US20020002118A1 - Lubrication additive - Google Patents
Lubrication additive Download PDFInfo
- Publication number
- US20020002118A1 US20020002118A1 US09/860,799 US86079901A US2002002118A1 US 20020002118 A1 US20020002118 A1 US 20020002118A1 US 86079901 A US86079901 A US 86079901A US 2002002118 A1 US2002002118 A1 US 2002002118A1
- Authority
- US
- United States
- Prior art keywords
- oil
- additive
- lubricating
- lubricating oil
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000654 additive Substances 0.000 title claims abstract description 27
- 230000000996 additive effect Effects 0.000 title claims abstract description 22
- 238000005461 lubrication Methods 0.000 title description 9
- 239000010687 lubricating oil Substances 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 239000002480 mineral oil Substances 0.000 claims abstract description 12
- 235000010446 mineral oil Nutrition 0.000 claims abstract description 12
- 239000012188 paraffin wax Substances 0.000 claims abstract description 8
- 239000011701 zinc Substances 0.000 claims abstract description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000002199 base oil Substances 0.000 claims description 2
- 230000001050 lubricating effect Effects 0.000 claims 1
- 239000003921 oil Substances 0.000 abstract description 37
- 239000010705 motor oil Substances 0.000 abstract description 11
- 238000002485 combustion reaction Methods 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000002253 acid Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- -1 fatty acid esters Chemical class 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- UPGSWASWQBLSKZ-UHFFFAOYSA-N 2-hexoxyethanol Chemical compound CCCCCCOCCO UPGSWASWQBLSKZ-UHFFFAOYSA-N 0.000 description 1
- RMUIGRZAEAVCIT-UHFFFAOYSA-N 3-hexoxypropan-1-ol Chemical compound CCCCCCOCCCO RMUIGRZAEAVCIT-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000010724 circulating oil Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000005120 petroleum cracking Methods 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 150000003558 thiocarbamic acid derivatives Chemical class 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 239000010698 whale oil Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/10—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/16—Ethers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M131/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen
- C10M131/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only
- C10M131/04—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M137/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
- C10M137/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
- C10M137/04—Phosphate esters
- C10M137/10—Thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/04—Ethers; Acetals; Ortho-esters; Ortho-carbonates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/04—Ethers; Acetals; Ortho-esters; Ortho-carbonates
- C10M2207/046—Hydroxy ethers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/02—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
- C10M2211/022—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/06—Perfluorinated compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/251—Alcohol-fuelled engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/28—Rotary engines
Definitions
- This invention relates to lubricating oils and particularly to additives which reduce friction and extend the life of the oil.
- Lubricating oils are essential to the operation of modern machinery and, in particularly, to transportation devices.
- the oils are adapted to particular conditions of use and are customized chemically for optimal performance under those conditions.
- Lubricating oils used in motor vehicles fall into three use classifications.
- Lubricating oil for internal combustion engines (hereinafter motor oil) is required to form a film between metal parts and to do so under varying temperature conditions.
- Lubricating oil for gears (hereinafter gear lube) is a slightly more viscous material than motor oil and is particularly adapted to reduce friction at wiped services such as bevel cut gears and hyphoid differentials.
- Automatic transmission fluid (ATF) is a thin oil specifically adapted for torque converters, wet clutches and valves.
- Motor oil is a complex mixture of chemicals which must provide hydrodynamic lubrication and boundary layer lubrication. Typical operating temperatures range from ⁇ 20° C. to 125° C. Recent developments in engine technology require oils with lower viscosity which must operate over a broader range of engine speeds, at higher temperatures, and must be consistently effective lubricants for longer periods of use. Specifically, the oils are expected to reduce cracking, oxidation, and gum formation while preventing formation of deposits of solids on engine surfaces.
- Lubricating oils may have many sources. Castor oil has been used for both the bulk of the lubricant and as an additive. Whale oil is preferred as an additive in ATF. Most oil today is mineral oil derived from petroleum. There are three predominant types. Conventional motor oil was and is obtained from the vacuum distillation of the higher boiling components of crude oil. The product is dewaxed to lower the pour point, aromatics are removed to increase the viscosity index, the oil is deasphalted and, typically, hydrotreated.
- Synthetic oils are of two types.
- a synthetic hydrocarbon may be formed from the polymerization of isobutylene produced from conventional petroleum cracking and it may be polymerized with additional components such as alpha-olefins and ethylene.
- a synthetic oil may be formed from a mixture of organic esters, typically having six to ten carbon branch chains attached.
- additives are routinely employed, as described in U.S. Pat. No. 5,728,656 to Yamaguchi et al. These additives include dispersants, detergents, oxidation inhibitors, viscosity index improvers, anti-wear agents, and pour point depressants.
- U.S. Pat. No. 5,912,212 to Igarashi et al. is directed to the use of nitrogen-containing compounds, in combination with fatty acid esters, sulphur, phosphorus or phenols, as an effective antioxidant.
- U.S. Pat. No. 5,902,776 to Dohner et al. is directed to the use of amines and thiocarbamates as anti-wear agents.
- U.S. Pat. No. 5,712,230 to Abraham et al. is directed to the use of bound sulphur-containing compounds in oils having good anti-wear characteristics while lowering the amount of phosphorus in the oil.
- U.S. Pat. No. 4,844,825 to Sloan discloses an extreme pressure lubricant additive comprising chlorinated parrafin and alkaline earth metal sulfonate in a vehicle consisting of mineral oil, mineral spirits and an aromatic solvent.
- FIG. 1 is a plot of temperature versus time for the concentrated (undiluted) additive tested using a Timken test apparatus.
- FIG. 2 is a plot of temperature versus time for the additive of this invention diluted with P100 motor oil with ratio of 40:60 and 60:40.
- Motor oil performs two functions in a typical internal combustion engine. Hydrodynamic lubrication occurs when a film of oil separates two services. This occurs in locations where a rotating element is surrounded by a bearing or bushing. Crankshaft journals and camshaft bearings are typical examples. The rotating component rides on a cushion of oil and the oil is typically supplied to the area under pressure. As long as the oil is present, its quality is of minimal concern so long as the viscosity is sufficient to retain enough film thickness to prevent contact between the journal and the bearing surface. Following the Reynolds hydrodynamic theory, friction is a direct function of viscosity.
- Boundary layer lubrication occurs in those locations where the wetted surface of the metal parts prevents metal-to-metal contact. This typically occurs at places where metal components are in a wiping relationship. Typical examples include camshaft lobes, cam followers and bevel cut gears. This is sometimes called extreme pressure lubrication.
- For boundary layer lubrication it is necessary for the oil to adhere to the surfaces of the metal while the metal surfaces are being urged towards each other. Mineral oil is ordinarily sufficient for hydrodynamic lubrication but is not especially good for a boundary layer lubrication. For this reason antiwear or “film forming” additives are added to motor oils to improve their lubricity.
- Timken method ASTMD D2782 is commonly used and was used in the development of this invention.
- the temperature of the oil becomes a measure of the overall lubricity of the oil.
- Lower oil temperatures are beneficial because they reduce the thinning of the oil and allow lower viscosity oils to maintain oil pressure in journals, resulting in lower friction in the film.
- a cooler oil is also beneficial because the circulating oil serves to remove heat from the engine, especially under heavy load.
- Improved lubricity and lower drag can also be measured as a horsepower increase, using a dynamometer. In the field, they can be measured in decreased fuel consumption.
- a third measure of lubricity is measured wear after a specified number of hours of operation. This is usually done with a micrometer after disassembly. Wear may also be measured chemically by analyzing oil drained from the motor for the presence of metals, especially bearing and bushing materials such as copper, tin and lead, as well as metals from the components such as aluminum and iron.
- Detergents and surfactants are important for maintaining lubricity.
- Water and acids in the oil and solid particles reduce lubricity by roughening wiped surfaces and forming sludge between moving parts. Soot thickens the oil.
- the primary source of water is condensation.
- the primary source of acid is blow-by, i.e., SO 2 MO x formed in combustion.
- Particulate matter also enters primarily through blow-by and is increased when the exhaust is “sooty.” Particulate blow-by is a characteristic problem with diesel engines because carbon particles are formed in the combustion process in certain modes of operation.
- a remarkably effective additive for motor oils consists of a metal alkyldithiophosphate, a lightly chlorinated paraffin (chlorinated alkane) and a glycol ether.
- This composition is present in a weight ratio of between 1:5:2 and 1:15:8, preferably 1:10:5.
- This additive may be added directly to any base oil or blended with P100 mineral oil for addition to any oil base.
- the metal alkyldithiophosphate is preferably a zinc alkyldithiophosphate (ZEDnDTP) which is overbased by a ratio of up to 1.20:1.
- ZEDnDTP zinc alkyldithiophosphate
- Representative proprietary examples are LUBRIZOLTM 1095, 1097 and 1375.
- This overbased additive is a known antiwear agent and antioxidant, and when used in the overbased form, is useful to neutralize acids formed in the oil.
- the chlorinated paraffin used in this invention is a saturated paraffin having between 13 and 18 carbon atoms, and between 4 and 8 chlorine atoms. Too low a chlorine content reduces film forming strength. Too high chlorine content results in acid build-up. It should be in the form of a light oil and readily soluble in mineral oil. Products under the name “CERECLORTM Nos. S45, S52, 51L, S-52HV, S56 and S58 sold by ICI Americas are suitable for this purpose.
- glycol ethers such as trimethylene glycol monohexyl ether and homologous glyme-type compounds are suitable.
- Commercial examples include ECOSOFTTM solvents PE, PB, and PH. These glymes emulsify the sludge format by water and acids in the oil, cut ring wear and cut smoking in diesel engines.
- the metal treatment product of this invention was mixed with a commercial ISO/SAE 30 motor oil and used in a diesel truck engine for 30,000 hours (approximately 50,000 miles).
- the table below compares the drained oil with the original.
- Test Original Used Viscosity 10.84 16.74 SAE Equiv. 30 40 Fe 9 58 al 3 9 Cu 2 8 Su 0 1 Pb 8 69 Cr 0 3 Si 2 6 Ba 0 0 Ca 1470 3082 Mg 445 15 Zn 1097 1263 P 988 1036
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
An additive for lubricating oil, especially motor oil for internal combustion engines, uses a mixture of overbased zinc alhyl-dithiophosphate, a chlorinated paraffin and a glycol ether. The additive preferable is used in a mineral oil base for reduced wear and lower oil operating temperatures.
Description
- This invention claims benefit of U.S.
Provisional Application 60/206084 filed May 19, 2000. - 1. Field of the Invention
- This invention relates to lubricating oils and particularly to additives which reduce friction and extend the life of the oil.
- 2. Background and Related Art
- Lubricating oils are essential to the operation of modern machinery and, in particularly, to transportation devices. The oils are adapted to particular conditions of use and are customized chemically for optimal performance under those conditions.
- Lubricating oils used in motor vehicles fall into three use classifications. Lubricating oil for internal combustion engines (hereinafter motor oil) is required to form a film between metal parts and to do so under varying temperature conditions. Lubricating oil for gears (hereinafter gear lube) is a slightly more viscous material than motor oil and is particularly adapted to reduce friction at wiped services such as bevel cut gears and hyphoid differentials. Automatic transmission fluid (ATF) is a thin oil specifically adapted for torque converters, wet clutches and valves.
- Motor oil is a complex mixture of chemicals which must provide hydrodynamic lubrication and boundary layer lubrication. Typical operating temperatures range from −20° C. to 125° C. Recent developments in engine technology require oils with lower viscosity which must operate over a broader range of engine speeds, at higher temperatures, and must be consistently effective lubricants for longer periods of use. Specifically, the oils are expected to reduce cracking, oxidation, and gum formation while preventing formation of deposits of solids on engine surfaces.
- Lubricating oils may have many sources. Castor oil has been used for both the bulk of the lubricant and as an additive. Whale oil is preferred as an additive in ATF. Most oil today is mineral oil derived from petroleum. There are three predominant types. Conventional motor oil was and is obtained from the vacuum distillation of the higher boiling components of crude oil. The product is dewaxed to lower the pour point, aromatics are removed to increase the viscosity index, the oil is deasphalted and, typically, hydrotreated.
- Synthetic oils are of two types. A synthetic hydrocarbon may be formed from the polymerization of isobutylene produced from conventional petroleum cracking and it may be polymerized with additional components such as alpha-olefins and ethylene. Alternatively, a synthetic oil may be formed from a mixture of organic esters, typically having six to ten carbon branch chains attached.
- Regardless of the source, a number of additives are routinely employed, as described in U.S. Pat. No. 5,728,656 to Yamaguchi et al. These additives include dispersants, detergents, oxidation inhibitors, viscosity index improvers, anti-wear agents, and pour point depressants.
- U.S. Pat. No. 5,925,600 to Atherton discloses the use of aminic antioxidants and phenolic antioxidants in various ratios.
- U.S. Pat. No. 5,912,212 to Igarashi et al. is directed to the use of nitrogen-containing compounds, in combination with fatty acid esters, sulphur, phosphorus or phenols, as an effective antioxidant.
- U.S. Pat. No. 5,902,776 to Dohner et al. is directed to the use of amines and thiocarbamates as anti-wear agents.
- U.S. Pat. No. 5,792,732 to Jao et al. is directed to the use of overbased detergents which are salts of linear alkaryl acids.
- U.S. Pat. No.5,744,430 to Inome et al. discloses friction modifiers based on molybdenum.
- U.S. Pat. No. 5,712,230 to Abraham et al. is directed to the use of bound sulphur-containing compounds in oils having good anti-wear characteristics while lowering the amount of phosphorus in the oil.
- U.S. Pat. No. 4,844,825 to Sloan discloses an extreme pressure lubricant additive comprising chlorinated parrafin and alkaline earth metal sulfonate in a vehicle consisting of mineral oil, mineral spirits and an aromatic solvent.
- There continues to be a need for additives in oil to improve the performance of the oil by reducing wear on moving parts and by increasing the number of hours over which a motor may be operated before deterioration of the oil occurs and/or before unacceptable solid deposits occur within the engine.
- It is a first objective of this invention to provide an additive chemical composition for a lubricating oil, most particularly a motor oil, which reduces friction between metal surfaces.
- It is a second objective of this invention to provide an additive combination for a lubricating oil which has a higher detergency and, in particular, the ability to hold small ash particles in suspension.
- It is a third objective of this invention to provide an additive chemical composition for a lubricating oil which bonds strongly to metal, especially aluminum surfaces.
- It is a fourth objective of this invention to provide an additive chemical composition for a lubricating oil which has a high capacity for moisture and acids.
- These and other objectives may be met by providing an additive composition including a dithiophosphate anti-wear agent, a chloroparaffin and an hydroxy polyether in a mineral oil base.
- FIG. 1 is a plot of temperature versus time for the concentrated (undiluted) additive tested using a Timken test apparatus.
- FIG. 2 is a plot of temperature versus time for the additive of this invention diluted with P100 motor oil with ratio of 40:60 and 60:40.
- Motor oil performs two functions in a typical internal combustion engine. Hydrodynamic lubrication occurs when a film of oil separates two services. This occurs in locations where a rotating element is surrounded by a bearing or bushing. Crankshaft journals and camshaft bearings are typical examples. The rotating component rides on a cushion of oil and the oil is typically supplied to the area under pressure. As long as the oil is present, its quality is of minimal concern so long as the viscosity is sufficient to retain enough film thickness to prevent contact between the journal and the bearing surface. Following the Reynolds hydrodynamic theory, friction is a direct function of viscosity.
- Boundary layer lubrication occurs in those locations where the wetted surface of the metal parts prevents metal-to-metal contact. This typically occurs at places where metal components are in a wiping relationship. Typical examples include camshaft lobes, cam followers and bevel cut gears. This is sometimes called extreme pressure lubrication. For boundary layer lubrication, it is necessary for the oil to adhere to the surfaces of the metal while the metal surfaces are being urged towards each other. Mineral oil is ordinarily sufficient for hydrodynamic lubrication but is not especially good for a boundary layer lubrication. For this reason antiwear or “film forming” additives are added to motor oils to improve their lubricity.
- There are several ways to measure improvements in lubricity. The Timken method ASTMD D2782 is commonly used and was used in the development of this invention.
- When the oil is used in an internal combustion engine, the temperature of the oil becomes a measure of the overall lubricity of the oil. Lower oil temperatures are beneficial because they reduce the thinning of the oil and allow lower viscosity oils to maintain oil pressure in journals, resulting in lower friction in the film. A cooler oil is also beneficial because the circulating oil serves to remove heat from the engine, especially under heavy load.
- Improved lubricity and lower drag can also be measured as a horsepower increase, using a dynamometer. In the field, they can be measured in decreased fuel consumption.
- A third measure of lubricity is measured wear after a specified number of hours of operation. This is usually done with a micrometer after disassembly. Wear may also be measured chemically by analyzing oil drained from the motor for the presence of metals, especially bearing and bushing materials such as copper, tin and lead, as well as metals from the components such as aluminum and iron.
- Detergents and surfactants are important for maintaining lubricity. Water and acids in the oil and solid particles reduce lubricity by roughening wiped surfaces and forming sludge between moving parts. Soot thickens the oil. The primary source of water is condensation. The primary source of acid is blow-by, i.e., SO2MOx formed in combustion. Particulate matter also enters primarily through blow-by and is increased when the exhaust is “sooty.” Particulate blow-by is a characteristic problem with diesel engines because carbon particles are formed in the combustion process in certain modes of operation.
- We have discovered that a remarkably effective additive for motor oils consists of a metal alkyldithiophosphate, a lightly chlorinated paraffin (chlorinated alkane) and a glycol ether. This composition is present in a weight ratio of between 1:5:2 and 1:15:8, preferably 1:10:5. This additive may be added directly to any base oil or blended with P100 mineral oil for addition to any oil base.
- The metal alkyldithiophosphate is preferably a zinc alkyldithiophosphate (ZEDnDTP) which is overbased by a ratio of up to 1.20:1. Representative proprietary examples are LUBRIZOL™ 1095, 1097 and 1375. This overbased additive is a known antiwear agent and antioxidant, and when used in the overbased form, is useful to neutralize acids formed in the oil.
- The chlorinated paraffin used in this invention is a saturated paraffin having between 13 and 18 carbon atoms, and between 4 and 8 chlorine atoms. Too low a chlorine content reduces film forming strength. Too high chlorine content results in acid build-up. It should be in the form of a light oil and readily soluble in mineral oil. Products under the name “CERECLOR™ Nos. S45, S52, 51L, S-52HV, S56 and S58 sold by ICI Americas are suitable for this purpose.
- As a detergent and surfactant, glycol ethers such as trimethylene glycol monohexyl ether and homologous glyme-type compounds are suitable. Commercial examples include ECOSOFT™ solvents PE, PB, and PH. These glymes emulsify the sludge format by water and acids in the oil, cut ring wear and cut smoking in diesel engines.
- When mixed with mineral oil P100 at a ratio of three parts of the additive to one part mineral oil, the additive itself is an excellent lubricant. Using a Timken test device (of ASTMD D2782), the temperature of the undiluted additive in is as shown in FIG. 1 using a 5 psig load. FIG. 2 shows the same test for the additive diluted to 60% and 40% with
P 100. - Twenty-one grams of P100 base mineral oil was heated in a beaker with mild strirring to a temperature of 75° C. Four grams of zinc alkyldithiophosphate (lubrizol) was added, followed by 40 grams of a chlorinated paraffin (C14-C17 chlorinated alkanes, molecular formula C15-H26-Cl16, CERECLOR™, ICI). Twenty grams of a mixed glycol monohexyl ether (ECOSOFT™ PB, Union Carbide) was run in and the mixture stirred at 75° C. for 30 minutes, then cooled with gentle stirring to room temperature.
- A portion of the product was placed in a Tinken test apparatus having a thermocouple in the oil reservoir. The load on the tester was set at 5 lbs./in2 and the axle spun at 1325 rpm. for one hour. Temperature readings were taken at 5 second intervals. The result of two successive tests on the undiluted product are shown in FIG. 1.
- The product was diluted with P100 mineral oil to 60% product and 40% P100 and also to 40% product and 60% P100. The same test as described above was repeated. The results are shown in FIG. 2.
- The metal treatment product of this invention was mixed with a commercial ISO/SAE 30 motor oil and used in a diesel truck engine for 30,000 hours (approximately 50,000 miles). The table below compares the drained oil with the original.
Test Original (Control) Used Viscosity 10.84 16.74 SAE Equiv. 30 40 Fe 9 58 al 3 9 Cu 2 8 Su 0 1 Pb 8 69 Cr 0 3 Si 2 6 Ba 0 0 Ca 1470 3082 Mg 445 15 Zn 1097 1263 P 988 1036 - Field tests in diesel trucks have documented 10% fuel consumption improvement in a KENWORTH™, 20% in a CUMMINS™ powered FREIGHTLINER™ and 8% in a DETROIT DIESEL™.
- Dynomometer tests using a modified Briggs and STRATTON™ racing go-cart motor showed 3% h.p. improvements at 4000 rpm.
- The above examples demonstrate the invention but do not constitute a limitation thereto. Changes within the disclosure as would be obvious to those skilled in the art are within the scope of this invention.
Claims (5)
1. A lubricating oil composition comprising:
a) a base oil of lubricating viscosity; and
b) an additive comprising a zinc alkyldithiophosphate, a chlorinated paraffin and a glycol ether.
2. An additive for a lubricating oil comprising a 1:5:10 mixture of a zinc alkyldithiophosphate, a glycol ether and a chlorinated paraffin.
3. An additive according to claim 2 further comprising 15-30% mineral oil.
4. A lubricating oil composition according to claim 1 further comprising a viscosity index improver.
5. A lubricating oil according to claim 1 , wherein said mixture of zinc alkyldithiophosphate, glycol ether and chlorinated paraffin is present in an amount between 3 and 8% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/860,799 US20020002118A1 (en) | 2000-05-19 | 2001-05-18 | Lubrication additive |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20608400P | 2000-05-19 | 2000-05-19 | |
US09/860,799 US20020002118A1 (en) | 2000-05-19 | 2001-05-18 | Lubrication additive |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020002118A1 true US20020002118A1 (en) | 2002-01-03 |
Family
ID=26901020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/860,799 Abandoned US20020002118A1 (en) | 2000-05-19 | 2001-05-18 | Lubrication additive |
Country Status (1)
Country | Link |
---|---|
US (1) | US20020002118A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050101497A1 (en) * | 2003-11-12 | 2005-05-12 | Saathoff Lee D. | Compositions and methods for improved friction durability in power transmission fluids |
US7018531B2 (en) | 2001-05-30 | 2006-03-28 | Honeywell International Inc. | Additive dispensing cartridge for an oil filter, and oil filter incorporating same |
US7182863B2 (en) | 2000-05-08 | 2007-02-27 | Honeywell International, Inc. | Additive dispersing filter and method of making |
US20090206024A1 (en) * | 2008-02-15 | 2009-08-20 | Bilski Gerard W | Additive dispensing device and a thermally activated additive dispensing filter having the additive dispensing device |
US20120085449A1 (en) * | 2009-04-06 | 2012-04-12 | Vanderbilt University | High Energy Density Elastic Accumulator and Method of Use Thereof |
US20130053290A1 (en) * | 2011-08-25 | 2013-02-28 | Sabatino Nacson | Lubricating Oil Formulation |
US9010101B2 (en) | 2011-02-03 | 2015-04-21 | Vanderbilt University | Multiple accumulator systems and methods of use thereof |
US9249847B2 (en) | 2011-12-16 | 2016-02-02 | Vanderbilt University | Distributed piston elastomeric accumulator |
US9623350B2 (en) | 2013-03-01 | 2017-04-18 | Fram Group Ip Llc | Extended-life oil management system and method of using same |
CN108246142A (en) * | 2018-02-05 | 2018-07-06 | 镇江艾润润滑油有限公司 | A kind of blending mixed method of metal lubrication oil |
CN114621804A (en) * | 2021-12-25 | 2022-06-14 | 科特龙流体科技(扬州)有限公司 | Composite extreme pressure additive and preparation method thereof |
-
2001
- 2001-05-18 US US09/860,799 patent/US20020002118A1/en not_active Abandoned
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7182863B2 (en) | 2000-05-08 | 2007-02-27 | Honeywell International, Inc. | Additive dispersing filter and method of making |
US20080099407A1 (en) * | 2000-05-08 | 2008-05-01 | Derek Eilers | Additive dispersing filter and method of making |
US7811462B2 (en) | 2000-05-08 | 2010-10-12 | Honeywell International, Inc. | Additive dispersing filter and method of making |
US20110084032A1 (en) * | 2000-05-08 | 2011-04-14 | Derek Eilers | Additive dispersing filter and method of making |
US7018531B2 (en) | 2001-05-30 | 2006-03-28 | Honeywell International Inc. | Additive dispensing cartridge for an oil filter, and oil filter incorporating same |
US20050101497A1 (en) * | 2003-11-12 | 2005-05-12 | Saathoff Lee D. | Compositions and methods for improved friction durability in power transmission fluids |
EP1531175A3 (en) * | 2003-11-12 | 2006-03-15 | Afton Chemical Corporation | Compositions and methods for improved friction durability in power transmission fluids |
US20080090744A1 (en) * | 2003-11-12 | 2008-04-17 | Saathoff Lee D | Compositions and Methods for Improved Friction Durability in Power Transmission Fluids |
US20090206024A1 (en) * | 2008-02-15 | 2009-08-20 | Bilski Gerard W | Additive dispensing device and a thermally activated additive dispensing filter having the additive dispensing device |
US7931817B2 (en) | 2008-02-15 | 2011-04-26 | Honeywell International Inc. | Additive dispensing device and a thermally activated additive dispensing filter having the additive dispensing device |
US20120085449A1 (en) * | 2009-04-06 | 2012-04-12 | Vanderbilt University | High Energy Density Elastic Accumulator and Method of Use Thereof |
US8826940B2 (en) * | 2009-04-06 | 2014-09-09 | Vanderbilt University | High energy density elastic accumulator and method of use thereof |
US9010101B2 (en) | 2011-02-03 | 2015-04-21 | Vanderbilt University | Multiple accumulator systems and methods of use thereof |
US20130053290A1 (en) * | 2011-08-25 | 2013-02-28 | Sabatino Nacson | Lubricating Oil Formulation |
US9169454B2 (en) * | 2011-08-25 | 2015-10-27 | Sabatino Nacson | Lubricating oil formulation |
US9249847B2 (en) | 2011-12-16 | 2016-02-02 | Vanderbilt University | Distributed piston elastomeric accumulator |
US9920775B2 (en) | 2011-12-16 | 2018-03-20 | Vanderbilt University | Distributed piston elastomeric accumulator |
US9623350B2 (en) | 2013-03-01 | 2017-04-18 | Fram Group Ip Llc | Extended-life oil management system and method of using same |
CN108246142A (en) * | 2018-02-05 | 2018-07-06 | 镇江艾润润滑油有限公司 | A kind of blending mixed method of metal lubrication oil |
CN114621804A (en) * | 2021-12-25 | 2022-06-14 | 科特龙流体科技(扬州)有限公司 | Composite extreme pressure additive and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2171830C2 (en) | Lubricant concentrate and motor oil | |
EP1013750B1 (en) | Use of a lubricant oil composition in diesel engines | |
JP3927724B2 (en) | Lubricating oil composition for internal combustion engines | |
CN1869179B (en) | A method of lubricating a crosshead engine | |
US5736491A (en) | Method of improving the fuel economy characteristics of a lubricant by friction reduction and compositions useful therein | |
JP4614049B2 (en) | Engine oil composition | |
US20020002118A1 (en) | Lubrication additive | |
JP3973281B2 (en) | Gear oil composition | |
WO2014128104A1 (en) | Lubricating composition based on aminated compounds | |
WO2014096328A1 (en) | Lubricating composition made from polyglycerol ether | |
EP1203804A1 (en) | Lubricant oil composition for diesel engines | |
US5266225A (en) | Lubricating oil and lubricating oil additives | |
EP4263767B1 (en) | Use of an alcohol ethoxylated phosphate ester compound in a lubricating composition to prevent corrosion and/ or tribocorrosion of metallic parts in an engine | |
US4927549A (en) | Lubricant of lubricating oil basis for lubricating rotating and/or sliding surfaces and process for preparing same | |
CA2235701C (en) | Friction modifier comprising metal sulfonate and lubricating oil composition containing the same | |
JP4095750B2 (en) | Lubricating oil composition for internal combustion engines | |
JP2000026879A (en) | Lubricating oil composition for internal combustion engine | |
EP3529341B1 (en) | Lubricant composition | |
KR100346352B1 (en) | Lubricant oil composition | |
Mackney et al. | Automotive lubricants | |
EP0884378B1 (en) | Method for improving the friction reducing properties of a lubricating oil | |
JP2004018555A (en) | Additive for lubricating oil and lubricating oil | |
Bell | Engine lubricants | |
Goering et al. | Lubricants and Lubricating Systems | |
EP4426802A1 (en) | Lubricating oil compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |