US20020013028A1 - Method of forming flash memory, method of forming flash memory and sram circuitry, and etching methods - Google Patents
Method of forming flash memory, method of forming flash memory and sram circuitry, and etching methods Download PDFInfo
- Publication number
- US20020013028A1 US20020013028A1 US09/225,893 US22589399A US2002013028A1 US 20020013028 A1 US20020013028 A1 US 20020013028A1 US 22589399 A US22589399 A US 22589399A US 2002013028 A1 US2002013028 A1 US 2002013028A1
- Authority
- US
- United States
- Prior art keywords
- etching
- line
- over
- semiconductor substrate
- floating gates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000015654 memory Effects 0.000 title claims abstract description 53
- 238000005530 etching Methods 0.000 title claims description 80
- 239000000758 substrate Substances 0.000 claims abstract description 95
- 239000004065 semiconductor Substances 0.000 claims abstract description 84
- 230000000873 masking effect Effects 0.000 claims abstract description 25
- 230000002093 peripheral effect Effects 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims description 110
- 238000002955 isolation Methods 0.000 claims description 32
- 239000011810 insulating material Substances 0.000 claims description 25
- 239000004020 conductor Substances 0.000 claims description 24
- 239000007943 implant Substances 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- 239000012535 impurity Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 229920002120 photoresistant polymer Polymers 0.000 claims description 7
- 235000012239 silicon dioxide Nutrition 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 5
- 210000004027 cell Anatomy 0.000 description 13
- 239000012634 fragment Substances 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 210000000352 storage cell Anatomy 0.000 description 2
- -1 E14 ions Chemical class 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
- H10B10/18—Peripheral circuit regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/40—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
- H10B41/42—Simultaneous manufacture of periphery and memory cells
- H10B41/49—Simultaneous manufacture of periphery and memory cells comprising different types of peripheral transistor
Definitions
- Some read-only memory devices can be erased as well as written to by a programmer. Erasable read-only memory typically depends on the long-term retention of electronic charge as the information storage mechanism. The charge is typically stored on a floating semiconductive gate, such as polysilicon.
- One type of read-only memory comprises FLASH memory. Such memory can be selectively erased rapidly through the use of an electrical erase signal.
- a FLASH memory cell typically comprises a single floating gate transistor.
- the storage cells of the memory are arranged in an array consisting of rows and columns.
- the rows are typically considered as comprising individual conductive gate lines formed as a series of spaced floating gates received along a single conductive line.
- Source and drain regions of the cells are formed relative to active area of a semiconductor substrate, with the active areas being generally formed in lines running substantially perpendicular to the lines of floating gates.
- the sources and drains are formed on opposing sides of the lines of floating gates within the active area with respect to each floating gate of the array. Thus, lines (rows) of programmable transistors are formed.
- Non-recessed LOCOS in fabrication of FLASH memory in this manner is typically very shallow relative to the semiconductor substrate (i.e., less than 1500 Angstroms deep). This leaves a gradual, almost sinusoidal, undulating surface of exposed semiconductor substrate running in lines substantially parallel and immediately adjacent the lines of floating gates on the desired source side. With the gently sloping sidewalls of the trenches or recesses left by the LOCOS oxide removal, one or more source ion implant steps are conducted through the mask openings of the remaining photoresist layer. The result is formation of a continuously and conductively doped source line within the semiconductor substrate immediately adjacent the line of floating gates.
- Circuitry fabrication and isolation of adjacent circuitry within a semiconductor substrate can also be achieved with a trench isolation that is different from LOCOS.
- trenches can initially be etched within a semiconductor substrate and subsequently filled with an insulating material, such as high density plasma deposited oxide.
- an insulating material such as high density plasma deposited oxide.
- Such trenches can and are sometimes made considerably deeper relative to the outer substrate surface as compared to the oxidation depth of LOCOS. Accordingly, the etching typically produces elongated, deeper and straighter sidewalls than LOCOS.
- a method of forming an array of FLASH memory includes forming a plurality of lines of floating gates extending from a memory array area to a peripheral circuitry area over a semiconductor substrate. In a common masking step, discrete openings are formed over a) at least some of the lines of floating gates in the peripheral circuitry area, and b) floating gate source area in multiple lines along at least portions of the lines of floating gates within the memory array area.
- a line of floating gates is formed over a semiconductor substrate. A conductive line different from the line of floating gates is formed over the semiconductor substrate.
- discrete openings are formed to a) at least one of the conductive line and the line of floating gates, and b) floating gate source area of multiple transistors comprising the line of floating gates along at least a portion of the line of floating gates.
- the invention also comprises, in a common etching step, etching insulative material over a conductive line to expose conductive material of the line and insulative material over a semiconductor substrate in a line proximate a line of floating gates to expose the semiconductor substrate.
- FIG. 2 is an expanded sectional view of the FIG. 1 wafer fragment which includes in its left-most portion a cut of the FIG. 1 wafer fragment taken through a line A-A in FIG. 1.
- FIG. 3 is a top plan view of the FIG. 1 semiconductor wafer fragment at a processing step subsequent to that depicted by FIGS. 1 and 2.
- FIG. 5 is a view of the FIG. 4 wafer fragment at a processing step subsequent to that depicted by FIG. 4.
- FIG. 6 is a view of additional or alternate processing occurring relative to an alternate portion of a semiconductor wafer fragment in conjunction with the FIGS. 1 - 5 processing.
- FIG. 7 is a view of the FIG. 6 wafer at a processing step subsequent to that shown by FIG. 6.
- FIG. 8 is a view of additional or alternate processing occurring commensurate with processing depicted by any of FIGS. 1 - 7 .
- FIG. 10 is a view of the FIG. 8 wafer fragment at a processing step subsequent to that shown by FIG. 9.
- a series of isolation regions 16 are formed relative to semiconductor substrate 11 substantially perpendicular to lines of floating gates 12 and 14 .
- Such can comprise, for example, LOCOS isolation or trench and refill.
- the area 18 between isolation regions 16 thereby comprises spaced lines of active area relative to substrate 11 running between the spaced isolation regions.
- the area running parallel with and between lines of floating gates 12 and 14 will eventually constitute source active area for the respective transistors formed along lines of floating gates 12 and 14 .
- the figure can also be considered as depicting in a preferred embodiment an alternating series of isolation regions and active area regions provided in semiconductor substrate 11 in a line running adjacent and along at least a portion of lines of floating gates 12 and 14 .
- Wafer fabrication typically and preferably comprises first fabricating the illustrated isolation regions and active areas, followed by fabrication of the lines of floating gates.
- Portion 10 comprises FLASH memory array area 10 of FIG. 1.
- a portion 13 comprises peripheral circuitry area to the memory array comprising an extension of line of floating gates 12 .
- a portion 15 comprises some area, most preferably peripheral circuitry area, comprising a conductive line 20 which is different than lines of floating gates 12 and 14 .
- Lines of floating gates 12 and 14 preferably constitute a gate dielectric layer 22 , floating gate regions 23 (FIGS. 1 and 2), a gate dielectric layer 24 , a conductive line extending portion 25 comprising a conductively doped polysilicon layer 26 and a conductive silicide layer 27 , and an insulative cap 28 .
- drain implanting is next performed.
- a photoresist layer is ideally deposited and patterned (not shown) to mask the floating gate word lines and source areas therebetween, and to leave the drain areas and isolation regions therebetween outwardly exposed.
- Exemplary drain areas 36 are accordingly left outwardly exposed within active area regions 18 .
- One or more suitable implants are then provided, typically n-type, to provide the desired depth and concentration of a conductivity enhancing impurity to form the desired transistor drains within active areas 18 at locations 36 .
- one or more blanket implants can be conducted without using a photoresist layer to fabricate the drains.
- the source regions for the respective floating gate transistors are preferably next fabricated.
- a layer 40 preferably comprising photoresist is deposited and masked to cover the drain areas and substantial portions of the lines of floating gates, yet leave desired source regions exposed in lines running parallel and between the lines of floating gates on their desired source sides.
- Opening 42 constitutes one exemplary opening to floating gate source area of multiple transistors comprising lines of floating gates 12 and 14 along at least a portion thereof. Further in a common masking step with formation of opening 42 , a discrete opening is formed over at least some of the lines of floating gates in the peripheral circuitry area and over at least one of the conductive line and the line of floating gates.
- FIG. 4 depicts two such openings 44 and 46 formed in addition to discrete opening 42 constituting a floating gate source area.
- the capping insulating material 28 of lines of floating gates 12 and 14 , and that of layer 32 of gate line 20 comprises a common material, and the same as isolation material 16 , such that etching can be conducted simultaneously and with a single chemistry to remove the illustrated portions of such layers exposed through openings 42 , 44 and 46 .
- such materials are different but have substantially the same etch rate for a given chemistry and etching conditions. Ion implanting of a conductivity modifying impurity is then conducted into the exposed floating gate source area (i.e., into semiconductive material underlying the now removed isolation regions) to form source regions 47 .
- Ion implanting will also thereby occur relative to openings 44 and 46 and into the upper conductive portions of the lines, with the previous conductivity enhancing impurity doping of the preferred polysilicon semiconductive material of lines 12 , 14 and 20 preferably also comprising the same type.
- Example implantings include both phosphorus at a dose from 1- 10 E14 ions/cm 2 , energy at 30-100 keV, and arsenic at a dose from 0.5-5 E15 ions/cm 2 , energy at 20-100 kev.
- layer 40 comprises photoresist and/or is sacrificial, it will ultimately be removed from the wafer, and ideally after conducting the ion implanting.
- an insulative spacer layer would be deposited and anisotropically etched to produce insulating spacers (not shown) about the drain and source sides of all gate lines. Further subsequent processing would typically deposit an insulating layer, such as borophosphosilicate glass (BPSG), to cover the previously exposed conductive material of lines 12 , 14 and 20 . Contact openings would subsequently be made through such layer to line 12 in area 13 and to line 20 in area 15 . Prior art processing is understood to make contact openings to lines peripheral of the array separate from the masking to form the source implant in FLASH.
- BPSG borophosphosilicate glass
- the invention contemplates in a common etching step, etching insulative material over a conductive line to expose conductive material of the line and insulative material over a semiconductor substrate in a line proximate a line of floating gates to expose the semiconductor substrate.
- the insulative material etched over the conductive line and the insulative material etched over the semiconductor substrate can comprise the same composition.
- material 16 and any of material 28 of lines 12 , 14 and material 32 of line 20 preferably comprises undoped silicon dioxide.
- FIG. 6 illustrates a portion 17 of a semiconductor wafer in process comprising an SRAM gate 60 formed over semiconductor substrate 11 .
- SRAM gate 60 comprises a gate dielectric layer 61 , conductively doped semiconductor material region 63 , a conductive silicide region 64 , and an insulative material cap 65 .
- an opening 62 is formed in layer 40 over SRAM gate 60 using the same mask which formed opening 42 defining floating gate source area of multiple transistors comprising lines of floating gates 12 and 14 along at least a portion thereof.
- Opening 62 can be and is preferably fabricated to include a contact opening to an SRAM gate line for formation of a local interconnect in an SRAM memory cell, such as an interconnecting line extending between a gate of one transistor and a source/drain region of another transistor within an SRAM cell.
- discrete opening 62 is extended by etching insulating material of layer 65 to expose conductive material 64 of SRAM gate 60 .
- Ion implanting is then conductive of a conductivity modifying impurity to form source region 47 in FIG. 5. Such also effectively provides ion implanting into SRAM gate 60 through opening 62 .
- FIGS. 8 - 10 illustrate additional or alternate processing whereby a local interconnect opening, in a common masking step with formation of opening 42 , is formed over and extends from a gate to a source/drain area of the gate.
- an SRAM gate 60 is shown formed over an SRAM cell area 67 .
- a layer 68 of insulating material is deposited and ideally planarized over SRAM gate 60 and semiconductor substrate 11 .
- a region 70 proximate SRAM gate 60 in this example constitutes a source/drain region of another SRAM gate of the SRAM memory cell.
- An opening 62 a formed in layer 40 of photoresist comprises a local interconnect opening formed over and extending from SRAM gate 60 to source/drain area 70 formed in a common masking step with formation of an elongated source implant opening over floating gate source area, such as opening 42 in FIG. 3.
- opening 62 a has been extended by etching through insulating material of layer 68 and SRAM gate cap 65 to expose conductive material of the SRAM gate and semiconductive material of source/drain area 70 of substrate 11 .
- Ion implanting conducted in connection with source area formation through openings 42 in FIG. 4 would also typically be conducted through opening 62 a in FIG. 9, thereby implanting into the SRAM gate and substrate material there-adjacent.
- subsequent processing can include deposition of an electrically conductive material over layer 68 and subsequent planarization thereof to form a conductive local interconnect 74 electrically connecting gate 60 and source/drain area 70 . While described in this embodiment relative to an SRAM gate, other gate/substrate local interconnects could of course be utilized, such as a local interconnect relative to a logic gate.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
- This invention relates to methods of forming FLASH memory, to methods of forming FLASH memory and SRAM circuitry, and to etching methods.
- Memory is but one type of integrated circuitry. Some memory circuitry allows for both on-demand data storage and data retrieval. For example, memories which allow both writing and reading, and whose memory cells can be accessed in a random order independent of physical location, are referred to as random-access memories (RAM). Read-only memories (ROMs) are those in which only the read operation can be performed rapidly. Entering data into a read-only memory is typically referred to as programming, and the operation is considerably slower than the writing operation utilized in random-access memory. With random-access memory, information is typically stored with respect to each memory cell either through charging of a capacitor or the setting of a state of a bi-stable flip-flop circuit. With either, the stored information is destroyed when power is interrupted. Read-only memories are typically non-volatile, with the data being entered during manufacturing or subsequently during programming.
- Some read-only memory devices can be erased as well as written to by a programmer. Erasable read-only memory typically depends on the long-term retention of electronic charge as the information storage mechanism. The charge is typically stored on a floating semiconductive gate, such as polysilicon. One type of read-only memory comprises FLASH memory. Such memory can be selectively erased rapidly through the use of an electrical erase signal.
- A FLASH memory cell typically comprises a single floating gate transistor. For multiple storage cells, such as used in large semiconductor memories, the storage cells of the memory are arranged in an array consisting of rows and columns. The rows are typically considered as comprising individual conductive gate lines formed as a series of spaced floating gates received along a single conductive line. Source and drain regions of the cells are formed relative to active area of a semiconductor substrate, with the active areas being generally formed in lines running substantially perpendicular to the lines of floating gates. The sources and drains are formed on opposing sides of the lines of floating gates within the active area with respect to each floating gate of the array. Thus, lines (rows) of programmable transistors are formed.
- Electrical connections are made with respect to each drain to enable separate accessing of each memory cell. Such interconnections are arranged in lines comprising the columns of the array. The sources in FLASH memory, however, are typically all interconnected and provided at one potential, for example ground, throughout the array. Accordingly, the source regions along a given line of floating gates are typically all provided to interconnect within the substrate in a line running parallel and immediately adjacent the line of floating gates. These regions of continuously running source area are interconnected outside of the array, and strapped to a suitable connection for providing the desired potential relative to all the sources within the array. Accordingly, prior art techniques have been utilized to form a line of continuously running implanted source material within the semiconductor substrate and running parallel with the floating gate word lines.
- In a principal technique of achieving the same, the substrate has first been fabricated to form field oxide regions by LOCOS. The fabrication forms alternating strips of active area and LOCOS field oxide running substantially perpendicular to the floating gate word lines which will be subsequently formed. Thus running immediately adjacent and parallel with the respective word lines will be an alternating series of LOCOS isolation regions and active area regions on both the source and drain sides of a respective line of floating gates. After forming the lines of floating gates and to provide a continuous line of essentially interconnected source regions, the substrate is masked to form an exposed area on the source side of the respective lines of floating gates. The LOCOS oxide is then selectively etched relative to the underlying substrate. This leaves a series of spaced trenches along the lines of floating gates the result of removal of oxide from the previously oxidized substrate which formed the LOCOS regions.
- Non-recessed LOCOS in fabrication of FLASH memory in this manner is typically very shallow relative to the semiconductor substrate (i.e., less than 1500 Angstroms deep). This leaves a gradual, almost sinusoidal, undulating surface of exposed semiconductor substrate running in lines substantially parallel and immediately adjacent the lines of floating gates on the desired source side. With the gently sloping sidewalls of the trenches or recesses left by the LOCOS oxide removal, one or more source ion implant steps are conducted through the mask openings of the remaining photoresist layer. The result is formation of a continuously and conductively doped source line within the semiconductor substrate immediately adjacent the line of floating gates.
- Circuitry fabrication and isolation of adjacent circuitry within a semiconductor substrate can also be achieved with a trench isolation that is different from LOCOS. For example, trenches can initially be etched within a semiconductor substrate and subsequently filled with an insulating material, such as high density plasma deposited oxide. Such trenches can and are sometimes made considerably deeper relative to the outer substrate surface as compared to the oxidation depth of LOCOS. Accordingly, the etching typically produces elongated, deeper and straighter sidewalls than LOCOS.
- This invention comprises methods of forming FLASH memory, methods of forming FLASH memory and SRAM circuitry, and etching methods. In one implementation, a method of forming an array of FLASH memory includes forming a plurality of lines of floating gates extending from a memory array area to a peripheral circuitry area over a semiconductor substrate. In a common masking step, discrete openings are formed over a) at least some of the lines of floating gates in the peripheral circuitry area, and b) floating gate source area in multiple lines along at least portions of the lines of floating gates within the memory array area. In one implementation, a line of floating gates is formed over a semiconductor substrate. A conductive line different from the line of floating gates is formed over the semiconductor substrate. In a common masking step, discrete openings are formed to a) at least one of the conductive line and the line of floating gates, and b) floating gate source area of multiple transistors comprising the line of floating gates along at least a portion of the line of floating gates.
- In one implementation, a method of forming FLASH memory and SRAM circuitry includes forming a line of floating gates over a semiconductor substrate and an SRAM gate over the semiconductor substrate. In a common masking step, discrete openings are formed over a) the SRAM gate, and b) floating gate source area of multiple transistors comprising the line of floating gates along at least a portion of the line of floating gates. In one implementation, in a common masking step, a local interconnect opening is formed over and extends from the SRAM gate to a source/drain area in an SRAM cell area and an elongated source implant opening is formed over floating gate source area of multiple transistors comprising the line of floating gates along at least a portion of the line of floating gates.
- The invention in one implementation comprises, in a common etching step, etching insulative material over an SRAM gate to expose conductive material of the SRAM gate and insulative material over a semiconductor substrate in a line proximate a line of floating gates to expose the semiconductor substrate. The invention in one implementation comprises, in a common etching step, etching insulative material over an SRAM cell source area to expose semiconductive material of the SRAM cell source area and insulative material over a semiconductor substrate in a line proximate a line of floating gates to expose the semiconductor substrate. The invention also comprises, in a common etching step, etching insulative material over a conductive line to expose conductive material of the line and insulative material over a semiconductor substrate in a line proximate a line of floating gates to expose the semiconductor substrate.
- Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
- FIG. 1 is a diagrammatic top plan of a semiconductor wafer fragment in process in accordance with the invention.
- FIG. 2 is an expanded sectional view of the FIG. 1 wafer fragment which includes in its left-most portion a cut of the FIG. 1 wafer fragment taken through a line A-A in FIG. 1.
- FIG. 3 is a top plan view of the FIG. 1 semiconductor wafer fragment at a processing step subsequent to that depicted by FIGS. 1 and 2.
- FIG. 4 is a view of the FIG. 2 illustrated wafer at a processing step corresponding to that of FIG. 3.
- FIG. 5 is a view of the FIG. 4 wafer fragment at a processing step subsequent to that depicted by FIG. 4.
- FIG. 6 is a view of additional or alternate processing occurring relative to an alternate portion of a semiconductor wafer fragment in conjunction with the FIGS.1-5 processing.
- FIG. 7 is a view of the FIG. 6 wafer at a processing step subsequent to that shown by FIG. 6.
- FIG. 8 is a view of additional or alternate processing occurring commensurate with processing depicted by any of FIGS.1-7.
- FIG. 9 is a view of the FIG. 8 wafer fragment at a processing step subsequent to that shown by FIG. 8.
- FIG. 10 is a view of the FIG. 8 wafer fragment at a processing step subsequent to that shown by FIG. 9.
- This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
- Referring to FIG. 1, a portion of an
array 10 of FLASH memory cells in fabrication is illustrated in top plan view. Such comprises asemiconductor substrate 11 having lines of floatinggates semiconductor substrate 11 is in the form of a monocrystalline silicon substrate, although SOI and other constructions could also be utilized. - A series of
isolation regions 16 are formed relative tosemiconductor substrate 11 substantially perpendicular to lines of floatinggates area 18 betweenisolation regions 16 thereby comprises spaced lines of active area relative tosubstrate 11 running between the spaced isolation regions. The area running parallel with and between lines of floatinggates gates semiconductor substrate 11 in a line running adjacent and along at least a portion of lines of floatinggates - Referring to FIG. 2, three exemplary spaced portions of a semiconductor wafer and substrate are shown.
Portion 10 comprises FLASHmemory array area 10 of FIG. 1. Aportion 13 comprises peripheral circuitry area to the memory array comprising an extension of line of floatinggates 12. Aportion 15 comprises some area, most preferably peripheral circuitry area, comprising aconductive line 20 which is different than lines of floatinggates gates gate dielectric layer 22, floating gate regions 23 (FIGS. 1 and 2), agate dielectric layer 24, a conductiveline extending portion 25 comprising a conductively dopedpolysilicon layer 26 and aconductive silicide layer 27, and aninsulative cap 28. Therefore, caps 28 at least in part comprise provision of insulative material over lines of floatinggates Portion 13 ofline 12 depicts an enlarged or widened portion of line of floatinggates 12 typically provided to allow for photomask misalignment for making contact toline 12 in section/portion 13.Exemplary line 20 inportion 15 comprises agate dielectric layer 29, a conductively dopedpolysilicon region 30, aconductive silicide region 31, and an insulatingcap 32.Line 20 might comprise a transistor gate line as shown, an SRAM transistor gate line, a conductive interconnect line, or any other conductive line in the context of the invention. Drain and source implants in FLASH circuitry fabrication are typically separately conducted and optimized. Accordingly in a preferred implementation of this invention, drain implanting is next performed. A photoresist layer is ideally deposited and patterned (not shown) to mask the floating gate word lines and source areas therebetween, and to leave the drain areas and isolation regions therebetween outwardly exposed. Exemplary drain areas 36 (FIG. 1) are accordingly left outwardly exposed withinactive area regions 18. One or more suitable implants are then provided, typically n-type, to provide the desired depth and concentration of a conductivity enhancing impurity to form the desired transistor drains withinactive areas 18 atlocations 36. Alternately, one or more blanket implants can be conducted without using a photoresist layer to fabricate the drains. - The source regions for the respective floating gate transistors are preferably next fabricated. Referring to FIGS. 3 and 4, a
layer 40 preferably comprising photoresist is deposited and masked to cover the drain areas and substantial portions of the lines of floating gates, yet leave desired source regions exposed in lines running parallel and between the lines of floating gates on their desired source sides.Opening 42 constitutes one exemplary opening to floating gate source area of multiple transistors comprising lines of floatinggates such openings discrete opening 42 constituting a floating gate source area. - Referring to FIG. 5, etching is conducted to remove isolation material from exposed
isolation regions 16 and exposed insulative material (such asmaterial 28 and 32) from over lines of floatinggates line 20 throughdiscrete openings substrate 11underlying isolation regions 16 andconductive material 27 of lines of floatinggates conductive material 31 ofline 20. Thus,isolation material 16 is etched frommonocrystalline wafer 11 within floating gate source area defined byopenings 42.Opening 44 is thereby formed to extend to conductive portions of lines of floatinggates opening 46 is formed to extend to conductive portions oftransistor gate line 20. Most preferably, thecapping insulating material 28 of lines of floatinggates layer 32 ofgate line 20, comprises a common material, and the same asisolation material 16, such that etching can be conducted simultaneously and with a single chemistry to remove the illustrated portions of such layers exposed throughopenings openings lines layer 40 comprises photoresist and/or is sacrificial, it will ultimately be removed from the wafer, and ideally after conducting the ion implanting. - Typically and subsequently, an insulative spacer layer would be deposited and anisotropically etched to produce insulating spacers (not shown) about the drain and source sides of all gate lines. Further subsequent processing would typically deposit an insulating layer, such as borophosphosilicate glass (BPSG), to cover the previously exposed conductive material of
lines line 12 inarea 13 and toline 20 inarea 15. Prior art processing is understood to make contact openings to lines peripheral of the array separate from the masking to form the source implant in FLASH. - Further, and regardless of the masking, the invention contemplates in a common etching step, etching insulative material over a conductive line to expose conductive material of the line and insulative material over a semiconductor substrate in a line proximate a line of floating gates to expose the semiconductor substrate. The insulative material etched over the conductive line and the insulative material etched over the semiconductor substrate can comprise the same composition. By way of example only,
material 16 and any ofmaterial 28 oflines material 32 ofline 20 preferably comprises undoped silicon dioxide. - Alternate or additional processing is initially next described with reference to FIGS. 6 and 7. The invention contemplates formation of FLASH memory and SRAM circuitry on the same wafer. FIG. 6 illustrates a
portion 17 of a semiconductor wafer in process comprising anSRAM gate 60 formed oversemiconductor substrate 11.SRAM gate 60 comprises agate dielectric layer 61, conductively dopedsemiconductor material region 63, aconductive silicide region 64, and aninsulative material cap 65. In a common masking step, anopening 62 is formed inlayer 40 overSRAM gate 60 using the same mask which formedopening 42 defining floating gate source area of multiple transistors comprising lines of floatinggates Opening 62 can be and is preferably fabricated to include a contact opening to an SRAM gate line for formation of a local interconnect in an SRAM memory cell, such as an interconnecting line extending between a gate of one transistor and a source/drain region of another transistor within an SRAM cell. - Referring to FIG. 7, and ideally commensurate with the processing depicted by FIG. 5,
discrete opening 62 is extended by etching insulating material oflayer 65 to exposeconductive material 64 ofSRAM gate 60. Ion implanting is then conductive of a conductivity modifying impurity to form source region 47 in FIG. 5. Such also effectively provides ion implanting intoSRAM gate 60 throughopening 62. - FIGS.8-10 illustrate additional or alternate processing whereby a local interconnect opening, in a common masking step with formation of opening 42, is formed over and extends from a gate to a source/drain area of the gate. Specifically, an
SRAM gate 60 is shown formed over anSRAM cell area 67. Alayer 68 of insulating material is deposited and ideally planarized overSRAM gate 60 andsemiconductor substrate 11. Aregion 70proximate SRAM gate 60 in this example constitutes a source/drain region of another SRAM gate of the SRAM memory cell. Anopening 62 a formed inlayer 40 of photoresist comprises a local interconnect opening formed over and extending fromSRAM gate 60 to source/drain area 70 formed in a common masking step with formation of an elongated source implant opening over floating gate source area, such asopening 42 in FIG. 3. - Referring to FIG. 9, opening62 a has been extended by etching through insulating material of
layer 68 andSRAM gate cap 65 to expose conductive material of the SRAM gate and semiconductive material of source/drain area 70 ofsubstrate 11. Ion implanting conducted in connection with source area formation throughopenings 42 in FIG. 4 would also typically be conducted through opening 62 a in FIG. 9, thereby implanting into the SRAM gate and substrate material there-adjacent. - Referring to FIG. 10, subsequent processing can include deposition of an electrically conductive material over
layer 68 and subsequent planarization thereof to form a conductivelocal interconnect 74 electrically connectinggate 60 and source/drain area 70. While described in this embodiment relative to an SRAM gate, other gate/substrate local interconnects could of course be utilized, such as a local interconnect relative to a logic gate. - In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
Claims (59)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/225,893 US6406959B2 (en) | 1999-01-04 | 1999-01-04 | Method of forming FLASH memory, method of forming FLASH memory and SRAM circuitry, and etching methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/225,893 US6406959B2 (en) | 1999-01-04 | 1999-01-04 | Method of forming FLASH memory, method of forming FLASH memory and SRAM circuitry, and etching methods |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020013028A1 true US20020013028A1 (en) | 2002-01-31 |
US6406959B2 US6406959B2 (en) | 2002-06-18 |
Family
ID=22846706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/225,893 Expired - Lifetime US6406959B2 (en) | 1999-01-04 | 1999-01-04 | Method of forming FLASH memory, method of forming FLASH memory and SRAM circuitry, and etching methods |
Country Status (1)
Country | Link |
---|---|
US (1) | US6406959B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6500710B2 (en) * | 1999-06-15 | 2002-12-31 | Fujitsu Limited | Method of manufacturing a nonvolatile semiconductor memory device |
KR100678315B1 (en) | 2004-10-12 | 2007-02-02 | 동부일렉트로닉스 주식회사 | Semiconductor devices with high degree of integrity |
US20130244395A1 (en) * | 2006-05-31 | 2013-09-19 | Sandisk 3D Llc | Methods for protecting patterned features during trench etch |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6713346B2 (en) * | 1999-03-01 | 2004-03-30 | Micron Technology, Inc. | Methods of forming a line of flash memory cells |
US6624022B1 (en) | 2000-08-29 | 2003-09-23 | Micron Technology, Inc. | Method of forming FLASH memory |
US6853029B2 (en) * | 2001-05-28 | 2005-02-08 | Kabushiki Kaisha Toshiba | Non-volatile semiconductor memory device with multi-layer gate structure |
JP2003023114A (en) * | 2001-07-05 | 2003-01-24 | Fujitsu Ltd | Semiconductor integrated circuit device and its manufacturing method |
KR100535024B1 (en) * | 2002-07-18 | 2005-12-07 | 주식회사 하이닉스반도체 | Method for forming a word line of semiconductor device |
US6649453B1 (en) * | 2002-08-29 | 2003-11-18 | Micron Technology, Inc. | Contactless uniform-tunneling separate p-well (CUSP) non-volatile memory array architecture, fabrication and operation |
KR100629364B1 (en) * | 2004-12-28 | 2006-09-29 | 삼성전자주식회사 | Semiconductor integrated circuit devices including SRAM cells and flash memory cells and methods of fabricating the same |
US8616305B2 (en) * | 2006-08-11 | 2013-12-31 | Schlumberger Technology Corporation | Fixed bladed bit that shifts weight between an indenter and cutting elements |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5153143A (en) * | 1990-02-26 | 1992-10-06 | Delco Electronics Corporation | Method of manufacturing CMOS integrated circuit with EEPROM |
US5691246A (en) | 1993-05-13 | 1997-11-25 | Micron Technology, Inc. | In situ etch process for insulating and conductive materials |
US5498558A (en) * | 1994-05-06 | 1996-03-12 | Lsi Logic Corporation | Integrated circuit structure having floating electrode with discontinuous phase of metal silicide formed on a surface thereof and process for making same |
US5424233A (en) * | 1994-05-06 | 1995-06-13 | United Microflectronics Corporation | Method of making electrically programmable and erasable memory device with a depression |
US5376572A (en) * | 1994-05-06 | 1994-12-27 | United Microelectronics Corporation | Method of making an electrically erasable programmable memory device with improved erase and write operation |
US5605853A (en) * | 1996-05-28 | 1997-02-25 | Taiwan Semiconductor Manufacturing Company Ltd. | Method of making a semiconductor device having 4 transistor SRAM and floating gate memory cells |
US6043123A (en) * | 1996-05-30 | 2000-03-28 | Hyundai Electronics America, Inc. | Triple well flash memory fabrication process |
JP3665426B2 (en) * | 1996-07-17 | 2005-06-29 | 東芝マイクロエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
US6149828A (en) | 1997-05-05 | 2000-11-21 | Micron Technology, Inc. | Supercritical etching compositions and method of using same |
US6074959A (en) | 1997-09-19 | 2000-06-13 | Applied Materials, Inc. | Method manifesting a wide process window and using hexafluoropropane or other hydrofluoropropanes to selectively etch oxide |
TW365686B (en) * | 1998-02-16 | 1999-08-01 | Taiwan Semiconductor Mfg Co Ltd | Method of manufacture of fabricating flash memory split-gate |
US5976927A (en) | 1998-04-10 | 1999-11-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Two mask method for reducing field oxide encroachment in memory arrays |
US6197639B1 (en) * | 1998-07-13 | 2001-03-06 | Samsung Electronics Co., Ltd. | Method for manufacturing NOR-type flash memory device |
US6074915A (en) * | 1998-08-17 | 2000-06-13 | Taiwan Semiconductor Manufacturing Company | Method of making embedded flash memory with salicide and sac structure |
-
1999
- 1999-01-04 US US09/225,893 patent/US6406959B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6500710B2 (en) * | 1999-06-15 | 2002-12-31 | Fujitsu Limited | Method of manufacturing a nonvolatile semiconductor memory device |
KR100678315B1 (en) | 2004-10-12 | 2007-02-02 | 동부일렉트로닉스 주식회사 | Semiconductor devices with high degree of integrity |
US20130244395A1 (en) * | 2006-05-31 | 2013-09-19 | Sandisk 3D Llc | Methods for protecting patterned features during trench etch |
US8722518B2 (en) * | 2006-05-31 | 2014-05-13 | Sandisk 3D Llc | Methods for protecting patterned features during trench etch |
Also Published As
Publication number | Publication date |
---|---|
US6406959B2 (en) | 2002-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6690051B2 (en) | FLASH memory circuitry | |
US4373248A (en) | Method of making high density semiconductor device such as floating gate electrically programmable ROM or the like | |
US7465650B2 (en) | Methods of forming polysilicon-comprising plugs and methods of forming FLASH memory circuitry | |
US6376876B1 (en) | NAND-type flash memory devices and methods of fabricating the same | |
US5783471A (en) | Structure and method for improved memory arrays and improved electrical contacts in semiconductor devices | |
KR100415973B1 (en) | Dram cell arrangement and method for fabrication | |
US7091087B2 (en) | Optimized flash memory cell | |
US20050279984A1 (en) | Three dimensional flash cell | |
JP3531641B2 (en) | Method for manufacturing semiconductor device | |
EP0043244B1 (en) | Single polycrystalline silicon static fet flip flop memory cell | |
KR0155859B1 (en) | Flash memory device & its fabricating method | |
US6406959B2 (en) | Method of forming FLASH memory, method of forming FLASH memory and SRAM circuitry, and etching methods | |
US6649968B2 (en) | Flash memory cells | |
WO2004059737A1 (en) | Multi-level memory cell with lateral floating spacers | |
JP3452522B2 (en) | Method of manufacturing integrated circuit chip having embedded NVRAM array | |
JP2003218244A (en) | Method of manufacturing semiconductor device | |
US8329574B2 (en) | Methods of fabricating flash memory devices having shared sub active regions | |
US6337244B1 (en) | Method of forming flash memory | |
KR100404239B1 (en) | Read-only storage cell arrangement and method for producing the same | |
KR100365567B1 (en) | Read-only memory cell array and method for the fabrication thereof | |
US6723649B2 (en) | Method of fabricating a semiconductor memory device | |
JP2568770B2 (en) | High density memory array and method of forming the same | |
US6590266B1 (en) | 2-bit mask ROM device and fabrication method thereof | |
KR100195210B1 (en) | Method for forming nonvolatile memory device | |
US20030205764A1 (en) | Structure of two-bit mask read-only memory device and fabricating method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PRALL, KIRK D.;RETTSCHLAG, GREGG R.;WOLSTENHOLME, GRAHAM;REEL/FRAME:009702/0856;SIGNING DATES FROM 19981222 TO 19981230 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001 Effective date: 20160426 Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001 Effective date: 20160426 |
|
AS | Assignment |
Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001 Effective date: 20160426 Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001 Effective date: 20160426 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001 Effective date: 20160426 Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001 Effective date: 20160426 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001 Effective date: 20180703 Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001 Effective date: 20180703 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:047243/0001 Effective date: 20180629 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:050937/0001 Effective date: 20190731 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001 Effective date: 20190731 Owner name: MICRON SEMICONDUCTOR PRODUCTS, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001 Effective date: 20190731 |