total mass flow rate, and liquid mass flow rate using the method outlined above is much more accurate than the prior art. The accuracy of method outlined above is within ±4% for the gas phase, ±5% for the liquid phase, and ±4% for the total mass flow. This accuracy can even be increased using measured calibrations for a specific installation to benchmark the readings. [0085]
  • FIG. 2 shows a summary of the method used to accurately calculate the mass flow through the elongated venturi. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes steps which were described with Equations 1-9. Referring to FIG. 2, the first step is calculating a gas density for the gas flow [0086] 210. The next two steps are finding a normalized gas mass flow rate through the venturi 220 and computing a gas mass flow rate 230. The following step is estimating the gas velocity in the venturi tube throat 240. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat 250. Yet another step is estimating the liquid velocity 260 in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed 270 between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated 280 and the liquid mass flow rate is determined 290.
  • Theoretical Gas Mass Flow Rate
  • Now a discussion of the theoretical derivations will be outlined which produced the method described above. The theoretical derivation is based on the physical laws describing the conservation of mass and energy for both the gas and liquid phases. The conservation of mass and energy equations for each phase are shown below where the subscript [0087] 1 denotes the upstream condition measured at 142 by pressure tap 150 in FIG. 1, and the subscript 2 denotes the venturi throat entrance measured at 134 a by pressure tap 154. ΔPg13 is the pressure drop experienced by the gas phase due to work done by the gas phase in accelerating the liquid phase between the pressure measuring location at the beginning of the elongated throat and the pressure measuring location at the end of the throat. It is assumed that only the liquid phase is in contact with the wall, fw is the wall friction coefficient and Gc is a geometry factor which accounts for the acceleration of the fluid in the venturi contraction and the surface area of the contraction.
  • Equations 10 [0088]
  • mg1ρgug1A12ρgug2A2
  • m 1=(1−α11 u l1 A 1=(1−α2l u l2 A 2
  • [0089] P 1 + 1 2 ρ g u g1 2 = P 2 + 1 2 ρ g u g2 2 + Δ P gl3 P 1 + 1 2 ρ l u l1 2 = P 2 + 1 2 ρ l u l2 2 - Δ P gl3 + G c f w 1 2 ρ l u l2 2
    Figure US20020016688A1-20020207-M00009
  • In Equations 10, α is void fraction, ρ[0090] g is density of a gas at standard temperature, ug is the gas velocity, A1 is the conduit area upstream of the venturi, A2 is the conduit area in the venturi throat, and P1 and P2 are the pressures at locations 142 (tap 150) and 134 a (tap 154) in the conduit.
  • The gas phase energy equation can be rewritten using the equation for the gas phase mass flow rate, where D is the diameter of the upstream piping, d is the throat diameter, β=d/D is the contraction ratio, and ΔP[0091] 3=P2−P1 is the pressure drop across the contraction. Δ P 3 = 1 2 m g 2 ρ g α 2 2 A 2 2 ( 1 - ( α 2 α 1 ) 2 β 4 ) + Δ P gl3 Equation  11
    Figure US20020016688A1-20020207-M00010
  • With the approximation that α[0092] 1 and α2≅1, the modified orifice equation results. Δ P 3 1 2 m g 2 ρ g A 2 ( 1 - β 4 ) + Δ P g / 3 Equation 12
    Figure US20020016688A1-20020207-M00011
  • For single-phase flow ΔP[0093] g13 is equal to zero and the equation is solved directly for the mass flow rate mg. In practice, the single-phase result is modified by the addition of an empirical constant Cc which accounts for the true discharge characteristics (non-ideal one-dimensional behavior and friction losses) of the nozzle and Y which takes compressibility effects into account. m g 1 φ = C c AY 1 - β 4 2 ρ g Δ P 3 Equation 13
    Figure US20020016688A1-20020207-M00012
  • As shown in the introduction, if the Equation 13 above is used under multiphase conditions, the mass flow rate of the gas phase can be significantly overestimated. Under multiphase conditions the mass flow rate of the gas phase is given by: [0094] m g = C 2 φ α 2 A 2 Y 1 - ( α 2 α 1 ) 2 β 4 2 ρ g ( Δ P 3 - Δ P g / 3 ) Equation 14
    Figure US20020016688A1-20020207-M00013
  • where α[0095] 2A2 represents the cross sectional area occupied by the gas phase. When ΔP3 is large with respect to ΔPg13 the quantity under the radical can be approximated by
  • Equation 15 [0096]
  • {square root}{square root over (ΔP3−ΔPg13)}≈{square root}{square root over (Δ P 3)}−C g13×{square root}{square root over (ΔP g13)}
  • where C[0097] g13 is a constant that is determined experimentally. Empirically it has been found that ΔPg13 can be replaced by a function of ΔP2, the pressure drop in the extended throat, with appropriate choice of constants. The mass flow rate of gas under both single phase and multiphase conditions now becomes m g C 2 φ AY 1 - β 4 2 ρ g [ Δ P 3 - C 2 × P 2 ] Equation 16
    Figure US20020016688A1-20020207-M00014
  • where it has been assumed that α[0098] 2≈α1≈1. The constants Cand C2 have been determined empirically and the validity of the equation has been tested over a wide range of conditions. It is important to note that this method can be used not only with natural gas production but other gas and liquid phase compositions. In addition, it is also important to recognize that Equations 10 - 16 are used to derive calculation steps in the calculation method.
  • We have assumed that α[0099] 2≈α1≈1, making Equation 16 above only approximate. The statistical fitting procedure used to determine the constants Cand C2 implicitly determines a weighted mean value of α. Because α does not appear explicitly and is unknown, there is an uncertainty of ±1-2% over the void fraction range 0.95<α<1.0, implicit in the equation. If α or (1−α) is independently measured, the observed measurement uncertainties can be significantly reduced. The uncertainty can also be significantly reduced if, at installation, the actual flow rates are accurately known. If this measurement is available then the meter reading can be adjusted to reflect the true value and the uncertainty in the gas phase mass flow rate measurement can be reduced to less than 0.5% of reading if the gas and liquid flow rates change by less than 50% or so over time. The repeatability of the measurement is essentially the random uncertainty in the pressure measurements, less than about 0.5% of reading.
  • Total and Liquid Mass Flow Rate
  • If the ratio of liquid to gas flow rate is known a [0100] priori with certainty then the mass flow rate of the liquid phase can be directly obtained from m1=mg(ml/mg)known. Note that because the liquid mass flow rate is only a fraction (0 -30%) of the gas mass flow rate the uncertainty in the measurement is magnified. For instance, if ml/mg=0.01, a 1% error in mg is magnified to become a 100% of reading error for the liquid phase. An additional fixed error of 1% in the ratio ml/mg results in a 200% of reading total error for the liquid phase. This approach, of course, assumes that the ml/mg ratio remains constant over time.
  • Unfortunately, without accurate independent knowledge of α or (1−α) the liquid mass flow rate cannot be obtained directly from one-dimensional theory. The velocity of the liquid phase can, however, be estimated directly as now described. Once the mass flow rate of the gas phase is determined the ΔP[0101] g13 term can be estimated from the gas phase energy equation: Δ P g / 3 Δ P 3 - 1 2 m g 2 ρ g A 2 ( 1 - β 4 ) Equation 17
    Figure US20020016688A1-20020207-M00015
  • Equation 17 allows us to derive Equation 5 in the calculation method. Rearranging the liquid phase energy equation yields [0102] Δ P 3 + Δ P g / 3 = 1 2 ρ l u l 2 ( 1 - u l1 2 u l2 2 ) + G c f w 1 2 ρ l u l2 2 Equation 18
    Figure US20020016688A1-20020207-M00016
  • and using the expression for the mass flow rate of liquid results in: [0103] Δ P 3 + Δ P g / 3 = 1 2 ρ l u l2 2 ( 1 - ( 1 - α 2 ) 2 ( 1 - α 1 ) 2 β 4 ) + G c f w 1 2 ρ l u l1 2 Equation 19
    Figure US20020016688A1-20020207-M00017
  • With the assumption that [0104] ( 1 - α 2 ) 2 ( 1 - α 1 ) 2 β 4 1
    Figure US20020016688A1-20020207-M00018
  • the liquid velocity u[0105] l2 can be estimated. If (1−α) is known then the liquid mass flow rate could be estimated directly from m1=(1−α2)ρul2A. Unfortunately, (1−α) cannot be accurately estimated directly from the differential pressure data; it must be independently measured to pursue this approach.
  • If we consider the gas and liquid phases together but allow their velocities to differ, the total mass flow rate can be written as: [0106] m t = m g + m l = ( α ρ 2 + ( 1 - α ) S ρ l ) u g A Equation 20
    Figure US20020016688A1-20020207-M00019
  • where the density term in brackets is the effective density, ρ[0107] slip and S=ug/ul which is ratio of the gas velocity to the liquid velocity or slip. Since mt is constant throughout the venturi, it allows us to write the pressure drop ΔP3 as Δ P 3 = 1 2 ( αρ g + ( 1 - α ) S ρ l ) u g 2 ( 1 - β 4 ) + G c f w 1 2 ρ l u l2 2 Equation 21
    Figure US20020016688A1-20020207-M00020
  • The second term on the right hand side is the friction loss assuming that only the liquid phase is in contact with the wall. The equation can be rearranged to yield the total mass flow rate [0108] m t = ( αρ g + ( 1 - a ) S ρ l ) u g A = 2 ( Δ P 3 - G c f w 1 2 ρ l u l2 2 ) A ( 1 - β 4 ) · u g Equation  22
    Figure US20020016688A1-20020207-M00021
  • The total mass flow rate mt can then be obtained directly from ΔP[0109] 3 once ug is estimated from the measured value of mg, ug=mggA and the liquid velocity is calculated by solving equation 19 for ul2. The total mass flow rate using this method is a measurement with an uncertainty of ±4% of the actual measured flow. In principle, (since the total mass flow rate is the sum of the gas and liquid mass flow rates) the liquid mass flow rate can now be obtained directly from ml 32 mt−mg. The liquid mass flow rate can then be obtained within ±5% of the total mass flow rate.
  • As previously noted in the discussion of the measurement of the gas mass flow rate, if the flow rates of each phase are accurately known at the time of installation, measurement performance over a reasonable range of mass flow rates can be significantly enhanced. The uncertainty in the gas mass flow rate measurement can be reduced to <0.5% of reading by benchmarking even if the gas and/or liquid mass flow rates change by ±50%. Similarly, the uncertainty in the total mass flow rate can be reduced by <2% of reading for the same ±50% changes in gas and/or liquid mass flow rates. The corresponding improvement in accuracy of the liquid phase measurement is also significant. Because the liquid mass flow rate measurement is dependent on both the gas phase and total mass flow rate measurements, the uncertainty is also sensitive to changes in both gas and liquid mass flow rate. If the liquid mass flow rate measurement is benchmarked at an initial value, the data indicate that the accuracy attainable is ±20% of reading for changes in gas mass flow rate in the range of ≦±15% and/or changes in liquid mass flow rate in the range of ≦±25%. The uncertainty in the liquid mass flow rate quoted in terms of percent of total mass flow rate becomes ±1%. [0110]
  • Measurement uncertainties can be significantly reduced if flow rates are accurately known at time of meter installation or periodically measured by separation and separate metering during the service life of the meter and the well. Because the liquid phase is generally only a small fraction of the total mass flow rate the uncertainty in its measurement is inherently high. If the void fraction α is accurately and independently measured, the liquid mass flow rate can be calculated directly from m[0111] l−(1−α)llul2A where the ul2 the liquid velocity is obtained as described above from equation 19. The void fraction may be accurately and independently measured using a gamma ray attenuation densitometer or through ultrasonic film thickness measurements. This approach has been shown to significantly reduce the uncertainty in the liquid mass flow rate measurement.

Claims (54)

I claim:
1. In an oil field having at least one well for facilitating control of a multiphase flow having a gas phase and a liquid phase, a method for managing operation of the at least one well, the method comprising:
measuring at least two pressure differentials of the multiphase flow;
determining a mass flow rate of at least one of the phases of the multiphase flow based upon said at least two pressure differentials;
using said mass flow rate of at least one of the phases of the multiphase flow to determine whether an adjustment action is required with respect to the multiphase flow; and
causing, as required, the at least one well to implement any adjustment action indicated by said mass flow rate of at least one of the phases of the multiphase flow.
2. The method as recited in claim 1, wherein using said mass flow rate of at least one of the phases of the multiphase flow to determine whether adjustment is required with respect to the multiphase flow comprises:
correlating said adjustment action with at least one predetermined criterion; and
comparing said mass flow rate of at least one of the phases of the multiphase flow to said at least one predetermined criterion.
3. The method as recited in claim 1, wherein implementation of said adjustment action comprises establishing a desired liquid phase mass flow rate.
4. The method as recited in claim 1, wherein implementation of said adjustment action comprises establishing a desired gas phase mass flow rate.
5. The method as recited in claim 1, wherein implementation of said adjustment action comprises substantially stopping said multiphase flow.
6. The method as recited in claim 1, wherein implementation of said adjustment action comprises substantially eliminating the liquid phase or the gas phase from the multiphase flow.
7. The method as recited in claim 1, wherein said mass flow rate of at least one of the phases of the multiphase flow comprises a gas phase mass flow rate.
8. The method as recited in claim 1, wherein said mass flow rate of at least one of the phases of the multiphase flow comprises a liquid phase mass flow rate.
9. The method as recited in claim 1, further comprising determining a total mass flow rate of the multiphase flow.
10. The method as recited in claim 1, further comprising recording a time history of variations in production of at least one phase of the multiphase flow.
11. The method as recited in claim 1, further comprising calculating a total amount of at least one of the phases of the multiphase flow produced during a given time period.
12. The method as recited in claim 1, further comprising recording a time history of variations in production of at least the multiphase flow.
13. The method as recited in claim 1, further comprising generating a warning when said mass flow rate of at least one of the phases of the multiphase flow meets a predetermined criterion.
14. The method as recited in claim 1, further comprising determining a molecular weight of at least one of the phases of the multiphase flow.
15. The method as recited in claim 1, wherein measuring at least two pressure differentials of the multiphase flow comprises:
monitoring pressure at a plurality of points in the multiphase flow;
selecting pressure readings from at least three of said plurality of points; and
determining said at least two pressure differentials from said pressure readings.
16. The method as recited in claim 1, further comprising: determining said mass flow rate of at least one of said phases of said multiphase flow with a gamma ray attentuation densitometer.
17. The method as recited in claim 1, further comprising determining said mass flow rate of at least one of the phases of said multiphase flow with an ultrasonic film thickness measuring apparatus.
18. The method as recited in claim 1, further comprising determining said mass flow rate of at least one of the phases of said multiphase flow by measuring a film thickness of said at least one of the phases of the multiphase flow.
19. In an oil field having at least one well for facilitating control of a high void fraction multiphase flow, the high void fraction multiphase flow having at least a gas phase and a liquid phase, and the high void fraction multiphase flow passing through an extended throat venturi having an interior wall and defining a contraction, a method for managing operation of the at least one well, the method comprising:
measuring first and second pressure differentials of the high void fraction multiphase flow in the extended throat venturi;
determining a gas phase mass flow rate by:
determining a normalized gas phase mass flow rate based on said first and second pressure differentials; and
using said normalized gas phase mass flow rate, a gas density, and a contraction ratio of the extended throat venturi to obtain said gas phase mass flow rate;
using said gas phase mass flow rate to determine whether an adjustment action is required with respect to the high void fraction multiphase flow; and
causing, as required, the at least one well to implement any adjustment action indicated by said calculated gas phase mass flow rate.
20. The method as recited in claim 19, further comprising determining a molecular weight of at least one of the phases of the multiphase flow.
21. The method as recited in claim 19, further comprising generating a warning when said gas phase mass flow rate meets a predetermined criterion.
22. The method as recited in claim 19, further comprising recording a time history of variations in production of at least the gas phase of the multiphase flow.
23. The method as recited in claim 19, further comprising calculating a total amount of at least one of the phases of the high void fraction multiphase flow produced during a given time period.
24. The method as recited in claim 19, wherein using said gas phase mass flow rate to determine whether adjustment is required with respect to the multiphase flow comprises:
correlating said adjustment action with at least one predetermined criterion; and
comparing said gas phase mass flow rate to said at least one predetermined criterion.
25. The method as recited in claim 19, wherein implementation of said adjustment action comprises establishing a desired gas phase mass flow rate.
26. The method as recited in claim 19, wherein implementation of said adjustment action comprises substantially eliminating the liquid phase from said multiphase flow.
27. The method as recited in claim 19, wherein implementation of said adjustment action comprises substantially eliminating the gas phase from said multiphase flow.
28. The method as recited in claim 19, further comprising determining a film thickness of a liquid phase.
29. The method as recited in claim 19, further comprising determining a liquid phase mass flow rate.
30. The method as recited in claim 29, further comprising generating a warning when said liquid phase mass flow rate meets a predetermined criterion.
31. The method as recited in claim 29, wherein determining a liquid phase mass flow rate comprises:
determining a gas phase velocity in the extended throat based upon said gas phase mass flow rate;
determining a pressure drop experienced by the gas phase due to work performed on the gas phase in accelerating the liquid phase between a point located upstream of the extended throat venturi and a point located in the extended throat;
determining a liquid phase velocity based upon said pressure drop experienced by the gas phase;
determining a void fraction of the high void fraction multiphase flow; and
determining the liquid phase mass flow rate based upon said liquid phase velocity and said void fraction.
32. The method as recited in claim 19, further comprising determining a total mass flow rate of the high void fraction multiphase flow.
33. The method as recited in claim 32, wherein determining a total mass flow rate of the high void fraction multiphase flow comprises:
determining a gas phase velocity in the extended throat based upon said gas phase mass flow rate;
determining a pressure drop experienced by the gas phase due to work performed on the gas phase in accelerating the liquid phase between a point located upstream of the extended throat venturi and a point located in the extended throat;
determining a liquid phase velocity based upon said pressure drop experienced by the gas phase;
determining a friction value between the liquid phase and the interior wall of the venturi based upon said liquid phase velocity; and
determining a total mass flow rate of the high void fraction multiphase flow based upon a pressure differential across the extended throat, said friction value, and said gas phase velocity.
34. The method as recited in claim 32, further comprising determining a liquid phase mass flow rate by subtracting said gas phase mass flow rate from said total mass flow rate of the high void fraction multiphase flow.
35. In an oil field having at least one well for facilitating control of a multiphase flow having a gas phase, a liquid phase, and a liquid water phase, a method for managing operation of the at least one well, the method comprising:
determining a liquid water fraction;
measuring a plurality of pressure differentials of the multiphase flow;
determining a liquid water phase mass flow rate based upon said liquid water fraction and said plurality of pressure differentials;
determining a liquid phase mass flow rate based upon said plurality of pressure differentials;
using a mass flow rate of at least one of the phases of the multiphase flow to determine whether an adjustment action is required with respect to the multiphase flow; and
causing, as required, the at least one well to implement any adjustment action indicated by said mass flow rate of at least one of the phases of the multiphase flow.
36. The method as recited in claim 35, wherein measuring at least two pressure differentials of the multiphase flow comprises:
monitoring pressure at a plurality of points in the multiphase flow;
selecting pressure readings from at least three of said plurality of points; and
determining said plurality of pressure differentials from said pressure readings.
37. The method as recited in claim 35, further comprising determining a molecular weight of at least one of the phases of the multiphase flow.
38. The method as recited in claim 35, wherein implementation of said adjustment action comprises substantially eliminating the liquid phase and the liquid water phase from the multiphase flow.
39. The method as recited in claim 35, further comprising generating a warning when said liquid phase mass flow rate meets a predetermined criterion.
40. The method as recited in claim 35, further comprising generating a warning when said liquid water phase mass flow rate meets a predetermined criterion.
41. The method as recited in claim 3 5, further comprising recording a time history of variations in production of at least one of the phases of the multiphase flow.
42. In an oil field including at least one well for facilitating control of a multiphase flow having at least a gas phase and a liquid phase, an oil field management system for managing operation of the at least one well, the oil field management system comprising:
a differential pressure flow meter including:
an extended throat venturi disposed downstream of the at least one well, said extended throat venturi having a characteristic contraction ratio and including an extended throat section having an inlet and an outlet, said extended throat section being disposed downstream from an inlet section of said extended throat venturi, and said extended throat venturi having at least first, second, and third pressure measuring points;
pressure monitoring means in communication with said first, second and third pressure measuring points so as to monitor at least first and second pressure differentials; and
a flow processor for calculating a mass flow rate of at least one of the phases of the multiphase flow based upon said at least first and second pressure differentials; and
a well control system operatively connected with the at least one well and with said differential pressure flow meter.
43. The oil field management system as recited in claim 42, further comprising a water cut meter in communication with the multiphase flow.
44. The oil field management system as recited in claim 42, further comprising a gas chromatograph in communication with the multiphase flow.
45. The oil field management system as recited in claim 42, further comprising a separator through which the multiphase flow passes.
46. The oil field management system as recited in claim 42, wherein said pressure monitoring means comprises a plurality of pressure transducers.
47. The oil field management system as recited in claim 42, wherein said flow processor for calculating a mass flow rate of at least one of the phases of the multiphase flow comprises a computer.
48. The oil field management system as recited in claim 42, wherein said flow processor for calculating a mass flow rate of at least one of the phases of the multiphase flow calculates a total amount of at least one of the phases of the multiphase flow produced during a given time period.
49. The oil field management system as recited in claim 42, wherein said flow processor for calculating a mass flow rate of at least one of the phases of the multiphase flow generates a time history of variations in production of at least one of the phases of the multiphase flow.
50. The oil field management system as recited in claim 42, wherein said flow processor for calculating a mass flow rate of at least one of the phases of the multiphase flow determines a gas phase mass flow rate by:
determining a normalized gas phase mass flow rate based on said first and second pressure differentials; and
using said normalized gas phase mass flow rate, a gas density, and said contraction ratio of the extended throat venturi to obtain said gas phase mass flow rate.
51. The oil field management system as recited in claim 42, further comprising means for measuring temperature of the multiphase flow.
52. The oil field management system as recited in claim 51, wherein said means for measuring temperature of the multiphase flow is selected from the group consisting of: thermocouples, resistance thermometers, and thermistors.
53. In a chemical processing system, a method for controlling a liquid phase of a multiphase flow also having a gas phase, the method comprising:
measuring at least two pressure differentials of the multiphase flow;
determining at least a liquid phase mass flow rate based upon said at least two pressure differentials;
using said liquid phase mass flow rate to determine whether an adjustment action is required with respect to the multiphase flow; and
implementing, as required, any adjustment action indicated by said liquid phase mass flow rate.
54. The method as recited in claim 53, further comprising generating a warning when said liquid phase mass flow rate meets a predetermined criterion.
US09/935,346 1997-09-24 2001-08-21 Oil field management system Expired - Fee Related US6622574B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US93712097A true 1997-09-24 1997-09-24
US09/401,375 US6332111B1 (en) 1997-09-24 1999-09-22 Method and system for measuring multiphase flow using multiple pressure differentials
US09/935,346 US6622574B2 (en) 1997-09-24 2001-08-21 Oil field management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/935,346 US6622574B2 (en) 1997-09-24 2001-08-21 Oil field management system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/401,375 Continuation US6332111B1 (en) 1997-09-24 1999-09-22 Method and system for measuring multiphase flow using multiple pressure differentials

Publications (2)

Publication Number Publication Date
US20020016688A1 true US20020016688A1 (en) 2002-02-07
US6622574B2 US6622574B2 (en) 2003-09-23

Family

ID=25469533

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/401,375 Expired - Fee Related US6332111B1 (en) 1997-09-24 1999-09-22 Method and system for measuring multiphase flow using multiple pressure differentials
US09/400,946 Expired - Fee Related US6502467B1 (en) 1997-09-24 1999-09-22 System for measuring multiphase flow using multiple pressure differentials
US09/935,346 Expired - Fee Related US6622574B2 (en) 1997-09-24 2001-08-21 Oil field management system

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/401,375 Expired - Fee Related US6332111B1 (en) 1997-09-24 1999-09-22 Method and system for measuring multiphase flow using multiple pressure differentials
US09/400,946 Expired - Fee Related US6502467B1 (en) 1997-09-24 1999-09-22 System for measuring multiphase flow using multiple pressure differentials

Country Status (3)

Country Link
US (3) US6332111B1 (en)
AU (1) AU9509098A (en)
WO (1) WO1999015862A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807493B2 (en) * 2001-05-24 2004-10-19 International Business Machines Corporation Estimating flow rates in open-channel geometries having capillary pumping vanes
WO2011040817A1 (en) * 2008-09-18 2011-04-07 Statoil Petroleum As Device for measuring rates in individual phases of a multi phase flow
US20140013857A1 (en) * 2010-06-30 2014-01-16 Alexandre Lupeau Multiphase Flowmeter and Liquid Film Measurement Method
CN103894004A (en) * 2014-02-28 2014-07-02 西安交通大学 Novel equal-dryness distribution device and method of gas-liquid two-phase fluid
WO2015088880A1 (en) * 2013-12-10 2015-06-18 Yokogawa Corporation Of America Systems and methods for determining mass flow measurements of fluid flows

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2399536A1 (en) * 1999-09-22 2001-03-29 Bechtel Bwxt Idaho, Llc Improved method and system for measuring multiphase flow using multiple pressure differentials
WO1999015862A1 (en) * 1997-09-24 1999-04-01 Lockheed Martin Idaho Technologies Company Special configuration differential pressure flow meter
US6546811B2 (en) * 1997-09-24 2003-04-15 Bechtel Bwxt Idaho, Llc Multiphase flow calculation software
JP3485542B2 (en) * 1998-04-23 2004-01-13 ラティス インテレクチュアル プロパティー リミテッド Measurement of gas mass ratio
WO2002027848A2 (en) * 2000-09-22 2002-04-04 Siemens Aktiengesellschaft Method for monitoring the discharge of media out of a fuel cell, and a fuel cell system
GB0029055D0 (en) * 2000-11-29 2001-01-10 Expro North Sea Ltd Apparatus for and method of measuring the flow of a multi-phase fluid
NO315584B1 (en) * 2001-10-19 2003-09-22 Roxar Flow Measurement As compact stromningsmaler
GB2383136B (en) * 2001-12-14 2004-01-14 Schlumberger Holdings Flow characteristic measuring apparatus and method
US6823271B1 (en) * 2003-06-30 2004-11-23 The Boeing Company Multi-phase flow meter for crude oil
NO323247B1 (en) * 2003-12-09 2007-02-12 Multi Phase Meters As A method and flow meter for determining the flow rates of a multiphase mixture
US7096738B2 (en) * 2004-03-18 2006-08-29 Rosemount Inc. In-line annular seal-based pressure device
US20060022466A1 (en) * 2004-06-23 2006-02-02 Kim Sand Flange adapter
US7082826B2 (en) * 2004-10-14 2006-08-01 Battelle Energy Alliance, Llc Gas flow meter and method for measuring gas flow rate
WO2006048418A1 (en) * 2004-11-01 2006-05-11 Shell Internationale Research Maatschappij B.V. Method and system for production metering of oil wells
NO20060474L (en) * 2005-01-31 2006-08-01 Sulzer Pumpen Ag The process feed and means for Över- the flow of multiphase mixtures
EP1686355A1 (en) * 2005-01-31 2006-08-02 Sulzer Pumpen Ag Method and system for monitoring the flow of multiphase mixtures
GB2430493B (en) * 2005-09-23 2008-04-23 Schlumberger Holdings Systems and methods for measuring multiphase flow in a hydrocarbon transporting pipeline
US7703339B2 (en) * 2005-12-09 2010-04-27 Analog Devices, Inc. Flow sensor chip
NO326977B1 (en) * 2006-05-02 2009-03-30 Multi Phase Meters As A method and device for measuring the conductivity of the water fraction of a wet gas
NO324812B1 (en) * 2006-05-05 2007-12-10 Multi Phase Meters As A method and apparatus for tomographic multiphase flow measurements
US7447599B2 (en) * 2006-05-22 2008-11-04 Daniel Measurement And Control, Inc. Method and system for generating an uncertainty value
US8620715B2 (en) * 2006-06-10 2013-12-31 Schlumberger Technology Corporation Method including a field management framework for optimization of field development and planning and operation
US8136414B2 (en) * 2006-08-29 2012-03-20 Richard Steven Flow metering
US7614276B2 (en) * 2006-09-06 2009-11-10 Allen Thomas E Method for determining absolute density of cement slurry
US9440040B2 (en) * 2006-11-08 2016-09-13 Resmed Limited Humidifier for respiratory apparatus
US7472610B2 (en) * 2006-12-08 2009-01-06 Cummins Filtration Ip, Inc Apparatus, system, and method for differential pressure measurement across a conduit flow area change
GB2447490B (en) * 2007-03-15 2009-05-27 Schlumberger Holdings Method and apparatus for investigating a gas-liquid mixture
US20090024442A1 (en) * 2007-07-18 2009-01-22 Chevron U.S.A. Inc. System and methods for increasing safety and efficiency in oil field operations
US8214243B2 (en) * 2007-07-18 2012-07-03 Chevron U.S.A. Inc. Systems and methods for managing large oil field operations
US7810400B2 (en) * 2007-07-24 2010-10-12 Cidra Corporate Services Inc. Velocity based method for determining air-fuel ratio of a fluid flow
ITTO20070594A1 (en) * 2007-08-09 2009-02-10 Torino Politecnico Method for determining the instantaneous flow rate of a fluid, particularly for a liquid in a high pressure condition
CN101802568B (en) * 2007-09-18 2013-01-09 普拉德研究及开发股份有限公司 Measuring properties of stratified or annular liquid flows in a gas-liquid mixture using differential pressure
CN101802562B (en) * 2007-09-18 2013-06-12 普拉德研究及开发股份有限公司 Multiphase flow measurement
GB2454256B (en) * 2007-11-03 2011-01-19 Schlumberger Holdings Determination of density and flowrate for metering a fluid flow
WO2009071870A1 (en) * 2007-12-05 2009-06-11 Schlumberger Technology B.V. Ultrasonic clamp-on multiphase flowmeter
US8027794B2 (en) * 2008-02-11 2011-09-27 Schlumberger Technology Corporaton System and method for measuring properties of liquid in multiphase mixtures
US7607358B2 (en) 2008-03-14 2009-10-27 Schlumberger Technology Corporation Flow rate determination of a gas-liquid fluid mixture
US7707897B2 (en) * 2008-05-27 2010-05-04 Baker Hughes Incorporated Method of measuring multiphase flow using a multi-stage flow meter
EP2192391A1 (en) 2008-12-01 2010-06-02 Services Pétroliers Schlumberger Apparatus and a method of measuring the flow of a fluid
NO334550B1 (en) 2008-12-12 2014-04-07 Multi Phase Meters As Method and apparatus for the flow measurement to a wet gas and measurement gas values
NO330911B1 (en) 2008-12-12 2011-08-15 Multi Phase Meters As Method and apparatus for measuring the composition and flow rates for a wet gas
US8494788B2 (en) * 2009-05-27 2013-07-23 Schlumberger Technology Corporation Gas pressure determination in a gas/liquid flow
WO2011049571A1 (en) * 2009-10-22 2011-04-28 Halliburton Energy Services, Inc. Formation fluid sampling control
EP2510289A4 (en) * 2009-12-08 2018-03-21 Fusion HVAC Pty Limited A system and method for delivering air
US20120107752A1 (en) * 2010-11-03 2012-05-03 Yokogawa Corporation Of America Systems, methods, and apparatus for determining airflow through a burner
US8448525B2 (en) * 2011-03-03 2013-05-28 Rosemount Inc. Differential pressure based flow measurement
EP2817595A4 (en) * 2012-02-21 2015-10-21 Halliburton Energy Services Inc A pressure differential flow meter including a constriction device that can create multiple areas of constriction
DE102012013916A1 (en) * 2012-07-16 2014-01-16 Endress + Hauser Flowtec Ag Ultrasonic flowmeter
US9068867B2 (en) * 2012-09-07 2015-06-30 Mccrometer, Inc. Angled port differential pressure flow meter
NO20121398A1 (en) 2012-11-21 2014-05-22 Fmc Kongsberg Subsea As A method and apparatus for multiphase measurement near deposits on the tube wall
DE102013216105A1 (en) * 2013-08-14 2015-03-05 Volkswagen Ag The method and measuring system for determining a quantity of a fluid filled
US20160341585A1 (en) * 2015-05-19 2016-11-24 Medeng Research Institute Ltd. Multiphase Flow Meter
US10317261B2 (en) 2015-06-30 2019-06-11 Johnson Controls Technology Company Systems and methods for controlling flow rate using differential pressure measurements
CN107478278B (en) * 2017-07-25 2019-06-14 西安交通大学 It is a kind of based on the differential pressure type two-phase flow measurement method for being mutually separated technology in pipe

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2984105A (en) * 1955-08-04 1961-05-16 Nagel Roland Device for measuring the quantities of solids contained in flowing mediae
US4048854A (en) * 1976-03-19 1977-09-20 Fischer & Porter Co. System for determining the ratio of oil to water in a metered fluid stream
US4231262A (en) * 1979-03-28 1980-11-04 The Babcock & Wilcox Company System for measuring entrained solid flow
US4312234A (en) 1980-05-12 1982-01-26 Alberta Oil Sands Technology And Research Authority Two-phase flowmeter
JPS6047973B2 (en) 1981-01-26 1985-10-24 Toyoda Chuo Kenkyusho Kk
US4449401A (en) 1981-05-19 1984-05-22 Eaton Corporation Hot film/swirl fluid flowmeter
US4604902A (en) * 1984-10-24 1986-08-12 Geoscience Ltd Means and techniques useful in mass flowmeters for multiphase flows
FR2594946B1 (en) 1986-02-21 1988-06-17 Flopetrol Etu Fabrications Flowmeter intended in particular to hydrocarbon well
GB2186981B (en) * 1986-02-21 1990-04-11 Prad Res & Dev Nv Measuring flow in a pipe
US4730480A (en) * 1986-06-24 1988-03-15 Microscale Organic Laboratory Corporation Gas chromatograph collection device and process
GB2227841B (en) * 1988-12-03 1993-05-12 Schlumberger Ltd Impedance cross correlation logging tool
IT1229286B (en) * 1989-04-19 1991-08-08 Luigi Bovone Method and apparatus for bevelling interior angles of sheets of glass, crystal or semicristallo, colored or not, and product obtained.
GB8910372D0 (en) 1989-05-05 1989-06-21 Framo Dev Ltd Multiphase process mixing and measuring system
US5099697A (en) * 1990-04-02 1992-03-31 Agar Corporation Ltd. Two and three-phase flow measurement
US5199306A (en) * 1990-11-16 1993-04-06 Hunter Robert M Method and apparatus for metering flow in closed conduits that surcharge
US5207107A (en) * 1991-06-20 1993-05-04 Exxon Research And Engineering Company Non-intrusive flow meter for the liquid based on solid, liquid or gas borne sound
US5461930A (en) * 1992-03-17 1995-10-31 Agar Corporation Inc. Apparatus and method for measuring two-or three-phase fluid flow utilizing one or more momentum flow meters and a volumetric flow meter
US5526684A (en) * 1992-08-05 1996-06-18 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Method and apparatus for measuring multiphase flows
US5307833A (en) 1992-10-26 1994-05-03 Texaco Inc. Method and apparatus for automatically transferring and measuring wet steam between priority and secondary users
GB9300360D0 (en) * 1993-01-09 1993-03-03 Peco Production Technology Lim Flowmeter
WO1995010028A1 (en) * 1993-10-05 1995-04-13 Atlantic Richfield Company Multiphase flowmeter for measuring flow rates and densities
US5400657A (en) * 1994-02-18 1995-03-28 Atlantic Richfield Company Multiphase fluid flow measurement
FR2720498B1 (en) * 1994-05-27 1996-08-09 Schlumberger Services Petrol Multiphase flow meter.
US5501099A (en) * 1994-06-13 1996-03-26 Itt Corporation Vapor density measurement system
US5597961A (en) * 1994-06-27 1997-01-28 Texaco, Inc. Two and three phase flow metering with a water cut monitor and an orifice plate
JP3415286B2 (en) * 1994-09-22 2003-06-09 俊郎 立花 Ultrasonic measurement sheet
US5600073A (en) * 1994-11-02 1997-02-04 Foster-Miller, Inc. Method and system for analyzing a two phase flow
FR2735571B1 (en) * 1995-06-15 1997-08-29 Schlumberger Services Petrol Flow nozzle for measuring flow in a stream of a fluid
CA2185867C (en) * 1996-09-18 2000-03-21 Varagur Srinivasa V. Rajan Multi-phase fluid flow measurement apparatus and method
WO1999015862A1 (en) * 1997-09-24 1999-04-01 Lockheed Martin Idaho Technologies Company Special configuration differential pressure flow meter
FR2772915B1 (en) * 1997-12-22 2000-01-28 Inst Francais Du Petrole Method and multiphase flow measurement device
FR2776769B1 (en) * 1998-03-30 2000-04-28 Schlumberger Services Petrol Method and implementation of installation of a multiphase flowmeter downstream of an oil well
US6250131B1 (en) * 1999-09-10 2001-06-26 Texaco Inc. Apparatus and method for controlling and measuring steam quality

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807493B2 (en) * 2001-05-24 2004-10-19 International Business Machines Corporation Estimating flow rates in open-channel geometries having capillary pumping vanes
WO2011040817A1 (en) * 2008-09-18 2011-04-07 Statoil Petroleum As Device for measuring rates in individual phases of a multi phase flow
US20140013857A1 (en) * 2010-06-30 2014-01-16 Alexandre Lupeau Multiphase Flowmeter and Liquid Film Measurement Method
WO2015088880A1 (en) * 2013-12-10 2015-06-18 Yokogawa Corporation Of America Systems and methods for determining mass flow measurements of fluid flows
CN103894004A (en) * 2014-02-28 2014-07-02 西安交通大学 Novel equal-dryness distribution device and method of gas-liquid two-phase fluid

Also Published As

Publication number Publication date
US6332111B1 (en) 2001-12-18
US6622574B2 (en) 2003-09-23
AU9509098A (en) 1999-04-12
WO1999015862A1 (en) 1999-04-01
US6502467B1 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
Bogue et al. Velocity profiles in turbulent pipe flow. Newtonian and non-Newtonian fluids
Vassilatos et al. Second‐order chemical reactions in a nonhomogeneous turbulent fluid
James Metering of steam-water two-phase flow by sharp-edged orifices
RU2243510C2 (en) Multiphase flow measurements in pipeline
EP1261846B1 (en) Simultaneous determination of multiphase flowrates and concentrations
JP3283524B2 (en) Bypass type flow meter
RU2160888C2 (en) Process determining rate of flow of fluid medium
Asali et al. Interfacial drag and film height for vertical annular flow
US5597961A (en) Two and three phase flow metering with a water cut monitor and an orifice plate
Crewdson et al. Air-impeded discharge of fine particles from a hopper
JP2790260B2 (en) One or apparatus and method for measuring the flow rate of the two-phase or three-phase fluids using more momentum flow meter and one volumetric flow meter
US5025160A (en) Measurement of flow velocity and mass flowrate
US4576043A (en) Methods for metering two-phase flow
CA2677516C (en) Apparatus for determining transverse velocity or temperature of a fluid in a pipe
US4144754A (en) Multiphase fluid flow meter
US6898541B2 (en) Method and apparatus for determining component flow rates for a multiphase flow
US5705753A (en) Apparatus for determining fluid flow
US4646575A (en) Ultrasonic flowmeter
US4102186A (en) Method and system for measuring flow rate
US3803921A (en) Sampling and flow measuring device
US7366621B2 (en) Program product to measure density, specific gravity, and flow rate of fluids
AU665919B2 (en) A hydrocarbon mass flow meter
US20030136185A1 (en) Multiphase flow measurement system
US6405604B1 (en) Method and apparatus for measuring oil effluent flow rates
Zagarola et al. Log laws or power laws: The scaling in the overlap region

Legal Events

Date Code Title Description
AS Assignment

Owner name: BATTELLE ENERGY ALLIANCE, LLC, IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BECHTEL BWXT IDAHO, LLC;REEL/FRAME:016226/0765

Effective date: 20050201

Owner name: BATTELLE ENERGY ALLIANCE, LLC,IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BECHTEL BWXT IDAHO, LLC;REEL/FRAME:016226/0765

Effective date: 20050201

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20150923