US20020014072A1 - Engine control equipment - Google Patents

Engine control equipment Download PDF

Info

Publication number
US20020014072A1
US20020014072A1 US09/811,696 US81169601A US2002014072A1 US 20020014072 A1 US20020014072 A1 US 20020014072A1 US 81169601 A US81169601 A US 81169601A US 2002014072 A1 US2002014072 A1 US 2002014072A1
Authority
US
United States
Prior art keywords
catalyst
ignition
target
control equipment
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/811,696
Inventor
Shinji Nakagawa
Minoru Ohsuga
Shiro Yamaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Assigned to HITACHI, LTD. reassignment HITACHI, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NANAGAWA, SHINJI, OHSUGA, MINORU, YAMAOKA, SHIRO
Publication of US20020014072A1 publication Critical patent/US20020014072A1/en
Priority to US10/157,227 priority Critical patent/US20020189238A1/en
Priority to US10/926,139 priority patent/US7062902B2/en
Priority to US11/435,709 priority patent/US20060201137A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0253Fully variable control of valve lift and timing using camless actuation systems such as hydraulic, pneumatic or electromagnetic actuators, e.g. solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine control equipment, particularly to a control equipment of a compressive self-ignition engine for accelerating activation of a catalyst.
  • a car engine has such main problems as improvement of fuel consumption and reduction of exhaust gas.
  • a lean burn engine has recently become a mainstream, which uses a combustion system according spark ignition to improve the fuel consumption by operating an air-fuel ratio at a lean in order to reduce a pump loss.
  • spark-ignition-type lean burn engine can reduce the pump loss by making an air-fuel ratio leaner, there is a lean limit due to an ignition error according to the theory of the engine because the engine uses combustion according to flame spread.
  • an NOx catalyst may be set which occludes or adsorbs NOx.
  • the above three-way catalyst shows HC, CO, and NOx purifying functions when an exhaust gas has a predetermined temperature or higher.
  • the catalyst has a characteristic that it cannot completely purify the exhaust gas when the exhaust gas has a temperature lower than the predetermined temperature. Therefore, it is necessary to keep the exhaust gas at a predetermined temperature or higher in order to maintain the above activated state. That is, as shown in FIG. 36, in the case of the three-way catalyst set to the exhaust pipe, the exhaust-gas purifying performance of the catalyst is deteriorated in the period from the time when an engine is started until the time when an exhaust gas reaches a predetermined temperature or higher. This is because the engine has the temperature equal to the then outside-air temperature when it is started and the temperature of its exhaust gas is also low, and the catalyst is activated after it is heated by the exhaust gas.
  • the present inventor obtains the new knowledge that when setting a catalyst to the exhaust pipe of a combustion-type engine according to compressive self-ignition, it is possible to shorten the time from start of the engine up to activation of the catalyst and therefore, it is possible to prevent exhaust-gas deterioration also in the case of the combustion type according to compressive self-ignition.
  • the present invention is made to solve the above problems and its object is to provide an engine control equipment capable of preventing an exhaust gas from deteriorating b activating a catalyst in order to early perform the combustion by compressive self-ignition.
  • an engine control equipment of the present invention is an engine control equipment basically having a catalyst for burning a mixed gas in a combustion chamber by compressive self-ignition and purifying exhaust-gas components in the combustion chamber.
  • the control equipment is provided with means for controlling the catalyst and the means for controlling the catalyst is provided with means for determining the activated state of the catalyst and means for activating the catalyst in accordance with a determination result of the means for determining the activated state of the catalyst.
  • the means for activating a catalyst accelerates the activation of the catalyst in accordance with a determination result of a catalyst state. Therefore, it is possible to shorten the time from start of an engine up to activation of a catalyst, prevent an exhaust gas for activating the catalyst from deteriorating, and improve the reliability of the engine.
  • the means for determining the activated state of the catalyst is provided with means for detecting or estimating the temperature of the catalyst and means for determining the activation of the catalyst.
  • the means for activating the catalyst controls the operation state of an engine when the detected or estimated temperature of the catalyst is equal to or lower than a predetermined value.
  • the means for activating the catalyst inhibits the combustion by the compressive self-ignition and performs the combustion by spark ignition when the detected or estimated temperature of the catalyst is equal to or lower than a predetermined value.
  • the means for activating the catalyst drives a heater for the catalyst when the detected or estimated temperature of the catalyst is equal to or lower than a predetermined value.
  • the means for activating the catalyst injects a fuel at the timing other than usual fuel injection when the detected or estimated temperature of the catalyst is equal to or lower than the predetermined value and the fuel injection timing coincides with the explosion or exhaust stroke of the engine.
  • an engine control equipment of the present invention is controlled so as to early perform the combustion by the compressive self-ignition when a temperature detected by a temperature sensor provided for the upstream or downstream side of the above catalyst shows a predetermined value or higher and the catalyst uses a three-way catalyst or NOx catalyst set to an exhaust pipe.
  • FIG. 1 is a general block diagram of an engine control system provided with an engine control equipment of first embodiment of the present invention
  • FIG. 2 is an internal block diagram of the engine control equipment in FIG. 1;
  • FIG. 3 is a control block diagram of catalyst control means of the engine control equipment in FIG. 1;
  • FIG. 4 is a control block diagram of the engine control equipment in FIG. 1;
  • FIG. 5 is a control block diagram of the catalyst control means in FIG. 4;
  • FIG. 6 is an illustration of the compressive-self-ignition-combustion permitting section in FIG. 4;
  • FIG. 7 is an illustration of the basic-fuel-injection-quantity computing section in FIG. 4;
  • FIG. 8 is an illustration of the air-fuel-correction-term computing section in FIG. 4;
  • FIG. 9 is an illustration of the target-opening computing section in FIG. 4.
  • FIG. 10 is an illustration of the throttle-opening control section in FIG. 4.
  • FIG. 11 is an illustration of the target-fresh-air-quantity and EGR-quantity computing section in FIG. 4;
  • FIG. 12 is an illustration of the target-exhaust-valve-opening-timing computing section in FIG. 4;
  • FIG. 13 is an illustration of the target-exhaust-valve-closing-timing computing section in FIG. 4;
  • FIG. 14 is an illustration of the target-intake-valve-opening-timing computing section in FIG. 4;
  • FIG. 15 is an illustration of the target-intake-valve-closing-timing computing section in FIG. 4;
  • FIG. 16 is an illustration of the target-ignition-timing computing section in FIG. 4;
  • FIG. 17 is a general block diagram of an engine control system provided with an engine control equipment of second embodiment of the present invention.
  • FIG. 18 is an internal block diagram of the engine control equipment in FIG. 17;
  • FIG. 19 is a control block diagram of the engine control equipment in FIG. 17;
  • FIG. 20 is a control block diagram of the catalyst control means in FIG. 19;
  • FIG. 21 is an illustration of the heater-operation permitting section in FIG. 19;
  • FIG. 22 is an illustration of the target-opening computing section in FIG. 19;
  • FIG. 23 is an illustration of the target-fresh-air-quantity and EGR-quantity computing section in FIG. 19;
  • FIG. 24 is an illustration of the target-ignition-timing computing section in FIG. 19;
  • FIG. 25 is an illustration of the catalyst-heater control section in FIG. 19;
  • FIG. 26 is a general block diagram of an engine control system provided with an engine control equipment of third embodiment of the present invention.
  • FIG. 27 is a control block diagram of the engine control equipment in FIG. 26;
  • FIG. 28 is a control block diagram of the catalyst control means in FIG. 26;
  • FIG. 29 is an illustration showing the relation between injection timing and exhaust-gas temperature in explosion and exhaust strokes
  • FIG. 30 is an illustration of the second injection permitting section in FIG. 27;
  • FIG. 31 is an illustration of the second injection-timing and injection-quantity computing section in FIG. 27;
  • FIG. 32 is a block diagram of the engine of another embodiment
  • FIG. 33 is a block diagram of the engine of still another embodiment
  • FIG. 34 is a characteristic diagram of a three-way catalyst to an air-fuel ratio
  • FIG. 35 is a characteristic diagram of a three-way catalyst to temperature
  • FIG. 36 is an illustration showing the change of activation temperature of a three-way catalyst and HC quantity passing through the three-way catalyst.
  • FIG. 1 shows a general configuration of an engine control system provided with an engine control equipment of the first embodiment of the present invention.
  • An engine 50 is constituted of a multiple cylinder 9 and an intake pipe 6 and an exhaust pipe 10 are connected to each cylinder 9 .
  • An ignition plug 8 is set to each cylinder 9 and a fuel injection valve 7 is set to the intake pipe 6 and moreover, an air cleaner 1 , an air-flow sensor 2 , an electric-control throttle valve 3 , and an ISC bypass 4 for bypassing the throttle valve 3 are set to their proper positions at the upstream side of the intake pipe 6 .
  • an exhaust-gas circulation path (EGR path) 18 is set which bypasses the cylinder 9 and communicates the intake pipe 6 with the exhaust pipe 10 and an EGR valve 19 is set to the EGR path 18 .
  • a three-way catalyst 11 is set to the exhaust pipe 10
  • an A/F sensor 12 is set to the upstream side of the three-way catalyst 11
  • a temperature sensor 13 is set to the downstream side of the three-way catalyst 11 .
  • a throttle-opening sensor 17 is set to the portion where the throttle valve 3 is set
  • a water-temperature sensor 14 is set to the lateral face of the cylinder 9
  • a crank-angle sensor 15 is set to the crank shaft portion.
  • the air coming from the outside of the engine 50 is supplied into a combustion chamber 16 after passing through the air cleaner 1 , the intake pipe 6 , and an intake valve 27 by lift-timing control electromagnetic driving.
  • the incoming airflow is mainly adjusted by the throttle valve 3 .
  • the airflow is adjusted by an ISC valve 5 set to the bypass 4 under idling and the engine speed is controlled by the adjustment.
  • an incoming airflow is detected by the airflow sensor 2 , a signal is output from the crank-angle sensor 15 every degree of rotation angle of the crankshaft and the cooling-water temperature of the engine 50 is detected by the water-temperature sensor 14 .
  • An engine control equipment 100 (control unit) is set to the engine 50 , the control unit 100 receives a signal of each of the above sensors and computes the signal and outputs a control signal to each of the above operation units.
  • signals of the air-flow sensor 2 , throttle-opening sensor 17 , crank-angle sensor 15 , water-temperature sensor 14 , A/F sensor 12 , and temperature sensor 13 , and a signal of an accelerator pedal 32 are sent to the control unit 100 , operation states of the engine 50 are obtained from these sensor outputs, and the basic injection quantity of a fuel and the main control input of ignition timing are optimally computed.
  • the fuel injection quantity computed by the control unit 100 is converted to a valve-opening pulse signal and the signal is sent to the fuel injection valve 7 .
  • a predetermined ignition timing is computed and a driving signal is output to the ignition plug 8 from the control unit 100 so that ignition is performed at the above ignition timing.
  • an internal exhaust-gas recirculation quantity and a fresh-air quantity are controlled by using the intake valve 27 and exhaust valve 28 according to lift-timing-control electromagnetic driving and the pressure and temperature in the combustion chamber 16 are controlled so that self-ignition is performed at a predetermined timing.
  • the fuel injected from the fuel injection valve 7 is mixed with air supplied from the intake pipe 6 and enters the combustion chamber 16 of each cylinder 9 to form a mixed gas.
  • the mixed gas is ignited and exploded by compressive self-ignition or a spark generated by the spark plug 8 and the energy thus generated serves as a motive-power source for the rotational driving force of the engine 50 .
  • the exhaust gas after explosion in the combustion chamber 16 is supplied to the three-way catalyst 11 through the exhaust valve 28 according to lift-timing-control electromagnetic driving and the exhaust pipe 10 .
  • Exhaust-gas components of HC, CO, and NOx are purified by the three-way catalyst 11 and then, the exhaust gas is discharged to the outside of the engine 50 .
  • some of the exhaust gas is recirculated to the intake pipe 6 through the EGR path 18 .
  • Recirculation of the exhaust gas is controlled by the EGR valve 19 in accordance with a signal sent from the control unit 100 .
  • the A/F sensor 12 has a linear output characteristic to the oxygen concentration in exhaust gas and the relation between oxygen concentration in exhaust gas and air-fuel ratio becomes almost linear. Therefore, it is possible to obtain the air-fuel ratio at the upstream side of the three-way catalyst 11 by the A/F sensor 12 . Moreover, the temperature sensor 13 makes it possible to detect the exhaust-gas temperature at the downstream side of the three-way catalyst 11 .
  • the control unit 100 calculates the air-fuel ratio at the upstream side of the three-way catalyst 11 in accordance with a signal of the A/F sensor 12 and performs the feedback (F/B) control for sequentially correcting the above basic injection quantity so that the air-fuel ratio of the mixed gas in the combustion chamber 16 becomes equal to a target air-fuel ratio.
  • the throttle valve 3 , intake valve 27 , and exhaust valve 28 are controlled so that they respectively have their target opening, the ignition timing of the spark plug 8 is controlled so as to coincide with a target ignition timing, and activation of the three-way catalyst 11 is accelerated by catalyst control means 150 to be mentioned layer in accordance with a signal of the temperature sensor 13 and the like.
  • FIG. 2 shows the inside of the control unit 100 .
  • Output values of the A/F sensor 12 , temperature sensor 13 , throttle-opening sensor 17 , air-flow sensor 2 , crank-angle sensor 15 , and water-temperature sensor 14 are input to the control unit 100 , signal processing such as noise removal is applied to the output values by an input circuit 23 , and then the output values are sent to an input/output port 24 .
  • the value of the input/output port 24 is stored in a RAM 22 and computed by a CPU 20 .
  • a control program in which the content of arithmetic processing is described is previously written in a ROM 21 .
  • a value showing each actuator working value computed in accordance with the control program is stored in the RAM 22 and then, sent to the input/output port 24 . Then, as a working signal of the spark plug 8 , an on/off signal is set which is turned on when the primary coil of an ignition output circuit 25 is electrified and turned off when the coil is not electrified.
  • the ignition timing is the time when the on/off signal changes from on- to off-states.
  • the signal for the spark plug 8 set to the input/output port 24 is amplified so as to have a sufficient energy necessary for combustion by the ignition output circuit 25 and supplied to the spark plug 8 .
  • an on/off signal is set which is turned on when a valve opens and turned off when the valve closes, amplified so as to have the energy enough to open the fuel injection valve 7 by a fuel-injection-valve driving circuit 26 and sent to the fuel injection valve 7 .
  • driving signals of electromagnetic-driving intake and exhaust valves 27 and 28 are sent to the intake and exhaust valves 27 and 28 through driving circuits 29 and 30 to open/close the valves at optional timing.
  • a driving signal for realizing the target opening of the electric-control throttle valve 3 is sent to the electric-control throttle valve 3 through an electronically controlled throttle driving circuit 31 .
  • the control unit 100 is provided with control means 150 for the three-way catalyst 11 .
  • the catalyst control means 150 is constituted of means 200 for determining the state of the three-way catalyst 11 in accordance with an output signal of the temperature sensor 13 or the like and means 201 for activating the three-way catalyst 11 in accordance with the determination result.
  • the catalyst-state determining means 200 is constituted of catalyst-temperature detecting means 101 A for detecting the temperature of the three-way catalyst 11 and catalyst-activation determining means 101 B for determining the activation of the three-way catalyst 11 to activate the catalyst 11 in accordance with the activated state of the three-way catalyst 11 , achieve early compressive self-ignition, and further prevent exhaust gas from deteriorating.
  • FIG. 4 shows a control block diagram of the control unit 100 .
  • the catalyst control means 150 of the control unit 100 inhibits the combustion by compressive self-ignition and performs combustion by changing the above combustion to the combustion by spark ignition to activate the catalyst 11 by the exhaust heat of the combustion by the spark ignition.
  • control unit 100 is constituted of a compressive-self-ignition-combustion permitting section 101 which is one mode of the catalyst-state determining means 200 , a basic-fuel injection-quantity computing section 102 , an air-fuel-ratio correction-term computing section 103 , a target-opening computing section 104 , a throttle-opening control section 105 , a target-fresh-air-quantity and EGR-quantity computing section 106 , a target-exhaust-valve-opening-timing computing section 107 , a target-exhaust-valve-closing-timing computing section 108 , a target-intake-valve-opening-timing computing section 109 , a target-intake-valve-closing-timing computing section 110 , and a target-ignition-timing computing section 111 which is one mode of the catalyst activating means 201 .
  • Each control block is described below in detail.
  • FIG. 5 is a control block diagram of the catalyst control means 150 in the control unit 100 .
  • the catalyst control means 150 conceptually includes the compressive self-ignition-combustion permitting section 101 and the target-ignition-timing computing section 111 for computing a target ignition timing by performing the spark ignition, which is constituted of the catalyst-temperature detecting means 101 A and catalyst-activation determining means 101 B, detects the temperature of the three-way catalyst 11 by the catalyst-temperature detecting means 101 A, determines the activation of the three-way catalyst 11 by the catalyst-temperature detecting means 101 B, and outputs a signal for executing the combustion not by compressive self-ignition but by spark ignition by the compressive-self-ignition inhibiting means 111 to the target-opening computing section 104 , target-fresh-air-quantity and EGR-quantity computing section 106 , and target-ignition-timing computing section 111 .
  • FIG. 6 is an illustration for permission of the compressive self-ignition by the compressive-self-ignition-combustion permitting section 101 , in which the compressive-self-combustion permitting section 101 determines whether to permit compressive self-ignition in accordance with a downstream temperature Cat of the catalyst 11 , an accelerator opening Apo, and an engine speed Ne. Specifically, when all of the following conditions (1) to (3) are effectuated, the section 101 sets a compressive-self-ignition permit flag fpauto to 1 to perform compressive-self-ignition combustion. However, when not all of the conditions (1) to (3) are effectuated, the section 101 inhibits compressive self-ignition and sets the compressive-self-ignition permit flag fpauto to 0 to change the compressive self-ignition to spark ignition.
  • TmpCatAuto denotes a set value of downstream temperature
  • ApoAuto denotes a set value of accelerator opening
  • NeAuto denotes a set value of engine speed which are stored in the ROM 21 .
  • the expression (1) shows the activated state of a catalyst, in which a catalyst becomes the inactivated state when the catalyst temperature TmpCat is lower than TmpCatAuto.
  • FIG. 7 is an illustration of the calculation of a basic fuel-injection quantity by the basic-fuel-injection-quantity computing section 102 .
  • the basic-fuel-injection-quantity computing section 102 computes a fuel injection quantity for simultaneously realizing a target torque and a target air-fuel ratio under an optional condition in accordance with signals of an incoming air quantity Qa by the air-flow sensor 2 , an engine speed Ne, and an accelerator pedal 32 .
  • the section 102 computes a basic fuel-injection quantity Tp as shown by the following expression (4).
  • k denotes a constant value for adjusting the incoming air quantity Qa so as to always realize a theoretical air-fuel ratio
  • Cyl denotes the number of cylinders 9 .
  • FIG. 8 is an illustration of the calculation of an air-fuel-ratio correction term by the air-fuel ratio-correction-term computing section 103 .
  • the air-fuel-ratio correction-term computing section 103 performs F/B control so that an air-fuel ratio becomes equal to a theoretical air-fuel ratio under an optional operating condition in accordance with the deviation Dltabf between an actual air-fuel ratio detected by the A/F sensor 12 and a target air-fuel ratio Tabf.
  • an air-fuel-ratio correction term Lalpha is computed through PI control.
  • the air-fuel-ratio correction term Lalpha is multiplied by the basic-fuel-injection quantity Tp, held so that the air-fuel ratio of an engine always becomes equal to a theoretical air-fuel ratio, and output to the fuel injection valve 7 .
  • this embodiment controls fresh-air quantity and internal EGR quantity by using the electric-control throttle valve 3 , electromagnetic-driving-type intake valve 27 , and electromagnetic-driving-type exhaust valve 28 and performs the following coordination control so that the pressure and temperature in the cylinder 9 become predetermined high values.
  • the fresh-air quantity is controlled by the electric-control throttle valve 3 and electromagnetic-driving-type intake valve 27 and the pressure and temperature in the cylinder 9 are controlled by the remaining gas in the cylinder 9 , that is, the internal EGR quantity is controlled by the electromagnetic-driving-type exhaust valve 28 .
  • ⁇ a,a denotes the filling efficiency of fresh-air quantity under compressive-self-ignition combustion
  • ⁇ a,s denotes the filling efficiency of fresh-air quantity under spark-ignition combustion
  • ⁇ e,a denotes the filling efficiency of internal EGR quantity under compressive-self-ignition combustion
  • ma denotes fresh-air quantity under compressive-self-ignition combustion
  • ma denotes a fresh-air mass under spark-ignition combustion
  • me denotes an internal EGR mass under compressive-self-ignition combustion
  • me,s denotes internal EGR mass under spark-ignition combustion.
  • ⁇ g,a denotes the gas filling efficiency in the cylinder 9 under compressive-self-ignition combustion
  • ⁇ g,s denotes the gas filling efficiency in the cylinder 9 under spark-ignition combustion
  • mg,a denotes the gas mass in the cylinder 9 under compressive-self-ignition combustion
  • mg,s denotes the gas mass in the cylinder 9 under spark-ignition combustion.
  • the control unit 100 of this embodiment first decides a target internal EGR quantity and then, decides a fresh-air quantity for realizing a target torque.
  • FIG. 9 is an illustration for calculation of a target opening of the electric-control throttle valve 3 by the target-opening computing section 104 .
  • the target-opening computing section 104 computes a throttle opening for realizing a target boost under an optional operating condition in accordance with signals of the air-flow sensor 2 , crank-angle sensor 15 , and accelerator pedal 32 and the compressive-self-ignition permit flag fpauto.
  • a target boost TgBoosta for compressive self-ignition or a target boost TgBoosts for spark ignition is decided in accordance with the accelerator opening Apo and engine speed Ne by referring to a map
  • a target boost TgBoost is set by changing the boost TgBoosta or TgBoosts by the compressive-self-ignition permit flag fpauto
  • a target opening TgTvo is decided in accordance with the target boost TgBoost and engine speed Ne by referring to a map, and they are output to the throttle-opening control section 105 , target-fresh-air-quantity and EGR-quantity computing section 106 .
  • FIG. 10 is an illustration of the throttle-opening control section 105 .
  • the throttle-opening control section 105 performs F/B control in accordance with the actual throttle opening Tvo by the throttle-opening sensor 17 so that the opening of the electric-control throttle valve 3 becomes equal to the target opening TgTvo and the control result is output to the electric-control throttle valve 3 .
  • the control algorithm of this embodiment uses PI control, other position-control algorithm can be also used.
  • FIG. 11 is an illustration for calculation of a target fresh-air quantity and a filling rate by the target-fresh-air-quantity and EGR-quantity computing section 106 .
  • the target-fresh-air-quantity and EGR-quantity computing section 106 computes a target fresh-air quantity and a target EGR quantity for realizing a target torque, a target in-cylinder- 9 temperature, and a target in-cylinder- 9 pressure under an optional condition in accordance with the accelerator pedal 32 , target boost TgBoost, and compressive-self-ignition permit flag fpauto.
  • a target fresh-air quantity TgAir is decided in accordance with the accelerator opening Aoi and engine speed Ne by referring to a map and output to the target-intake-valve-opening-timing computing section 109 and target-intake-valve-closing-timing computing section 110 .
  • a target EGR quantity under compressive self-ignition or a target EGR quantity under spark ignition is decided in accordance with the accelerator opening Apo and engine speed Ne by referring to a map and changed by he value of the compressive-self-ignition permit flag fpauto to set a target EGR quantity TgEgr.
  • the differential pressure DeltaP between an in-intake-valve- 6 pressure and an in-cylinder- 9 pressure is decided in accordance with the target EGR quantity TgEgr and engine speed Ne by referring to a map and output to the target-intake-valve-opening-timing computing section 109 and target-intake-valve-closing-timing computing section 110 .
  • the above target EGR quantity is changed in accordance with the value of the compressive-self-ignition permit flag fpauto because requested EGR quantities are different from each other under compressive-self-ignition combustion and spark-ignition combustion.
  • a target gas quantity TgGas is obtained in accordance with the target EGR quantity TgEgr and target fresh-air quantity TgAir, a filling efficiency ItaGas is decided in accordance with the maximum gas quantity MaxGas and a target gas quantity TgGas obtained from the engine speed Ne and output to the target-exhaust-valve-opening-timing computing section 107 and target-exhaust-valve-closing-timing computing section 108 .
  • FIG. 12 is an illustration for calculation of an opening timing by the target-exhaust-valve-opening-timing computing section 107 .
  • the target-exhaust-valve-opening-timing computing section 107 computes the opening timing of an exhaust valve for realizing the target EGR quantity TgEgr in accordance with the filling efficiency ItaGas and engine speed Ne.
  • a target-exhaust-valve opening timing TgEvo is decided in accordance with the filling efficiency ItaGas and engine speed Ne by referring to a map and output to the electromagnetic-driving-type exhaust valve 28 .
  • FIG. 13 is an illustration for calculation of a closing timing by the target-exhaust-vale-closing-timing computing section 108 .
  • the target-exhaust-vale-closing-timing computing section 108 computes the closing timing of an exhaust valve for realizing the target EGR quantity TgEgr in accordance with the filling efficiency ItaGas and engine speed Ne.
  • a target exhaust-valve closing timing TgEvc is decided in accordance with the filling efficiency ItaGas and engine speed Ne by referring to a map and output to the electromagnetic-driving-type exhaust valve 28 .
  • FIG. 14 is an illustration for calculation of an opening timing by the target-intake-valve-opening-timing computing section 109 .
  • the target-intake-valve-opening-timing computing section 109 computes the opening timing of an intake valve for realizing the target fresh-air quantity TgAir in accordance with the target fresh-air quantity TgAir and differential pressure DeltaP.
  • a target-intake-valve opening timing TgIvc is decided in accordance with the target fresh-air quantity TgAir and differential pressure DeltaP by referring to a map and output to the electromagnetic-driving-type intake valve 27 .
  • FIG. 15 is an illustration for calculation of a closing timing by the target-intake-valve-closing-timing computing section 110 .
  • the target-intake-valve-closing-timing computing section 110 computes the closing timing of an intake valve for realizing the target fresh-air quantity TgAir in accordance with the target fresh-air quantity TgAir and differential pressure DeltaP.
  • a target-intake-valve closing timing TgIvc is decided in accordance with the target fresh-air quantity TgAir and differential pressure DeltaP by referring to a map and output to the electromagnetic-driving-type intake valve 27 .
  • FIG. 16 is an illustration for calculation of a target ignition timing by the target-ignition-timing computing section 111 .
  • the target-ignition-timing computing section 111 computes an optimum ignition timing under an optional operating condition in accordance with signals of the air-flow sensor 2 , crank-angle sensor 15 , and accelerator pedal 32 and the compressive-self-ignition permit flag fpauto.
  • the target boost TgBoosta under compressive self-ignition or TgBoosts under spark ignition is decided in accordance with the accelerator opening Apo and engine speed Ne by referring to a map and changed by the compressive-self-ignition permit flag fpauto to set a target ignition timing Adv and the timing Adv is output to the spark plug 8 .
  • ignition can be performed preparing for a misfire even under compressive self-ignition combustion. In this case, a target ignition timing is selected at more retard side than a self-ignition timing.
  • FIGS. 17 to 25 show an engine control equipment of second embodiment which is the same as the engine control equipment of the first embodiment except the configuration based on the catalyst control means 150 . Therefore, the above point is described below in detail.
  • FIG. 17 shows the general configuration of an engine control system provided with the engine control equipment of the second embodiment of the present invention, in which a three-way catalyst 11 is set to an exhaust pipe 10 of an engine 50 A, an A/F sensor 12 is set to the upstream side of the three-way catalyst 11 , and a temperature sensor 13 is set to the downstream side of the three-way catalyst 11 . Moreover, a catalyst heater 35 is set to a proper position of the three-way catalyst 11 . The catalyst heater 35 is operated in accordance with an output signal of an engine control equipment (control unit) 100 A when the temperature of the catalyst 11 is equal to or lower than a predetermined value to activate the catalyst.
  • a catalyst-heater driving circuit 33 is provided as shown by an internal block diagram of the control unit 100 A.
  • FIG. 19 shows a control block diagram of the control unit 100 A in which the catalyst control means 150 drives the catalyst heater 35 when the temperature of the catalyst 11 is equal to or lower than a predetermined value to activate the catalyst 11 by the heat of the heater 35 .
  • control unit 100 A is constituted of a heater-operation permitting section 121 which is one mode of the catalyst-state determining means 200 , a basic-fuel-injection-quantity computing section 102 , an air-fuel-ratio-correction-term computing section 103 , a target-opening computing section 104 A, a throttle-opening control section 105 , a target-fresh-air-quantity and EGR-quantity computing section 106 A, a target-exhaust-valve-opening-timing computing section 107 , a target-exhaust-valve-closing-timing computing section 108 , a target-intake-valve-opening-timing computing section 109 , a target-intake-valve-closing-timing computing section 110 , a target-ignition-timing computing section 11 A, and a catalyst-heater control section 122 which is one mode of the catalyst activating means 201 .
  • Each control block is described below in detail.
  • FIG. 20 is a control block diagram of the catalyst control means 150 in the control unit 100 A.
  • the catalyst control means 150 conceptually includes the heater-operation permitting section 121 and the catalyst-temperature raising means 122 for driving-controlling the catalyst heater 35 , which is constituted of the catalyst-temperature detecting means 101 A and catalyst-activation determining means 101 B and which detects the temperature of the three-way catalyst 11 by the catalyst-temperature detecting means 101 A in accordance with an output signal of the temperature sensor 13 , determines the activation of the three-way catalyst 11 by the catalyst-activation determining means 101 B in accordance with the detected temperature, and outputs a signal for executing heater operations to the catalyst-heater control section 122 in accordance with the above determination result.
  • FIG. 21 is an illustration for permission of a heater operation by the heater-operation permitting section 121 , in which the heater-operation permitting section 121 determines permission of compressive self-ignition in accordance with the downstream temperature TmCat of the catalyst 11 .
  • the section 121 sets a catalyst-heater-operation flag fpheat to 1 to perform heater operations.
  • the section 121 stops heater operations and sets the catalyst-heater-operation flag fpheat to 0.
  • the expression (10) shows a catalyst activation state and a catalyst becomes an inactive state when the catalyst temperature TmpCat is lower than TmpCatAuto.
  • the basic-fuel-injection-quantity computing section 102 and air-fuel-correction-term computing section 103 are the same as those of the first embodiment.
  • FIG. 22 is an illustration for calculation of a target opening of the electric-control throttle valve 3 by the target-opening computing section 104 A.
  • the target-opening computing section 104 A computes a throttle opening for realizing a target boost under an optional operating condition in accordance with signals of the air-flow sensor 2 , crank-angle sensor 15 , and accelerator pedal 32 .
  • the target boost TgBoost is set in accordance with the accelerator opening Apo and engine speed Ne by referring to a map
  • the target opening TgTvo is decided in accordance with the target boost TgBoost and engine speed Ne by referring to a map and they are output to the throttle-opening control section 105 and target-fresh-air-quantity and EGR-quantity computing section 106 A.
  • the throttle-opening control section 105 is the same as that of the first embodiment.
  • FIG. 23 is an illustration for calculation of target fresh-air quantity and filling efficiency by the target-fresh-air-quantity and EGR-quantity computing section 106 A.
  • the target-fresh-air-quantity and EGR-quantity computing section 106 A computes a target torque and a target fresh-air quantity and a target EGR quantity for realizing the temperature and pressure in the target cylinder 9 under an optional operating condition in accordance with the accelerator pedal 32 and the target boost TgBoost.
  • the target fresh-air quantity TgAir is decided in accordance with the accelerator opening Apo and engine speed Ne by referring to a map and output to the target-intake-valve-opening-timing computing section 109 and target-intake-valve-opening-timing computing section 110 .
  • the target EGR quantity TgEgr under compressive self-ignition is set in accordance with the accelerator opening Apo and engine speed Ne by referring to a map, and the differential pressure DeltaP between the internal pressures of the intake pipe 6 and cylinder 9 is decided in accordance with the target EGR quantity TgEgr and engine speed Ne by referring to a map and they are output to the target-intake-valve-opening-timing computing section 109 and target-intake-valve-closing-timing computing section 110 .
  • the target gas quantity TgGas is obtained from the target EGR quantity TgEgr and target fresh-air quantity TgAir, and the filling efficiency ItaGas is decided in accordance with the maximum gas quantity MaxGas obtained from the engine speed Ne and the target gas quantity TgGas and they are output to the target-exhaust-valve-opening-timing computing section 107 and target-exhaust-valve-closing-timing computing section 108 .
  • target-exhaust-valve-opening-timing computing section 107 target-exhaust-valve-closing-timing computing section 108 , target-intake-valve-opening-timing computing section 109 , and target-intake-valve-closing-timing computing section 110 are the same as those of the first embodiment.
  • FIG. 24 is an illustration for calculation of a target ignition timing by the target-ignition-timing computing section 11 A.
  • the target-ignition-timing computing section 111 A computes a target ignition timing when a misfire also occurs under compressive-self-ignition combustion in accordance with signals of the air-flow sensor 2 , crank-angle sensor 15 , and accelerator pedal 32 .
  • the target ignition timing Adv is set in accordance with the accelerator opening Apo and engine speed Ne by referring to a map and output to the ignition plug 8 .
  • the target ignition timing is selected at more retard side than a compressive-self-ignition timing.
  • FIG. 25 is an illustration for a heater operation by the catalyst heater control section 122 .
  • the catalyst heater control section 122 is changed by the catalyst-heater-operation flag fpheat to operate the catalyst heater 35 when the catalyst-heater-operation flag fpheat is set to 1 and stop the operation of the catalyst heater 35 when the flag is not set to 1.
  • FIGS. 26 to 31 show the engine control equipment of the third embodiment, which is the same as the engine control equipments 100 and 100 A of the first and second embodiments except the configuration of the catalyst control means 150 . Therefore, the above point is described below in detail.
  • FIG. 26 shows the general configuration of an engine control system provided with the engine control equipment of the third embodiment of the present invention, in which a fuel injection valve 34 is set to a cylinder 9 of an engine 50 B.
  • the fuel injection valve 34 injects fuel in the cylinder 9 when the temperature of a catalyst 11 is a predetermined value or lower in accordance with an output signal of an engine control equipment (control unit) 100 B to activate the catalyst.
  • FIG. 27 shows a control block diagram of the control unit 100 B.
  • the catalyst control means 150 of the control unit 100 B injects surplus fuel in the explosion and exhaust strokes of an engine when the temperature of the catalyst 11 is equal to or lower than a predetermined value, causes oxidation in the cylinder 9 , exhaust pipe 10 , and catalyst 11 , and activates the catalyst 11 by the heat due to the oxidation.
  • control unit 100 B is constituted of a second injection permitting section 131 which is one mode of the catalyst-state determining means 200 , a basic-fuel-injection-quantity computing section 102 , an air-fuel-ratio-correction-term computing section 103 , a target-opening computing section 104 A, a throttle-opening control section 105 , a target-fresh-air-quantity and EGR-quantity computing section 106 A, a target-exhaust-valve-opening-timing computing section 107 , a target-exhaust-valve-closing-timing computing section 108 , a target-intake-valve-opening-timing computing section 109 , a target-intake-valve-closing-timing computing section 110 , a target-ignition-timing computing section 111 A, and a second injection-timing and injection-quantity computing section 132 which is one mode of the catalyst activating means 201 .
  • Each control block is described
  • FIG. 28 is a control block diagram of the catalyst control means 150 in the control unit 100 B.
  • the catalyst control means 150 conceptually includes the second injection permitting section 131 and explosion-stroke and exhaust-stoke injection means 132 .
  • the second injection permitting section 131 is constituted of catalyst-temperature detecting means 101 A and catalyst activating means 101 B and outputs a signal for detecting the temperature of the three-way catalyst 11 by the catalyst-temperature detecting means 101 A in accordance with an output signal of a temperature sensor 13 , determining the activation of the three-way catalyst 11 by the catalyst-activation determining means 101 B in accordance with the detected temperature, and computing the injection timing and quantity of surplus fuel in explosion and exhaust strokes in accordance with the above determination result to a second injection-timing and injection-quantity computing section 132 .
  • FIGS. 29 and 30 are illustrations for permission of injection of second fuel by the second injection permitting section 131 , in which FIG. 29 shows the relation between the injection timing and the exhaust-gas temperature in the explosion and exhaust strokes. From FIG. 29, it is found that the peak of an exhaust-gas temperature is present in the explosion stroke when surplus fuel is injected in the explosion (expansion) and exhaust strokes (shown by a continuous line) compared to the case in which no surplus fuel is injected (shown by a broken line) and the exhaust-gas temperature rises until the exhaust stroke. This is because the fuel injected in the above strokes is oxidized in the exhaust pipe 10 or catalyst 11 and the exhaust-gas temperature is raised by the heat of the oxidation.
  • the second injection permitting section 131 for permitting the injection of the surplus fuel determines the permission of compressive self-injection in accordance with the downstream temperature TmpCat of the catalyst 11 as shown in FIG. 30. Specifically, when the condition of the following expression (11) is effectuated, the section 131 sets a second injection permit flag fpti 2 to 0 but it does not second injection in the expansion and exhaust strokes. However, when the condition is not effectuated, the section 131 sets the second injection permit flag ftpi 2 to 1 and performs second injection.
  • the expression (11) shows a catalyst activation state and the catalyst becomes inactive when the catalyst temperature TmpCat is lower than TmCatAuto.
  • the basic-fuel-injection-quantity computing section 102 , air-fuel-ratio-correction-term computing section 103 , throttle-opening control section 105 , target-exhaust-valve-opening-timing computing section 107 , target-exhaust-valve-closing-timing computing section 108 , target-intake-valve-opening-timing computing section 109 , and target-intake-valve-closing-timing computing section 110 are the same as those of the first embodiment and the catalyst-temperature detecting means 101 A, target-fresh-air-quantity and EGR-quantity computing section 106 A, and target-ignition-timing computing section 111 A are the same as those of the second embodiment.
  • FIG. 31 is an illustration for calculation of the second fuel-injection quantity and fuel-injection timing by the second injection-timing and injection-quantity computing section 132 .
  • the second injection-timing and injection-quantity computing section 132 computes the second fuel-injection quantity and fuel-injection timing in accordance with signals of the crank-angle sensor 15 and accelerator pedal 32 .
  • the second injection quantity is set in accordance with the accelerator opening Apo and engine speed Ne by referring to a map and changed in accordance with the value of the second injection permit flag fpti 2 to decide a second injection quantity TI 2 and moreover, a second injection timing IT 2 is decided in accordance with the accelerator opening Apo and engine speed Ne by referring to a map and they are output to the fuel injection valve 34 by which the second injection is performed.
  • a technique is used which experientially decides the value of a map in accordance with the performance of an engine.
  • the engine control equipment of this embodiment has the catalyst control means 150 for accelerating the activation of the three-way catalyst 11 in accordance with output signals of the temperature sensor 13 at the downstream side of the three-way catalyst 11 and the like
  • the catalyst control means 150 of the engine control equipment 100 of the first embodiment has the compressive-self-ignition-combustion permitting section 101 for inhibiting the combustion according to compressive self-ignition, changes the combustion to the combustion according to spark ignition to perform the combustion when the temperature of the catalyst 11 is equal to or lower than a predetermined value and the compressive-self-ignition inhibiting means 111
  • the compressive-self-ignition-combustion permitting section 101 is constituted of the catalyst-temperature detecting means 101 A for detecting the temperature of the three-way catalyst 11 and the catalyst-activation determining means 101 B for determining the activation of the three-way catalyst 11 in accordance with the temperature to change the combustion to the combustion according to spark ignition whose exhaust-gas temperature is higher than that of the compressive-self-ignition combustion
  • the catalyst control means 150 of the engine control equipment 100 A of the second embodiment has the heater-operation permitting section 121 for driving the catalyst heater 35 when the temperature of the catalyst 11 is equal to or lower than a predetermined value and the catalyst-temperature raising means 122 .
  • the heater-operation permitting section 121 is constituted of the catalyst-temperature detecting means 101 a for detecting the temperature of the three-way catalyst 11 and the catalyst-activation determining means 101 B for determining the activation of the three-way catalyst 11 in accordance with the detected temperature, which changes to the driving of the catalyst heater 35 in accordance with an output signal of the temperature sensor 13 to activate the catalyst 11 . Therefore, it is possible to shorten the time from start of an engine up to activation of a catalyst and prevent exhaust gas from deteriorating even for a combustion system by a compressive-self-ignition engine.
  • the catalyst control means 150 of the engine control equipment 100 B of the third embodiment has the second injection permitting section 131 for injecting surplus fuel in the explosion and exhaust stroke of an engine when the temperature of the catalyst 11 is equal to or lower than a predetermined value and the explosion-and-exhaust-stroke injecting means 132 .
  • the second injection permitting section 131 is constituted of the catalyst-temperature detecting means 101 A for detecting the temperature of the three-way catalyst 11 and the catalyst-activation determining means 101 B for determining the activation of the three-way catalyst 11 in accordance with the detected temperature, which causes oxidation in the cylinder 9 , exhaust pipe 10 , and catalyst 11 in accordance with an output signal of the temperature sensor 13 and activate the catalyst 11 by the heat of the oxidation. Therefore, also in this case, it is possible to shorten the time from start of an engine up to activation of a catalyst and prevent exhaust gas from deteriorating even for a combustion system by a compressive-self-ignition engine.
  • the catalyst-temperature detecting means 101 A detects the temperature of the three-way catalyst 11 from the temperature sensor 13 set to the downstream side of the catalyst 11 .
  • the engine control equipment of each of the above embodiments accelerates the activation of the catalyst 11 in accordance with output signals of the A/F sensor 2 set to the upstream side of the three-way catalyst 11 and the temperature sensor 13 set to the downstream side of the catalyst 11 .
  • the temperature sensors 13 A and 13 B set to the upstream side and downstream side of the three-way catalyst 11 . In this case, it is possible to more-accurately detect the temperature of the catalyst 11 .
  • FIG. 33 it is permitted to use a configuration having the three-way catalyst 11 or NOx catalyst 36 at the downstream side of the three-way catalyst 11 , that is, a configuration having a plurality of three-way catalysts or a configuration obtained by combining a three-way catalyst with an NOx catalyst. Furthermore, it is permitted to use a configuration obtained by combining a three-way catalyst with an HC adsorption catalyst. Also in this case, the same advantage can be obtained.
  • the intake and exhaust valves 27 and 28 respectively use a lift-timing-control electromagnetic driving valve, it is also permitted to apply the valves to a phase-control-type driving valve or it is permitted to use an engine control system not using the electric-control throttle valve 3 .
  • control by only the intake valve 27 and exhaust valve 28 can be executed.
  • an engine control equipment of the present invention determines whether a catalyst is active in a compressive-self-ignition engine and when the catalyst is inactive, quickly activates the catalyst. Therefore, it is possible to shorten the time from start of an engine up to activation of a catalyst and control deterioration of exhaust gas.

Abstract

An engine control equipment capable of activating a catalyst and preventing exhaust gas from deteriorating in order to early perform combustion by compressive self-ignition.
The engine control equipment is an engine control equipment including a catalyst for burning a mixed gas in a combustion chamber by compressive self-ignition and purifying exhaust-gas components in the combustion chamber and means for controlling the catalyst, in which the means for controlling the catalyst is provided with means for determining the activation of the catalyst and means for activating the catalyst in accordance with a determination result by the means for determining the activation of the catalyst.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to an engine control equipment, particularly to a control equipment of a compressive self-ignition engine for accelerating activation of a catalyst. [0001]
  • A car engine has such main problems as improvement of fuel consumption and reduction of exhaust gas. A lean burn engine has recently become a mainstream, which uses a combustion system according spark ignition to improve the fuel consumption by operating an air-fuel ratio at a lean in order to reduce a pump loss. [0002]
  • However, though the spark-ignition-type lean burn engine can reduce the pump loss by making an air-fuel ratio leaner, there is a lean limit due to an ignition error according to the theory of the engine because the engine uses combustion according to flame spread. [0003]
  • However, there is a combustion-type engine according to the compressive self-ignition of making a fuel-air mixture spontaneously ignite in a combustion chamber instead of using the spark ignition by a spark plug. The compressive-self-ignition engine causes a combustion reaction everywhere in the combustion chamber. Therefore, it is possible to improve the fuel consumption and thereby reduce NOx because the engine has a lean limit higher than that of the spark-ignition type and moreover, there is no local high-temperature portion and the combustion temperature is low. [0004]
  • Moreover, in the case of a usual engine, it is generally performed to make an exhaust pipe of the engine oxidize hydrocarbon (HC) and carbon monoxide (CO) contained in the exhaust gas discharged from a combustion chamber and set a three-way catalyst having a function for reducing an nitrogen oxide (NOx). In the case of the three-way catalyst, the NOx reducing function of the three-way catalyst hardly functions in a lean operation as shown by the purifying performance of three components of a three-way catalyst to the air-fuel ratio in FIG. 34. Therefore, an NOx catalyst may be set which occludes or adsorbs NOx. [0005]
  • In the case of a compressive-self-ignition-combustion-type engine, it is necessary to greatly increase the combustion chamber in pressure and temperature. Therefore, various arts about an engine control equipment for changing the spark ignition type and the compressive self-ignition type in accordance with an engine operating condition in which spark ignition using a spark plug is performed when warming-up of the engine is not completed and the compressive self-ignition combustion is performed in the cases other than the above case or the compressive self-ignition combustion is performed when the compressive self-ignition combustion can be made and an ignition timing can be properly obtained are disclosed (refer to official gazettes of Japanese Patent Laid-Open Nos. 157220/1987, 6435/1999, 336600/1999, 62589/1999, 257108/1999, 166435/1999, and 294152/1999). [0006]
  • Moreover, by considering that the purifying performance of an exhaust gas by a three-way catalyst is lowered when an engine is cooled, various arts of an engine control equipment for accelerating activation of the catalyst are disclosed (refer to official gazettes of Japanese Patent Laid-Open Nos. 4584/2000 and 336574/1999). [0007]
  • As shown in FIG. 35, the above three-way catalyst shows HC, CO, and NOx purifying functions when an exhaust gas has a predetermined temperature or higher. However, the catalyst has a characteristic that it cannot completely purify the exhaust gas when the exhaust gas has a temperature lower than the predetermined temperature. Therefore, it is necessary to keep the exhaust gas at a predetermined temperature or higher in order to maintain the above activated state. That is, as shown in FIG. 36, in the case of the three-way catalyst set to the exhaust pipe, the exhaust-gas purifying performance of the catalyst is deteriorated in the period from the time when an engine is started until the time when an exhaust gas reaches a predetermined temperature or higher. This is because the engine has the temperature equal to the then outside-air temperature when it is started and the temperature of its exhaust gas is also low, and the catalyst is activated after it is heated by the exhaust gas. [0008]
  • Therefore, when setting a catalyst to the exhaust pipe, it is necessary to shorten the time from start of an engine up to activation of the catalyst, that is, any means for activating the catalyst is necessary. [0009]
  • The above mentioned is particularly necessary for a combustion-type engine according to compressive self-ignition. The is because in the case of the combustion type according to compressive self-ignition, the combustion temperature is lower than the case of the spark ignition type and thereby, the effect of raising the temperature of a catalyst by heating an exhaust gas is small. Therefore, exhaust-gas deterioration becomes a large problem at start of the engine. [0010]
  • That is, the present inventor obtains the new knowledge that when setting a catalyst to the exhaust pipe of a combustion-type engine according to compressive self-ignition, it is possible to shorten the time from start of the engine up to activation of the catalyst and therefore, it is possible to prevent exhaust-gas deterioration also in the case of the combustion type according to compressive self-ignition. [0011]
  • However, though the above prior art has means for changing the spark-ignition type and the compressive self-ignition type, the engine control equipments disclosed in the official gazettes of Japanese Patent Laid-Open Nos. 157220/1987 and 6435/1999 notice only a combustion state, determine directly or indirectly whether the combustion state allows compressive self-ignition, and permit the combustion by compressive self-ignition when the combustion state allows the compressive self-ignition. Therefore, when combustion by compressive self-ignition can be made even if a catalyst is inactivated, compressive self-ignition combustion may be performed. Moreover, other prior arts do not particularly consider activating a catalyst in order to early perform the combustion by compressive self-ignition though they respectively control the opening/closing timing of an intake or exhaust valve in accordance with the operation state or heat a catalyst in order to reduce smoke and NOx at the same time. [0012]
  • The present invention is made to solve the above problems and its object is to provide an engine control equipment capable of preventing an exhaust gas from deteriorating b activating a catalyst in order to early perform the combustion by compressive self-ignition. [0013]
  • To achieve the above object, an engine control equipment of the present invention is an engine control equipment basically having a catalyst for burning a mixed gas in a combustion chamber by compressive self-ignition and purifying exhaust-gas components in the combustion chamber. The control equipment is provided with means for controlling the catalyst and the means for controlling the catalyst is provided with means for determining the activated state of the catalyst and means for activating the catalyst in accordance with a determination result of the means for determining the activated state of the catalyst. [0014]
  • In the case of the engine control equipment of the present invention constituted as described above, the means for activating a catalyst accelerates the activation of the catalyst in accordance with a determination result of a catalyst state. Therefore, it is possible to shorten the time from start of an engine up to activation of a catalyst, prevent an exhaust gas for activating the catalyst from deteriorating, and improve the reliability of the engine. [0015]
  • Moreover, in the case of a specific mode of an engine control equipment of the present invention, the means for determining the activated state of the catalyst is provided with means for detecting or estimating the temperature of the catalyst and means for determining the activation of the catalyst. The means for activating the catalyst controls the operation state of an engine when the detected or estimated temperature of the catalyst is equal to or lower than a predetermined value. [0016]
  • In the case of another mode of the engine control equipment of the present invention, the means for activating the catalyst inhibits the combustion by the compressive self-ignition and performs the combustion by spark ignition when the detected or estimated temperature of the catalyst is equal to or lower than a predetermined value. [0017]
  • In the case of still another mode of the engine control equipment of the present invention, the means for activating the catalyst drives a heater for the catalyst when the detected or estimated temperature of the catalyst is equal to or lower than a predetermined value. [0018]
  • In the case of still another mode of the engine control equipment of the present invention, the means for activating the catalyst injects a fuel at the timing other than usual fuel injection when the detected or estimated temperature of the catalyst is equal to or lower than the predetermined value and the fuel injection timing coincides with the explosion or exhaust stroke of the engine. [0019]
  • Moreover, an engine control equipment of the present invention is controlled so as to early perform the combustion by the compressive self-ignition when a temperature detected by a temperature sensor provided for the upstream or downstream side of the above catalyst shows a predetermined value or higher and the catalyst uses a three-way catalyst or NOx catalyst set to an exhaust pipe.[0020]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a general block diagram of an engine control system provided with an engine control equipment of first embodiment of the present invention; [0021]
  • FIG. 2 is an internal block diagram of the engine control equipment in FIG. 1; [0022]
  • FIG. 3 is a control block diagram of catalyst control means of the engine control equipment in FIG. 1; [0023]
  • FIG. 4 is a control block diagram of the engine control equipment in FIG. 1; [0024]
  • FIG. 5 is a control block diagram of the catalyst control means in FIG. 4; [0025]
  • FIG. 6 is an illustration of the compressive-self-ignition-combustion permitting section in FIG. 4; [0026]
  • FIG. 7 is an illustration of the basic-fuel-injection-quantity computing section in FIG. 4; [0027]
  • FIG. 8 is an illustration of the air-fuel-correction-term computing section in FIG. 4; [0028]
  • FIG. 9 is an illustration of the target-opening computing section in FIG. 4; [0029]
  • FIG. 10 is an illustration of the throttle-opening control section in FIG. 4; [0030]
  • FIG. 11 is an illustration of the target-fresh-air-quantity and EGR-quantity computing section in FIG. 4; [0031]
  • FIG. 12 is an illustration of the target-exhaust-valve-opening-timing computing section in FIG. 4; [0032]
  • FIG. 13 is an illustration of the target-exhaust-valve-closing-timing computing section in FIG. 4; [0033]
  • FIG. 14 is an illustration of the target-intake-valve-opening-timing computing section in FIG. 4; [0034]
  • FIG. 15 is an illustration of the target-intake-valve-closing-timing computing section in FIG. 4; [0035]
  • FIG. 16 is an illustration of the target-ignition-timing computing section in FIG. 4; [0036]
  • FIG. 17 is a general block diagram of an engine control system provided with an engine control equipment of second embodiment of the present invention; [0037]
  • FIG. 18 is an internal block diagram of the engine control equipment in FIG. 17; [0038]
  • FIG. 19 is a control block diagram of the engine control equipment in FIG. 17; [0039]
  • FIG. 20 is a control block diagram of the catalyst control means in FIG. 19; FIG. 21 is an illustration of the heater-operation permitting section in FIG. 19; [0040]
  • FIG. 22 is an illustration of the target-opening computing section in FIG. 19; [0041]
  • FIG. 23 is an illustration of the target-fresh-air-quantity and EGR-quantity computing section in FIG. 19; [0042]
  • FIG. 24 is an illustration of the target-ignition-timing computing section in FIG. 19; [0043]
  • FIG. 25 is an illustration of the catalyst-heater control section in FIG. 19; [0044]
  • FIG. 26 is a general block diagram of an engine control system provided with an engine control equipment of third embodiment of the present invention; [0045]
  • FIG. 27 is a control block diagram of the engine control equipment in FIG. 26; [0046]
  • FIG. 28 is a control block diagram of the catalyst control means in FIG. 26; [0047]
  • FIG. 29 is an illustration showing the relation between injection timing and exhaust-gas temperature in explosion and exhaust strokes; [0048]
  • FIG. 30 is an illustration of the second injection permitting section in FIG. 27; [0049]
  • FIG. 31 is an illustration of the second injection-timing and injection-quantity computing section in FIG. 27; [0050]
  • FIG. 32 is a block diagram of the engine of another embodiment; [0051]
  • FIG. 33 is a block diagram of the engine of still another embodiment; [0052]
  • FIG. 34 is a characteristic diagram of a three-way catalyst to an air-fuel ratio; [0053]
  • FIG. 35 is a characteristic diagram of a three-way catalyst to temperature; and [0054]
  • FIG. 36 is an illustration showing the change of activation temperature of a three-way catalyst and HC quantity passing through the three-way catalyst.[0055]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Embodiments of an engine control equipment of the present invention are described below in detail by referring to the accompanying drawings. [0056]
  • FIG. 1 shows a general configuration of an engine control system provided with an engine control equipment of the first embodiment of the present invention. An [0057] engine 50 is constituted of a multiple cylinder 9 and an intake pipe 6 and an exhaust pipe 10 are connected to each cylinder 9.
  • An [0058] ignition plug 8 is set to each cylinder 9 and a fuel injection valve 7 is set to the intake pipe 6 and moreover, an air cleaner 1, an air-flow sensor 2, an electric-control throttle valve 3, and an ISC bypass 4 for bypassing the throttle valve 3 are set to their proper positions at the upstream side of the intake pipe 6. Moreover, an exhaust-gas circulation path (EGR path) 18 is set which bypasses the cylinder 9 and communicates the intake pipe 6 with the exhaust pipe 10 and an EGR valve 19 is set to the EGR path 18.
  • Moreover, a three-[0059] way catalyst 11 is set to the exhaust pipe 10, an A/F sensor 12 is set to the upstream side of the three-way catalyst 11, and a temperature sensor 13 is set to the downstream side of the three-way catalyst 11. Furthermore, a throttle-opening sensor 17 is set to the portion where the throttle valve 3 is set, a water-temperature sensor 14 is set to the lateral face of the cylinder 9, and a crank-angle sensor 15 is set to the crank shaft portion.
  • The air coming from the outside of the [0060] engine 50 is supplied into a combustion chamber 16 after passing through the air cleaner 1, the intake pipe 6, and an intake valve 27 by lift-timing control electromagnetic driving. The incoming airflow is mainly adjusted by the throttle valve 3. However, the airflow is adjusted by an ISC valve 5 set to the bypass 4 under idling and the engine speed is controlled by the adjustment. Moreover, an incoming airflow is detected by the airflow sensor 2, a signal is output from the crank-angle sensor 15 every degree of rotation angle of the crankshaft and the cooling-water temperature of the engine 50 is detected by the water-temperature sensor 14.
  • An engine control equipment [0061] 100 (control unit) is set to the engine 50, the control unit 100 receives a signal of each of the above sensors and computes the signal and outputs a control signal to each of the above operation units.
  • That is, signals of the air-[0062] flow sensor 2, throttle-opening sensor 17, crank-angle sensor 15, water-temperature sensor 14, A/F sensor 12, and temperature sensor 13, and a signal of an accelerator pedal 32 are sent to the control unit 100, operation states of the engine 50 are obtained from these sensor outputs, and the basic injection quantity of a fuel and the main control input of ignition timing are optimally computed. The fuel injection quantity computed by the control unit 100 is converted to a valve-opening pulse signal and the signal is sent to the fuel injection valve 7.
  • Moreover, in the [0063] control unit 100, a predetermined ignition timing is computed and a driving signal is output to the ignition plug 8 from the control unit 100 so that ignition is performed at the above ignition timing. Furthermore, an internal exhaust-gas recirculation quantity and a fresh-air quantity are controlled by using the intake valve 27 and exhaust valve 28 according to lift-timing-control electromagnetic driving and the pressure and temperature in the combustion chamber 16 are controlled so that self-ignition is performed at a predetermined timing.
  • The fuel injected from the [0064] fuel injection valve 7 is mixed with air supplied from the intake pipe 6 and enters the combustion chamber 16 of each cylinder 9 to form a mixed gas. The mixed gas is ignited and exploded by compressive self-ignition or a spark generated by the spark plug 8 and the energy thus generated serves as a motive-power source for the rotational driving force of the engine 50.
  • The exhaust gas after explosion in the [0065] combustion chamber 16 is supplied to the three-way catalyst 11 through the exhaust valve 28 according to lift-timing-control electromagnetic driving and the exhaust pipe 10. Exhaust-gas components of HC, CO, and NOx are purified by the three-way catalyst 11 and then, the exhaust gas is discharged to the outside of the engine 50. However, some of the exhaust gas is recirculated to the intake pipe 6 through the EGR path 18. Recirculation of the exhaust gas is controlled by the EGR valve 19 in accordance with a signal sent from the control unit 100.
  • The A/[0066] F sensor 12 has a linear output characteristic to the oxygen concentration in exhaust gas and the relation between oxygen concentration in exhaust gas and air-fuel ratio becomes almost linear. Therefore, it is possible to obtain the air-fuel ratio at the upstream side of the three-way catalyst 11 by the A/F sensor 12. Moreover, the temperature sensor 13 makes it possible to detect the exhaust-gas temperature at the downstream side of the three-way catalyst 11.
  • The [0067] control unit 100 calculates the air-fuel ratio at the upstream side of the three-way catalyst 11 in accordance with a signal of the A/F sensor 12 and performs the feedback (F/B) control for sequentially correcting the above basic injection quantity so that the air-fuel ratio of the mixed gas in the combustion chamber 16 becomes equal to a target air-fuel ratio. Moreover, the throttle valve 3, intake valve 27, and exhaust valve 28 are controlled so that they respectively have their target opening, the ignition timing of the spark plug 8 is controlled so as to coincide with a target ignition timing, and activation of the three-way catalyst 11 is accelerated by catalyst control means 150 to be mentioned layer in accordance with a signal of the temperature sensor 13 and the like.
  • FIG. 2 shows the inside of the [0068] control unit 100.
  • Output values of the A/[0069] F sensor 12, temperature sensor 13, throttle-opening sensor 17, air-flow sensor 2, crank-angle sensor 15, and water-temperature sensor 14 are input to the control unit 100, signal processing such as noise removal is applied to the output values by an input circuit 23, and then the output values are sent to an input/output port 24. The value of the input/output port 24 is stored in a RAM 22 and computed by a CPU 20. A control program in which the content of arithmetic processing is described is previously written in a ROM 21.
  • A value showing each actuator working value computed in accordance with the control program is stored in the [0070] RAM 22 and then, sent to the input/output port 24. Then, as a working signal of the spark plug 8, an on/off signal is set which is turned on when the primary coil of an ignition output circuit 25 is electrified and turned off when the coil is not electrified. The ignition timing is the time when the on/off signal changes from on- to off-states. The signal for the spark plug 8 set to the input/output port 24 is amplified so as to have a sufficient energy necessary for combustion by the ignition output circuit 25 and supplied to the spark plug 8. Moreover, as a driving signal of the fuel injection valve 7, an on/off signal is set which is turned on when a valve opens and turned off when the valve closes, amplified so as to have the energy enough to open the fuel injection valve 7 by a fuel-injection-valve driving circuit 26 and sent to the fuel injection valve 7. Furthermore, driving signals of electromagnetic-driving intake and exhaust valves 27 and 28 are sent to the intake and exhaust valves 27 and 28 through driving circuits 29 and 30 to open/close the valves at optional timing. Furthermore, a driving signal for realizing the target opening of the electric-control throttle valve 3 is sent to the electric-control throttle valve 3 through an electronically controlled throttle driving circuit 31.
  • Moreover, as shown in FIG. 3, the [0071] control unit 100 is provided with control means 150 for the three-way catalyst 11. The catalyst control means 150 is constituted of means 200 for determining the state of the three-way catalyst 11 in accordance with an output signal of the temperature sensor 13 or the like and means 201 for activating the three-way catalyst 11 in accordance with the determination result. The catalyst-state determining means 200 is constituted of catalyst-temperature detecting means 101A for detecting the temperature of the three-way catalyst 11 and catalyst-activation determining means 101B for determining the activation of the three-way catalyst 11 to activate the catalyst 11 in accordance with the activated state of the three-way catalyst 11, achieve early compressive self-ignition, and further prevent exhaust gas from deteriorating.
  • The control program written in the [0072] ROM 21 is described below.
  • FIG. 4 shows a control block diagram of the [0073] control unit 100. The catalyst control means 150 of the control unit 100 inhibits the combustion by compressive self-ignition and performs combustion by changing the above combustion to the combustion by spark ignition to activate the catalyst 11 by the exhaust heat of the combustion by the spark ignition. Moreover, the control unit 100 is constituted of a compressive-self-ignition-combustion permitting section 101 which is one mode of the catalyst-state determining means 200, a basic-fuel injection-quantity computing section 102, an air-fuel-ratio correction-term computing section 103, a target-opening computing section 104, a throttle-opening control section 105, a target-fresh-air-quantity and EGR-quantity computing section 106, a target-exhaust-valve-opening-timing computing section 107, a target-exhaust-valve-closing-timing computing section 108, a target-intake-valve-opening-timing computing section 109, a target-intake-valve-closing-timing computing section 110, and a target-ignition-timing computing section 111 which is one mode of the catalyst activating means 201. Each control block is described below in detail.
  • FIG. 5 is a control block diagram of the catalyst control means [0074] 150 in the control unit 100.
  • The catalyst control means [0075] 150 conceptually includes the compressive self-ignition-combustion permitting section 101 and the target-ignition-timing computing section 111 for computing a target ignition timing by performing the spark ignition, which is constituted of the catalyst-temperature detecting means 101A and catalyst-activation determining means 101B, detects the temperature of the three-way catalyst 11 by the catalyst-temperature detecting means 101A, determines the activation of the three-way catalyst 11 by the catalyst-temperature detecting means 101B, and outputs a signal for executing the combustion not by compressive self-ignition but by spark ignition by the compressive-self-ignition inhibiting means 111 to the target-opening computing section 104, target-fresh-air-quantity and EGR-quantity computing section 106, and target-ignition-timing computing section 111.
  • FIG. 6 is an illustration for permission of the compressive self-ignition by the compressive-self-ignition-[0076] combustion permitting section 101, in which the compressive-self-combustion permitting section 101 determines whether to permit compressive self-ignition in accordance with a downstream temperature Cat of the catalyst 11, an accelerator opening Apo, and an engine speed Ne. Specifically, when all of the following conditions (1) to (3) are effectuated, the section 101 sets a compressive-self-ignition permit flag fpauto to 1 to perform compressive-self-ignition combustion. However, when not all of the conditions (1) to (3) are effectuated, the section 101 inhibits compressive self-ignition and sets the compressive-self-ignition permit flag fpauto to 0 to change the compressive self-ignition to spark ignition.
  • TmpCat≧TmpCatAuto  (1)
  • Apo≦ApoAuto  (2)
  • Ne≦NeAuto  (3)
  • In the above expressions, TmpCatAuto denotes a set value of downstream temperature, ApoAuto denotes a set value of accelerator opening, and NeAuto denotes a set value of engine speed which are stored in the [0077] ROM 21. Then, the expression (1) shows the activated state of a catalyst, in which a catalyst becomes the inactivated state when the catalyst temperature TmpCat is lower than TmpCatAuto.
  • FIG. 7 is an illustration of the calculation of a basic fuel-injection quantity by the basic-fuel-injection-[0078] quantity computing section 102. The basic-fuel-injection-quantity computing section 102 computes a fuel injection quantity for simultaneously realizing a target torque and a target air-fuel ratio under an optional condition in accordance with signals of an incoming air quantity Qa by the air-flow sensor 2, an engine speed Ne, and an accelerator pedal 32. Specifically, the section 102 computes a basic fuel-injection quantity Tp as shown by the following expression (4).
  • Tp=K×Qa/(Ne×Cyl)  (4)
  • In the above expression, k denotes a constant value for adjusting the incoming air quantity Qa so as to always realize a theoretical air-fuel ratio and Cyl denotes the number of [0079] cylinders 9.
  • FIG. 8 is an illustration of the calculation of an air-fuel-ratio correction term by the air-fuel ratio-correction-[0080] term computing section 103. The air-fuel-ratio correction-term computing section 103 performs F/B control so that an air-fuel ratio becomes equal to a theoretical air-fuel ratio under an optional operating condition in accordance with the deviation Dltabf between an actual air-fuel ratio detected by the A/F sensor 12 and a target air-fuel ratio Tabf. Specifically, an air-fuel-ratio correction term Lalpha is computed through PI control. Then, the air-fuel-ratio correction term Lalpha is multiplied by the basic-fuel-injection quantity Tp, held so that the air-fuel ratio of an engine always becomes equal to a theoretical air-fuel ratio, and output to the fuel injection valve 7.
  • In general, to cause compressive self-ignition, it is necessary to control the pressure and temperature in the [0081] cylinder 9 to predetermined values at a predetermined crank angle and simultaneously realize a torque intended by a driver. Therefore, this embodiment controls fresh-air quantity and internal EGR quantity by using the electric-control throttle valve 3, electromagnetic-driving-type intake valve 27, and electromagnetic-driving-type exhaust valve 28 and performs the following coordination control so that the pressure and temperature in the cylinder 9 become predetermined high values.
  • First, because a combustion air-fuel ratio is made equal to a theoretical air-fuel ratio, the above fresh-air quantity and torque are proportional to each other, that is, it is possible to control the torque by the fresh-air quantity. Therefore, the fresh-air quantity is controlled by the electric-[0082] control throttle valve 3 and electromagnetic-driving-type intake valve 27 and the pressure and temperature in the cylinder 9 are controlled by the remaining gas in the cylinder 9, that is, the internal EGR quantity is controlled by the electromagnetic-driving-type exhaust valve 28.
  • Moreover, because compressive-self-ignition combustion is different from spark-ignition combustion in requested EGR quantity, a target internal EGR quantity is changed by the value of the compressive-self-ignition permit flag fpauto and thereby, the opening/closing timing of the [0083] intake valve 27 for taking a requested fresh-air quantity into the cylinder 9 in accordance with an internal EGR quantity is changed.
  • That is, a fresh-air quantity and an internal EGR quantity are controlled so that the following expressions (5) and (6) are effectuated under an optional operating condition.[0084]
  • ηa,a=η,s (ma,a=ma,s)  (5)
  • ηe,a=η,s (me,a=me,s)  (6)
  • In the above expressions, ηa,a denotes the filling efficiency of fresh-air quantity under compressive-self-ignition combustion, ηa,s denotes the filling efficiency of fresh-air quantity under spark-ignition combustion, ηe,a denotes the filling efficiency of internal EGR quantity under compressive-self-ignition combustion, ma,a denotes fresh-air quantity under compressive-self-ignition combustion, ma,s denotes a fresh-air mass under spark-ignition combustion, me,a denotes an internal EGR mass under compressive-self-ignition combustion, and me,s denotes internal EGR mass under spark-ignition combustion. [0085]
  • Moreover, in general, because internal EGR quantity requested for compressive self-ignition is more than that under spark-ignition combustion, the following expressions (7) to (9) are effectuated.[0086]
  • ηg,a>ηg,s (mg,a>mg,s)  (7)
  • mg,a=ma,a+me,a  (8)
  • mg,s =ma,s+me,s  (9)
  • In the above expressions, ηg,a denotes the gas filling efficiency in the [0087] cylinder 9 under compressive-self-ignition combustion, ηg,s denotes the gas filling efficiency in the cylinder 9 under spark-ignition combustion, mg,a denotes the gas mass in the cylinder 9 under compressive-self-ignition combustion, and mg,s denotes the gas mass in the cylinder 9 under spark-ignition combustion. Moreover, the control unit 100 of this embodiment first decides a target internal EGR quantity and then, decides a fresh-air quantity for realizing a target torque.
  • FIG. 9 is an illustration for calculation of a target opening of the electric-[0088] control throttle valve 3 by the target-opening computing section 104. The target-opening computing section 104 computes a throttle opening for realizing a target boost under an optional operating condition in accordance with signals of the air-flow sensor 2, crank-angle sensor 15, and accelerator pedal 32 and the compressive-self-ignition permit flag fpauto. Specifically, a target boost TgBoosta for compressive self-ignition or a target boost TgBoosts for spark ignition is decided in accordance with the accelerator opening Apo and engine speed Ne by referring to a map, a target boost TgBoost is set by changing the boost TgBoosta or TgBoosts by the compressive-self-ignition permit flag fpauto, a target opening TgTvo is decided in accordance with the target boost TgBoost and engine speed Ne by referring to a map, and they are output to the throttle-opening control section 105, target-fresh-air-quantity and EGR-quantity computing section 106.
  • FIG. 10 is an illustration of the throttle-opening [0089] control section 105. The throttle-opening control section 105 performs F/B control in accordance with the actual throttle opening Tvo by the throttle-opening sensor 17 so that the opening of the electric-control throttle valve 3 becomes equal to the target opening TgTvo and the control result is output to the electric-control throttle valve 3. Though the control algorithm of this embodiment uses PI control, other position-control algorithm can be also used.
  • FIG. 11 is an illustration for calculation of a target fresh-air quantity and a filling rate by the target-fresh-air-quantity and EGR-[0090] quantity computing section 106. The target-fresh-air-quantity and EGR-quantity computing section 106 computes a target fresh-air quantity and a target EGR quantity for realizing a target torque, a target in-cylinder-9 temperature, and a target in-cylinder-9 pressure under an optional condition in accordance with the accelerator pedal 32, target boost TgBoost, and compressive-self-ignition permit flag fpauto. Specifically, a target fresh-air quantity TgAir is decided in accordance with the accelerator opening Aoi and engine speed Ne by referring to a map and output to the target-intake-valve-opening-timing computing section 109 and target-intake-valve-closing-timing computing section 110.
  • Moreover, a target EGR quantity under compressive self-ignition or a target EGR quantity under spark ignition is decided in accordance with the accelerator opening Apo and engine speed Ne by referring to a map and changed by he value of the compressive-self-ignition permit flag fpauto to set a target EGR quantity TgEgr. Moreover, the differential pressure DeltaP between an in-intake-valve-[0091] 6 pressure and an in-cylinder-9 pressure is decided in accordance with the target EGR quantity TgEgr and engine speed Ne by referring to a map and output to the target-intake-valve-opening-timing computing section 109 and target-intake-valve-closing-timing computing section 110. The above target EGR quantity is changed in accordance with the value of the compressive-self-ignition permit flag fpauto because requested EGR quantities are different from each other under compressive-self-ignition combustion and spark-ignition combustion.
  • Furthermore, a target gas quantity TgGas is obtained in accordance with the target EGR quantity TgEgr and target fresh-air quantity TgAir, a filling efficiency ItaGas is decided in accordance with the maximum gas quantity MaxGas and a target gas quantity TgGas obtained from the engine speed Ne and output to the target-exhaust-valve-opening-[0092] timing computing section 107 and target-exhaust-valve-closing-timing computing section 108.
  • FIG. 12 is an illustration for calculation of an opening timing by the target-exhaust-valve-opening-[0093] timing computing section 107. The target-exhaust-valve-opening-timing computing section 107 computes the opening timing of an exhaust valve for realizing the target EGR quantity TgEgr in accordance with the filling efficiency ItaGas and engine speed Ne. Specifically, a target-exhaust-valve opening timing TgEvo is decided in accordance with the filling efficiency ItaGas and engine speed Ne by referring to a map and output to the electromagnetic-driving-type exhaust valve 28.
  • FIG. 13 is an illustration for calculation of a closing timing by the target-exhaust-vale-closing-[0094] timing computing section 108. The target-exhaust-vale-closing-timing computing section 108 computes the closing timing of an exhaust valve for realizing the target EGR quantity TgEgr in accordance with the filling efficiency ItaGas and engine speed Ne. Specifically, a target exhaust-valve closing timing TgEvc is decided in accordance with the filling efficiency ItaGas and engine speed Ne by referring to a map and output to the electromagnetic-driving-type exhaust valve 28.
  • FIG. 14 is an illustration for calculation of an opening timing by the target-intake-valve-opening-[0095] timing computing section 109. The target-intake-valve-opening-timing computing section 109 computes the opening timing of an intake valve for realizing the target fresh-air quantity TgAir in accordance with the target fresh-air quantity TgAir and differential pressure DeltaP. Specifically, a target-intake-valve opening timing TgIvc is decided in accordance with the target fresh-air quantity TgAir and differential pressure DeltaP by referring to a map and output to the electromagnetic-driving-type intake valve 27.
  • FIG. 15 is an illustration for calculation of a closing timing by the target-intake-valve-closing-[0096] timing computing section 110. The target-intake-valve-closing-timing computing section 110 computes the closing timing of an intake valve for realizing the target fresh-air quantity TgAir in accordance with the target fresh-air quantity TgAir and differential pressure DeltaP. Specifically, a target-intake-valve closing timing TgIvc is decided in accordance with the target fresh-air quantity TgAir and differential pressure DeltaP by referring to a map and output to the electromagnetic-driving-type intake valve 27.
  • FIG. 16 is an illustration for calculation of a target ignition timing by the target-ignition-[0097] timing computing section 111. The target-ignition-timing computing section 111 computes an optimum ignition timing under an optional operating condition in accordance with signals of the air-flow sensor 2, crank-angle sensor 15, and accelerator pedal 32 and the compressive-self-ignition permit flag fpauto. Specifically, the target boost TgBoosta under compressive self-ignition or TgBoosts under spark ignition is decided in accordance with the accelerator opening Apo and engine speed Ne by referring to a map and changed by the compressive-self-ignition permit flag fpauto to set a target ignition timing Adv and the timing Adv is output to the spark plug 8. Moreover, ignition can be performed preparing for a misfire even under compressive self-ignition combustion. In this case, a target ignition timing is selected at more retard side than a self-ignition timing.
  • FIGS. [0098] 17 to 25 show an engine control equipment of second embodiment which is the same as the engine control equipment of the first embodiment except the configuration based on the catalyst control means 150. Therefore, the above point is described below in detail.
  • FIG. 17 shows the general configuration of an engine control system provided with the engine control equipment of the second embodiment of the present invention, in which a three-[0099] way catalyst 11 is set to an exhaust pipe 10 of an engine 50A, an A/F sensor 12 is set to the upstream side of the three-way catalyst 11, and a temperature sensor 13 is set to the downstream side of the three-way catalyst 11. Moreover, a catalyst heater 35 is set to a proper position of the three-way catalyst 11. The catalyst heater 35 is operated in accordance with an output signal of an engine control equipment (control unit) 100A when the temperature of the catalyst 11 is equal to or lower than a predetermined value to activate the catalyst. In FIG. 18, a catalyst-heater driving circuit 33 is provided as shown by an internal block diagram of the control unit 100A.
  • FIG. 19 shows a control block diagram of the [0100] control unit 100A in which the catalyst control means 150 drives the catalyst heater 35 when the temperature of the catalyst 11 is equal to or lower than a predetermined value to activate the catalyst 11 by the heat of the heater 35. Moreover, the control unit 100A is constituted of a heater-operation permitting section 121 which is one mode of the catalyst-state determining means 200, a basic-fuel-injection-quantity computing section 102, an air-fuel-ratio-correction-term computing section 103, a target-opening computing section 104A, a throttle-opening control section 105, a target-fresh-air-quantity and EGR-quantity computing section 106A, a target-exhaust-valve-opening-timing computing section 107, a target-exhaust-valve-closing-timing computing section 108, a target-intake-valve-opening-timing computing section 109, a target-intake-valve-closing-timing computing section 110, a target-ignition-timing computing section 11A, and a catalyst-heater control section 122 which is one mode of the catalyst activating means 201. Each control block is described below in detail.
  • FIG. 20 is a control block diagram of the catalyst control means [0101] 150 in the control unit 100A.
  • The catalyst control means [0102] 150 conceptually includes the heater-operation permitting section 121 and the catalyst-temperature raising means 122 for driving-controlling the catalyst heater 35, which is constituted of the catalyst-temperature detecting means 101A and catalyst-activation determining means 101B and which detects the temperature of the three-way catalyst 11 by the catalyst-temperature detecting means 101A in accordance with an output signal of the temperature sensor 13, determines the activation of the three-way catalyst 11 by the catalyst-activation determining means 101B in accordance with the detected temperature, and outputs a signal for executing heater operations to the catalyst-heater control section 122 in accordance with the above determination result.
  • FIG. 21 is an illustration for permission of a heater operation by the heater-[0103] operation permitting section 121, in which the heater-operation permitting section 121 determines permission of compressive self-ignition in accordance with the downstream temperature TmCat of the catalyst 11. Specifically, when the following expression (10) is effectuated, the section 121 sets a catalyst-heater-operation flag fpheat to 1 to perform heater operations. However, when the expression (10) is not effectuated, the section 121 stops heater operations and sets the catalyst-heater-operation flag fpheat to 0.
  • TmpCat≧TmCatAuto  (10)
  • In this case, the expression (10) shows a catalyst activation state and a catalyst becomes an inactive state when the catalyst temperature TmpCat is lower than TmpCatAuto. [0104]
  • The basic-fuel-injection-[0105] quantity computing section 102 and air-fuel-correction-term computing section 103 are the same as those of the first embodiment.
  • FIG. 22 is an illustration for calculation of a target opening of the electric-[0106] control throttle valve 3 by the target-opening computing section 104A. The target-opening computing section 104A computes a throttle opening for realizing a target boost under an optional operating condition in accordance with signals of the air-flow sensor 2, crank-angle sensor 15, and accelerator pedal 32. Specifically, the target boost TgBoost is set in accordance with the accelerator opening Apo and engine speed Ne by referring to a map, and the target opening TgTvo is decided in accordance with the target boost TgBoost and engine speed Ne by referring to a map and they are output to the throttle-opening control section 105 and target-fresh-air-quantity and EGR-quantity computing section 106A.
  • The throttle-opening [0107] control section 105 is the same as that of the first embodiment.
  • FIG. 23 is an illustration for calculation of target fresh-air quantity and filling efficiency by the target-fresh-air-quantity and EGR-quantity computing section [0108] 106A. The target-fresh-air-quantity and EGR-quantity computing section 106A computes a target torque and a target fresh-air quantity and a target EGR quantity for realizing the temperature and pressure in the target cylinder 9 under an optional operating condition in accordance with the accelerator pedal 32 and the target boost TgBoost. Specifically, the target fresh-air quantity TgAir is decided in accordance with the accelerator opening Apo and engine speed Ne by referring to a map and output to the target-intake-valve-opening-timing computing section 109 and target-intake-valve-opening-timing computing section 110.
  • Moreover, the target EGR quantity TgEgr under compressive self-ignition is set in accordance with the accelerator opening Apo and engine speed Ne by referring to a map, and the differential pressure DeltaP between the internal pressures of the [0109] intake pipe 6 and cylinder 9 is decided in accordance with the target EGR quantity TgEgr and engine speed Ne by referring to a map and they are output to the target-intake-valve-opening-timing computing section 109 and target-intake-valve-closing-timing computing section 110.
  • Furthermore, the target gas quantity TgGas is obtained from the target EGR quantity TgEgr and target fresh-air quantity TgAir, and the filling efficiency ItaGas is decided in accordance with the maximum gas quantity MaxGas obtained from the engine speed Ne and the target gas quantity TgGas and they are output to the target-exhaust-valve-opening-[0110] timing computing section 107 and target-exhaust-valve-closing-timing computing section 108.
  • The target-exhaust-valve-opening-[0111] timing computing section 107, target-exhaust-valve-closing-timing computing section 108, target-intake-valve-opening-timing computing section 109, and target-intake-valve-closing-timing computing section 110 are the same as those of the first embodiment.
  • FIG. 24 is an illustration for calculation of a target ignition timing by the target-ignition-timing computing section [0112] 11A. The target-ignition-timing computing section 111A computes a target ignition timing when a misfire also occurs under compressive-self-ignition combustion in accordance with signals of the air-flow sensor 2, crank-angle sensor 15, and accelerator pedal 32. Specifically, the target ignition timing Adv is set in accordance with the accelerator opening Apo and engine speed Ne by referring to a map and output to the ignition plug 8. The target ignition timing is selected at more retard side than a compressive-self-ignition timing.
  • FIG. 25 is an illustration for a heater operation by the catalyst [0113] heater control section 122. The catalyst heater control section 122 is changed by the catalyst-heater-operation flag fpheat to operate the catalyst heater 35 when the catalyst-heater-operation flag fpheat is set to 1 and stop the operation of the catalyst heater 35 when the flag is not set to 1.
  • FIGS. [0114] 26 to 31 show the engine control equipment of the third embodiment, which is the same as the engine control equipments 100 and 100A of the first and second embodiments except the configuration of the catalyst control means 150. Therefore, the above point is described below in detail.
  • FIG. 26 shows the general configuration of an engine control system provided with the engine control equipment of the third embodiment of the present invention, in which a [0115] fuel injection valve 34 is set to a cylinder 9 of an engine 50B. The fuel injection valve 34 injects fuel in the cylinder 9 when the temperature of a catalyst 11 is a predetermined value or lower in accordance with an output signal of an engine control equipment (control unit) 100B to activate the catalyst.
  • FIG. 27 shows a control block diagram of the [0116] control unit 100B. The catalyst control means 150 of the control unit 100B injects surplus fuel in the explosion and exhaust strokes of an engine when the temperature of the catalyst 11 is equal to or lower than a predetermined value, causes oxidation in the cylinder 9, exhaust pipe 10, and catalyst 11, and activates the catalyst 11 by the heat due to the oxidation. Moreover, the control unit 100B is constituted of a second injection permitting section 131 which is one mode of the catalyst-state determining means 200, a basic-fuel-injection-quantity computing section 102, an air-fuel-ratio-correction-term computing section 103, a target-opening computing section 104A, a throttle-opening control section 105, a target-fresh-air-quantity and EGR-quantity computing section 106A, a target-exhaust-valve-opening-timing computing section 107, a target-exhaust-valve-closing-timing computing section 108, a target-intake-valve-opening-timing computing section 109, a target-intake-valve-closing-timing computing section 110, a target-ignition-timing computing section 111A, and a second injection-timing and injection-quantity computing section 132 which is one mode of the catalyst activating means 201. Each control block is described below in detail.
  • FIG. 28 is a control block diagram of the catalyst control means [0117] 150 in the control unit 100B.
  • The catalyst control means [0118] 150 conceptually includes the second injection permitting section 131 and explosion-stroke and exhaust-stoke injection means 132. The second injection permitting section 131 is constituted of catalyst-temperature detecting means 101A and catalyst activating means 101B and outputs a signal for detecting the temperature of the three-way catalyst 11 by the catalyst-temperature detecting means 101A in accordance with an output signal of a temperature sensor 13, determining the activation of the three-way catalyst 11 by the catalyst-activation determining means 101B in accordance with the detected temperature, and computing the injection timing and quantity of surplus fuel in explosion and exhaust strokes in accordance with the above determination result to a second injection-timing and injection-quantity computing section 132.
  • FIGS. 29 and 30 are illustrations for permission of injection of second fuel by the second [0119] injection permitting section 131, in which FIG. 29 shows the relation between the injection timing and the exhaust-gas temperature in the explosion and exhaust strokes. From FIG. 29, it is found that the peak of an exhaust-gas temperature is present in the explosion stroke when surplus fuel is injected in the explosion (expansion) and exhaust strokes (shown by a continuous line) compared to the case in which no surplus fuel is injected (shown by a broken line) and the exhaust-gas temperature rises until the exhaust stroke. This is because the fuel injected in the above strokes is oxidized in the exhaust pipe 10 or catalyst 11 and the exhaust-gas temperature is raised by the heat of the oxidation. Moreover, the second injection permitting section 131 for permitting the injection of the surplus fuel determines the permission of compressive self-injection in accordance with the downstream temperature TmpCat of the catalyst 11 as shown in FIG. 30. Specifically, when the condition of the following expression (11) is effectuated, the section 131 sets a second injection permit flag fpti2 to 0 but it does not second injection in the expansion and exhaust strokes. However, when the condition is not effectuated, the section 131 sets the second injection permit flag ftpi2 to 1 and performs second injection.
  • TmpCat≧TmpCatAuto  (11) [0120]
  • In this case, the expression (11) shows a catalyst activation state and the catalyst becomes inactive when the catalyst temperature TmpCat is lower than TmCatAuto. [0121]
  • The basic-fuel-injection-[0122] quantity computing section 102, air-fuel-ratio-correction-term computing section 103, throttle-opening control section 105, target-exhaust-valve-opening-timing computing section 107, target-exhaust-valve-closing-timing computing section 108, target-intake-valve-opening-timing computing section 109, and target-intake-valve-closing-timing computing section 110 are the same as those of the first embodiment and the catalyst-temperature detecting means 101A, target-fresh-air-quantity and EGR-quantity computing section 106A, and target-ignition-timing computing section 111A are the same as those of the second embodiment.
  • FIG. 31 is an illustration for calculation of the second fuel-injection quantity and fuel-injection timing by the second injection-timing and injection-[0123] quantity computing section 132. The second injection-timing and injection-quantity computing section 132 computes the second fuel-injection quantity and fuel-injection timing in accordance with signals of the crank-angle sensor 15 and accelerator pedal 32. Specifically, the second injection quantity is set in accordance with the accelerator opening Apo and engine speed Ne by referring to a map and changed in accordance with the value of the second injection permit flag fpti2 to decide a second injection quantity TI2 and moreover, a second injection timing IT2 is decided in accordance with the accelerator opening Apo and engine speed Ne by referring to a map and they are output to the fuel injection valve 34 by which the second injection is performed. A technique is used which experientially decides the value of a map in accordance with the performance of an engine.
  • As described above, embodiments of the present invention have the following functions by using the above configuration. [0124]
  • That is, the engine control equipment of this embodiment has the catalyst control means [0125] 150 for accelerating the activation of the three-way catalyst 11 in accordance with output signals of the temperature sensor 13 at the downstream side of the three-way catalyst 11 and the like, the catalyst control means 150 of the engine control equipment 100 of the first embodiment has the compressive-self-ignition-combustion permitting section 101 for inhibiting the combustion according to compressive self-ignition, changes the combustion to the combustion according to spark ignition to perform the combustion when the temperature of the catalyst 11 is equal to or lower than a predetermined value and the compressive-self-ignition inhibiting means 111, and the compressive-self-ignition-combustion permitting section 101 is constituted of the catalyst-temperature detecting means 101A for detecting the temperature of the three-way catalyst 11 and the catalyst-activation determining means 101B for determining the activation of the three-way catalyst 11 in accordance with the temperature to change the combustion to the combustion according to spark ignition whose exhaust-gas temperature is higher than that of the compressive-self-ignition combustion and activate the three-way catalyst 11 by the exhaust-gas temperature. Therefore, it is possible to shorten the time from start of an engine up to activation of a catalyst by always activating the three-way catalyst 11, prevent exhaust gas from deteriorating even for a combustion system by a compressive-self-ignition engine whose combustion temperature is low because compressive self-ignition is not performed when the three-way catalyst 11 is inactive, and improve the reliability of the engine.
  • Moreover, the catalyst control means [0126] 150 of the engine control equipment 100A of the second embodiment has the heater-operation permitting section 121 for driving the catalyst heater 35 when the temperature of the catalyst 11 is equal to or lower than a predetermined value and the catalyst-temperature raising means 122. The heater-operation permitting section 121 is constituted of the catalyst-temperature detecting means 101a for detecting the temperature of the three-way catalyst 11 and the catalyst-activation determining means 101B for determining the activation of the three-way catalyst 11 in accordance with the detected temperature, which changes to the driving of the catalyst heater 35 in accordance with an output signal of the temperature sensor 13 to activate the catalyst 11. Therefore, it is possible to shorten the time from start of an engine up to activation of a catalyst and prevent exhaust gas from deteriorating even for a combustion system by a compressive-self-ignition engine.
  • Furthermore, the catalyst control means [0127] 150 of the engine control equipment 100B of the third embodiment has the second injection permitting section 131 for injecting surplus fuel in the explosion and exhaust stroke of an engine when the temperature of the catalyst 11 is equal to or lower than a predetermined value and the explosion-and-exhaust-stroke injecting means 132. The second injection permitting section 131 is constituted of the catalyst-temperature detecting means 101A for detecting the temperature of the three-way catalyst 11 and the catalyst-activation determining means 101B for determining the activation of the three-way catalyst 11 in accordance with the detected temperature, which causes oxidation in the cylinder 9, exhaust pipe 10, and catalyst 11 in accordance with an output signal of the temperature sensor 13 and activate the catalyst 11 by the heat of the oxidation. Therefore, also in this case, it is possible to shorten the time from start of an engine up to activation of a catalyst and prevent exhaust gas from deteriorating even for a combustion system by a compressive-self-ignition engine.
  • Three embodiments of the present invention are described above. However, the present invention is not restricted to the embodiments. Various modifications are permitted through design as long as they are not deviated from the gist of the present invention described in claims. [0128]
  • For example, the catalyst-[0129] temperature detecting means 101A detects the temperature of the three-way catalyst 11 from the temperature sensor 13 set to the downstream side of the catalyst 11. However, it is also permitted to use means for estimating the temperature of the three-way catalyst 11 in accordance with various operation parameters of the airflow sensor 2 and crank-angle sensor 15. Also in this case, the same advantage can be obtained.
  • Moreover, the engine control equipment of each of the above embodiments accelerates the activation of the [0130] catalyst 11 in accordance with output signals of the A/F sensor 2 set to the upstream side of the three-way catalyst 11 and the temperature sensor 13 set to the downstream side of the catalyst 11. As shown in FIG. 32, however, it is also possible to accelerate the activation of the catalyst 11 in accordance with output signals of the temperature sensors 13A and 13B set to the upstream side and downstream side of the three-way catalyst 11. In this case, it is possible to more-accurately detect the temperature of the catalyst 11.
  • Furthermore, as shown in FIG. 33, it is permitted to use a configuration having the three-[0131] way catalyst 11 or NOx catalyst 36 at the downstream side of the three-way catalyst 11, that is, a configuration having a plurality of three-way catalysts or a configuration obtained by combining a three-way catalyst with an NOx catalyst. Furthermore, it is permitted to use a configuration obtained by combining a three-way catalyst with an HC adsorption catalyst. Also in this case, the same advantage can be obtained.
  • Furthermore, in the case of the above embodiments, though the intake and [0132] exhaust valves 27 and 28 respectively use a lift-timing-control electromagnetic driving valve, it is also permitted to apply the valves to a phase-control-type driving valve or it is permitted to use an engine control system not using the electric-control throttle valve 3. For example, control by only the intake valve 27 and exhaust valve 28 can be executed.
  • As understood from the above explanation, an engine control equipment of the present invention determines whether a catalyst is active in a compressive-self-ignition engine and when the catalyst is inactive, quickly activates the catalyst. Therefore, it is possible to shorten the time from start of an engine up to activation of a catalyst and control deterioration of exhaust gas. [0133]

Claims (9)

What is claimed is:
1. An engine control equipment having a catalyst for burning a mixed gas in a combustion chamber by compressing self-ignition and purifying exhaust gas components in the combustion chamber, wherein the control equipment is provided with means for controlling the catalyst and the means for controlling the catalyst is provided with means for determining the activated state of the catalyst and means for activating the catalyst in accordance with the determination result by the means for determining the activated state of the catalyst.
2. The engine control equipment according to claim 1, wherein the means for determining the activated state of the catalyst is provided with means for detecting or estimating the temperature of the catalyst and means for determining the activation of the catalyst.
3. The engine control equipment according to claim 1 or 2, wherein the means for activating the catalyst controls the state of an engine when the detected or estimated temperature of the catalyst is equal to or lower than a predetermined value.
4. The engine control equipment according to any one of claims 1 to 3, wherein the means for activating the catalyst inhibits the combustion by the compressive self-ignition and performs the combustion by spark ignition when the detected or estimated temperature of the catalyst is equal to or lower than a predetermined value.
5. The engine control equipment according to any one of claims 1 to 3, wherein the means for activating the catalyst drives a heater for the catalyst when the detected or estimated temperature of the catalyst is equal to or lower than a predetermined value.
6. The engine control equipment according to any one of claims 1 to 3, wherein the means for activating the catalyst injects a fuel at the timing other than normal fuel injection when the detected or estimated temperature of the catalyst is equal to or lower than a predetermined value.
7. The engine control equipment according to claim 6, wherein the means for activating the catalyst injects the fuel in the explosion or exhaust stroke of the engine in accordance with the temperature of the catalyst.
8. The engine control equipment according to any one of claims 1 to 7, wherein the control equipment is controlled so as to early start combustion by the compressive self-ignition when the temperature detected by a temperature sensor provided to the upstream or downstream side of the catalyst becomes a predetermined value or more.
9. The engine control equipment according to any one of claims 1 to 8, wherein the catalyst the catalyst uses a three-way catalyst or NOx catalyst provided for an exhaust pipe.
US09/811,696 2000-08-02 2001-03-20 Engine control equipment Abandoned US20020014072A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/157,227 US20020189238A1 (en) 2000-08-02 2002-05-30 Engine control equipment
US10/926,139 US7062902B2 (en) 2000-08-02 2004-08-26 Engine control equipment
US11/435,709 US20060201137A1 (en) 2000-08-02 2006-05-18 Engine control equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000234695A JP3880296B2 (en) 2000-08-02 2000-08-02 Engine control device
JP2000-234695 2000-08-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/157,227 Continuation US20020189238A1 (en) 2000-08-02 2002-05-30 Engine control equipment

Publications (1)

Publication Number Publication Date
US20020014072A1 true US20020014072A1 (en) 2002-02-07

Family

ID=18727030

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/811,696 Abandoned US20020014072A1 (en) 2000-08-02 2001-03-20 Engine control equipment
US10/157,227 Abandoned US20020189238A1 (en) 2000-08-02 2002-05-30 Engine control equipment
US10/926,139 Expired - Fee Related US7062902B2 (en) 2000-08-02 2004-08-26 Engine control equipment
US11/435,709 Abandoned US20060201137A1 (en) 2000-08-02 2006-05-18 Engine control equipment

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/157,227 Abandoned US20020189238A1 (en) 2000-08-02 2002-05-30 Engine control equipment
US10/926,139 Expired - Fee Related US7062902B2 (en) 2000-08-02 2004-08-26 Engine control equipment
US11/435,709 Abandoned US20060201137A1 (en) 2000-08-02 2006-05-18 Engine control equipment

Country Status (2)

Country Link
US (4) US20020014072A1 (en)
JP (1) JP3880296B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6658840B2 (en) * 2001-04-13 2003-12-09 Nissan Motor Co., Ltd. Apparatus for and method of controlling a vehicle engine
EP1541839A1 (en) * 2003-12-10 2005-06-15 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Method for controlling an internal combustion engine
US20170030258A1 (en) * 2015-02-10 2017-02-02 Man Diesel & Turbo Se Internal combustion engine, method for operating the same and control device for carrying out the method
US20180016993A1 (en) * 2016-07-18 2018-01-18 Delphi Technologies, Inc. Gdci cold start and catalyst light off

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120246B2 (en) * 2002-03-26 2008-07-16 トヨタ自動車株式会社 Internal combustion engine with a supercharger and its exhaust structure
US7263968B2 (en) * 2004-09-30 2007-09-04 Mahle Powertrain Limited Exhaust gas recirculation
US7730717B2 (en) 2005-08-04 2010-06-08 Honda Motor Co., Ltd. Control system for compression-ignition engine
JP2007107407A (en) * 2005-10-11 2007-04-26 Yamaha Motor Co Ltd Engine system and vehicle equipped therewith
JP4242390B2 (en) * 2006-01-31 2009-03-25 本田技研工業株式会社 Control device for internal combustion engine
DE102006027571A1 (en) * 2006-06-14 2007-12-20 Robert Bosch Gmbh Petrol engine transition method, involves adjusting operating parameter of output operating mode to specific value necessary for targeted operating mode in pre-controlling phase, and changing operating mode after phase to control parameter
JP4724217B2 (en) 2008-10-14 2011-07-13 本田技研工業株式会社 Control device for internal combustion engine
JP5299586B2 (en) * 2010-04-30 2013-09-25 マツダ株式会社 Control method for spark ignition engine and spark ignition engine
JP5756399B2 (en) * 2011-12-27 2015-07-29 本田技研工業株式会社 Control device for compression ignition internal combustion engine
EP3404237B1 (en) * 2017-05-15 2021-01-27 Winterthur Gas & Diesel AG Large diesel engine and method for operating a large diesel engine
KR102492775B1 (en) * 2021-09-06 2023-01-27 이승욱 Detachable exhaust gas purification system

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786536A (en) * 1980-11-17 1982-05-29 Toyota Motor Corp Reproduction method of particle catcher and fuel supplier for diesel engine
JPS62157220A (en) 1985-12-28 1987-07-13 Toyota Motor Corp Ignition controller for two-cycle internal combustion engine
JP2748686B2 (en) * 1990-11-16 1998-05-13 トヨタ自動車株式会社 In-cylinder direct injection spark ignition engine
EP0621400B1 (en) * 1993-04-23 1999-03-31 Daimler-Benz Aktiengesellschaft Air compressing injection internal combustion engine with an exhaust gas treating device for reducing nitrous oxides
DE4340742A1 (en) * 1993-11-30 1995-06-01 Emitec Emissionstechnologie Process for reducing pollutant emissions from a diesel engine with a downstream oxidation catalytic converter
US5642705A (en) * 1994-09-29 1997-07-01 Fuji Jukogyo Kabushiki Kaisha Control system and method for direct fuel injection engine
CN1077212C (en) * 1996-07-02 2002-01-02 三菱自动车工业株式会社 Exhaust gas heating system for in-cylinder injection internal combustion engine
US6230683B1 (en) * 1997-08-22 2001-05-15 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
US6212880B1 (en) * 1996-09-20 2001-04-10 Hitachi, Ltd. Engine control device
JP3866378B2 (en) 1997-06-17 2007-01-10 富士重工業株式会社 Control device for compression ignition engine
JP3424557B2 (en) * 1997-08-06 2003-07-07 マツダ株式会社 Engine exhaust purification device
JP3690078B2 (en) 1997-08-27 2005-08-31 日産自動車株式会社 Spark ignition engine
JP3094974B2 (en) * 1997-09-16 2000-10-03 トヨタ自動車株式会社 Compression ignition type internal combustion engine
JP3331935B2 (en) 1997-12-04 2002-10-07 トヨタ自動車株式会社 Compression ignition type internal combustion engine
JP3362657B2 (en) * 1998-01-30 2003-01-07 トヨタ自動車株式会社 Spark-assisted self-ignition internal combustion engine
US6276334B1 (en) * 1998-02-23 2001-08-21 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
JP3500951B2 (en) 1998-03-09 2004-02-23 株式会社日立製作所 Non-throttle compression-ignition internal combustion engine and control method thereof
JP3521790B2 (en) 1998-03-25 2004-04-19 株式会社デンソー Control device for internal combustion engine
JP3551757B2 (en) 1998-04-07 2004-08-11 トヨタ自動車株式会社 Compression ignition type internal combustion engine
JPH11294220A (en) * 1998-04-13 1999-10-26 Mitsubishi Electric Corp Fuel injection control device for cylinder injection type internal combustion engine
JPH11336600A (en) 1998-05-22 1999-12-07 Nissan Motor Co Ltd Spark ignition type internal combustion engine
AT3135U1 (en) * 1998-06-18 1999-10-25 Avl List Gmbh METHOD FOR OPERATING AN INTERNAL COMBUSTION ENGINE OPERATING WITH ANY ALTERNATIVE, OR ALSO AUTO, IGNITION
JP4057706B2 (en) 1998-07-22 2008-03-05 日産自動車株式会社 In-cylinder direct injection spark ignition engine
US6330796B1 (en) 1998-08-03 2001-12-18 Mazda Motor Corporation Control device for direct injection engine
US6240721B1 (en) * 1998-09-17 2001-06-05 Toyota Jidosha Kabushiki Kaisha Internal combustion engine and method for controlling an internal combustion engine
JP3592567B2 (en) * 1999-01-29 2004-11-24 本田技研工業株式会社 Control method of compression ignition type internal combustion engine
JP3835142B2 (en) * 1999-09-07 2006-10-18 日産自動車株式会社 Control device for self-ignition / spark ignition internal combustion engine
JP3965024B2 (en) * 2000-03-09 2007-08-22 株式会社リコー Fixing apparatus and image forming apparatus
JP2001289093A (en) * 2000-03-31 2001-10-19 Hitachi Ltd Exhaust control device for cylinder fuel injection engine
EP1245815B1 (en) * 2001-03-30 2006-06-07 Mazda Motor Corporation Direct-injection spark-ignition engine with a turbo-charging device, engine control method , and computer-readable storage medium therefor
US6536209B2 (en) * 2001-06-26 2003-03-25 Caterpillar Inc Post injections during cold operation
JP2004176657A (en) * 2002-11-28 2004-06-24 Isuzu Motors Ltd Fuel injection control device
US6804952B2 (en) * 2003-02-21 2004-10-19 Toyota Jidosha Kabushiki Kaisha Catalyst warm up control for diesel engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6658840B2 (en) * 2001-04-13 2003-12-09 Nissan Motor Co., Ltd. Apparatus for and method of controlling a vehicle engine
EP1541839A1 (en) * 2003-12-10 2005-06-15 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Method for controlling an internal combustion engine
US20170030258A1 (en) * 2015-02-10 2017-02-02 Man Diesel & Turbo Se Internal combustion engine, method for operating the same and control device for carrying out the method
US10094270B2 (en) * 2015-02-10 2018-10-09 Man Energy Solutions Se Internal combustion engine, method for operating the same and control device for carrying out the method
US20180016993A1 (en) * 2016-07-18 2018-01-18 Delphi Technologies, Inc. Gdci cold start and catalyst light off
US10260430B2 (en) * 2016-07-18 2019-04-16 Delphi Technologies Ip Limited GDCI cold start and catalyst light off

Also Published As

Publication number Publication date
JP3880296B2 (en) 2007-02-14
US7062902B2 (en) 2006-06-20
US20060201137A1 (en) 2006-09-14
US20050109018A1 (en) 2005-05-26
JP2002047969A (en) 2002-02-15
US20020189238A1 (en) 2002-12-19

Similar Documents

Publication Publication Date Title
US20060201137A1 (en) Engine control equipment
US7275516B1 (en) System and method for boosted direct injection engine
US6340014B1 (en) Control for direct fuel injection spark ignition internal combustion engine
JP3963144B2 (en) Control device for spark ignition engine
EP0826869B1 (en) Exhaust gas heating system for in-cylinder injection internal combustion engine
JP3569120B2 (en) Combustion control device for lean burn internal combustion engine
KR19980024127A (en) Exhaust purifier of internal combustion engine
US6941905B2 (en) Control unit for spark ignition-type engine
US20010018825A1 (en) Control apparatus for direct-injection engine
JP3711942B2 (en) Control device for turbocharged engine
US6170260B1 (en) Exhaust emission control apparatus for combustion engine
JP4253984B2 (en) Diesel engine control device
JPH10184418A (en) Exhaust purifying device for lean combustion engine
JP3711939B2 (en) Control device for spark ignition engine
EP1245816A2 (en) Fuel injection apparatus of diesel engine
JP2003113730A (en) INTERNAL COMBUSTION ENGINE WITH NOx STORAGE CATALYST, AND COMBUSTION CONTROL METHOD FOR THE SAME
JP3557987B2 (en) Fuel injection device for internal combustion engine
JP2002030979A (en) Diesel engine control device
JP4285091B2 (en) Control device for spark ignition engine
JP4560979B2 (en) Fuel injection system for diesel engine
JP3331991B2 (en) Internal combustion engine
JP3351359B2 (en) Exhaust gas purification device for internal combustion engine
JP4107180B2 (en) Control device for spark ignition engine
JP2001098964A (en) Controller for spark ignition type direct injection engine
JP2023142713A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NANAGAWA, SHINJI;OHSUGA, MINORU;YAMAOKA, SHIRO;REEL/FRAME:011663/0360

Effective date: 20010219

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION