US20020001128A1 - Parallax barrier, display, passive polarisation modulating optical element and method of making such an element - Google Patents

Parallax barrier, display, passive polarisation modulating optical element and method of making such an element Download PDF

Info

Publication number
US20020001128A1
US20020001128A1 US09/502,098 US50209800A US2002001128A1 US 20020001128 A1 US20020001128 A1 US 20020001128A1 US 50209800 A US50209800 A US 50209800A US 2002001128 A1 US2002001128 A1 US 2002001128A1
Authority
US
United States
Prior art keywords
polarisation
light
regions
display
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/502,098
Other versions
US6437915B2 (en
Inventor
Richard Moseley
Graham Woodgate
Adrian Jacobs
Jonathan Harrold
David Ezra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB9619097A external-priority patent/GB2317291A/en
Priority claimed from GB9702259A external-priority patent/GB2321815A/en
Priority claimed from GB9713985A external-priority patent/GB2317295A/en
Application filed by Individual filed Critical Individual
Priority to US09/502,098 priority Critical patent/US6437915B2/en
Publication of US20020001128A1 publication Critical patent/US20020001128A1/en
Application granted granted Critical
Publication of US6437915B2 publication Critical patent/US6437915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • G02B27/285Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/312Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being placed behind the display panel, e.g. between backlight and spatial light modulator [SLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/327Calibration thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/361Reproducing mixed stereoscopic images; Reproducing mixed monoscopic and stereoscopic images, e.g. a stereoscopic image overlay window on a monoscopic image background
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/373Image reproducers using viewer tracking for tracking forward-backward translational head movements, i.e. longitudinal movements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/376Image reproducers using viewer tracking for tracking left-right translational head movements, i.e. lateral movements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/286Image signal generators having separate monoscopic and stereoscopic modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/334Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using spectral multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens

Definitions

  • the present invention relates to a passive polarisation modulating optical element and to an optical device including such an element.
  • the present invention also relates to a method of making a passive polarisation modulating optical element.
  • Such an element may be used in three dimensional (3D) displays, for instance of the autostereoscopic type.
  • Such displays may be used in games apparatuses, computer monitors, laptop displays, work stations and professional imaging, for instance for medical, design or architectural use.
  • the present invention relates to a parallax barrier and to a display.
  • Such displays may be used as switchable two dimensional (2D)/three dimensional (3D) displays and may be used in games apparatuses, computer monitors, lap top displays, work stations and professional imaging, for instance for medical, design or architectural use.
  • Most 3D displays may be classified into two types depending on the technique used to supply the different views to the eyes.
  • Stereoscopic displays typically display both of the images over a wide viewing area.
  • each of the views is encoded, for instance by colour, polarisation state or time of display, so that a filter system of glasses worn by the observer attempts to separate the views to let each eye see only the view that is intended for it.
  • Autostereoscopic displays require no viewing aids to be worn by the observer. Instead, the two views are only visible from defined regions of space.
  • the region of space in which an image is visible across the whole of the display active area is termed a “viewing region”. If the observer is situated such that one eye is in one viewing region and the other eye is in the other viewing region, then a correct set of views is seen and a 3D image is perceived.
  • the viewing regions are formed by a combination of the picture element (pixel) structure of the display and an optical element, generically termed a parallax optic.
  • a parallax optic An example of such an optic is a parallax barrier.
  • This element is a screen with vertical transmissive slits separated by opaque regions.
  • a display of this type is illustrated in FIG. 1 of the accompanying drawings.
  • a spatial light modulator (SLM) 1 of the liquid crystal type comprises glass substrates 2 between which are disposed a liquid crystal layer together with associated electrodes and alignment layers.
  • a backlight 3 illuminates the SLM 1 from behind and a parallax barrier 4 is disposed on the front surface of the SLM 1 .
  • the SLM 1 comprises a 2D array of pixel apertures with the pixels arranged as columns as shown at 5 separated by gaps 6 .
  • the parallax barrier 4 has vertically extending slits 7 with a horizontal pitch close to an integer multiple of the horizontal pitch of the pixel columns 5 so that groups of columns of pixels are associated with each slit. As illustrated in FIG. 1, three pixel columns labelled columns 1 , 2 and 3 are associated with each slit 7 of the parallax barrier 4 .
  • the function of the parallax optic such as the parallax barrier 4 is to restrict the light transmitted through the pixels to certain output angles. This restriction defines the angle of view of each of the pixel columns behind the associated slit. The angular range of view of each pixel is determined by the pixel width and the separation between planes containing the pixels and the parallax optic. As shown in FIG. 1, the three columns 5 associated with each slit 7 are visible in respective viewing windows.
  • FIG. 2 of the accompanying drawings illustrates the angular zones of light created from an SLM 1 and a parallax barrier 4 where the parallax barrier slits have a horizontal pitch equal to an exact integer multiple of the pixel column pitch.
  • the angular zones coming from different locations across the display surface intermix and a pure zone of view for image 1 or image 2 does not exist.
  • each eye of an observer will not see a single image across the whole of the display but instead will see slices of different images at different regions on the display surface.
  • the pitch of the parallax optic is reduced slightly so that the angular zones converge at a predetermined plane, generally known as the “window plane”, in front of the display.
  • viewpoint correction This change in the parallax optic pitch is termed “viewpoint correction” and is illustrated in FIG. 3 of the accompanying drawings.
  • the window plane is shown at 8 and the resulting substantially kite shaped viewing regions are shown at 9 and 10 .
  • the left and right eyes of the observer remain in the viewing regions 9 and 10 , respectively, each eye will see the single image intended for it across the whole of the display so that the observer will perceive the 3D effect.
  • the window plane 8 defines the optimum viewing distance of the display. An observer whose eyes are located in this plane receives the best performance of the display. As the eyes move laterally in this plane, the image on the display remains until the eyes reach the edge of the viewing regions 9 and 10 , whereupon the whole display swiftly changes to the next image as one eye moves into the adjacent viewing region.
  • the line of the window plane within each viewing region is generally termed a “viewing window”.
  • FIG. 4 of the accompanying drawings illustrates an autostereoscopic display which differs from that shown in FIG. 1 in that the parallax barrier 4 is disposed on the rear surface of the SLM 1 .
  • This arrangement has the advantage that the barrier 4 is disposed behind the SLM 1 away from possible damage.
  • the light efficiency of the display may be improved by making the opaque parts of the rear surface of the parallax barrier 4 reflective so as to recycle light which is not incident on the slits 7 .
  • a switchable diffuser 11 is shown between the parallax barrier 4 and the SLM 1 .
  • a diffuser may comprise a polymer-dispersed liquid crystal which is switchable between a low scattering or substantially clear state and a highly scattering state.
  • the display operates as described hereinbefore as an autostereoscopic 3D display.
  • the diffuser is switched to the highly scattering state, light rays are deflected on passing through the diffuser and form an even or “Lambertian” distribution which “washes out” the effect of the parallax barrier 4 and so destroys the creation of viewing regions.
  • the display therefore acts as a conventional 2D display with the full spatial resolution of the SLM 1 being available for displaying 2D images.
  • each of the views represented in the viewing regions uses a fraction of the total resolution of the SLM 1 .
  • each eye perceives an image of only half the total resolution.
  • the resolution in each eye is only one third.
  • the representation of complex small characters, such as text and details within images, may therefore be adversely affected. It is desirable to include in the display some means for disabling or overcoming the parallax imaging system so that the full resolution of the SLM 1 is visible to each eye for the display of detailed 2D information.
  • U.S. Pat. No. 2,631,496 discloses an autostereoscopic display based on a single picture in which a parallax element is provided by a polariser element having alternate stripes of orthogonally oriented polariser.
  • the polariser element co-operates with an image in which the left and right views are encoded with orthogonal polarisations in vertical columns. The encoding swaps for every image strip column.
  • the polariser element thus acts in a similar manner to a parallax barrier but is such that the mark/space ratio i.e. the ratio of the width of each effective slit to each effective opaque region, is substantially equal to 1. This results in relatively high cross talk and poor viewing freedom for the observer. Such an arrangement does not permit a full resolution 2D viewing mode to be achieved without image artefacts.
  • Proc. SPIE vol. 2177, pp 181 “Novel 3D Stereoscopic Imaging Technology”, S. M. Faris, 1994 discloses a display which may operated stereoscopically or autostereoscopically using external micropolarisers.
  • two micropolariser sheets are disposed above the spatially multiplexed image and are movable to switch between autostereoscopic and stereoscopic viewing. Such an arrangement cannot be operated to provide a high resolution 2D viewing mode.
  • a rear reflective layer may be applied to the parallax barrier so as to recycle light and improve brightness, all of the light received by the observer has to pass through the slits of the parallax barrier so that display brightness is degraded in the 2D mode.
  • the mark space ratio of the parallax barrier would be 2:1 so that only one third of the light from the backlight is transmitted through the display.
  • the reflective layer may improve this but would not restore the display to full brightness.
  • back scatter in the switchable diffuser would reduce the display brightness in the 2D mode. If the switchable diffuser is designed for strong backscatter in the high diffusion mode of operation, it is difficult to achieve the very low levels of diffusion necessary in the low diffusion mode to ensure that the 3D display device does not suffer from increased cross talk.
  • U.S. Pat. No. 5,264,964 discloses a passive display of the rear parallax barrier type.
  • the display is switchable between stereoscopic and autostereoscopic modes of viewing.
  • the rear parallax barrier comprises two micropolarisers with a nematic liquid crystal layer there between.
  • the micropolarisers have aligned polarising and non-polarising regions such that, when the liquid crystal is in its inactive state and has not effect on the polarisation of light, polarising glasses have to be worn in order to view the image stereoscopically.
  • the liquid crystal layer When the liquid crystal layer is in its active state, it rotates the polarisation of light through 90°.
  • the aligned polarising regions of the micropolarisers then block light so that a rear parallax barrier is formed and the image can be viewed autostereoscopically.
  • EP 0 689 084 discloses the use of reactive mesogen layers as optical elements and alignment surfaces.
  • U.S. Pat. No. 5,537,144 and U.S. Pat. No. 5,327,285 disclose photolithographic techniques of patterning polarisers or retarders.
  • An array of waveplates is generated by bleaching a stretched film of PVA through a photoresist mask in a hot humid atmosphere or with water-based bleachers, This alters the material properties so that the retardance properties of the material are selectively destroyed in certain regions.
  • Such a technique may be used to provide a single layer element in which some regions act as retarders with the optic axes parallel to each other and other regions have substantially zero retardance.
  • a parallax barrier characterised by comprising: a polarisation modifying layer having aperture regions, for supplying light of a second polarisation when receiving light of a first polarisation, separated by barrier regions, for supplying light of a third polarisation different from the second polarisation when receiving light of the first polarization, at least one of the aperture regions and the barrier regions altering the polarisation of light passing therethrough; and a polariser selectively operable in a first mode to pass light of the second polarisation and to block light of the third polarisation and in a second mode to pass light of the third polarisations.
  • Such a parallax barrier can therefore be operated in a parallax barrier mode or in a non-barrier mode.
  • the non-barrier mode permits substantially all of the light to be transmitted so that, when used in a 3D autostereoscopic display, a full resolution 2D mode of high brightness can be provided.
  • the aperture regions may comprise parallel elongate slit regions.
  • the polariser may be a uniform polariser.
  • the third polarisation may be orthogonal to the second polarisation.
  • the first, second and third polarisations may be linear polarisations.
  • the aperture regions may be arranged to rotate the polarisation of light and the barrier regions may be arranged not to rotate the polarisation of light so that the third polarisation is the same as the first polarisation.
  • Such an arrangement allows the barrier regions to have maximum achromatic extinction of light when the barrier is used in barrier mode.
  • the aperture regions may comprise retarders.
  • the aperture regions may comprise half waveplates.
  • the aperture regions may comprise polarization rotation guides.
  • the polarization modifying layer may comprise a half waveplate, the aperture regions may have optic axes aligned at ⁇ substantially 45° to the first polarisation, and the barrier regions may have optic axes aligned substantially parallel to the first polarisation.
  • the polariser may pass light of the second polarisation in the second mode.
  • the polariser may be removable from a light path through the polarisation modifying layer in the second mode.
  • the polariser does not have to be aligned with great accuracy in order for the barrier mode to be effective.
  • removal of the polariser permits the non-barrier mode of operation and relatively simple and inexpensive alignment means may be provided for aligning the polariser in the barrier mode.
  • the polariser may comprise glasses to be worn by an observer in the first mode.
  • the polariser may be rotatable through substantially ° an axis substantially perpendicular to the polarisation modifying layer between first and second positions for operation in the first and second modes, respectively.
  • the polariser may comprise a polarising layer and a retarder layer which is switchable between a non-retarding mode and a retarding mode providing a quarter wave of retardation.
  • the polariser may comprise a polarising layer and a switchable diffuser having a diffusing depolarising mode and a non-diffusing non-depolarising mode.
  • the diffuser may be disposed between the polarising layer and the polarisation modifying layer.
  • the polarisation modifying layer may be disposed between the polarising layer and the diffuser.
  • the barrier may comprise: a first quarter waveplate disposed between the polarisation modifying layer and the polariser and attached to the polarisation modifying layer; and a second quarter waveplate disposed between the first quarter waveplate and the polariser and attached to the polariser, the first and second quarter waveplates having substantially orthogonal optical axes.
  • the quarter waveplates between the polarisation modifying layer and the polariser convert light to and from circular polarization so that rotational alignment of the polariser relative to the polarisation modifying layer may be further relaxed.
  • a display comprising a barrier according to the first aspect of the invention and a spatial light modulator for supplying light of the first polarisation to the polarisation modifying layer.
  • the spatial light modulator may be a light emissive device, such as an electroluminescent display. As an alternative, the spatial light modulator may provide selective attenuation of light and may be associated with a light source.
  • the spatial light modulator may comprise a liquid crystal device.
  • a display comprising a barrier according to the first aspect of the invention, a light source for supplying light to the polariser, and a spatial light modulator having an input polariser for passing light from the aperture regions.
  • the spatial light modulator may comprise a liquid crystal device.
  • a display comprising: a light source selectively operable in a first mode for supplying light of a first polarisation and a second mode for supplying unpolarised light; a polarisation modifying layer having aperture regions, for supplying light of a second polarisation when receiving light of the first polarisation, separated by barrier regions, for supplying light of a third polarisation different from the second polarization when receiving light of the first polarisation; and a spatial light modulator having an input polariser for passing light of the second polarisation and for blocking light of the third polarisation.
  • the aperture regions may comprise parallel elongate slit regions.
  • the light source may comprise a polarised light source operable in the first mode and an unpolarised light source operable in the second mode.
  • the polarised light source may comprise at least one first light emitting device arranged to supply light through a polariser to a first light guide.
  • the unpolarised light source may comprise at least one second light emitting device arranged to supply light to a second light guide and one of the first and second light guides may be arranged to supply light through the other of the first and second light guides.
  • the light source may comprise at least one light emitting device, a light guide, and a polariser disposed in an optical path between the or each light emitting device and the light guide in the first mode and outside the optical path in the second mode.
  • a display comprising: a polarisation modifying layer having aperture regions, for supplying light of a second polarisation when receiving light of a first polarisation, separated by barrier regions, for supplying light of a third polarisation different from the second polarisation when receiving light of the first polarisation; a spatial light modulator having an input polariser for passing light of the second polarisation and for blocking light of the third polarization; a light source; a mask having polarising regions, for supplying light of the first polarisation from the light source, and non-polarising regions, for transmitting light from the light source; and a parallax optic co-operating with the mask to direct light from the polarising regions through the spatial light modulator to a first viewing region and to direct light from the non-polarising regions through the spatial light modulator to a second viewing region.
  • the mask may be movable relative to the parallax optic for moving the first and second viewing regions.
  • the parallax optic may comprise an array of parallax generating elements.
  • the aperture regions may comprise parallel elongate slit regions.
  • Each of the parallax generating elements may be optically cylindrical with an axis substantially orthogonal to the slit regions.
  • the array may comprise a lenticular screen.
  • the array may comprise a parallax barrier.
  • the polarising and non-polarising regions may comprise laterally extending strips.
  • the mask may further comprise opaque regions at least partially separating the polarising regions from the non-polarising regions.
  • the third polarisation may be orthogonal to the second polarisation.
  • the first, second and third polarisations may be linear polarisations.
  • the aperture regions may be arranged to rotate the polarisation of light and the barrier regions may be arranged not to rotate the polarisation of light so that the third polarisation is the same as the first polarisation.
  • the aperture regions may comprise retarders.
  • the aperture regions may comprise half waveplates.
  • the aperture regions may comprise polarisation rotation guides.
  • the pitch alignment of the polarisation modifying layer determines the parallax barrier pitch, which typically has to be set to within 0.1 micrometers.
  • the barrier may be made of a glass substrate with similar thermal expansivity to the spatial light modulator so as to minimise misalignments during heating of the system between switch on and operating temperatures.
  • the high tolerance alignment can be fixed during manufacture and is unaffected by switching between 2D and 3D modes.
  • the removable or switchable element can be a uniform polarisation element, accurate alignment is only necessary in one degree of freedom i.e. rotation about an axis normal to the display surface. Rotation about the other two axes and spatial positioning may all be set with low and easy to satisfy tolerance requirements.
  • mechanical assembly is substantially simplified and cost, size and weight can be reduced.
  • a colour 3D display can be provided with low cross talk using relatively simple and inexpensive birefringent elements.
  • the 2D mode may be substantially as bright as a conventional display with the same angle of view.
  • An anti-reflection coating may be applied to the outside surface to reduce reflections and improve display contrast. There are minimal absorption or reflection losses from such an additional layer.
  • the tracking may be performed by relative movement between the spatial light modulator and the polarisation modifying layer.
  • the polarisation modifying layer may remain attached to the mechanical system at all times.
  • the polariser does not need to be attached to the mechanical system at all so that mounting is simplified.
  • the polariser does not need to be mounted in physical proximity to the polarisation modifying layer and may indeed be provided in the form of glasses to be worn by an observer.
  • a passive polarisation modulating optical element comprising a layer of birefringent material having substantially fixed birefingence and comprising at least one first retarder having an optic axis aligned in a first direction and at least one second retarder having an optic axis aligned in a second direction different from the first direction.
  • the at least one first retarder may comprise a plurality of first retarders
  • the at least one second retarder may comprise a plurality of second retarders
  • the first and second retarders may be arranged as a regular array.
  • the first and second retarders may comprise first and second strips which alternate with each other. The first strips may have a first width and the second strips may have a second width less than the first width.
  • the first and second retarders may have a retardance of (m+1) ⁇ /2, where m is an integer and ⁇ is a wavelength of visible light.
  • the second direction may be at substantially 45° to the first direction.
  • the birefringent layer may be disposed of an alignment layer comprising first and second regions corresponding to the first and second retarders, respectively, and having first and second alignment directions, respectively.
  • the birefringent material may comprise a reactive mesogen.
  • an optical device comprising an element according to the first aspect of the invention and a linear polariser for passing light polarised at a predetermined angle with respect to the first optic axis.
  • the predetermined angle may be substantially equal to 0°.
  • the polariser may comprise part of a further device.
  • the further device may be a liquid crystal device.
  • a method of making a passive polarisation modulating optical element comprising forming an alignment layer, providing at least one first region of the alignment layer with a first alignment direction, providing at lease one second region of the alignment layer with a second alignment direction different from the first alignment direction, disposing on the alignment layer a layer of birefringent material whose optic axis is aligned by the alignment layer, and giving the optic axis of the birefringent layer.
  • the at least one first region may comprise a plurality of first regions, the at least one second region may comprise a plurality of second regions, and the first and second regions may be arranged as a regular array.
  • the first and second retarders may comprise first and second strips which alternate with each other. The first strips may have a first width and the second strips may have a second width less than the first width.
  • the birefringent layer may have a thickness for providing a retardance of (m+1) ⁇ /2, where m is an integer and ⁇ is a wavelength of visible light.
  • the second direction may be substantially at 45° to the first direction.
  • the birefringent material may comprise a reactive mesogen.
  • the fixing may be performed by irradiation.
  • the fixing may be performed by ultraviolet irradiation.
  • the alignment layer may comprise polyimide.
  • the whole of the alignment layer may be provided with the first alignment direction, after which the or each second region may be altered to have the second alignment direction.
  • the alignment layer may be rubbed in a first rubbing direction, the alignment layer may be masked to reveal the or each second region, and the or each second region may be rubbed in a second rubbing direction.
  • the alignment layer may comprise a linearly photopolymerisable polymer, the alignment layer may be masked to reveal the or each first region, the or each first region may be exposed to radiation having a first linear polarisation, the alignment layer may be masked to reveal the or each second region, and the or each second region may be exposed to radiation having a second linear polarisation different from the first linear polarisation.
  • Such an optical element may be used, for instance, to provide a parallax barrier which may be used in an autostereoscopic display and whose parallax barrier operation may be disabled to permit such a display to be used in a two dimensional (2D) mode.
  • a device of this type is disclosed in British patent application No: 9713985.1.
  • When in the 2D mode it is advantageous to avoid any difference in light absorption between the regions which act as the slits in the 3D mode and the regions between the slits. Otherwise, in the 2D mode, visible Moire patterning could be produced by beating of the variation in absorption with the pixel structure or the display.
  • the optical element may be made using a single photolithographic mask step, thus reducing the complexity of manufacture and the cost of the element.
  • the element may be bonded to another substrate so as to avoid damage to its surface without affecting the optical properties of the element.
  • the element may be formed on a glass substrate which allows the application of a low-cost anti-reflection layer on the opposite surface substrate prior to making the element.
  • the optical element may be manufactured using existing processes, such as spin coating, photolithographic masking and rubbing techniques.
  • optical elements of this type may be manufactured in high volume at low cost.
  • the element is manufactured without the removal of retarder material and so can be more easily made without introducing surface artefacts or damage and without requiring subsequent planarisation.
  • the retarder regions may be formed with high accuracy and resolution so that such an element is suitable for use in a viewpoint corrected parallax barrier. Further, it is possible to provide an element having high levels of dimensional stability.
  • FIG. 1 is a diagrammatic horizontal sectional view of a known type of autostereoscopic 3D display
  • FIG. 2 is a plan view illustrating light cones produced by a non-view point corrected display
  • FIG. 3 is a view similar to FIG. 2 illustrating the creation of viewing regions in a view point corrected display
  • FIG. 4 is a diagrammatic horizontal sectional view of another known type of autostereoscopic 3D display
  • FIG. 5 is a diagrammatic view of a parallax barrier constituting an embodiment of the invention.
  • FIGS. 6 a, 6 b and 6 c are a diagrammatic view illustrating an arrangement for switching between modes of the barrier of FIG. 5;
  • FIG. 7 is a diagrammatic plan view of an autostereoscopic 3D display constituting an embodiment of the invention.
  • FIG. 8 is a diagrammatic plan view of an autostereoscopic 3D display constituting another embodiment of the invention.
  • FIG. 9 is a diagrammatic plan view of an autostereoscopic 3D display constituting another embodiment of the invention.
  • FIG. 10 is a diagrammatic plan view of an autostereoscopic 3D display constituting another embodiment of the invention.
  • FIG. 11 a is a diagrammatic plan view of an autostereoscopic 3D display constituting another embodiment of the invention.
  • FIG. 11 b is a diagrammatic plan view of an autostereoscopic 3D display constituting another embodiment of the invention.
  • FIG. 12 is a diagrammatic side view of an autostereoscopic display constituting another embodiment of the invention.
  • FIG. 13 is a graph of fractional transmission against wavelength in nanometers illustrating transmission of unpolarised light through two polarisers with a half waveplate disposed therebetween;
  • FIG. 14 is a graph of transmission of light in percent against wavelength in nanometers illustrating transmission of light through crossed polarisers
  • FIG. 15 comprising FIGS. 15 ( a ) to 15 ( e ) illustrates a first method of making a polarisation modifying layer
  • FIG. 16 comprising FIGS. 16 ( a ) to 16 ( d ) illustrates a second method of making a polarisation modifying layer
  • FIG. 17 comprising FIGS. 17 ( a ) to 17 ( d ) illustrates a third method of making a polarisation modifying layer
  • FIG. 18 comprising FIGS. 18 ( a ) to 18 ( j ) illustrates a fourth method of making a polarisation modifying layer
  • FIG. 19 comprising FIGS. 19 ( a ) to 19 ( e ) illustrates a fifth method of making a polarisation modifying layer
  • FIG. 20 comprising FIGS. 20 ( a ) to 20 ( i ) illustrates a sixth method of making a polarisation modifying layer
  • FIG. 21 is a diagrammatic plan view of an autostereoscopic 3D display constituting another embodiment of the invention.
  • FIG. 22 is a graph of fractional light transmission against wavelength in nanometers illustrating extinction of light through a system comprising crossed polarisers with two quarter waveplates disposed therebetween;
  • FIG. 23 is a diagrammatic view of a parallax barrier constituting another embodiment of the invention.
  • FIG. 24 is a diagrammatic view of a parallax barrier constituting another embodiment of the invention.
  • FIG. 25 is a plan view of the parallax barrier of FIG. 24.
  • FIG. 26 is a diagrammatic view of an arrangement constituting another embodiment of the invention.
  • FIG. 27 illustrates an optical element and an optical device constituting embodiments of the present invention
  • FIG. 28 is a plan view of the element and device of FIG. 27;
  • FIG. 29 illustrates an optical element and an optical device constituting another embodiment of the invention
  • FIG. 30 is a plan view of the element and device of FIG. 29;
  • FIG. 31 illustrates an optical element and an optical device constituting a further embodiment of the invention
  • FIG. 32 is a plan view of the element and device of FIG. 31;
  • FIG. 33 illustrates graphs of transmission in arbitrary units against wavelengths in nanometers for a half wave retarder disposed between crossed and parallel polarisers
  • FIG. 34 is a graph of transmission in per cent against wavelength in nanometers of two crossed polarisers without any intermediate optical element
  • FIG. 35 illustrates alignment layer orientation and mask appearance for a parallax barrier constituting an embodiment of the invention and providing reduced diffraction by spatial modulation of slit edges;
  • FIG. 36 comprises 36 a to 36 e and illustrates a method of making an optical element constituting an embodiment of the invention.
  • FIG. 37 comprises FIGS. 37 a to 37 i and illustrates a method of making an optical element constituting an embodiment of the invention.
  • the parallax barrier shown in FIG. 5 comprises a polarisation modifying layer 20 and a polariser in the form of a polarising sheet 21 .
  • the polarisation modifying layer 20 comprises aperture regions 22 in the form of parallel elongate slit regions arranged to rotate linear polarisation 23 of incoming light through 90 degrees.
  • the aperture regions 22 are separated by barrier regions such as 24 which are arranged not to affect the polarisation of the incoming light.
  • the regions 22 may for instance comprise appropriately aligned half waveplate polarisation retarders or 90 degree polarisation rotators.
  • the aperture regions 22 are disposed at the desired pitch of the parallax barrier, incorporating any viewpoint correction as described hereinbefore, and are of the width required for the parallax barrier slits.
  • the aperture regions 22 have an optic axis aligned so as to rotate the input polarisation through 90 degrees.
  • the optic axis is therefore arranged so that the polarisation of light 25 output from the slit regions is at ⁇ 45 degrees with respect to the same vertical axis.
  • the barrier regions 24 are transparent regions with little or no effect on the transmitted light, which therefore remains polarised at +45 degrees.
  • the polarising sheer 21 has a polarising direction indicated at 26 which is substantially orthogonal to the polarisation direction 23 of incoming light and hence of light passing through the regions 24 .
  • the polarisation direction 26 is parallel to the polarisation direction of light passing through the slit regions 22 so that the parallax barrier operates in a barrier mode with incoming light being transmitted through the slit regions 22 and being substantially blocked or extinguished through the parts of the barrier defined by the barrier regions 24 .
  • the parallax barrier In order to operate the parallax barrier in a non-barrier mode, the polarising sheet 21 is disabled, for instance by being removed. In this mode, the strip regions 22 are substantially invisible because they are not analysed by any polarising sheet. By arranging for the regions 22 and 24 to have substantially the same transmissivity, there should be no undesirable visual artefacts, such as Moire beating with the pixel structure of an associated LCD. Although the slit regions 22 still rotate the polarisation direction of the incident light, this is not visible to the human eye when the polarising sheet 21 has been removed. In this mode, the parallax barrier allows the full spatial resolution of the associated LCD to be available for 2D display with very little attenuation of light.
  • the parallax barrier of FIG. 5 may be used to replace the front parallax barrier 4 shown in FIG. 1 so as to provide an autostereoscopic 3D display constituting an embodiment of the invention.
  • FIG. 6 a A convenient way of arranging for the polariser sheet 21 to be removable is illustrated in FIG. 6 a.
  • the polariser sheet 21 is attached to the remainder of the autostereoscopic display by double hinges 30 and 31 . This allows the polariser sheet 21 to be swung over the front of the display with the polariser alignment controlled by the base line of the hinges and optionally further constrained by a location datum on the opposite edge of the polariser sheet from the hinges.
  • the polariser In the 2D mode, the polariser is folded over the rear of the display unit and stored flush against the rear of the display unit.
  • FIG. 6( b ) Another convenient way of arranging for the polariser sheet 21 to be removable is illustrated in FIG. 6( b ).
  • the polarising sheet 21 is formed on a transparent film having a longitudinal region which is transparent and non-polarising.
  • the film is wound on rollers 28 and 29 disposed at either side of the LCD 1 and polarisation modifying layer 20 .
  • the rollers 28 and 29 are driven, for instance by an electric motor, so that the polarising region 21 or the transparent non-polarising region of the film may be disposed in front of the LCD 1 and layer 20 .
  • the rollers 28 and 29 may be operated manually.
  • FIG. 6( c ) illustrates a further way of switching between 3D and 2D modes of operation.
  • the polarising sheet 21 is permanently disposed in front of the LCD 1 and the layer 20 but is rotatable about an axis perpendicular to the sheet 21 .
  • the rotary position of the polarising sheet 21 is such that it transmits light from the slit regions 22 but extinguishes light from the barrier regions 24 , the display operates in the 3D mode with a front parallax barrier as illustrated at A.
  • a barrier is formed with narrow transmissive slits and wide opaque gaps.
  • the polarising sheet 21 when the polarising sheet 21 is rotated through 90° it blocks or extinguishes light from the slit regions 22 but transmits light from the barrier regions 24 .
  • light is transmitted through wide “slits” whereas narrow opaque “gaps” are formed.
  • the arrangement illustrated at B may be thought of as continuing to act as a parallax barrier, the viewing regions are not as well-defined and a broad 2D region is produced.
  • the residual opaque regions will reduce the brightness in the 2D mode compared with displays in which there are no opaque regions formed by the parallax barrier. This is a convenient technique but there may be some residual Moire effects in from black areas on the mask.
  • the parallax barrier 4 in the known types of display such as those shown in FIGS. 1 and 4 were made removable in order to provide a full resolution high brightness 2D mode of operation, it would have to be provided with mounts which defined the location in five degrees of freedom, namely two translation axes and three rotation axes, to positional tolerances of the order of 5 micrometers. It is also particularly difficult to maintain parallelism between the parallax barrier 4 and the SLM 1 . Any bow in either element would cause deviations in the window generating Moire pattern. This results in reduced viewing freedom and increased levels of cross talk of the display. A removable element would have to compensate for such bows and this is very difficult to achieved in a robust manner with low cost overheads while preserving ease of use and reasonable bulk in the removable element.
  • the effective plane of the parallax barrier shown in FIG. 5 is at the plane of the polarisation modifying layer 20 .
  • the alignment of this layer 20 with the associated LCD determines the optical alignment of the autostereoscopic display.
  • the layer 20 may be left permanently fixed to the associated LCD and so can conform to any bows in the LCD, minimising the degradation to window quality. This ensures rigidity and allows for adhesives or other forms of permanent fixative to be employed, for instance during manufacture or as a subsequent fitment using precision alignment tools which are available on LCD production lines.
  • the removable polarising sheet 21 merely needs to be realigned in one rotational axis on replacement in front of the sheet 20 .
  • the tolerance on translational position is merely that the whole of the display surface be covered by the polariser sheet 21 and rotations around axes in the plane of the display surface do not affect the polarisation absorption axis. Accordingly, the only requirement is for rotational alignment about an axis normal to the display surface to ensure good extinction of light from the barrier regions 24 . In order to reduce light leakage from the barrier regions 24 to below 1%, the alignment tolerance is of the order of plus or minus 5 degrees and this is easy to satisfy.
  • FIG. 7 illustrates the use of the parallax barrier of FIG. 5 in a rear parallax barrier autostereoscopic display.
  • the polarisation modifying layer 20 is disposed adjacent the LCD 1 and the polariser sheet 21 acts as an input polariser and is disposed between the layer 20 and the backlight 3 .
  • the LCD 1 has an input polariser 32 whose polarisation direction is aligned so as to pass light from the strip regions 22 and to block light from the barrier regions 24 .
  • the polarisation directions of the input polariser sheet 21 and the LCD polariser 32 are orthogonal.
  • the polariser sheet 21 is removed from the light path.
  • the strip regions 22 are shown in the drawings as being fabricated on a substrate and, in particular, on the outer surface of the substrate, i.e.: the surface of the substrate facing away from the LCD 1 . This is merely an example as the strip regions 22 may be fabricated on either surface of the substrate. If the strip regions are fabricated on the inner substrate surface, i.e.: that facing the LCD 1 , they may be in contact with the LCD 1 and will be protected from scratching and dirt by the substrate. Furthermore, the optimum viewing distance of the display in the 3D mode is set by the separation of the liquid crystal layer in the LCD 1 and the strip regions 22 . With the strip regions 22 on the inner surface of the substrate, the separation is reduced and hence the optimum viewing distance is reduced.
  • FIG. 8 illustrates a rear parallax barrier display in which the removable polariser 21 forms part of the backlight.
  • the backlight comprises a light source 33 and a reflector 34 which, in the 3D mode, direct light through the polariser sheet 21 into a light guide 35 .
  • the light guide 35 has on its output surface a patterned sheet 36 for providing uniformity of illumination of the LCD 1 and a polarisation preserving diffuser 37 to scatter the output light into a wider range of angles.
  • Such diffusers may be lenticular in nature.
  • This arrangement allows the use of a relatively small polariser 21 at the input surface of the light guide 35 .
  • the polariser 21 can be moved out of the light path by a relatively short movement in order to achieve the full resolution high brightness 2D mode of operation.
  • FIG. 9 illustrates an autostereoscopic display having a polarised light source of the type illustrated in FIG. 8 but in which the polariser 21 is fixed at the input of the light guide 35 .
  • the light source 33 is illuminated for 3D operation.
  • the display comprises a further unpolarised backlight in the form of a light source 38 , a reflector 39 and a light guide 40 .
  • the light guides 35 and 40 are disposed such that output light from the light guide 40 passes through the light guide 35 .
  • the light source 33 is extinguished and the light source 39 is illuminated so that unpolarised light passes through the light guide 35 and illuminates the LCD 1 through the layer 20 .
  • FIG. 10 shows an example of a front parallax barrier autostereoscopic display which is switchable between 3D and 2D modes without requiring any mechanical movement.
  • the polarisation modifying layer 20 is disposed adjacent the output surface of the LCD 1 and the exit polariser sheet 21 is located at the output of the display.
  • a switchable quarter wave rotator 41 is disposed between the sheet polariser 21 and the layer 20 .
  • the rotator 41 is switchable between a first state in which it does not affect the transmitted polarisation and a second state which causes the polarisation states to be equally transmitted through the sheet polariser 21 .
  • the rotator 41 acts as a quarter waveplate with the optic axis at 45 degrees to the polarising axis of the sheet polariser 21 .
  • the linear polarisations from the regions 22 and 24 are both converted to circular polarisations of opposite handedness of which 50% is transmitted by the sheet polariser 21 .
  • control element 41 may be spatially controlled so that the two modes coexist in different regions. This allows some parts of the display to operate in the 2D mode and other parts in the 3D mode.
  • the display shown in FIG. 11 a differs from that shown in FIG. 10 in that the switchable quarter wave rotator 41 is replaced by a switchable diffuser 42 .
  • the diffuser 42 is switchable electronically between depolarising and non-depolarising states.
  • Such a diffuser may be embodied as a polymer dispersed liquid crystal device.
  • the switchable diffuser 42 In its low diffusing state, the switchable diffuser 42 has substantially no effect on operation so that the display operates in the autostereoscopic 3D mode.
  • the diffuser 42 In the more highly diffusing state, the diffuser 42 has two effects. Firstly, the diffuser destroys the polarisation of incident light so that light from the regions 22 and 24 are transmitted substantially equally through the exit polariser sheet 21 . Secondly, the diffuser destroys the directionality of light through the system by scattering the transmitted light into random directions. However, the scattering effect of the diffuser 42 does not need to be strong because the loss of polarisation is sufficient to cause the display to operate in the 2D mode. The diffuser 42 is merely required to provide sufficient scattering for an adequate angle of view of the display. Thus, the diffuser 42 is required to provide less dense scattering of light than for known types of system so that a brighter 2D mode may be achieved.
  • the display shown in FIG. 11 b differs from that shown in FIG. 11 a in that the positions of the layer 20 and the switchable diffuser 42 are interchanged.
  • a switchable diffuser 42 may also be used in rear parallax barrier arrangements.
  • the diffuser 42 may also be controllable so that different regions can be controlled to operate in different modes so as to provide a display in which some regions operate in the 2D mode and others simultaneously operate in the 3D mode. This arrangement may be more appropriate because the diffuser will not substantially affect image visibility in the 2D state.
  • the parallax barriers disclosed herein may be used in the display disclosed in British Patent Application No 9702259.4.
  • This display is of the autostereoscopic type and includes an indicator visible to an observer so that the observer can position himself at the optimum viewing location.
  • it may be advantageous to be able to disable the visual position indication and this may be achieved by disabling the part of the parallax barrier which provides the indication, for instance as described hereinbefore for mixed 3D and 2D operation.
  • FIG. 12 illustrates a display of the rear parallax barrier type similar to that shown in FIG. 7 but in which the polariser sheet 21 is replaced by a mask 43 and a parallax optic 44 which is illustrated as a lenticular screen but which may alternatively comprise a parallax barrier.
  • the parallax optic 44 is optional because the parallax between the mask elements of the mask 43 and a pixel black mask within the LCD 1 serve to generate viewing zones 45 but with larger overlaps at the boundaries between the zones.
  • the mask 43 comprises horizontal strips arranged, for example, as groups of three strips with each group comprising a polarising strip, a clear strip and an opaque strip. Each group of strips is associated with a parallax element, in the form of a lenticule, of the lenticular screen 44 .
  • the mask 43 is vertically movable with respect to the lenticular screen 44 .
  • the polarising strips are aligned with the lenticules of the screen 44 so as to provide 3D operation with an observer located in a zone indicated at 45 .
  • An observer in the zone 45 which is the normal viewing zone of the display, can thus perceive a 3D image.
  • the mask 43 is moved relative to the screen 44 so that the clear strips are imaged into the zone 45 .
  • This allows the display to operate in the full resolution high brightness 2D mode. Switching between 3D and 2D modes can therefore be achieved by a relatively small movement.
  • the dark or opaque strips are used to avoid leakage of polarised light into the unpolarised viewing region and vice versa.
  • the mask 43 may be made by any suitable method, such as that disclosed in JP 63-158525A.
  • the optical functions of the regions 22 and 24 of the parallax barrier could be reversed so that the barrier regions 24 rotate the polarization and the strip regions 22 have substantially no effect on polarisation, the arrangement described hereinbefore with reference to FIG. 5 is generally preferred.
  • the dark level of the opaque regions formed by the barrier regions 24 and the associated regions of the polariser sheet 21 are effectively provided by two crossed polarisers without any intermediate (optically active) element. This provides strong extinction of light over a broad range of wavelengths and so minimises cross talk in the display.
  • a possible alternative arrangement of the parallax barrier in the displays is for the two polarisers to have parallel polarisation directions, the barrier regions 24 to be optically active in order to provide the polarisation rotation, and the slit regions 22 not to affect polarisation.
  • the critical opaque regions of the barrier rely on the performance of the polarisation rotating material to achieve high extinction and light leakage of less than 1%.
  • a possible means for achieving this makes use of a polymerized layer of twisted nematic liquid crystal having a thickness which satisfies the first minimum criterion as the regions 24 .
  • An advantage of such an arrangement is that the slit regions 22 are neutral and therefore have optimum chromatic performance to provide a 3D mode with reduced colour imbalance.
  • FIG. 13 illustrates the calculated transmission of unpolarised light through an output polariser of the LCD 1 , a waveplate made of a uniaxial birefringent material known as RM257 available from Merck (UK), and the polariser sheet 21 .
  • RM257 uniaxial birefringent material
  • Such colour balance change may, for example, be precalibrated and set in drivers for the 3D image software or in the design of colour filters of the LCD to optimise between 2D and 3D colour spectra.
  • the curve shown in FIG. 13 for parallel polarisers is that which would have applied to the opaque barrier regions if the barrier regions 24 had rotated that polarisation
  • the centre wavelength of the system provides good extinction of light. However, towards the edges of the spectrum, the transmission substantially increases.
  • the barrier In order to ensure cross talk levels of not more than 1%, the barrier must provide a 100:1 contrast ratio across the visible spectrum. As indicated by FIG. 13, this would not be achieved with parallel polarisers and polarisation rotators as the barrier regions 24 .
  • FIG. 14 illustrates the transmission performance through two crossed polarisers without any intermediate optical element.
  • the extinction of light is substantially improved and the desired contrast ratio is achieved throughout the whole range of wavelengths from 450 to 750 nanometers.
  • This arrangement with, for instance, waveplates creating the slit apertures and crossed polarisers defining the opaque regions of the barrier is therefore the optimum configuration for most applications.
  • the polarisation modifying layer 20 may be made, for example, by the deposition of a layer of reactive mesogen, such as RM257, which is patterned by standard photolithographic techniques into the slit structure.
  • a layer of reactive mesogen such as RM257
  • a convenient mask for etching is an existing parallax barrier.
  • FIG. 15 illustrates a method of making the polarisation modifying layer 20 .
  • an alignment layer 60 is applied to a substrate 61 .
  • the alignment layer 60 may, for instance, comprise rubbed polyimide, polyamide, or silicon oxide.
  • FIG. 15( b ) shows the application of an optical retarder layer 62 whose alignment direction is determined by the alignment layer 60 .
  • the retarder layer 62 comprises any suitable birefringent material which may be aligned and subsequently fixed in a predetermined direction.
  • a suitable material comprises a liquid crystal polymer or a reactive mesogen.
  • a suitable reactive mesogen is that known as RM257 (as mentioned hereinbefore) available from Merck UK having a high birefringence which allows the use of relatively thin layers.
  • regions 63 of the retarder layer 62 are exposed to ultraviolet radiation through a mask 64 so as to be photopolymerised.
  • the unpolymerised regions are then removed, for instance by an etching process, to reveal the desired patterned optical retarder arrangement.
  • the patterned retarder is then planarised by means of a planarisation layer 65 .
  • the layer 65 fills the gaps left by the removed unpolymerised retarder material as illustrated in FIG. 15( e )
  • the material of the planarisation layer 65 is preferably isotropic, transparent and substantially similar in thickness to the retarders 63 . Suitable materials include acrylic and epoxy resins.
  • the method of making the polarisation modifying layer 20 illustrated in FIG. 16 differs from that illustrated in FIG. 15 in that, after the selective polymerisation shown in FIG. 16( c ), the unpolymerised retarder material 62 is not removed.
  • the layer is heated to a temperature above the isotropic transition point of the unpolymerised retarder material, which is cured in an isotropic state by exposure to long wavelength ultraviolet radiation. This results in a layer having regions of isotropic material 66 and birefringent material 63 as illustrated in FIG. 16( d ).
  • the method illustrated in FIG. 17 differs from that illustrated in FIG. 16 in that a chiral dopant is added to the reactive mesogen mixture before application as the retarder layer 67 .
  • the chiral dopant introduces a continuous rotation of the retarder direction on passing through the layer so as to provide a guiding twisted retarder.
  • Selective polymerisation is performed as shown in FIG. 17( c ).
  • FIG. 18 illustrates a method of making a retarder array which differs from that illustrated in FIG. 15 in that a further patterned retarder 72 is formed.
  • another alignment layer 69 for instance of the same type as the alignment layer 60 , is applied, for instance in the same way.
  • the alignment layer 69 is applied with an alignment direction different from that of the alignment layer 60 .
  • a further retarder layer 70 for instance of the same type as the retarder layer 62 , is formed, for instance in the same way, on the alignment layer 69 .
  • the layer 70 is selectively exposed to ultraviolet radiation through a mask 71 so that regions 72 forming the further patterned optical retarder are photopolymerised.
  • the unpolymerised regions are then removed as illustrated in FIG. 18( i ) and a further planarisation layer 73 is formed as illustrated in FIG. 18( j ).
  • a further planarisation layer 73 is formed as illustrated in FIG. 18( j ).
  • FIG. 19 illustrates a method of making a retarder array which differs from that shown in FIG. 15 in that the standard alignment layer 60 is replaced by a layer of linearly photopolymerisable material 74 , for instance of the type described in “Surface induced parallel alignment of liquid crystals by linearly polymerising photopolymers”, Schadt et al, Japanese Journal of Applied Physics, vol 31 (1992), page 2155 and in EP 0 689 084.
  • the layer is selectively exposed to radiation of a first linear polarisation through a mask 64 as shown in FIG. 19( b ) to form exposed regions A.
  • the unexposed regions B are then exposed by a mask 76 to radiation having a different linear polarisation.
  • alternate regions of the alignment layer 28 provide different alignment directions, for example different by 45° or 90°.
  • the retarder layer 62 is then applied as shown in FIG. 19( d ) as described hereinbefore.
  • the retarder layer adopts the alternate directions imposed by the underlying part of the alignment layer 75 and so does not require selective photopolymerisation. Instead, the retarder layer 62 may be cured by exposure to a uniform ultraviolet source.
  • FIG. 20 illustrates a method of making a retarder array which differs from that shown in FIG. 15 in that the alignment layer 60 is rubbed twice. It is first rubbed in the direction A. Photoresist material 77 is applied and selectively polymerised through a mask 64 as shown in FIG. 20( d ). This may be done using known photolithographic techniques. The unpolymerised material is removed leaving the polymerised photoresist material 78 and regions of the underlying alignment layer 60 exposed. The assembly is then rubbed in a second direction B to produce an alignment layer with a spatially varying alignment direction 79 .
  • a technique of this type is disclosed in “Four domain TN-LCD fabricated by reverse rubbing or double evaporation” Chen et al, SID95 Digest, pages 865 to 868”.
  • the photopolymerised photoresist material is then removed.
  • the retarder layer 62 is then applied as shown in FIG. 22( h ).
  • the retarder layer adopts the alternate directions imposed by the underlying parts of the alignment layer 79 and so does not require selective photopolymerisation. Instead, the retarder layer 62 may be cured by exposure to a uniform ultraviolet source.
  • the polarisation rotation may be achieved by means of at least two physical effects.
  • polarisation rotation is provided by an optical retarder which employs a birefringent material.
  • a birefringent material is characterised in that the refractive index for light propagating in the material depends on the orientation of the polarisation with respect to the optic axis of the material.
  • the optic axis is set by molecular or crystalline structure of the material.
  • ⁇ n is the difference between the two refractive indices and m is an integer.
  • Plane polarised light incident on such an optical element undergoes a rotation in the plane of polarization of twice the angle between the incident plane of polarisation and the optic axis of the material.
  • a half waveplate is oriented at 45 degrees to the incident plane of polarisation, the light exits the element with a 90 degree change in the plane of polarisation.
  • a second physical effect is that produced by a polarisation rotator.
  • Such an element which may be embodied by a reactive mesogen with a chiral dopant, comprises a material which is birefringent in any one thin slice but in which the angle of the optic axis rotates in a defined manner between slices to describe a spiral.
  • Such an optical element causes polarisation rotation by guiding and can be made to rotate an incident plane of polarization through 90 degrees for a broad range of wavelengths.
  • the rotation of the polarisation may further be provided by a combination of these two effects, for instance in order to optimise device performance.
  • the tolerance of the angular alignment of the polariser sheet 21 with respect to the LCD 1 is determined by the level of light leakage which may be tolerated through the opaque regions of the parallax barrier. Such leakage must be very low and preferably less than 1%.
  • the extinction of light from two perfect crossed polarisers with an angle ⁇ between their axes is given by:
  • FIG. 21 illustrates a front parallax barrier type of display in which the parallax barrier is modified by the provision of a quarter waveplate 46 fixed to the layer 20 with its fast axis vertical and a quarter waveplate 47 fixed to the polariser sheet 21 with its fast axis horizontal.
  • the polarising directions of the polariser sheet 21 and an output polariser 48 of the LCD 1 are at minus and plus 45 degrees, respectively.
  • the quarter waveplate 46 converts the linearly polarised light from the layer 20 to circularly polarised light.
  • the quarter waveplate 47 converts the circularly polarised light back to linearly polarised light.
  • the angular alignment tolerance can be substantially relaxed.
  • quarter waveplates are only “perfect” at their design wavelength. At other wavelengths, the retardance within the plate is not correct to generate perfect circular polarisation and an elliptical state results.
  • the two quarter waveplates 46 and 47 are arranged such that their optical axes are mutually orthogonal, then the inaccuracy in retardance of one plate is substantially cancelled by the inaccuracy in the other plate.
  • FIG. 22 illustrates the extinction of light through the barrier regions 24 using this arrangement and for relative angular rotations of 0, 5, 10 and 15 degrees.
  • FIG. 23 illustrates another parallax barrier which differs from that shown in FIG. 5 in that the polarisation modifying layer 20 comprises a patterned retarder.
  • the patterned retarder may be made, for instance, by any of the methods illustrated in FIGS. 18 to 20 and described hereinbefore.
  • the aperture regions 22 comprise ⁇ /2 plates whose optic axes are aligned at 45° to the polarisation direction of the light 23 .
  • the barrier regions 24 comprise ⁇ /2 plates whose optic axes are aligned at 0° to the polarisation direction of the light 23 .
  • the polarisation of the light 23 passing through the barrier regions 24 is not affected and the light is extinguished by the polarising sheet 21 .
  • the polarisation of the light 23 passing through the aperture regions 22 is rotated by 90° and the light therefore passes through the polarising sheet 21 .
  • the device functions as a parallax barrier as described hereinbefore.
  • An advantage of the parallax barrier shown in FIG. 23 is that the patterned retarder forming the layer 20 is planar so that there is substantially no phase step for light passing through the regions 22 and 24 of the layer 20 . Diffraction effects are therefore reduced so that there are substantially no variations in illumination uniformity or flicker in the illumination as an observe moves with respect to the display.
  • Diffraction effects may also be reduced by planarisation of the layer, for instance as illustrated in FIGS. 15 to 17 .
  • the parallax barrier shown in FIGS. 24 and 25 differs from that shown in FIG. 23 in that the polarisation vectors and the optic axes are rotated by 45°.
  • An input polariser 21 ′ which may comprise the output polariser of an associated LCD, has its polarisation axis oriented at 45°. This is typical of LCD output polarisers, for instance of the twisted nematic type.
  • the optic axes of the aperture regions 22 are oriented at 90° whereas the optic axes of the barrier regions 24 are aligned at 45° so as to be parallel to the polarisation vector of light from the input polariser 21 ′.
  • the polarising sheet 21 has its polarising axis oriented at ⁇ 45° so as to be orthogonal to the polarising axis of the input polariser 21 ′ ( ⁇ 45° is optically equivalent to +135° as indicated in FIG. 25).
  • FIG. 26 illustrates an arrangement in which the polarising sheet 21 is omitted and the polarising function is provided by analysing glasses 21 ′′ worn by an observer.
  • the glasses 21 ′′ comprise polarising lenses with the polarising axes oriented at 90° so as to be orthogonal to the polarisation vector of the polarised light 23 .
  • the polarising axes and the optic axes may be rotated to any desired angle provided the angular relationships are maintained.
  • Such an arrangement allows the use of conventional polarising sunglasses, which may be removed to allow the display to be viewed in the 2D mode.
  • Another important manufacturing issue is the matching of the viewing angle of the layer 20 and, when present, the plate 80 to the LCD 1 .
  • light reaching the eyes of the observer travels obliquely through the layer 20 .
  • Such oblique light rays experience slightly different polarisation conditions because of their different orientation within the birefringent layers and the different layer thicknesses. Contrast and colour performances of LCDs degrade with increasing viewing angle.
  • the aperture regions 24 of the barrier may also experience colour and transmission changes with off-axis viewing. It is therefore desirable for waveplate layer thicknesses to be chosen so as to give uncoloured transmission for the widest range of angles.
  • the pre-tilt of reactive mesogens or liquid crystals, if used to fabricate the waveplates should be carefully chosen for the same reason.
  • birefringent retarders In order to improve the performance of the elements performing the rotation of polarisation when such elements are embodied as birefringent retarders, they may be fabricated as two or three layers of retarder of specific thicknesses and relative optic axis angles. Combinations of waveplates for broadband performance are disclosed for example in Proc. Ind. Acad. Sci, vol. 41, No. 4, section A, pp. 130, S. Pancharatnam “Achromatic Combinations of Birefringent Plates”, 1955.
  • FIG. 27 shows a passive polarisation modulating optical element 11 comprising a layer of birefringent material having substantially fixed birefringence.
  • the thickness and birefringence of the layer are such that it acts as a half waveplate but with different regions acting as retarders with optic axes oriented in different directions.
  • the element 11 has first retarders 12 and second retarders 13 .
  • the retarders 12 and 13 and 13 comprise parallel vertical strips formed within the layer and alternating with each other.
  • the strips 12 are of the same width and have their optic axis aligned at 45° with respect to a reference direction.
  • the strips 13 are of the same width and have their optic axes aligned at 90° to the reference direction.
  • the optical element 11 shown in FIG. 27 co-operates with an input polariser 14 to form an optical device.
  • the input polariser 14 may, for example, comprise an output polariser of a liquid crystal device.
  • the input polariser 14 supplies linearly polarised light whose polarisation vector is at 45° to the reference direction.
  • the polarisation vector of the light from the polariser 14 is parallel to the optic axes of the retarders 12 , which therefore have substantially no effect on the polarisation vector. Accordingly, light leaving the retarders 12 has its polarisation vector at 45° to the reference direction.
  • the optic axes of the regions 13 are aligned at 45° to the polarisation vector of the input light. Accordingly, the retarders 13 behave as half waveplates and rotate the polarisation vector of light through 90° so that the output light from the retarders 13 has its polarisation vector at 135° to the reference direction.
  • FIGS. 29 and 30 illustrate an arrangement which differs from that shown in FIGS. 27 and 28 in that the optic axes of the element 11 and the polarising direction of the polariser 14 are rotated through 45°.
  • the polarisation vector of the light from the polariser 14 is at 0°, as is the light leaving the retarders 12 , whereas light leaving the retarders 13 has its polarisation vector rotated to 90°.
  • FIGS. 31 and 32 illustrate an optical device of the type shown in FIGS. 27 and 28 co-operating with an output polariser 15 to form a parallax barrier.
  • the polarising direction of the output polariser 15 is orthogonal to that of the input polarised 14 .
  • the polariser 15 therefore substantially extinguishes light passing through the retarders 12 but passes light leaving the retarders 13 .
  • FIG. 33 illustrates the calculated transmission of unpolarised light through the device shown in FIGS. 31 and 32 with the element 11 made of a uniaxilly birefringent material known as RM257 available from Merck (UK).
  • RM257 a uniaxilly birefringent material known as Merck (UK).
  • FIG. 33 illustrates the performance for a device of the type shown in FIGS. 31 and 32 but with the polarising axes of the polarisers 14 and 15 parallel to each other and the optic axes of the retarders 12 and 13 interchanged.
  • extinction of light through the retarders 12 relies on broad band half waveplate performance.
  • the centre wavelength provides good extinction of light but the transmission substantially increases towards the edges of the spectrum.
  • the parallax barrier in an autostereoscopic display must provide a 100:1 contrast ratio across the visible spectrum. As illustrated in FIG. 33, this would not be achieved with parallel polarisers and polarisation rotators acting as barrier regions between slit regions of the parallax barrier.
  • FIG. 34 illustrates the transmission performance through two cross polarisers without any intermediate optical element.
  • the extinction of light is substantially improved and the desired contrast ratio is achieved throughout the whole range of wavelengths from 450 to 750 nanometers.
  • such an arrangement is preferable because it is capable of meeting the contrast ratio requirements of a parallax barrier.
  • an arrangement of the type shown in FIG. 31 and 32 but with the output polariser axis rotated by 90° may be preferable.
  • the element 11 may be bonded to the input polariser 14 so as to allow accurate tolerancing of relative tilts of the strip-shaped retarders 12 and 13 and the pixel structure of an LCD of which the polariser 14 is a part. This also allows index matching of the interface so as to reduce reflections within the device.
  • suitable materials which fulfil the requirements of the high transparency, achromaticity and thermal expansion similar to the polariser 14 and the element 11 include organic adhesives such as epoxy resins, acrylic polymers and those based on polyurethane adhesives.
  • the device illustrated in FIGS. 31 and 32 may be used as the parallax barrier 4 of the autostereoscopic 3D display shown in FIG. 1.
  • the retarders 13 then act as slits of the parallax barrier whereas the retarders 12 act as the opaque regions between the slits.
  • the LCD may have a viewing angle performance which is configured so that the most limited viewing direction is generally in the vertical direction.
  • the worst viewing angle of the retarder is aligned with the worst viewing angle of the SLM, the performance of the parallax barrier can be disguised by the worse image appearance of the SLM.
  • the retarders 12 and 13 are formed in a single layer whose optical properties, apart from optic axes, are uniform throughout the layer. Further, the layer may be of substantially constant thickness. Such an arrangement allows the layer 11 to be bonded to other layers without an air gap and without the need for planarisation.
  • the viewing freedom of the 3D image is partly determined by the alignment of the barrier slits with the pixels of the LCD in the display shown in FIG. 1. Tilting of the barrier slits with respect to the LCD causes a fringe misalignment which results in loss of viewing freedom and potentially areas of image cross talk on the display. This causes increased visual stress for an observer and is thus undesirable.
  • By forming the layer 11 in contact with the polariser 14 such tilts can be substantially avoided.
  • the output polariser 15 may be removed or otherwise disabled.
  • the patterned structure of the optic axes of the element 11 it is desirable for the patterned structure of the optic axes of the element 11 to be invisible.
  • the retarders 12 and 13 should have the same light absorption performance in order to avoid the visibility of Moire beating with the LCD structure.
  • Another artefact which should be avoided is diffraction from the phase structure of the parallax barrier. Such diffraction may beat with the pixel structure of the LCD to give some low contrast Moire interference effect.
  • the optical element 11 With the optical element 11 , the diffraction efficiency of the phase structure is substantially reduced compared with known arrangements. For instance, the orthogonal linear polarisation states in the light from the retarders 12 and 13 do not substantially interfere with each other. The phase step between the retarders 12 and 13 is minimised because the retarders are formed in the same material with substantially the same refractive index.
  • FIG. 35 illustrates another technique for reducing the levels of diffraction.
  • a mask having the appearance shown at 20 is used to define one of the alignment layer orientations shown at 21 in order to form the element.
  • the parallax barrier slits are therefore defined by non-straight boundaries. Instead, the boundaries are of sine wave shape. This results in a plurality of different diffraction structures because of the different aspect ratios so that the diffraction effects are blurred. This structure also allows some vertical blurring of the diffraction structure. However, care should be taken to minimise beating of the diffraction structure vertically with the vertical pixel structure.
  • FIG. 36 illustrates a first method of making the optical element 11 .
  • the element is made on a substrate 30 on which an alignment layer 31 is formed, for instance by spin coating.
  • the alignment layer comprises a linearly photopolymerisable material, such as that described in “Surface Induced Parallel Alignment of Liquid Crystals by Linearly Polymerised Photopolymers”, Schadt et al, Japanese Journal of Applied Physics, vol 31 1992, p 2155 and in EP 0 689 084.
  • the alignment layer 31 is exposed to radiation of a first linear polarisation through a mask 32 to form exposed regions A.
  • the unexposed regions of the layer 31 are then exposed through a mask 33 to radiation having a different linear polarisation to form the exposed regions B.
  • alternate regions of the alignment layer 31 provide different alignment directions, for example differing by 45° or 90°.
  • the alignment layer 31 is then covered by a retarder layer 34 , for instance by spin coating.
  • the retarder layer 34 comprises any suitable birefringent material which may be aligned and subsequently fixed in a predetermined direction.
  • a suitable material comprises a reactive liquid crystal polymer containing a diacrylate and/or a monoacrylate.
  • An example of a suitable material is known as RM257 from Merck (UK).
  • the retarder layer 34 is then fixed or polymerised, for instance by exposure to ultraviolet radiation, so as to form the fixed retarder 35 .
  • the optic axis of the retarder layer 34 adopts the alternate directions imposed by the underlying parts of the alignment layer 31 and so does not require selective polymerisation. Also, there is no removal of the retarder material during processing, which allows remote exposure from a broad area source and avoids the risk of sticking of the retarder material to a mask.
  • the substrate 30 is selected so as to minimise any birefringence which would otherwise affect the performance of the optical element, for instance reducing contrast ratio or degrading the chromatic performance of a device.
  • the substrate 30 may be a suitable float glass of appropriate flatness so as not to distort the fringe structure in the case of a 3D display when the optical element is disposed at or near the polariser 14 .
  • FIG. 37 illustrates a second method of making the optical element.
  • the substrate 30 is coated, for instance by spin coating, with a polyimide alignment layer 31 .
  • the polyimide may comprise a material known as PI 2555 available from Du Pont dissolved in 1:20 in a solvent comprising a mixture of N-mthyl-2-pyrrolidine and 1-methoxypropan-2-ol known as T9039 and also available from Du Pont.
  • the layer 31 is formed by spinning in an open bowl spin coater at 4000 rpm for 30 seconds.
  • the polyimide layer 31 is then cured by heating at 170° centigrade for two hours.
  • the alignment layer may be silicon oxide depending on the requirement of the reactive mesogen effect for pre-tilt.
  • the alignment layer 31 is rubbed with a soft cloth so as to impose a preferred direction and pre-tilt on the alignment layer, as indicated at A.
  • a layer 36 of photo-resist is formed on the alignment layer 31 , for instance by spin coating.
  • the photo-resist 36 is selectively exposed through a mask 37 , for instance in the form of a chrome copy of a desired parallax barrier so that, following exposure through the mask 37 , the photo-resist covers areas of the optical element which are intended to form the opaque regions between the parallax barrier slits.
  • the unexposed photo-resist is then removed.
  • the element is then re-rubbed so as to introduce a second different alignment of the alignment layer, for instance at 45° or 90° to the previous alignment.
  • a second different alignment of the alignment layer for instance at 45° or 90° to the previous alignment.
  • a rubbing direction different from the desired alignment orientation by 10° to 20° may be required to correct for the surface energy.
  • the re-rubbed regions are indicated at B.
  • a retarder layer 39 for instance of the type described hereinbefore with reference to FIG. 13, is then applied by spinning and its optic axis adopts the directions imposed by the underlying parts of the alignment layer 31 .
  • the retarder layer 39 is then fixed, for instance by exposure to ultraviolet radiation to form the retarder 40 .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

A parallax barrier includes a polarisation modifying layer having aperture regions, for supplying light of a second polarisation when receiving light of a first polarisation, separated by barrier regions, for supplying light of a third polarisation different from the second polarisation when receiving light of the first polarisation, and a polariser selectively operable in a first mode and a second mode. At least one of the aperture regions and the barrier regions alters the polarisation of light passing therethrough. The polariser passes light of the second polarisation and blocks light of the third polarisation in the first mode and passes light of the third polarisation in the second mode.

Description

  • The present invention relates to a passive polarisation modulating optical element and to an optical device including such an element. The present invention also relates to a method of making a passive polarisation modulating optical element. Such an element may be used in three dimensional (3D) displays, for instance of the autostereoscopic type. Such displays may be used in games apparatuses, computer monitors, laptop displays, work stations and professional imaging, for instance for medical, design or architectural use. [0001]
  • The present invention relates to a parallax barrier and to a display. Such displays may be used as switchable two dimensional (2D)/three dimensional (3D) displays and may be used in games apparatuses, computer monitors, lap top displays, work stations and professional imaging, for instance for medical, design or architectural use. [0002]
  • In normal vision, the two human eyes perceive views of the world from two different perspectives due to their spatial separation within the head. These two perspectives are then used by the brain to assess the distance to various objects in a scene. In order to provide a display which effectively displays a 3D image, it is necessary to recreate this situation and supply a so-called “stereoscopic pair” of images, one to each eye of an observer. [0003]
  • Most 3D displays may be classified into two types depending on the technique used to supply the different views to the eyes. Stereoscopic displays typically display both of the images over a wide viewing area. However, each of the views is encoded, for instance by colour, polarisation state or time of display, so that a filter system of glasses worn by the observer attempts to separate the views to let each eye see only the view that is intended for it. [0004]
  • Autostereoscopic displays require no viewing aids to be worn by the observer. Instead, the two views are only visible from defined regions of space. The region of space in which an image is visible across the whole of the display active area is termed a “viewing region”. If the observer is situated such that one eye is in one viewing region and the other eye is in the other viewing region, then a correct set of views is seen and a 3D image is perceived. [0005]
  • For autostereoscopic displays of the “flat panel” type, the viewing regions are formed by a combination of the picture element (pixel) structure of the display and an optical element, generically termed a parallax optic. An example of such an optic is a parallax barrier. This element is a screen with vertical transmissive slits separated by opaque regions. A display of this type is illustrated in FIG. 1 of the accompanying drawings. A spatial light modulator (SLM) [0006] 1 of the liquid crystal type comprises glass substrates 2 between which are disposed a liquid crystal layer together with associated electrodes and alignment layers. A backlight 3 illuminates the SLM 1 from behind and a parallax barrier 4 is disposed on the front surface of the SLM 1.
  • The [0007] SLM 1 comprises a 2D array of pixel apertures with the pixels arranged as columns as shown at 5 separated by gaps 6. The parallax barrier 4 has vertically extending slits 7 with a horizontal pitch close to an integer multiple of the horizontal pitch of the pixel columns 5 so that groups of columns of pixels are associated with each slit. As illustrated in FIG. 1, three pixel columns labelled columns 1, 2 and 3 are associated with each slit 7 of the parallax barrier 4.
  • The function of the parallax optic such as the [0008] parallax barrier 4 is to restrict the light transmitted through the pixels to certain output angles. This restriction defines the angle of view of each of the pixel columns behind the associated slit. The angular range of view of each pixel is determined by the pixel width and the separation between planes containing the pixels and the parallax optic. As shown in FIG. 1, the three columns 5 associated with each slit 7 are visible in respective viewing windows.
  • FIG. 2 of the accompanying drawings illustrates the angular zones of light created from an [0009] SLM 1 and a parallax barrier 4 where the parallax barrier slits have a horizontal pitch equal to an exact integer multiple of the pixel column pitch. In this case, the angular zones coming from different locations across the display surface intermix and a pure zone of view for image 1 or image 2 does not exist. Thus, each eye of an observer will not see a single image across the whole of the display but instead will see slices of different images at different regions on the display surface. In order to overcome this problem, the pitch of the parallax optic is reduced slightly so that the angular zones converge at a predetermined plane, generally known as the “window plane”, in front of the display. This change in the parallax optic pitch is termed “viewpoint correction” and is illustrated in FIG. 3 of the accompanying drawings. The window plane is shown at 8 and the resulting substantially kite shaped viewing regions are shown at 9 and 10. Provided the left and right eyes of the observer remain in the viewing regions 9 and 10, respectively, each eye will see the single image intended for it across the whole of the display so that the observer will perceive the 3D effect.
  • The [0010] window plane 8 defines the optimum viewing distance of the display. An observer whose eyes are located in this plane receives the best performance of the display. As the eyes move laterally in this plane, the image on the display remains until the eyes reach the edge of the viewing regions 9 and 10, whereupon the whole display swiftly changes to the next image as one eye moves into the adjacent viewing region. The line of the window plane within each viewing region is generally termed a “viewing window”.
  • FIG. 4 of the accompanying drawings illustrates an autostereoscopic display which differs from that shown in FIG. 1 in that the [0011] parallax barrier 4 is disposed on the rear surface of the SLM 1. This arrangement has the advantage that the barrier 4 is disposed behind the SLM 1 away from possible damage. Also, the light efficiency of the display may be improved by making the opaque parts of the rear surface of the parallax barrier 4 reflective so as to recycle light which is not incident on the slits 7.
  • A [0012] switchable diffuser 11 is shown between the parallax barrier 4 and the SLM 1. Such a diffuser may comprise a polymer-dispersed liquid crystal which is switchable between a low scattering or substantially clear state and a highly scattering state. In the low scattering state, the display operates as described hereinbefore as an autostereoscopic 3D display. When the diffuser is switched to the highly scattering state, light rays are deflected on passing through the diffuser and form an even or “Lambertian” distribution which “washes out” the effect of the parallax barrier 4 and so destroys the creation of viewing regions. In this mode, the display therefore acts as a conventional 2D display with the full spatial resolution of the SLM 1 being available for displaying 2D images.
  • In the displays described hereinbefore, the basic principle is that a subset of the total number of pixels of the [0013] SLM 1 is visible to each eye at any one time, Thus, each of the views represented in the viewing regions uses a fraction of the total resolution of the SLM 1. In a typical two view spatially multiplexed autostereoscopic display, each eye perceives an image of only half the total resolution. For a three view system, the resolution in each eye is only one third. The representation of complex small characters, such as text and details within images, may therefore be adversely affected. It is desirable to include in the display some means for disabling or overcoming the parallax imaging system so that the full resolution of the SLM 1 is visible to each eye for the display of detailed 2D information.
  • Although the [0014] switchable diffuser 11 shown in FIG. 4 provides such switching, this adds to the cost and complexity of the display.
  • U.S. Pat. No. 2,631,496 discloses an autostereoscopic display based on a single picture in which a parallax element is provided by a polariser element having alternate stripes of orthogonally oriented polariser. The polariser element co-operates with an image in which the left and right views are encoded with orthogonal polarisations in vertical columns. The encoding swaps for every image strip column. The polariser element thus acts in a similar manner to a parallax barrier but is such that the mark/space ratio i.e. the ratio of the width of each effective slit to each effective opaque region, is substantially equal to 1. This results in relatively high cross talk and poor viewing freedom for the observer. Such an arrangement does not permit a [0015] full resolution 2D viewing mode to be achieved without image artefacts.
  • Proc. SPIE vol. 2177, pp 181 “[0016] Novel 3D Stereoscopic Imaging Technology”, S. M. Faris, 1994 discloses a display which may operated stereoscopically or autostereoscopically using external micropolarisers. In particular, two micropolariser sheets are disposed above the spatially multiplexed image and are movable to switch between autostereoscopic and stereoscopic viewing. Such an arrangement cannot be operated to provide a high resolution 2D viewing mode.
  • E. Nakayama et al, “2D/3D Compatible LC Display without Special Classes”, Proc. third Internal Display Workshops vol. 2, pp 453-456, 1996 discloses a 3D display of the rear parallax barrier type similar to that shown in FIG. 4 of the accompanying drawings. A switchable diffuser is disposed between the parallax barrier and the SLM in the same way as illustrated in FIG. 4 to allow the display to be operated in a [0017] full resolution 2D mode.
  • In order to destroy the formation of viewing windows for the 2D mode, scattering by the diffuser must completely remove the visibility of the parallax barrier to the observer. However, in order for the autostereoscopic 3D mode to be effective, the gaps between the slits of the parallax barrier must provide strong extinction of light. These requirements are mutually incompatible and can be overcome only by very strong back-scattering in the switchable diffuser, which reduces the display transmission substantially, or by making the parallax barrier reflective on the observer side, thus damaging the 3D image. Further, although a rear reflective layer may be applied to the parallax barrier so as to recycle light and improve brightness, all of the light received by the observer has to pass through the slits of the parallax barrier so that display brightness is degraded in the 2D mode. Typically, the mark space ratio of the parallax barrier would be 2:1 so that only one third of the light from the backlight is transmitted through the display. The reflective layer may improve this but would not restore the display to full brightness. Further, back scatter in the switchable diffuser would reduce the display brightness in the 2D mode. If the switchable diffuser is designed for strong backscatter in the high diffusion mode of operation, it is difficult to achieve the very low levels of diffusion necessary in the low diffusion mode to ensure that the 3D display device does not suffer from increased cross talk. [0018]
  • J. B. Eichenlaub, Proc. SPIE 2177, pp 4-15, “An Autostereoscopic Display with High Brightness and Power Efficiency”, 1994 discloses a 3D display of the rear parallax barrier type which could be switched to a [0019] full resolution 2D mode using a switchable diffuser or an array of lamps. However, such an arrangement has the disadvantages described hereinbefore. Furthermore, the optical system of such a display is not compatible with the slim design of current flat-panel display systems wherein the backlight structure is less than 1 cm thick.
  • U.S. Pat. No. 5,264,964 discloses a passive display of the rear parallax barrier type. The display is switchable between stereoscopic and autostereoscopic modes of viewing. The rear parallax barrier comprises two micropolarisers with a nematic liquid crystal layer there between. The micropolarisers have aligned polarising and non-polarising regions such that, when the liquid crystal is in its inactive state and has not effect on the polarisation of light, polarising glasses have to be worn in order to view the image stereoscopically. When the liquid crystal layer is in its active state, it rotates the polarisation of light through 90°. The aligned polarising regions of the micropolarisers then block light so that a rear parallax barrier is formed and the image can be viewed autostereoscopically. [0020]
  • When the display is in the 2D mode, light enters the liquid crystal layer from both polarised and unpolarised regions of the input micropolariser. The polarised regions have a lower transmissivity than the unpolarised regions and this causes Moire effects in the illumination of the display. This results in illumination stripes in the display and flickering illumination as the observer moves. The 2D image appearance will therefore be very poor. Further, image pixels associated with one polarisation direction do not transmit light from barrier regions of the orthogonal polarising direction. This causes further illumination non-uniformities and causes obstruction of vertical pixel lines. [0021]
  • In the 3D mode of this device, opaque regions are coloured and transmit a significant quantity of light because of problems of the polarisation change varying with the wavelength of the incident light. The polarisation is rotated by 90° at only one “design” wavelength. At other wavelengths, the rotation is approximate. This results in significant cross talk levels which give poor 3D image quality. Also, the mark/space ratio of the barrier is 1:1 which results in limited viewing freedom and high levels of cross talk. [0022]
  • “Molecular architectures in thin plastic film by in-situ photopolymerisation of reactive liquid crystals” Philips SID 95 Digest discloses a method of making patterned optical waveplates. [0023]
  • “Surface induced parallel alignment of liquid crystals by linearly polymerised photopolymers” Schadt et al Japanese Journal of Applied Physics, vol 31, 1992, pp 2155 discloses a technique based on the photopolymerisation of liquid crystals obtained by crosslinking polyvinylmethoxycinnamate using polarised light. [0024]
  • [0025] EP 0 689 084 discloses the use of reactive mesogen layers as optical elements and alignment surfaces.
  • U.S. Pat. No. 5,537,144 and U.S. Pat. No. 5,327,285 disclose photolithographic techniques of patterning polarisers or retarders. An array of waveplates is generated by bleaching a stretched film of PVA through a photoresist mask in a hot humid atmosphere or with water-based bleachers, This alters the material properties so that the retardance properties of the material are selectively destroyed in certain regions. Thus, such a technique may be used to provide a single layer element in which some regions act as retarders with the optic axes parallel to each other and other regions have substantially zero retardance. [0026]
  • “Four domain TNCLD fabricated by reverse rubbing or double evaporation” Chen et al SID 95 Digest page 865 discloses the use of a technique involving double-rubbing of an alignment layer in an active liquid crystal device (LCD). The liquid crystal alignment direction varies within each pixel to enable improved viewing angle performance of the device. [0027]
  • According to a first aspect of the invention, there is provided a parallax barrier characterised by comprising: a polarisation modifying layer having aperture regions, for supplying light of a second polarisation when receiving light of a first polarisation, separated by barrier regions, for supplying light of a third polarisation different from the second polarisation when receiving light of the first polarization, at least one of the aperture regions and the barrier regions altering the polarisation of light passing therethrough; and a polariser selectively operable in a first mode to pass light of the second polarisation and to block light of the third polarisation and in a second mode to pass light of the third polarisations. [0028]
  • Such a parallax barrier can therefore be operated in a parallax barrier mode or in a non-barrier mode. When illuminated by light of the first polarisation, the non-barrier mode permits substantially all of the light to be transmitted so that, when used in a 3D autostereoscopic display, a [0029] full resolution 2D mode of high brightness can be provided.
  • The aperture regions may comprise parallel elongate slit regions. [0030]
  • The polariser may be a uniform polariser. [0031]
  • The third polarisation may be orthogonal to the second polarisation. [0032]
  • The first, second and third polarisations may be linear polarisations. The aperture regions may be arranged to rotate the polarisation of light and the barrier regions may be arranged not to rotate the polarisation of light so that the third polarisation is the same as the first polarisation. Such an arrangement allows the barrier regions to have maximum achromatic extinction of light when the barrier is used in barrier mode. [0033]
  • The aperture regions may comprise retarders. The aperture regions may comprise half waveplates. As an alternative, the aperture regions may comprise polarization rotation guides. [0034]
  • The polarization modifying layer may comprise a half waveplate, the aperture regions may have optic axes aligned at ±substantially 45° to the first polarisation, and the barrier regions may have optic axes aligned substantially parallel to the first polarisation. [0035]
  • The polariser may pass light of the second polarisation in the second mode. [0036]
  • The polariser may be removable from a light path through the polarisation modifying layer in the second mode. The polariser does not have to be aligned with great accuracy in order for the barrier mode to be effective. In particular, it is merely necessary for the polariser to cover the polarisation modifying layer and to be reasonably accurately aligned rotationally about an axis substantially normal to the layer. Thus, removal of the polariser permits the non-barrier mode of operation and relatively simple and inexpensive alignment means may be provided for aligning the polariser in the barrier mode. [0037]
  • The polariser may comprise glasses to be worn by an observer in the first mode. [0038]
  • The polariser may be rotatable through substantially ° an axis substantially perpendicular to the polarisation modifying layer between first and second positions for operation in the first and second modes, respectively. [0039]
  • The polariser may comprise a polarising layer and a retarder layer which is switchable between a non-retarding mode and a retarding mode providing a quarter wave of retardation. [0040]
  • The polariser may comprise a polarising layer and a switchable diffuser having a diffusing depolarising mode and a non-diffusing non-depolarising mode. The diffuser may be disposed between the polarising layer and the polarisation modifying layer. As an alternative, the polarisation modifying layer may be disposed between the polarising layer and the diffuser. [0041]
  • The barrier may comprise: a first quarter waveplate disposed between the polarisation modifying layer and the polariser and attached to the polarisation modifying layer; and a second quarter waveplate disposed between the first quarter waveplate and the polariser and attached to the polariser, the first and second quarter waveplates having substantially orthogonal optical axes. The quarter waveplates between the polarisation modifying layer and the polariser convert light to and from circular polarization so that rotational alignment of the polariser relative to the polarisation modifying layer may be further relaxed. [0042]
  • According to a second aspect of the invention, there is provided a display comprising a barrier according to the first aspect of the invention and a spatial light modulator for supplying light of the first polarisation to the polarisation modifying layer. [0043]
  • The spatial light modulator may be a light emissive device, such as an electroluminescent display. As an alternative, the spatial light modulator may provide selective attenuation of light and may be associated with a light source. The spatial light modulator may comprise a liquid crystal device. [0044]
  • According to a third aspect of the invention, there is provided a display comprising a barrier according to the first aspect of the invention, a light source for supplying light to the polariser, and a spatial light modulator having an input polariser for passing light from the aperture regions. [0045]
  • The spatial light modulator may comprise a liquid crystal device. [0046]
  • According to a fourth aspect of the invention, there is provided a display comprising: a light source selectively operable in a first mode for supplying light of a first polarisation and a second mode for supplying unpolarised light; a polarisation modifying layer having aperture regions, for supplying light of a second polarisation when receiving light of the first polarisation, separated by barrier regions, for supplying light of a third polarisation different from the second polarization when receiving light of the first polarisation; and a spatial light modulator having an input polariser for passing light of the second polarisation and for blocking light of the third polarisation. [0047]
  • The aperture regions may comprise parallel elongate slit regions. [0048]
  • The light source may comprise a polarised light source operable in the first mode and an unpolarised light source operable in the second mode. The polarised light source may comprise at least one first light emitting device arranged to supply light through a polariser to a first light guide. The unpolarised light source may comprise at least one second light emitting device arranged to supply light to a second light guide and one of the first and second light guides may be arranged to supply light through the other of the first and second light guides. [0049]
  • The light source may comprise at least one light emitting device, a light guide, and a polariser disposed in an optical path between the or each light emitting device and the light guide in the first mode and outside the optical path in the second mode. [0050]
  • According to a fifth aspect of the invention, there is provided a display comprising: a polarisation modifying layer having aperture regions, for supplying light of a second polarisation when receiving light of a first polarisation, separated by barrier regions, for supplying light of a third polarisation different from the second polarisation when receiving light of the first polarisation; a spatial light modulator having an input polariser for passing light of the second polarisation and for blocking light of the third polarization; a light source; a mask having polarising regions, for supplying light of the first polarisation from the light source, and non-polarising regions, for transmitting light from the light source; and a parallax optic co-operating with the mask to direct light from the polarising regions through the spatial light modulator to a first viewing region and to direct light from the non-polarising regions through the spatial light modulator to a second viewing region. [0051]
  • The mask may be movable relative to the parallax optic for moving the first and second viewing regions. [0052]
  • The parallax optic may comprise an array of parallax generating elements. [0053]
  • The aperture regions may comprise parallel elongate slit regions. [0054]
  • Each of the parallax generating elements may be optically cylindrical with an axis substantially orthogonal to the slit regions. [0055]
  • The array may comprise a lenticular screen. As an alternative, the array may comprise a parallax barrier. [0056]
  • The polarising and non-polarising regions may comprise laterally extending strips. [0057]
  • The mask may further comprise opaque regions at least partially separating the polarising regions from the non-polarising regions. [0058]
  • The third polarisation may be orthogonal to the second polarisation. [0059]
  • The first, second and third polarisations may be linear polarisations. The aperture regions may be arranged to rotate the polarisation of light and the barrier regions may be arranged not to rotate the polarisation of light so that the third polarisation is the same as the first polarisation. [0060]
  • The aperture regions may comprise retarders. [0061]
  • The aperture regions may comprise half waveplates. [0062]
  • The aperture regions may comprise polarisation rotation guides. [0063]
  • It is thus possible to provide a display, for instance of the flat panel type which is operable in a wide view [0064] full resolution 2D mode and in a directional 3D autostereoscopic mode. When embodied as a liquid crystal device whose pixel apertures are at least partially defined by a black mask, there are no undesirable visual artefacts associated with the black mask in the 2D mode.
  • The pitch alignment of the polarisation modifying layer determines the parallax barrier pitch, which typically has to be set to within 0.1 micrometers. The barrier may be made of a glass substrate with similar thermal expansivity to the spatial light modulator so as to minimise misalignments during heating of the system between switch on and operating temperatures. The high tolerance alignment can be fixed during manufacture and is unaffected by switching between 2D and 3D modes. There are six critical degrees of freedom alignment tolerances in such displays with respect to the positioning of the apertures of the barrier relative to the spatial light modulator and these do not have to be set in the field. Because the removable or switchable element can be a uniform polarisation element, accurate alignment is only necessary in one degree of freedom i.e. rotation about an axis normal to the display surface. Rotation about the other two axes and spatial positioning may all be set with low and easy to satisfy tolerance requirements. Thus mechanical assembly is substantially simplified and cost, size and weight can be reduced. [0065]
  • It is possible to switch different regions of the display independently to allow 3D and 2D regions to be mixed simultaneously on the display surface. [0066]
  • A [0067] colour 3D display can be provided with low cross talk using relatively simple and inexpensive birefringent elements. The 2D mode may be substantially as bright as a conventional display with the same angle of view. Thus, the same backlight as for a conventional display may be used and battery life and brightness will not be compromised. An anti-reflection coating may be applied to the outside surface to reduce reflections and improve display contrast. There are minimal absorption or reflection losses from such an additional layer.
  • When applied to an observer tracking display, the tracking may be performed by relative movement between the spatial light modulator and the polarisation modifying layer. Thus, the polarisation modifying layer may remain attached to the mechanical system at all times. The polariser does not need to be attached to the mechanical system at all so that mounting is simplified. In fact, the polariser does not need to be mounted in physical proximity to the polarisation modifying layer and may indeed be provided in the form of glasses to be worn by an observer. [0068]
  • According to a first aspect of the invention, there is provided a passive polarisation modulating optical element comprising a layer of birefringent material having substantially fixed birefingence and comprising at least one first retarder having an optic axis aligned in a first direction and at least one second retarder having an optic axis aligned in a second direction different from the first direction. [0069]
  • The at least one first retarder may comprise a plurality of first retarders, the at least one second retarder may comprise a plurality of second retarders, and the first and second retarders may be arranged as a regular array. The first and second retarders may comprise first and second strips which alternate with each other. The first strips may have a first width and the second strips may have a second width less than the first width. [0070]
  • The first and second retarders may have a retardance of (m+1)λ/2, where m is an integer and λ is a wavelength of visible light. [0071]
  • The second direction may be at substantially 45° to the first direction. [0072]
  • The birefringent layer may be disposed of an alignment layer comprising first and second regions corresponding to the first and second retarders, respectively, and having first and second alignment directions, respectively. [0073]
  • The birefringent material may comprise a reactive mesogen. [0074]
  • According to a second aspect of the invention, there is provided an optical device comprising an element according to the first aspect of the invention and a linear polariser for passing light polarised at a predetermined angle with respect to the first optic axis. [0075]
  • The predetermined angle may be substantially equal to 0°. [0076]
  • The polariser may comprise part of a further device. The further device may be a liquid crystal device. [0077]
  • According to a third aspect of the invention, there is provided a method of making a passive polarisation modulating optical element, comprising forming an alignment layer, providing at least one first region of the alignment layer with a first alignment direction, providing at lease one second region of the alignment layer with a second alignment direction different from the first alignment direction, disposing on the alignment layer a layer of birefringent material whose optic axis is aligned by the alignment layer, and giving the optic axis of the birefringent layer. [0078]
  • The at least one first region may comprise a plurality of first regions, the at least one second region may comprise a plurality of second regions, and the first and second regions may be arranged as a regular array. The first and second retarders may comprise first and second strips which alternate with each other. The first strips may have a first width and the second strips may have a second width less than the first width. [0079]
  • The birefringent layer may have a thickness for providing a retardance of (m+1)λ/2, where m is an integer and λ is a wavelength of visible light. [0080]
  • The second direction may be substantially at 45° to the first direction. [0081]
  • The birefringent material may comprise a reactive mesogen. [0082]
  • The fixing may be performed by irradiation. The fixing may be performed by ultraviolet irradiation. [0083]
  • The alignment layer may comprise polyimide. [0084]
  • The whole of the alignment layer may be provided with the first alignment direction, after which the or each second region may be altered to have the second alignment direction. The alignment layer may be rubbed in a first rubbing direction, the alignment layer may be masked to reveal the or each second region, and the or each second region may be rubbed in a second rubbing direction. [0085]
  • The alignment layer may comprise a linearly photopolymerisable polymer, the alignment layer may be masked to reveal the or each first region, the or each first region may be exposed to radiation having a first linear polarisation, the alignment layer may be masked to reveal the or each second region, and the or each second region may be exposed to radiation having a second linear polarisation different from the first linear polarisation. [0086]
  • Such an optical element may be used, for instance, to provide a parallax barrier which may be used in an autostereoscopic display and whose parallax barrier operation may be disabled to permit such a display to be used in a two dimensional (2D) mode. A device of this type is disclosed in British patent application No: 9713985.1. When in the 2D mode, it is advantageous to avoid any difference in light absorption between the regions which act as the slits in the 3D mode and the regions between the slits. Otherwise, in the 2D mode, visible Moire patterning could be produced by beating of the variation in absorption with the pixel structure or the display. [0087]
  • The optical element may be made using a single photolithographic mask step, thus reducing the complexity of manufacture and the cost of the element. The element may be bonded to another substrate so as to avoid damage to its surface without affecting the optical properties of the element. The element may be formed on a glass substrate which allows the application of a low-cost anti-reflection layer on the opposite surface substrate prior to making the element. [0088]
  • The optical element may be manufactured using existing processes, such as spin coating, photolithographic masking and rubbing techniques. Thus, optical elements of this type may be manufactured in high volume at low cost. The element is manufactured without the removal of retarder material and so can be more easily made without introducing surface artefacts or damage and without requiring subsequent planarisation. Bu using photolithographic techniques, the retarder regions may be formed with high accuracy and resolution so that such an element is suitable for use in a viewpoint corrected parallax barrier. Further, it is possible to provide an element having high levels of dimensional stability.[0089]
  • The invention will be further described, by way of example, with reference to the accompanying drawings, in which: [0090]
  • FIG. 1 is a diagrammatic horizontal sectional view of a known type of autostereoscopic 3D display; [0091]
  • FIG. 2 is a plan view illustrating light cones produced by a non-view point corrected display; [0092]
  • FIG. 3 is a view similar to FIG. 2 illustrating the creation of viewing regions in a view point corrected display; [0093]
  • FIG. 4 is a diagrammatic horizontal sectional view of another known type of autostereoscopic 3D display; [0094]
  • FIG. 5 is a diagrammatic view of a parallax barrier constituting an embodiment of the invention; [0095]
  • FIGS. 6[0096] a, 6 b and 6 c are a diagrammatic view illustrating an arrangement for switching between modes of the barrier of FIG. 5;
  • FIG. 7 is a diagrammatic plan view of an autostereoscopic 3D display constituting an embodiment of the invention; [0097]
  • FIG. 8 is a diagrammatic plan view of an autostereoscopic 3D display constituting another embodiment of the invention; [0098]
  • FIG. 9 is a diagrammatic plan view of an autostereoscopic 3D display constituting another embodiment of the invention; [0099]
  • FIG. 10 is a diagrammatic plan view of an autostereoscopic 3D display constituting another embodiment of the invention; [0100]
  • FIG. 11[0101] a is a diagrammatic plan view of an autostereoscopic 3D display constituting another embodiment of the invention;
  • FIG. 11[0102] b is a diagrammatic plan view of an autostereoscopic 3D display constituting another embodiment of the invention;
  • FIG. 12 is a diagrammatic side view of an autostereoscopic display constituting another embodiment of the invention; [0103]
  • FIG. 13 is a graph of fractional transmission against wavelength in nanometers illustrating transmission of unpolarised light through two polarisers with a half waveplate disposed therebetween; [0104]
  • FIG. 14 is a graph of transmission of light in percent against wavelength in nanometers illustrating transmission of light through crossed polarisers; [0105]
  • FIG. 15 comprising FIGS. [0106] 15(a) to 15(e) illustrates a first method of making a polarisation modifying layer;
  • FIG. 16 comprising FIGS. [0107] 16(a) to 16(d) illustrates a second method of making a polarisation modifying layer;
  • FIG. 17 comprising FIGS. [0108] 17(a) to 17(d) illustrates a third method of making a polarisation modifying layer;
  • FIG. 18 comprising FIGS. [0109] 18(a) to 18(j) illustrates a fourth method of making a polarisation modifying layer;
  • FIG. 19 comprising FIGS. [0110] 19(a) to 19(e) illustrates a fifth method of making a polarisation modifying layer;
  • FIG. 20 comprising FIGS. [0111] 20(a) to 20(i) illustrates a sixth method of making a polarisation modifying layer;
  • FIG. 21 is a diagrammatic plan view of an autostereoscopic 3D display constituting another embodiment of the invention; [0112]
  • FIG. 22 is a graph of fractional light transmission against wavelength in nanometers illustrating extinction of light through a system comprising crossed polarisers with two quarter waveplates disposed therebetween; [0113]
  • FIG. 23 is a diagrammatic view of a parallax barrier constituting another embodiment of the invention; [0114]
  • FIG. 24 is a diagrammatic view of a parallax barrier constituting another embodiment of the invention; [0115]
  • FIG. 25 is a plan view of the parallax barrier of FIG. 24; and [0116]
  • FIG. 26 is a diagrammatic view of an arrangement constituting another embodiment of the invention. [0117]
  • FIG. 27 illustrates an optical element and an optical device constituting embodiments of the present invention; [0118]
  • FIG. 28 is a plan view of the element and device of FIG. 27; [0119]
  • FIG. 29 illustrates an optical element and an optical device constituting another embodiment of the invention; [0120]
  • FIG. 30 is a plan view of the element and device of FIG. 29; [0121]
  • FIG. 31 illustrates an optical element and an optical device constituting a further embodiment of the invention; [0122]
  • FIG. 32 is a plan view of the element and device of FIG. 31; [0123]
  • FIG. 33 illustrates graphs of transmission in arbitrary units against wavelengths in nanometers for a half wave retarder disposed between crossed and parallel polarisers; [0124]
  • FIG. 34 is a graph of transmission in per cent against wavelength in nanometers of two crossed polarisers without any intermediate optical element; [0125]
  • FIG. 35 illustrates alignment layer orientation and mask appearance for a parallax barrier constituting an embodiment of the invention and providing reduced diffraction by spatial modulation of slit edges; [0126]
  • FIG. 36 comprises [0127] 36 a to 36 e and illustrates a method of making an optical element constituting an embodiment of the invention; and
  • FIG. 37 comprises FIGS. 37[0128] a to 37 i and illustrates a method of making an optical element constituting an embodiment of the invention.
  • Like reference numerals refer to like parts throughout the drawings. [0129]
  • The parallax barrier shown in FIG. 5 comprises a [0130] polarisation modifying layer 20 and a polariser in the form of a polarising sheet 21. The polarisation modifying layer 20 comprises aperture regions 22 in the form of parallel elongate slit regions arranged to rotate linear polarisation 23 of incoming light through 90 degrees. The aperture regions 22 are separated by barrier regions such as 24 which are arranged not to affect the polarisation of the incoming light. The regions 22 may for instance comprise appropriately aligned half waveplate polarisation retarders or 90 degree polarisation rotators. The aperture regions 22 are disposed at the desired pitch of the parallax barrier, incorporating any viewpoint correction as described hereinbefore, and are of the width required for the parallax barrier slits. Typical values for the pitch and width of such slits are 200 micrometers and 50 micrometers, respectively. The aperture regions 22 have an optic axis aligned so as to rotate the input polarisation through 90 degrees. For instance, when the parallax barrier is disposed in front of a liquid crystal display (LCD) of the thin film transistor (TFT) type, light from the LCD is polarised at +45 degrees to a vertical axis of the LCD with which the strip-shaped aperture regions 22 are parallel. The optic axis is therefore arranged so that the polarisation of light 25 output from the slit regions is at −45 degrees with respect to the same vertical axis. The barrier regions 24 are transparent regions with little or no effect on the transmitted light, which therefore remains polarised at +45 degrees.
  • The polarising sheer [0131] 21 has a polarising direction indicated at 26 which is substantially orthogonal to the polarisation direction 23 of incoming light and hence of light passing through the regions 24. However, the polarisation direction 26 is parallel to the polarisation direction of light passing through the slit regions 22 so that the parallax barrier operates in a barrier mode with incoming light being transmitted through the slit regions 22 and being substantially blocked or extinguished through the parts of the barrier defined by the barrier regions 24.
  • In order to operate the parallax barrier in a non-barrier mode, the polarising [0132] sheet 21 is disabled, for instance by being removed. In this mode, the strip regions 22 are substantially invisible because they are not analysed by any polarising sheet. By arranging for the regions 22 and 24 to have substantially the same transmissivity, there should be no undesirable visual artefacts, such as Moire beating with the pixel structure of an associated LCD. Although the slit regions 22 still rotate the polarisation direction of the incident light, this is not visible to the human eye when the polarising sheet 21 has been removed. In this mode, the parallax barrier allows the full spatial resolution of the associated LCD to be available for 2D display with very little attenuation of light. The parallax barrier of FIG. 5 may be used to replace the front parallax barrier 4 shown in FIG. 1 so as to provide an autostereoscopic 3D display constituting an embodiment of the invention.
  • A convenient way of arranging for the [0133] polariser sheet 21 to be removable is illustrated in FIG. 6a. The polariser sheet 21 is attached to the remainder of the autostereoscopic display by double hinges 30 and 31. This allows the polariser sheet 21 to be swung over the front of the display with the polariser alignment controlled by the base line of the hinges and optionally further constrained by a location datum on the opposite edge of the polariser sheet from the hinges. In the 2D mode, the polariser is folded over the rear of the display unit and stored flush against the rear of the display unit.
  • Another convenient way of arranging for the [0134] polariser sheet 21 to be removable is illustrated in FIG. 6(b). The polarising sheet 21 is formed on a transparent film having a longitudinal region which is transparent and non-polarising. The film is wound on rollers 28 and 29 disposed at either side of the LCD 1 and polarisation modifying layer 20. The rollers 28 and 29 are driven, for instance by an electric motor, so that the polarising region 21 or the transparent non-polarising region of the film may be disposed in front of the LCD 1 and layer 20. Alternatively, the rollers 28 and 29 may be operated manually. When the polarising region 21 is in front of the LCD 1 and layer 20, the display operates in the 3D mode whereas, when the transparent non-polarising region of the film is in front of the LCD 1 and layer 20, the display operates in the 2D mode.
  • FIG. 6([0135] c) illustrates a further way of switching between 3D and 2D modes of operation. In this case, the polarising sheet 21 is permanently disposed in front of the LCD 1 and the layer 20 but is rotatable about an axis perpendicular to the sheet 21. When the rotary position of the polarising sheet 21 is such that it transmits light from the slit regions 22 but extinguishes light from the barrier regions 24, the display operates in the 3D mode with a front parallax barrier as illustrated at A. Thus, a barrier is formed with narrow transmissive slits and wide opaque gaps. However, when the polarising sheet 21 is rotated through 90° it blocks or extinguishes light from the slit regions 22 but transmits light from the barrier regions 24. In this case, as illustrated at B, light is transmitted through wide “slits” whereas narrow opaque “gaps” are formed. Although the arrangement illustrated at B may be thought of as continuing to act as a parallax barrier, the viewing regions are not as well-defined and a broad 2D region is produced. The residual opaque regions will reduce the brightness in the 2D mode compared with displays in which there are no opaque regions formed by the parallax barrier. This is a convenient technique but there may be some residual Moire effects in from black areas on the mask.
  • If the [0136] parallax barrier 4 in the known types of display such as those shown in FIGS. 1 and 4 were made removable in order to provide a full resolution high brightness 2D mode of operation, it would have to be provided with mounts which defined the location in five degrees of freedom, namely two translation axes and three rotation axes, to positional tolerances of the order of 5 micrometers. It is also particularly difficult to maintain parallelism between the parallax barrier 4 and the SLM 1. Any bow in either element would cause deviations in the window generating Moire pattern. This results in reduced viewing freedom and increased levels of cross talk of the display. A removable element would have to compensate for such bows and this is very difficult to achieved in a robust manner with low cost overheads while preserving ease of use and reasonable bulk in the removable element.
  • The effective plane of the parallax barrier shown in FIG. 5 is at the plane of the [0137] polarisation modifying layer 20. The alignment of this layer 20 with the associated LCD determines the optical alignment of the autostereoscopic display. For the parallax barrier shown in FIG. 5, the layer 20 may be left permanently fixed to the associated LCD and so can conform to any bows in the LCD, minimising the degradation to window quality. This ensures rigidity and allows for adhesives or other forms of permanent fixative to be employed, for instance during manufacture or as a subsequent fitment using precision alignment tools which are available on LCD production lines. The removable polarising sheet 21 merely needs to be realigned in one rotational axis on replacement in front of the sheet 20. The tolerance on translational position is merely that the whole of the display surface be covered by the polariser sheet 21 and rotations around axes in the plane of the display surface do not affect the polarisation absorption axis. Accordingly, the only requirement is for rotational alignment about an axis normal to the display surface to ensure good extinction of light from the barrier regions 24. In order to reduce light leakage from the barrier regions 24 to below 1%, the alignment tolerance is of the order of plus or minus 5 degrees and this is easy to satisfy.
  • FIG. 7 illustrates the use of the parallax barrier of FIG. 5 in a rear parallax barrier autostereoscopic display. The [0138] polarisation modifying layer 20 is disposed adjacent the LCD 1 and the polariser sheet 21 acts as an input polariser and is disposed between the layer 20 and the backlight 3. The LCD 1 has an input polariser 32 whose polarisation direction is aligned so as to pass light from the strip regions 22 and to block light from the barrier regions 24. Thus, the polarisation directions of the input polariser sheet 21 and the LCD polariser 32 are orthogonal. In order to provide a full resolution high brightness 2D mode, the polariser sheet 21 is removed from the light path.
  • The [0139] strip regions 22 are shown in the drawings as being fabricated on a substrate and, in particular, on the outer surface of the substrate, i.e.: the surface of the substrate facing away from the LCD 1. This is merely an example as the strip regions 22 may be fabricated on either surface of the substrate. If the strip regions are fabricated on the inner substrate surface, i.e.: that facing the LCD 1, they may be in contact with the LCD 1 and will be protected from scratching and dirt by the substrate. Furthermore, the optimum viewing distance of the display in the 3D mode is set by the separation of the liquid crystal layer in the LCD 1 and the strip regions 22. With the strip regions 22 on the inner surface of the substrate, the separation is reduced and hence the optimum viewing distance is reduced.
  • FIG. 8 illustrates a rear parallax barrier display in which the [0140] removable polariser 21 forms part of the backlight. The backlight comprises a light source 33 and a reflector 34 which, in the 3D mode, direct light through the polariser sheet 21 into a light guide 35. The light guide 35 has on its output surface a patterned sheet 36 for providing uniformity of illumination of the LCD 1 and a polarisation preserving diffuser 37 to scatter the output light into a wider range of angles. Such diffusers may be lenticular in nature.
  • This arrangement allows the use of a relatively [0141] small polariser 21 at the input surface of the light guide 35. The polariser 21 can be moved out of the light path by a relatively short movement in order to achieve the full resolution high brightness 2D mode of operation.
  • FIG. 9 illustrates an autostereoscopic display having a polarised light source of the type illustrated in FIG. 8 but in which the [0142] polariser 21 is fixed at the input of the light guide 35. The light source 33 is illuminated for 3D operation.
  • The display comprises a further unpolarised backlight in the form of a [0143] light source 38, a reflector 39 and a light guide 40. The light guides 35 and 40 are disposed such that output light from the light guide 40 passes through the light guide 35. In the full resolution high brightness 2D mode, the light source 33 is extinguished and the light source 39 is illuminated so that unpolarised light passes through the light guide 35 and illuminates the LCD 1 through the layer 20.
  • FIG. 10 shows an example of a front parallax barrier autostereoscopic display which is switchable between 3D and 2D modes without requiring any mechanical movement. The [0144] polarisation modifying layer 20 is disposed adjacent the output surface of the LCD 1 and the exit polariser sheet 21 is located at the output of the display. A switchable quarter wave rotator 41 is disposed between the sheet polariser 21 and the layer 20. The rotator 41 is switchable between a first state in which it does not affect the transmitted polarisation and a second state which causes the polarisation states to be equally transmitted through the sheet polariser 21. In the second state, the rotator 41 acts as a quarter waveplate with the optic axis at 45 degrees to the polarising axis of the sheet polariser 21. Thus, the linear polarisations from the regions 22 and 24 are both converted to circular polarisations of opposite handedness of which 50% is transmitted by the sheet polariser 21.
  • An advantage of this type of arrangement is that the [0145] control element 41 may be spatially controlled so that the two modes coexist in different regions. This allows some parts of the display to operate in the 2D mode and other parts in the 3D mode.
  • The display shown in FIG. 11[0146] a differs from that shown in FIG. 10 in that the switchable quarter wave rotator 41 is replaced by a switchable diffuser 42. The diffuser 42 is switchable electronically between depolarising and non-depolarising states. Such a diffuser may be embodied as a polymer dispersed liquid crystal device.
  • In its low diffusing state, the switchable diffuser [0147] 42 has substantially no effect on operation so that the display operates in the autostereoscopic 3D mode. In the more highly diffusing state, the diffuser 42 has two effects. Firstly, the diffuser destroys the polarisation of incident light so that light from the regions 22 and 24 are transmitted substantially equally through the exit polariser sheet 21. Secondly, the diffuser destroys the directionality of light through the system by scattering the transmitted light into random directions. However, the scattering effect of the diffuser 42 does not need to be strong because the loss of polarisation is sufficient to cause the display to operate in the 2D mode. The diffuser 42 is merely required to provide sufficient scattering for an adequate angle of view of the display. Thus, the diffuser 42 is required to provide less dense scattering of light than for known types of system so that a brighter 2D mode may be achieved.
  • The display shown in FIG. 11[0148] b differs from that shown in FIG. 11a in that the positions of the layer 20 and the switchable diffuser 42 are interchanged.
  • A switchable diffuser [0149] 42 may also be used in rear parallax barrier arrangements. The diffuser 42 may also be controllable so that different regions can be controlled to operate in different modes so as to provide a display in which some regions operate in the 2D mode and others simultaneously operate in the 3D mode. This arrangement may be more appropriate because the diffuser will not substantially affect image visibility in the 2D state.
  • The parallax barriers disclosed herein may be used in the display disclosed in British Patent Application No 9702259.4. This display is of the autostereoscopic type and includes an indicator visible to an observer so that the observer can position himself at the optimum viewing location. In some circumstances, it may be advantageous to be able to disable the visual position indication and this may be achieved by disabling the part of the parallax barrier which provides the indication, for instance as described hereinbefore for mixed 3D and 2D operation. [0150]
  • FIG. 12 illustrates a display of the rear parallax barrier type similar to that shown in FIG. 7 but in which the [0151] polariser sheet 21 is replaced by a mask 43 and a parallax optic 44 which is illustrated as a lenticular screen but which may alternatively comprise a parallax barrier. The parallax optic 44 is optional because the parallax between the mask elements of the mask 43 and a pixel black mask within the LCD 1 serve to generate viewing zones 45 but with larger overlaps at the boundaries between the zones. The mask 43 comprises horizontal strips arranged, for example, as groups of three strips with each group comprising a polarising strip, a clear strip and an opaque strip. Each group of strips is associated with a parallax element, in the form of a lenticule, of the lenticular screen 44.
  • The [0152] mask 43 is vertically movable with respect to the lenticular screen 44. In the position illustrated in FIG. 12, the polarising strips are aligned with the lenticules of the screen 44 so as to provide 3D operation with an observer located in a zone indicated at 45, An observer in the zone 45, which is the normal viewing zone of the display, can thus perceive a 3D image.
  • When 2D operation is required, the [0153] mask 43 is moved relative to the screen 44 so that the clear strips are imaged into the zone 45. This allows the display to operate in the full resolution high brightness 2D mode. Switching between 3D and 2D modes can therefore be achieved by a relatively small movement. The dark or opaque strips are used to avoid leakage of polarised light into the unpolarised viewing region and vice versa.
  • The [0154] mask 43 may be made by any suitable method, such as that disclosed in JP 63-158525A.
  • Although the optical functions of the [0155] regions 22 and 24 of the parallax barrier could be reversed so that the barrier regions 24 rotate the polarization and the strip regions 22 have substantially no effect on polarisation, the arrangement described hereinbefore with reference to FIG. 5 is generally preferred. In particular, the dark level of the opaque regions formed by the barrier regions 24 and the associated regions of the polariser sheet 21 are effectively provided by two crossed polarisers without any intermediate (optically active) element. This provides strong extinction of light over a broad range of wavelengths and so minimises cross talk in the display.
  • A possible alternative arrangement of the parallax barrier in the displays is for the two polarisers to have parallel polarisation directions, the [0156] barrier regions 24 to be optically active in order to provide the polarisation rotation, and the slit regions 22 not to affect polarisation. As described hereinbefore, in such an arrangement, the critical opaque regions of the barrier rely on the performance of the polarisation rotating material to achieve high extinction and light leakage of less than 1%. A possible means for achieving this makes use of a polymerized layer of twisted nematic liquid crystal having a thickness which satisfies the first minimum criterion as the regions 24. An advantage of such an arrangement is that the slit regions 22 are neutral and therefore have optimum chromatic performance to provide a 3D mode with reduced colour imbalance.
  • The polarisation rotation performed by the [0157] strip regions 22 does not generally work optimally over such a broad range of wavelengths. Thus, some parts of the visible spectrum are transmitted less than others. FIG. 13 illustrates the calculated transmission of unpolarised light through an output polariser of the LCD 1, a waveplate made of a uniaxial birefringent material known as RM257 available from Merck (UK), and the polariser sheet 21. When the two polarisers have their polarising axes crossed, transmission is highest by design at the centre of the visible spectrum but declines towards either end of the visible spectrum. If the centre wavelength is correctly chosen, the transmitted light maintains a good white colour balance. It may be necessary to adjust the balance between red, green and blue colour channels of the LCD 1 to ensure correct colour display in the 3D mode, Such colour balance change may, for example, be precalibrated and set in drivers for the 3D image software or in the design of colour filters of the LCD to optimise between 2D and 3D colour spectra.
  • The curve shown in FIG. 13 for parallel polarisers is that which would have applied to the opaque barrier regions if the [0158] barrier regions 24 had rotated that polarisation The centre wavelength of the system provides good extinction of light. However, towards the edges of the spectrum, the transmission substantially increases. In order to ensure cross talk levels of not more than 1%, the barrier must provide a 100:1 contrast ratio across the visible spectrum. As indicated by FIG. 13, this would not be achieved with parallel polarisers and polarisation rotators as the barrier regions 24.
  • FIG. 14 illustrates the transmission performance through two crossed polarisers without any intermediate optical element. The extinction of light is substantially improved and the desired contrast ratio is achieved throughout the whole range of wavelengths from 450 to 750 nanometers. This arrangement with, for instance, waveplates creating the slit apertures and crossed polarisers defining the opaque regions of the barrier is therefore the optimum configuration for most applications. [0159]
  • The [0160] polarisation modifying layer 20 may be made, for example, by the deposition of a layer of reactive mesogen, such as RM257, which is patterned by standard photolithographic techniques into the slit structure. A convenient mask for etching is an existing parallax barrier.
  • FIG. 15 illustrates a method of making the [0161] polarisation modifying layer 20. In FIG. 1 5(a), an alignment layer 60 is applied to a substrate 61. The alignment layer 60 may, for instance, comprise rubbed polyimide, polyamide, or silicon oxide. FIG. 15(b) shows the application of an optical retarder layer 62 whose alignment direction is determined by the alignment layer 60. The retarder layer 62 comprises any suitable birefringent material which may be aligned and subsequently fixed in a predetermined direction. A suitable material comprises a liquid crystal polymer or a reactive mesogen. An example of a suitable reactive mesogen is that known as RM257 (as mentioned hereinbefore) available from Merck UK having a high birefringence which allows the use of relatively thin layers. As shown in FIG. 15(c), regions 63 of the retarder layer 62 are exposed to ultraviolet radiation through a mask 64 so as to be photopolymerised. As shown in FIG. 15(d), the unpolymerised regions are then removed, for instance by an etching process, to reveal the desired patterned optical retarder arrangement.
  • The patterned retarder is then planarised by means of a [0162] planarisation layer 65. The layer 65 fills the gaps left by the removed unpolymerised retarder material as illustrated in FIG. 15(e) The material of the planarisation layer 65 is preferably isotropic, transparent and substantially similar in thickness to the retarders 63. Suitable materials include acrylic and epoxy resins.
  • The method of making the [0163] polarisation modifying layer 20 illustrated in FIG. 16 differs from that illustrated in FIG. 15 in that, after the selective polymerisation shown in FIG. 16(c), the unpolymerised retarder material 62 is not removed. The layer is heated to a temperature above the isotropic transition point of the unpolymerised retarder material, which is cured in an isotropic state by exposure to long wavelength ultraviolet radiation. This results in a layer having regions of isotropic material 66 and birefringent material 63 as illustrated in FIG. 16(d).
  • The method illustrated in FIG. 17 differs from that illustrated in FIG. 16 in that a chiral dopant is added to the reactive mesogen mixture before application as the [0164] retarder layer 67. The chiral dopant introduces a continuous rotation of the retarder direction on passing through the layer so as to provide a guiding twisted retarder. Selective polymerisation is performed as shown in FIG. 17(c).
  • FIG. 18 illustrates a method of making a retarder array which differs from that illustrated in FIG. 15 in that a further patterned [0165] retarder 72 is formed. After the planarisation layer 65 is applied as shown in FIG. 18(e), another alignment layer 69, for instance of the same type as the alignment layer 60, is applied, for instance in the same way. The alignment layer 69 is applied with an alignment direction different from that of the alignment layer 60. A further retarder layer 70, for instance of the same type as the retarder layer 62, is formed, for instance in the same way, on the alignment layer 69. The layer 70 is selectively exposed to ultraviolet radiation through a mask 71 so that regions 72 forming the further patterned optical retarder are photopolymerised. The unpolymerised regions are then removed as illustrated in FIG. 18(i) and a further planarisation layer 73 is formed as illustrated in FIG. 18(j). By using this technique, it is possible to provide alternate areas of retarders aligned in different directions for use as described hereinafter. By repeating the process steps illustrated in FIGS. 18(b) to 18(e), multiple stacked layers of patterned retarders may be fabricated.
  • FIG. 19 illustrates a method of making a retarder array which differs from that shown in FIG. 15 in that the [0166] standard alignment layer 60 is replaced by a layer of linearly photopolymerisable material 74, for instance of the type described in “Surface induced parallel alignment of liquid crystals by linearly polymerising photopolymers”, Schadt et al, Japanese Journal of Applied Physics, vol 31 (1992), page 2155 and in EP 0 689 084. The layer is selectively exposed to radiation of a first linear polarisation through a mask 64 as shown in FIG. 19(b) to form exposed regions A. The unexposed regions B are then exposed by a mask 76 to radiation having a different linear polarisation. Thus, alternate regions of the alignment layer 28 provide different alignment directions, for example different by 45° or 90°. The retarder layer 62 is then applied as shown in FIG. 19(d) as described hereinbefore. However, the retarder layer adopts the alternate directions imposed by the underlying part of the alignment layer 75 and so does not require selective photopolymerisation. Instead, the retarder layer 62 may be cured by exposure to a uniform ultraviolet source.
  • FIG. 20 illustrates a method of making a retarder array which differs from that shown in FIG. 15 in that the [0167] alignment layer 60 is rubbed twice. It is first rubbed in the direction A. Photoresist material 77 is applied and selectively polymerised through a mask 64 as shown in FIG. 20(d). This may be done using known photolithographic techniques. The unpolymerised material is removed leaving the polymerised photoresist material 78 and regions of the underlying alignment layer 60 exposed. The assembly is then rubbed in a second direction B to produce an alignment layer with a spatially varying alignment direction 79. A technique of this type is disclosed in “Four domain TN-LCD fabricated by reverse rubbing or double evaporation” Chen et al, SID95 Digest, pages 865 to 868”. The photopolymerised photoresist material is then removed. The retarder layer 62 is then applied as shown in FIG. 22(h). However, the retarder layer adopts the alternate directions imposed by the underlying parts of the alignment layer 79 and so does not require selective photopolymerisation. Instead, the retarder layer 62 may be cured by exposure to a uniform ultraviolet source.
  • Alternative techniques for manufacturing the patterned polarisation modifying layer are disclosed in U.S. Pat. No. 2,647,440 and U.S. Pat. No. 5,537,144. [0168]
  • The polarisation rotation may be achieved by means of at least two physical effects. According to the first, polarisation rotation is provided by an optical retarder which employs a birefringent material. Such a material is characterised in that the refractive index for light propagating in the material depends on the orientation of the polarisation with respect to the optic axis of the material. The optic axis is set by molecular or crystalline structure of the material. In the case of a uniaxial birefringent material, there is one refractive index for light propagating with a plane of polarisation parallel to the optic axis and another refractive index for light propagating with a plane of polarisation perpendicular to the optic axis. Light with a plane of polarisation between these may be considered as a sum of these polarisations without loss in generality. If the material is given a thickness t such that light of wavelength λ suffers a phase delay of π between the fast and slow polarisations, then the element is termed a “half waveplate” or “λ/2 plate”. The thickness is then given by:[0169]
  • t=(2m+1)λ/(2Δn)
  • where Δn is the difference between the two refractive indices and m is an integer. [0170]
  • Plane polarised light incident on such an optical element undergoes a rotation in the plane of polarization of twice the angle between the incident plane of polarisation and the optic axis of the material. Thus, if a half waveplate is oriented at 45 degrees to the incident plane of polarisation, the light exits the element with a 90 degree change in the plane of polarisation. [0171]
  • A second physical effect is that produced by a polarisation rotator. Such an element, which may be embodied by a reactive mesogen with a chiral dopant, comprises a material which is birefringent in any one thin slice but in which the angle of the optic axis rotates in a defined manner between slices to describe a spiral. Such an optical element causes polarisation rotation by guiding and can be made to rotate an incident plane of polarization through 90 degrees for a broad range of wavelengths. [0172]
  • The rotation of the polarisation may further be provided by a combination of these two effects, for instance in order to optimise device performance. [0173]
  • The tolerance of the angular alignment of the [0174] polariser sheet 21 with respect to the LCD 1 is determined by the level of light leakage which may be tolerated through the opaque regions of the parallax barrier. Such leakage must be very low and preferably less than 1%. The extinction of light from two perfect crossed polarisers with an angle θ between their axes is given by:
  • l(θ)=l()) cos 2(θ)
  • The rotational angles for 1% of light leakage are given by the solutions to the equation l(θ)/l(0)=0.01 and the angles are θ=84.3°, 95.7°. Thus, there is a tolerance of approximately plus and minus 5 degrees about the ideal value of 90 degrees. Such an angular tolerance can easily be achieved by simple mechanics or alignment by eye against a reference mark. [0175]
  • FIG. 21 illustrates a front parallax barrier type of display in which the parallax barrier is modified by the provision of a [0176] quarter waveplate 46 fixed to the layer 20 with its fast axis vertical and a quarter waveplate 47 fixed to the polariser sheet 21 with its fast axis horizontal. The polarising directions of the polariser sheet 21 and an output polariser 48 of the LCD 1 are at minus and plus 45 degrees, respectively.
  • The [0177] quarter waveplate 46 converts the linearly polarised light from the layer 20 to circularly polarised light. Similarly, the quarter waveplate 47 converts the circularly polarised light back to linearly polarised light. With such an arrangement, the angular alignment tolerance can be substantially relaxed. In practice, quarter waveplates are only “perfect” at their design wavelength. At other wavelengths, the retardance within the plate is not correct to generate perfect circular polarisation and an elliptical state results. However, if the two quarter waveplates 46 and 47 are arranged such that their optical axes are mutually orthogonal, then the inaccuracy in retardance of one plate is substantially cancelled by the inaccuracy in the other plate.
  • As the [0178] polariser sheet 21 and the quarter waveplate 47 are rotated about an axis substantially normal to the display surface, the cancellation of imperfection of the quarter waveplates 46 and 47 breaks down and the non-perfect nature of these plates becomes apparent. FIG. 22 illustrates the extinction of light through the barrier regions 24 using this arrangement and for relative angular rotations of 0, 5, 10 and 15 degrees.
  • Transmission below 1% for the majority of the visible spectrum can be achieved for angular displacements up to 10 degrees. Thus, an alignment tolerance of plus or minus 10 degrees can be achieved and is twice that which is available when the quarter waveplates [0179] 46 and 47 are omitted.
  • FIG. 23 illustrates another parallax barrier which differs from that shown in FIG. 5 in that the [0180] polarisation modifying layer 20 comprises a patterned retarder. The patterned retarder may be made, for instance, by any of the methods illustrated in FIGS. 18 to 20 and described hereinbefore. The aperture regions 22 comprise λ/2 plates whose optic axes are aligned at 45° to the polarisation direction of the light 23. The barrier regions 24 comprise λ/2 plates whose optic axes are aligned at 0° to the polarisation direction of the light 23. Thus, the polarisation of the light 23 passing through the barrier regions 24 is not affected and the light is extinguished by the polarising sheet 21. The polarisation of the light 23 passing through the aperture regions 22 is rotated by 90° and the light therefore passes through the polarising sheet 21. Thus, in the 3D mode, the device functions as a parallax barrier as described hereinbefore.
  • An advantage of the parallax barrier shown in FIG. 23 is that the patterned retarder forming the [0181] layer 20 is planar so that there is substantially no phase step for light passing through the regions 22 and 24 of the layer 20. Diffraction effects are therefore reduced so that there are substantially no variations in illumination uniformity or flicker in the illumination as an observe moves with respect to the display.
  • Diffraction effects may also be reduced by planarisation of the layer, for instance as illustrated in FIGS. [0182] 15 to 17.
  • The parallax barrier shown in FIGS. 24 and 25 differs from that shown in FIG. 23 in that the polarisation vectors and the optic axes are rotated by 45°. An [0183] input polariser 21′, which may comprise the output polariser of an associated LCD, has its polarisation axis oriented at 45°. This is typical of LCD output polarisers, for instance of the twisted nematic type. The optic axes of the aperture regions 22 are oriented at 90° whereas the optic axes of the barrier regions 24 are aligned at 45° so as to be parallel to the polarisation vector of light from the input polariser 21′. The polarising sheet 21 has its polarising axis oriented at −45° so as to be orthogonal to the polarising axis of the input polariser 21′ (−45° is optically equivalent to +135° as indicated in FIG. 25).
  • FIG. 26 illustrates an arrangement in which the polarising [0184] sheet 21 is omitted and the polarising function is provided by analysing glasses 21″ worn by an observer. The glasses 21″ comprise polarising lenses with the polarising axes oriented at 90° so as to be orthogonal to the polarisation vector of the polarised light 23. However, the polarising axes and the optic axes may be rotated to any desired angle provided the angular relationships are maintained. Such an arrangement allows the use of conventional polarising sunglasses, which may be removed to allow the display to be viewed in the 2D mode.
  • Another important manufacturing issue is the matching of the viewing angle of the [0185] layer 20 and, when present, the plate 80 to the LCD 1. When viewed from off-axis positions, light reaching the eyes of the observer travels obliquely through the layer 20. Such oblique light rays experience slightly different polarisation conditions because of their different orientation within the birefringent layers and the different layer thicknesses. Contrast and colour performances of LCDs degrade with increasing viewing angle. The aperture regions 24 of the barrier may also experience colour and transmission changes with off-axis viewing. It is therefore desirable for waveplate layer thicknesses to be chosen so as to give uncoloured transmission for the widest range of angles. Furthermore, the pre-tilt of reactive mesogens or liquid crystals, if used to fabricate the waveplates, should be carefully chosen for the same reason.
  • In order to improve the performance of the elements performing the rotation of polarisation when such elements are embodied as birefringent retarders, they may be fabricated as two or three layers of retarder of specific thicknesses and relative optic axis angles. Combinations of waveplates for broadband performance are disclosed for example in Proc. Ind. Acad. Sci, vol. 41, No. 4, section A, pp. 130, S. Pancharatnam “Achromatic Combinations of Birefringent Plates”, 1955. [0186]
  • FIG. 27 shows a passive polarisation modulating [0187] optical element 11 comprising a layer of birefringent material having substantially fixed birefringence. The thickness and birefringence of the layer are such that it acts as a half waveplate but with different regions acting as retarders with optic axes oriented in different directions. In particular, the element 11 has first retarders 12 and second retarders 13. The retarders 12 and 13 and 13 comprise parallel vertical strips formed within the layer and alternating with each other. The strips 12 are of the same width and have their optic axis aligned at 45° with respect to a reference direction. The strips 13 are of the same width and have their optic axes aligned at 90° to the reference direction.
  • The [0188] optical element 11 shown in FIG. 27 co-operates with an input polariser 14 to form an optical device. The input polariser 14 may, for example, comprise an output polariser of a liquid crystal device. The input polariser 14 supplies linearly polarised light whose polarisation vector is at 45° to the reference direction.
  • The polarisation vector of the light from the [0189] polariser 14 is parallel to the optic axes of the retarders 12, which therefore have substantially no effect on the polarisation vector. Accordingly, light leaving the retarders 12 has its polarisation vector at 45° to the reference direction. The optic axes of the regions 13 are aligned at 45° to the polarisation vector of the input light. Accordingly, the retarders 13 behave as half waveplates and rotate the polarisation vector of light through 90° so that the output light from the retarders 13 has its polarisation vector at 135° to the reference direction.
  • FIGS. 29 and 30 illustrate an arrangement which differs from that shown in FIGS. 27 and 28 in that the optic axes of the [0190] element 11 and the polarising direction of the polariser 14 are rotated through 45°. Thus, the polarisation vector of the light from the polariser 14 is at 0°, as is the light leaving the retarders 12, whereas light leaving the retarders 13 has its polarisation vector rotated to 90°.
  • FIGS. 31 and 32 illustrate an optical device of the type shown in FIGS. 27 and 28 co-operating with an [0191] output polariser 15 to form a parallax barrier. The polarising direction of the output polariser 15 is orthogonal to that of the input polarised 14. The polariser 15 therefore substantially extinguishes light passing through the retarders 12 but passes light leaving the retarders 13.
  • The polarisation rotation performed by the [0192] retarders 13 does not generally work optimally over the whole of the visible spectrum. Thus, some parts of the visible spectrum are transmitted less than others. FIG. 33 illustrates the calculated transmission of unpolarised light through the device shown in FIGS. 31 and 32 with the element 11 made of a uniaxilly birefringent material known as RM257 available from Merck (UK). With the polarising axes of the polarisers 14 and 15 orthogonal, transmission is highest by design at the centre of the visible spectrum but declines towards either end of the visible spectrum. If the centre wavelength if correctly chosen, the transmitted light maintains a good white colour balance.
  • FIG. 33 illustrates the performance for a device of the type shown in FIGS. 31 and 32 but with the polarising axes of the [0193] polarisers 14 and 15 parallel to each other and the optic axes of the retarders 12 and 13 interchanged. In this case, extinction of light through the retarders 12 relies on broad band half waveplate performance. The centre wavelength provides good extinction of light but the transmission substantially increases towards the edges of the spectrum. In order to ensure cross talk levels of not more than 1%, the parallax barrier in an autostereoscopic display must provide a 100:1 contrast ratio across the visible spectrum. As illustrated in FIG. 33, this would not be achieved with parallel polarisers and polarisation rotators acting as barrier regions between slit regions of the parallax barrier.
  • FIG. 34 illustrates the transmission performance through two cross polarisers without any intermediate optical element. The extinction of light is substantially improved and the desired contrast ratio is achieved throughout the whole range of wavelengths from 450 to 750 nanometers. This corresponds to the arrangement illustrated in FIG. 31 because the [0194] retarders 12 have their optic axes aligned with the polarisation vector of the input light and therefore have substantially no effect on the polarisation vector. In general, such an arrangement is preferable because it is capable of meeting the contrast ratio requirements of a parallax barrier. However, in applications where achromaticity of the transmitted light is more important than contrast ratio and achromatic extinction of light, an arrangement of the type shown in FIG. 31 and 32 but with the output polariser axis rotated by 90° may be preferable.
  • The [0195] element 11 may be bonded to the input polariser 14 so as to allow accurate tolerancing of relative tilts of the strip-shaped retarders 12 and 13 and the pixel structure of an LCD of which the polariser 14 is a part. This also allows index matching of the interface so as to reduce reflections within the device. Examples of suitable materials which fulfil the requirements of the high transparency, achromaticity and thermal expansion similar to the polariser 14 and the element 11 include organic adhesives such as epoxy resins, acrylic polymers and those based on polyurethane adhesives.
  • The device illustrated in FIGS. 31 and 32 may be used as the [0196] parallax barrier 4 of the autostereoscopic 3D display shown in FIG. 1. The retarders 13 then act as slits of the parallax barrier whereas the retarders 12 act as the opaque regions between the slits.
  • When viewed from off-axes positions, light reaching the eye of an observer travels obliquely through the layer forming the [0197] element 11. Such oblique light rays experience slightly different polarisation conditions because of their different orientation within the birefringent layer and the longer propagation path through the layer. Light through the barrier slits may therefore experience colour and transmission changes with off-axis viewing. However, the image contrast is substantially unaffected by viewing angle performance of the parallax barrier. For 3D displays using LCDs as the SLM, the viewing angle performance may be configured to give minimum visibility of chromaticity of the white state. In some arrangements, it may be that the colouration variations tend to be worse in a direction parallel to the alignment direction of the barrier slits. Similarly, the LCD may have a viewing angle performance which is configured so that the most limited viewing direction is generally in the vertical direction. For the LCD, off-axis viewing causes degradation of contrast and colouration of the display. Thus, if the worst viewing angle of the retarder is aligned with the worst viewing angle of the SLM, the performance of the parallax barrier can be disguised by the worse image appearance of the SLM.
  • The [0198] retarders 12 and 13 are formed in a single layer whose optical properties, apart from optic axes, are uniform throughout the layer. Further, the layer may be of substantially constant thickness. Such an arrangement allows the layer 11 to be bonded to other layers without an air gap and without the need for planarisation.
  • The viewing freedom of the 3D image is partly determined by the alignment of the barrier slits with the pixels of the LCD in the display shown in FIG. 1. Tilting of the barrier slits with respect to the LCD causes a fringe misalignment which results in loss of viewing freedom and potentially areas of image cross talk on the display. This causes increased visual stress for an observer and is thus undesirable. By forming the [0199] layer 11 in contact with the polariser 14, such tilts can be substantially avoided. In particular, techniques exist for providing the desired alignment and, by forming the layer 11 integrally with the associated LCD or other device, accurate alignment can be provided during manufacture and is not substantially affected by environmental conditions, such as mechanical shocks and changes in temperature.
  • In order to operate a display of the type shown in FIG. 1 in the 2D mode, the [0200] output polariser 15 may be removed or otherwise disabled. In this mode, it is desirable for the patterned structure of the optic axes of the element 11 to be invisible. For instance, the retarders 12 and 13 should have the same light absorption performance in order to avoid the visibility of Moire beating with the LCD structure. Another artefact which should be avoided is diffraction from the phase structure of the parallax barrier. Such diffraction may beat with the pixel structure of the LCD to give some low contrast Moire interference effect. With the optical element 11, the diffraction efficiency of the phase structure is substantially reduced compared with known arrangements. For instance, the orthogonal linear polarisation states in the light from the retarders 12 and 13 do not substantially interfere with each other. The phase step between the retarders 12 and 13 is minimised because the retarders are formed in the same material with substantially the same refractive index.
  • FIG. 35 illustrates another technique for reducing the levels of diffraction. During manufacture of the [0201] optical element 11 as described in more detail hereinafter, a mask having the appearance shown at 20 is used to define one of the alignment layer orientations shown at 21 in order to form the element. The parallax barrier slits are therefore defined by non-straight boundaries. Instead, the boundaries are of sine wave shape. This results in a plurality of different diffraction structures because of the different aspect ratios so that the diffraction effects are blurred. This structure also allows some vertical blurring of the diffraction structure. However, care should be taken to minimise beating of the diffraction structure vertically with the vertical pixel structure.
  • FIG. 36 illustrates a first method of making the [0202] optical element 11. The element is made on a substrate 30 on which an alignment layer 31 is formed, for instance by spin coating. The alignment layer comprises a linearly photopolymerisable material, such as that described in “Surface Induced Parallel Alignment of Liquid Crystals by Linearly Polymerised Photopolymers”, Schadt et al, Japanese Journal of Applied Physics, vol 31 1992, p 2155 and in EP 0 689 084. The alignment layer 31 is exposed to radiation of a first linear polarisation through a mask 32 to form exposed regions A. The unexposed regions of the layer 31 are then exposed through a mask 33 to radiation having a different linear polarisation to form the exposed regions B. Thus, alternate regions of the alignment layer 31 provide different alignment directions, for example differing by 45° or 90°. The alignment layer 31 is then covered by a retarder layer 34, for instance by spin coating. The retarder layer 34 comprises any suitable birefringent material which may be aligned and subsequently fixed in a predetermined direction. A suitable material comprises a reactive liquid crystal polymer containing a diacrylate and/or a monoacrylate. An example of a suitable material is known as RM257 from Merck (UK). The retarder layer 34 is then fixed or polymerised, for instance by exposure to ultraviolet radiation, so as to form the fixed retarder 35.
  • The optic axis of the [0203] retarder layer 34 adopts the alternate directions imposed by the underlying parts of the alignment layer 31 and so does not require selective polymerisation. Also, there is no removal of the retarder material during processing, which allows remote exposure from a broad area source and avoids the risk of sticking of the retarder material to a mask.
  • The [0204] substrate 30 is selected so as to minimise any birefringence which would otherwise affect the performance of the optical element, for instance reducing contrast ratio or degrading the chromatic performance of a device. For instance, the substrate 30 may be a suitable float glass of appropriate flatness so as not to distort the fringe structure in the case of a 3D display when the optical element is disposed at or near the polariser 14.
  • FIG. 37 illustrates a second method of making the optical element. The [0205] substrate 30 is coated, for instance by spin coating, with a polyimide alignment layer 31. The polyimide may comprise a material known as PI 2555 available from Du Pont dissolved in 1:20 in a solvent comprising a mixture of N-mthyl-2-pyrrolidine and 1-methoxypropan-2-ol known as T9039 and also available from Du Pont. For instance, the layer 31 is formed by spinning in an open bowl spin coater at 4000 rpm for 30 seconds. The polyimide layer 31 is then cured by heating at 170° centigrade for two hours. Alternatively, the alignment layer may be silicon oxide depending on the requirement of the reactive mesogen effect for pre-tilt. The alignment layer 31 is rubbed with a soft cloth so as to impose a preferred direction and pre-tilt on the alignment layer, as indicated at A.
  • A [0206] layer 36 of photo-resist is formed on the alignment layer 31, for instance by spin coating. The photo-resist 36 is selectively exposed through a mask 37, for instance in the form of a chrome copy of a desired parallax barrier so that, following exposure through the mask 37, the photo-resist covers areas of the optical element which are intended to form the opaque regions between the parallax barrier slits. The unexposed photo-resist is then removed.
  • The element is then re-rubbed so as to introduce a second different alignment of the alignment layer, for instance at 45° or 90° to the previous alignment. In some cases, it may be necessary to rub the revealed regions of the [0207] alignment layer 31 at an angle different from that which would have been necessary in the case of a previously unrubbed alignment layer so as to achieve the desired alignment direction. This may be necessary because the original alignment layer may continue to have an effect on the surface energy following the re-rubbing. Thus, a rubbing direction different from the desired alignment orientation by 10° to 20° may be required to correct for the surface energy. The re-rubbed regions are indicated at B.
  • The remaining photo-resist is then removed, for example by washing with acetone. A [0208] retarder layer 39, for instance of the type described hereinbefore with reference to FIG. 13, is then applied by spinning and its optic axis adopts the directions imposed by the underlying parts of the alignment layer 31. The retarder layer 39 is then fixed, for instance by exposure to ultraviolet radiation to form the retarder 40.

Claims (76)

What is claimed is:
1. A parallax barrier comprising: a polarisation modifying layer having aperture regions, for supplying light of a second polarisation when receiving light of a first polarisation, separated by barrier regions, for supplying light of a third polarisation different from the second polarisation when receiving light of the first polarisation, at least one of the aperture regions and the barrier regions altering the polarisation of light passing therethrough; and a polariser selectively operable in a first mode to pass light of the second polarisation and to block light of the third polarisation and in a second mode to pass light of the third polarisation.
2. A barrier as claimed in claim 1, wherein the aperture regions comprise parallel elongate slit regions.
3. A barrier as claimed in claim 1, wherein the polariser is a uniform polariser.
4. A barrier as claimed in claim 1, wherein the third polarisation is orthogonal to the second polarisation.
5. A barrier as claimed in claim 1, wherein the first, second and third polarisations are linear polarisations.
6. A barrier as claimed in claim 5, in that the aperture regions are arranged to rotate the polarisation of light and the barrier regions are arranged not to rotate the polarisation of light so that the third polarisation is the same as the first polarisation.
7. A barrier as claimed in claim 6 wherein the aperture regions comprise retarders.
8. A barrier as claimed in claim 7, wherein the aperture regions comprise half wave plates.
9. A barrier as claimed in claim 6, wherein the aperture regions comprise polarisation rotation guides.
10. A barrier as claimed in claim 8, wherein the polarisation modifying layer comprises a half waveplate, the aperture region have optic axes aligned at +45° or −45° to the first polarisation, and the barrier regions have optic axes aligned substantially parallel to the first polarisation.
11. A barrier as claimed in claim 1, wherein the polariser passes light of the second polarisation in the second mode.
12. A barrier as claimed in claim 1, wherein the polariser is removable from a light path through the polarisation modifying layer in the second mode.
13. A barrier as claimed in claim 1, wherein the polariser comprises glasses to be worn by an observer in the first mode.
14. A barrier as claimed in claim 1, wherein the polariser is rotatable through substantially 90° about an axis substantially perpendicular to the polarisation modifying layer between first and second positions for operation in the first and second modes, respectively.
15. A barrier as claimed in claim 1, wherein the polariser comprises a polarising layer and a retarder layer which is switchable between a non-retarding mode and retarding mode providing a quarter wave of rotation.
16. A barrier as claimed in claim 1, wherein the polariser comprises a polarising layer and a switchable diffuser having a diffusing depolarising mode and a non-diffusing non-depolarising mode.
17. A barrier as claimed in claim 16, wherein the diffuser is disposed between the polarising layer and the polarisation modifying layer.
18. A barrier as claimed in claim 16, wherein the polarisation modifying layer is disposed between the polarising layer and the diffuser.
19. A barrier as claimed in claim 1 further comprising: a first quarter wave plate disposed between the polarisation modifying layer and the polariser and attached to the polarisation modifying layer; and a second quarter wave plate disposed between the first quarter wave plate and the polariser and attached to the polariser, the first and second quarter wave plates having substantially orthogonal optic axes.
20. A display comprising a barrier as claimed in claim 1, and a spatial light modulator for supplying light of the first polarisation to the polarisation modifying layer.
21. A display as claimed in claim 20, wherein the spatial light modulator is a light emissive device.
22. A display as claimed in claim 20, wherein the spatial light modulator provides selective attenuation of light and is associated with a light source.
23. A display as claimed in claim 22, wherein the spatial light modulator comprises a liquid crystal device.
24. A display comprising a barrier as claimed in claim 1, a light source for supplying light to the polariser, and a spatial light modulator having an input polariser for passing light from the aperture regions.
25. A display as claimed in claim 24, wherein the spatial light modulator comprises a liquid crystal device.
26. A display comprising: a light source selectively operable in a first mode for supplying light of a first polarisation and a second mode for supplying unpolarised light; a polarisation modifying layer having aperture regions, for supplying light of a second polarisation when receiving light of the first polarisation, separated by barrier regions, for supplying light of a third polarisation different from the second polarisation when receiving light of the first polarisation; and a spatial light modulator having an input polariser for passing light of the second polarisation and for blocking light of the third polarisation.
27. A display as claimed in claim 26, wherein the aperture regions comprise parallel elongate slit regions.
28. A display as claimed in claim 26, wherein the light source comprises a polarised light source operable in the first mode and an unpolarised light source operable in the second mode.
29. A display as claimed in claim 28, wherein the polarised light source comprises at least one first light emitting device arranged to supply light through a polariser to a first light guide.
30. A display as claimed in claim 29, wherein the unpolarised light source comprises at least one second light emitting device arranged to supply light to a second light guide and one of the first and second light guides is arranged to supply light through the other of the first and second light guides.
31. A display as claimed in claim 26, wherein the light source comprises at least one light emitting device, a light guide, and a polariser disposed in an optical path between the at least one light emitting device and the light guide in the first mode and outside the optical path in the second mode.
32. A display comprising: a polarisation modifying layer having aperture regions, for supplying light of a second polarisation when receiving light of a first polarisation, separated by barrier regions, for supplying light of a third polarisation different from the second polarisation when receiving light of the first polarisation; a spatial light modulator having an input polariser for passing light of the second polarisation and for blocking light of the third polarisation; a light source; a mask having polarising regions, for supplying light of the first polarisation from the light source, and non-polarising regions, for transmitting light from the light source; and a parallax optic co-operating with the mask to direct light from the polarising regions through the spatial light modulator to a first viewing region and to direct light from the non-polarising regions through the spatial light modulator to a second viewing region.
33. A display as claimed in claim 32, wherein the mask is movable relative to the parallax optic for moving the first and second viewing regions.
34. A display as claimed in claim 32, wherein the parallax optic comprises an array of parallax generating elements.
35. A display as claimed in claim 32, wherein the aperture regions comprise parallel elongate slit regions.
36. A display as claimed in claim 32, wherein the parallax optic comprises an array of parallax generating elements,
wherein the aperture regions comprise parallel elongate slit regions, and
wherein each of the parallax generating elements is optically cylindrical with an axis substantially orthogonal to the slit regions.
37. A display as claimed in claim 34, wherein the array comprises a lenticular screen.
38. A display as claimed in claim 32, wherein the polarising and non-polarising regions comprise laterally extending strips.
39. A display as claimed in claim 32, wherein the mask further comprises opaque regions at least partially separating the polarising regions from the non-polarising regions.
40. A display as claimed in claim 26, wherein the third polarisation is orthogonal to the second polarisation.
41. A display as claimed in claim 26, wherein the first, second and third polarisations are linear polarisations.
42. A display as claimed in claim 41, wherein the aperture regions are arranged to rotate the polarisation of light and the barrier regions are arranged not to rotate the polarisation of light so that the third polarisation is the same as the first polarisation.
43. A display as claimed in claim 42, wherein the aperture regions comprise retarders.
44. A display as claimed in claim 43, wherein the aperture regions comprise half wave plates.
45. A display as claimed in claim 42, wherein the aperture regions comprise polarisation rotation guides.
46. A display as claimed in claim 32, wherein the third polarisation is orthogonal to the second polarisation.
47. A display as claimed in claim 32, wherein the first, second and third polarisations are linear polarisations.
48. A display as claimed in claim 47, wherein the aperture regions are arranged to rotate the polarisation of light and the barrier regions are arranged not to rotate the polarisation of light so that the third polarisation is the same as the first polarisation.
49. A display as claimed in claim 48, wherein the aperture regions comprise retarders.
50. A display as claimed in claim 49, wherein the aperture regions comprise half wave plates.
51. A display as claimed in claim 48, wherein the aperture regions comprise polarisation rotation guides.
52. A passive polarisation modulating optical element comprising: a layer of birefringent material having substantially fixed birefringence and comprising at least one first retarder having an optic axis aligned in a first direction and at least one second retarder having an optic axis aligned in a second direction different from the first direction.
53. An element as claimed in claim 52, wherein the at least one first retarder comprises a plurality of first retarders, the at least one second retarder comprises a plurality of second retarders, and the first and second retarders are arranged as a regular array.
54. An element as claimed in claim 53, wherein the first and second retarders comprise first and second strips which alternate with each other.
55. An element as claimed in claim 54, wherein the first strips have a first width and the second strips have a second width less than the first width.
56. An element as claimed in claim 52, wherein the first and second retarders have a retardance of (2m+1)λ/2, where m is an integer and λ is a wavelength of visible light.
57. An element as claimed in claim 52, wherein the second direction is at substantially 45° to the first direction.
58. An element as claimed in claim 52, wherein the birefringent layer is disposed on an alignment layer comprising first and second regions corresponding to the first and second retarders, respectively, and having first and second alignment directions, respectively.
59. An element as claimed in claim 52, wherein the birefringent material comprises a reactive mesogen.
60. An optical device comprising an element as claimed in claim 52 and a linear polariser for passing light polarised at a predetermined angle with respect to the first optic axis.
61. A device as claimed in claim 60, wherein the predetermined angle is substantially equal to zero.
62. A device as claimed in claim 60, wherein the polariser comprises part of a further device.
63. A device as claimed in claim 60, wherein the further device is a liquid crystal device.
64. A method of making a passive polarisation modulating optical element, comprising steps of: forming an alignment layer, providing at least one first region of the alignment layer with a first alignment direction, providing at least one second region of the alignment layer with a second alignment direction different from the first alignment direction, disposing on the alignment layer a layer of birefringent material whose optic axis is aligned by the alignment layer, and fixing the optic axis of the birefringent layer.
65. A method as claimed in claim 64, wherein the at least one first region comprises a plurality of first regions, the at least one second region comprises a plurality of second regions, and the first and second regions are arranged as a regular array.
66. A method as claimed in claim 65, wherein the first and second retarders comprise first and second strips which alternate with each other.
67. A method as claimed in claim 66, wherein the first strips have a first width and the second strips have a second width less than the first width.
68. A method as claimed in claim 64, wherein the birefringent layer has a thickness for providing a retardance of (2m+1)λ/2, where m is an integer and λ is a wavelength of visible light.
69. A method as claimed in claim 64, wherein the second direction is at substantially 45° to the first direction.
70. A method as claimed in claim 64, wherein the birefringent material comprises a reactive mesogen.
71. A method as claimed in claim 64, wherein the fixing is performed by irradiation.
72. A method as claimed in claim 71, wherein the fixing is performed by ultraviolet irradiation.
73. A method as claimed in claim 64, wherein the alignment layer comprises polyimide.
74. A method as claimed in claim 64, wherein the whole of the alignment layer is provided with the first alignment direction, after which the at least one second region is altered to have the second alignment direction.
75. A method as claimed in claim 74, wherein the alignment layer is rubbed in a first rubbing direction, the alignment layer is masked to reveal the at least one second region, and the at least one second region is rubbed in a second rubbing direction.
76. A method as claimed in claim 64, wherein the alignment layer comprises a linearly photopolymerisable polymer, the alignment layer is masked to reveal the at least one first region, the at least one first region is exposed to radiation having a first linear polarisation, the alignment layer is masked to reveal the at least one second region, and the at least one second region is exposed to radiation having a second linear polarisation different from the first linear polarisation.
US09/502,098 1996-09-12 2000-02-10 Parallax barrier, display, passive polarization modulating optical element and method of making such an element Expired - Fee Related US6437915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/502,098 US6437915B2 (en) 1996-09-12 2000-02-10 Parallax barrier, display, passive polarization modulating optical element and method of making such an element

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
GB9619097.0 1996-09-12
GB9619097A GB2317291A (en) 1996-09-12 1996-09-12 Observer tracking directional display
GB9702259A GB2321815A (en) 1997-02-04 1997-02-04 Autostereoscopic display with viewer position indicator
GB9702259.4 1997-02-04
GB9713985.1 1997-07-03
GB9713985A GB2317295A (en) 1996-09-12 1997-07-03 Parallax barrier and display
US08/928,891 US6046849A (en) 1996-09-12 1997-09-12 Parallax barrier, display, passive polarisation modulating optical element and method of making such an element
US09/502,098 US6437915B2 (en) 1996-09-12 2000-02-10 Parallax barrier, display, passive polarization modulating optical element and method of making such an element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/928,891 Division US6046849A (en) 1996-09-12 1997-09-12 Parallax barrier, display, passive polarisation modulating optical element and method of making such an element

Publications (2)

Publication Number Publication Date
US20020001128A1 true US20020001128A1 (en) 2002-01-03
US6437915B2 US6437915B2 (en) 2002-08-20

Family

ID=27268472

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/928,891 Expired - Lifetime US6046849A (en) 1996-09-12 1997-09-12 Parallax barrier, display, passive polarisation modulating optical element and method of making such an element
US09/502,098 Expired - Fee Related US6437915B2 (en) 1996-09-12 2000-02-10 Parallax barrier, display, passive polarization modulating optical element and method of making such an element

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/928,891 Expired - Lifetime US6046849A (en) 1996-09-12 1997-09-12 Parallax barrier, display, passive polarisation modulating optical element and method of making such an element

Country Status (4)

Country Link
US (2) US6046849A (en)
EP (1) EP0829744B1 (en)
JP (3) JP3452472B2 (en)
DE (1) DE69732820T2 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590605B1 (en) * 1998-10-14 2003-07-08 Dimension Technologies, Inc. Autostereoscopic display
US20040239758A1 (en) * 2001-10-02 2004-12-02 Armin Schwerdtner Autostereoscopic display
WO2005034528A1 (en) 2003-10-04 2005-04-14 Koninklijke Philips Electronics N.V. Improving colour ratios in a 3d image display device
WO2005034529A1 (en) * 2003-10-04 2005-04-14 Koninklijke Philips Electronics N.V. Improving grey scale contrast in a 3d image display device
US20050151905A1 (en) * 2002-01-07 2005-07-14 Kurtz Andrew F. Spatially patterned polarization compensator
US20050185112A1 (en) * 2002-03-14 2005-08-25 Nitto Denko Corporation Back light and liquid crystal display unit using this
US20050200781A1 (en) * 2004-03-11 2005-09-15 Sharp Kabushiki Kaisha Liquid crystal display panel and liquid crystal display device
US20050219693A1 (en) * 2004-04-02 2005-10-06 David Hartkop Scanning aperture three dimensional display device
US20050264560A1 (en) * 2004-04-02 2005-12-01 David Hartkop Method for formating images for angle-specific viewing in a scanning aperture display device
US20050280894A1 (en) * 2004-04-02 2005-12-22 David Hartkop Apparatus for creating a scanning-column backlight in a scanning aperture display device
WO2006024481A1 (en) * 2004-08-31 2006-03-09 X3D Technologies Gmbh Assembly for representing images in three dimensions
GB2418315A (en) * 2004-09-21 2006-03-22 Sharp Kk Multiple view display
WO2006029716A1 (en) * 2004-09-13 2006-03-23 X3D Technologies Gmbh Assembly for the selective three-dimensional or two-dimensional representation of images
US20060126156A1 (en) * 2004-12-14 2006-06-15 Allan Evans Display
US20060203164A1 (en) * 2002-01-07 2006-09-14 Moxtek, Inc. Display with a wire grid polarizing beamsplitter
WO2006094780A2 (en) * 2005-03-09 2006-09-14 X3D Technologies Gmbh Method for autostereoscopically viewing images and autostereoscopic arrangement
US20070002190A1 (en) * 2005-06-30 2007-01-04 Fujitsu Ten Limited Receiver
US20070058127A1 (en) * 2005-09-12 2007-03-15 Sharp Kabushiki Kaisha Multiple-view directional display
US20070058258A1 (en) * 2005-09-12 2007-03-15 Sharp Kabushiki Kaisha Multiple-view directional display
US20070063943A1 (en) * 2005-09-21 2007-03-22 Fujitsu Ten Limited Display apparatus
US20070063941A1 (en) * 2005-09-21 2007-03-22 Fujitsu Ten Limited Liquid crystal display apparatus
US20070064170A1 (en) * 2005-09-21 2007-03-22 Fujitsu Ten Limited Display apparatus
US20070064102A1 (en) * 2005-09-21 2007-03-22 Fujitsu Ten Limited Display apparatus
US20070129864A1 (en) * 2005-11-28 2007-06-07 Fujitsu Ten Limited In-vehicle display apparatus and display control method therefor
US20070146578A1 (en) * 2005-12-23 2007-06-28 Sharp Kabushiki Kaisha Display device, viewing angle control device, electronic display device, and multiple image display device
US20070229654A1 (en) * 2006-03-31 2007-10-04 Casio Computer Co., Ltd. Image display apparatus that allows viewing of three-dimensional image from directions
US20070297052A1 (en) * 2006-06-26 2007-12-27 Bin Wang Cube wire-grid polarizing beam splitter
US20070296921A1 (en) * 2006-06-26 2007-12-27 Bin Wang Projection display with a cube wire-grid polarizing beam splitter
US20080055721A1 (en) * 2006-08-31 2008-03-06 Perkins Raymond T Light Recycling System with an Inorganic, Dielectric Grid Polarizer
US20080055549A1 (en) * 2006-08-31 2008-03-06 Perkins Raymond T Projection Display with an Inorganic, Dielectric Grid Polarizer
US20080055720A1 (en) * 2006-08-31 2008-03-06 Perkins Raymond T Optical Data Storage System with an Inorganic, Dielectric Grid Polarizer
US20080055722A1 (en) * 2006-08-31 2008-03-06 Perkins Raymond T Optical Polarization Beam Combiner/Splitter with an Inorganic, Dielectric Grid Polarizer
US20080055723A1 (en) * 2006-08-31 2008-03-06 Eric Gardner Durable, Inorganic, Absorptive, Ultra-Violet, Grid Polarizer
US20080086289A1 (en) * 2006-10-06 2008-04-10 3M Innovative Properties Company Method of designing a matched light guide for a stereoscopic 3d liquid crystal display
US20080165296A1 (en) * 2007-01-05 2008-07-10 Samsung Electronics Co., Ltd. Highly efficient 2d/3d switchable display device
US20080185958A1 (en) * 2007-02-06 2008-08-07 Samsung Sdi Co., Ltd. Organic light emitting display apparatus
US20080266662A1 (en) * 2004-12-06 2008-10-30 Perkins Raymond T Polarization device to polarize and further control light
US20080278811A1 (en) * 2004-12-06 2008-11-13 Perkins Raymond T Selectively Absorptive Wire-Grid Polarizer
US20080284984A1 (en) * 2007-05-17 2008-11-20 Hansen Douglas P Projection Device with a Folded Optical Path and Wire-Grid Polarizer
US20080316599A1 (en) * 2007-06-22 2008-12-25 Bin Wang Reflection-Repressed Wire-Grid Polarizer
US20090091668A1 (en) * 2007-10-04 2009-04-09 3M Innovative Properties Company Stretched film for stereoscopic 3d display
US20090135089A1 (en) * 2005-09-20 2009-05-28 Fujitsu Ten Limited In-Vehicle Display Apparatus
US20090141225A1 (en) * 2007-12-03 2009-06-04 Lg Display Co., Ltd. Display device and method of fabricating the same
US20090168171A1 (en) * 2004-12-06 2009-07-02 Perkins Raymond T Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid
US20090174923A1 (en) * 2008-01-09 2009-07-09 Seiko Epson Corporation Electro-optical device and electronic apparatus
US20090303157A1 (en) * 2005-09-16 2009-12-10 Akira Imai Display device
US7688293B2 (en) 2006-04-14 2010-03-30 Fujitsu Ten Limited Display apparatus and in-vehicle display apparatus
US20100081477A1 (en) * 2008-09-30 2010-04-01 Motorola, Inc. Portable device display presenting two and three dimensional images
WO2010136921A2 (en) 2009-05-28 2010-12-02 Koninklijke Philips Electronics N.V. Autostereoscopic display device
EP2365361A1 (en) * 2010-03-10 2011-09-14 Asahi Glass Company, Limited Front plate for display, display device, and method and apparatus for manufacturing front plate dor display
US20110261173A1 (en) * 2010-04-22 2011-10-27 Hsiang-Tan Lin Stereoscopic image displaying method and stereoscopic display device thereof
CN103200411A (en) * 2012-01-05 2013-07-10 索尼公司 Display device
US20130335647A1 (en) * 2012-06-18 2013-12-19 Sony Corporation Stereoscopic display optical device and stereoscopic display unit
US20140085282A1 (en) * 2012-09-21 2014-03-27 Nvidia Corporation See-through optical image processing
CN104375229A (en) * 2013-08-14 2015-02-25 远东新世纪股份有限公司 Method for manufacturing phase difference film
DE112007000095B4 (en) * 2006-01-03 2016-02-18 Samsung Electronics Co., Ltd. Frame-Sequential Autostereographic Display
US20170061921A1 (en) * 2015-04-24 2017-03-02 Boe Technology Group Co., Ltd. Display device, display driving method and display system
RU2659190C1 (en) * 2017-05-29 2018-06-28 Василий Александрович ЕЖОВ Autostereoscopic k-angle display with full screen resolution image of each angle (options)
US10191293B2 (en) * 2014-07-18 2019-01-29 Boe Technology Group Co., Ltd. Grating controlling method and apparatus, grating, display panel, and three-dimensional (3D) display device
US10488584B2 (en) 2016-07-15 2019-11-26 Light Field Lab, Inc. High density energy directing device
WO2019140416A3 (en) * 2018-01-14 2019-11-28 Light Field Lab, Inc. Ordered geometries for optomized holographic projection

Families Citing this family (282)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3255087B2 (en) 1997-06-23 2002-02-12 株式会社エム・アール・システム研究所 3D image display device
US6055103A (en) * 1997-06-28 2000-04-25 Sharp Kabushiki Kaisha Passive polarisation modulating optical element and method of making such an element
DE69929040T2 (en) * 1998-03-20 2006-08-24 Rolic Ag LIQUID CRYSTAL ORIENTATION LAYER
US6124907A (en) * 1998-04-24 2000-09-26 Ois Optical Imaging Systems, Inc. Liquid crystal display with internal polarizer and method of making same
JP2000098299A (en) * 1998-09-18 2000-04-07 Sanyo Electric Co Ltd Stereoscopic video display device
US7092003B1 (en) * 1999-01-21 2006-08-15 Mel Siegel 3-D imaging arrangements
DE19925985A1 (en) * 1999-06-08 2000-12-14 Bosch Gmbh Robert Liquid crystal display with changeable viewing angle has electrically driven individual image element zones; different zones of image element can be selected via different column lines
GB2352052A (en) * 1999-07-15 2001-01-17 Anthony Gerrard Forming bright lines on a black field using polarising materials
EP1689162A3 (en) * 2000-01-25 2008-07-09 NewSight GmbH Autosteroscopic 3D/2D switchable colour image display apparatus
WO2001056265A2 (en) * 2000-01-25 2001-08-02 4D-Vision Gmbh Method and system for the three-dimensional representation
DE10029531A1 (en) * 2000-06-16 2002-01-03 4D Vision Gmbh Three-dimensional image representation method uses grid of individual image elements representing partial information for scene/object from different directions
GB0017008D0 (en) * 2000-07-12 2000-08-30 Street Graham S B Structured light source
DE10037437C2 (en) * 2000-07-24 2002-06-20 Hertz Inst Heinrich Structure plate for monoscopic and stereoscopic image display on flat screens
WO2002035277A1 (en) * 2000-10-24 2002-05-02 Dimension Technologies, Inc. Autostereoscopic display
KR100603455B1 (en) * 2000-12-30 2006-07-20 엘지.필립스 엘시디 주식회사 Polarizing Stereoscopic Apparatus and Fabricating method thereof
KR100783358B1 (en) * 2001-04-27 2007-12-07 엘지.필립스 엘시디 주식회사 Autostereoscopic display apparatus and fabricating method the same
DE60239678D1 (en) 2001-06-01 2011-05-19 Sony Corp SPLIT DELAY PLATE WITH POSITIONING DEVICE
JP2004534972A (en) * 2001-07-11 2004-11-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Color autostereoscopic display
GB0119176D0 (en) 2001-08-06 2001-09-26 Ocuity Ltd Optical switching apparatus
EP1449024B1 (en) * 2001-08-29 2007-08-15 Koninklijke Philips Electronics N.V. Transflective liquid crystal display
US20030053017A1 (en) * 2001-09-20 2003-03-20 Hongqin Shi Thin cell gap microdisplays with optimum optical properties
US7055851B2 (en) * 2001-11-22 2006-06-06 Toyoda Gosei Co., Ltd. Knee protecting airbag device
US20040057111A1 (en) * 2001-12-07 2004-03-25 Juan Dominguez Motntes Double active parallax barrier for viewing stereoscopic imges
GB2384318A (en) * 2002-01-18 2003-07-23 Sharp Kk Method of making a passive patterned retarder
GB2389728A (en) * 2002-06-11 2003-12-17 Sharp Kk Parallax barrier for autostereoscopic display
GB2390171A (en) * 2002-06-28 2003-12-31 Sharp Kk Optical device and display
GB2390172A (en) * 2002-06-28 2003-12-31 Sharp Kk Polarising optical element and display
GB2390948A (en) * 2002-07-17 2004-01-21 Sharp Kk Autostereoscopic display
AU2003281711A1 (en) * 2002-07-29 2004-02-16 Sharp Kabushiki Kaisha Substrate with parallax barrier layer, method for producing substrate with parallax barrier layer, and three-dimensional display
JP3969252B2 (en) 2002-08-27 2007-09-05 日本電気株式会社 Stereoscopic image plane image switching display device and portable terminal device
AU2003252388A1 (en) * 2002-08-27 2004-03-19 Sharp Kabushiki Kaisha Content reproduction device capable of reproducing a content in optimal reproduction mode
EP1403759A3 (en) * 2002-09-17 2007-04-04 Sharp Kabushiki Kaisha Electronic equipment with two and three dimensional display functions
US7471346B2 (en) * 2002-09-26 2008-12-30 Sharp Kabushiki Kaisha Transflective liquid crystal display panel, 2D/3D switching type liquid crystal display panel, and 2D/3D switching type liquid crystal display
WO2004029700A1 (en) * 2002-09-26 2004-04-08 Sharp Kabushiki Kaisha Patterning phase difference plate, production method for patterning phase difference plate, 2d/3d switching type liquid crystal display panel, and 2d/3d switching type liquid crystal display unit
AU2003246079A1 (en) 2002-09-26 2004-04-19 Sharp Kabushiki Kaisha 2d/3d switch liquid crystal display panel and 2d/3d selection liquid crystal display
CN1327266C (en) * 2002-10-15 2007-07-18 夏普株式会社 Parallax barrier element, method of producing the same, and display device
JP4363029B2 (en) * 2002-11-06 2009-11-11 ソニー株式会社 Manufacturing method of split wave plate filter
US7425951B2 (en) * 2002-12-27 2008-09-16 Kabushiki Kaisha Toshiba Three-dimensional image display apparatus, method of distributing elemental images to the display apparatus, and method of displaying three-dimensional image on the display apparatus
JP3923434B2 (en) * 2003-01-28 2007-05-30 株式会社ソフィア Image display device
GB2398130A (en) 2003-02-05 2004-08-11 Ocuity Ltd Switchable active lens for display apparatus
TWI277769B (en) * 2003-03-25 2007-04-01 Sanyo Electric Co The stereoscopic video display device and its manufacturing method
DE10316733A1 (en) * 2003-04-08 2004-10-28 X3D Technologies Gmbh Process for converting a 2D screen to an autostereoscopic screen and adapter frame
DE10325146A1 (en) 2003-05-30 2004-12-16 X3D Technologies Gmbh Method and arrangement for spatial representation
KR100728204B1 (en) * 2003-06-02 2007-06-13 삼성에스디아이 주식회사 Display device capable of displaying 2-dimensional and 3-dimensional images
US20040263974A1 (en) * 2003-06-26 2004-12-30 Optical Coating Laboratory Inc., A Jds Unipahse Company And A Corporation Of The State Of Delware Flat polarization conversion system with patterned retarder
GB2403815A (en) 2003-07-10 2005-01-12 Ocuity Ltd Birefringent lens array structure
GB2403814A (en) 2003-07-10 2005-01-12 Ocuity Ltd Directional display apparatus with birefringent lens structure
KR100561401B1 (en) * 2003-07-28 2006-03-16 삼성전자주식회사 Image displaying portion of 3D image system having multi viewing points interchangeable 2D and 3D images
KR100449879B1 (en) * 2003-08-18 2004-09-22 주식회사 참비전 Three-dimensional image display apparatus
GB2405544A (en) * 2003-08-30 2005-03-02 Sharp Kk Light control element for outputting polarised light over different angular ranges.
JP4015090B2 (en) * 2003-09-08 2007-11-28 株式会社東芝 Stereoscopic display device and image display method
JP4684107B2 (en) * 2003-09-11 2011-05-18 シャープ株式会社 Portable display device and method for controlling portable display device
KR101117582B1 (en) 2003-09-20 2012-02-24 코닌클리케 필립스 일렉트로닉스 엔.브이. Display device, and mehtod for displaying different views of an image
DE10344323A1 (en) 2003-09-22 2005-04-21 X3D Technologies Gmbh Method and arrangement for spatial representation
GB0322682D0 (en) * 2003-09-27 2003-10-29 Koninkl Philips Electronics Nv Backlight for 3D display device
GB2406730A (en) 2003-09-30 2005-04-06 Ocuity Ltd Directional display.
US7649688B2 (en) * 2003-10-08 2010-01-19 Louis Racette Auto-stereo three-dimensional images
GB0326005D0 (en) * 2003-11-07 2003-12-10 Koninkl Philips Electronics Nv Waveguide for autostereoscopic display
KR100580632B1 (en) * 2003-12-05 2006-05-16 삼성전자주식회사 Display capable of displaying 2D 3D image selectively
KR100580633B1 (en) 2003-12-10 2006-05-16 삼성전자주식회사 Display device
US7221332B2 (en) * 2003-12-19 2007-05-22 Eastman Kodak Company 3D stereo OLED display
GB2410093A (en) 2004-01-17 2005-07-20 Sharp Kk Display
JP4027898B2 (en) * 2004-01-29 2007-12-26 株式会社有沢製作所 Polarized transmission screen and stereoscopic image display apparatus using the polarized transmission screen
US8537204B2 (en) * 2004-07-08 2013-09-17 Gyoung Il Cho 3D television broadcasting system
US7580178B2 (en) * 2004-02-13 2009-08-25 Angstrom, Inc. Image-guided microsurgery system and method
US7215882B2 (en) * 2004-07-21 2007-05-08 Angatrom, Inc. High-speed automatic focusing system
JPWO2005096041A1 (en) * 2004-03-30 2008-02-21 日本化薬株式会社 Micro pattern phase difference element
US7227568B2 (en) * 2004-04-03 2007-06-05 Li Sun Dual polarizing light filter for 2-D and 3-D display
GB0412651D0 (en) * 2004-06-07 2004-07-07 Microsharp Corp Ltd Autostereoscopic rear projection screen and associated display system
TWI238679B (en) * 2004-06-30 2005-08-21 Ind Tech Res Inst Organic electroluminescent stereoscopic image display apparatus
KR100708838B1 (en) 2004-06-30 2007-04-17 삼성에스디아이 주식회사 Stereoscopic display device and driving method thereof
KR100483352B1 (en) 2004-07-27 2005-04-14 (주)파버나인 Liquid crystal display device using thin film polarizers and retarders
DE102004042498A1 (en) * 2004-08-31 2006-03-02 X3D Technologies Gmbh Three-dimensional image display system has filter elements transparent to different wavelengths of visible light and has semireflecting mirror in front of filter elements
WO2006042869A1 (en) * 2004-09-08 2006-04-27 Juan Dominguez-Montes Device which dispenses with the need for glasses in stereoscopic reproductions with polarised light
KR20060023392A (en) * 2004-09-09 2006-03-14 삼성전자주식회사 Manufacturing method of three dimensional image display and assembling apparatus for the same
US7561217B2 (en) * 2004-09-09 2009-07-14 Au Optronics Corporation Liquid crystal display apparatus and method for improving precision 2D/3D viewing with an adjustable backlight unit
US20060066805A1 (en) * 2004-09-30 2006-03-30 Anders Grunnet-Jepsen Liquid crystal on silicon (LCOS) microdisplay with retarder that reduces light beam polarization changes
US20090058845A1 (en) * 2004-10-20 2009-03-05 Yasuhiro Fukuda Display device
KR100896030B1 (en) 2004-10-20 2009-05-11 후지쓰 텐 가부시키가이샤 Display device for being mounted in a car
EP1811362A4 (en) * 2004-10-27 2011-07-27 Fujitsu Ten Ltd Display
CN101048727B (en) * 2004-10-27 2010-09-29 富士通天株式会社 Display
JP2006154759A (en) * 2004-10-29 2006-06-15 Fujitsu Ten Ltd Image interpolation device and display device
EP1808845A4 (en) * 2004-11-02 2011-05-25 Fujitsu Ten Ltd Display control device and display device
JP2006154756A (en) * 2004-11-02 2006-06-15 Fujitsu Ten Ltd Video signal processing method, video signal processing device and display device
DE602005016007D1 (en) * 2004-11-18 2009-09-24 Koninkl Philips Electronics Nv DISPLAY FOR TWO AND THREE-DIMENSIONAL VIEWS
KR101113235B1 (en) * 2004-11-29 2012-02-29 삼성전자주식회사 Autostereoscopic display
JP2006189782A (en) 2004-12-06 2006-07-20 Fujitsu Ten Ltd Display device
KR101112548B1 (en) * 2004-12-10 2012-02-15 삼성전자주식회사 Micro lens substrate for 3d display, 3d display apparatus and manufacturing method thereof
JP2006195415A (en) 2004-12-13 2006-07-27 Fujitsu Ten Ltd Display apparatus and display method
JP2007041489A (en) * 2004-12-14 2007-02-15 Fujitsu Ten Ltd Display device, frame member and reflection suppressing member
KR101033838B1 (en) 2004-12-29 2011-05-13 엘지디스플레이 주식회사 stereoscopic 3-D display apparatus
GB0500420D0 (en) 2005-01-10 2005-02-16 Ocuity Ltd Display apparatus
WO2006093365A1 (en) * 2005-03-02 2006-09-08 Seoul National University Industry Foundation Three-dimensional/ two-dimensional convertible display device
JP4934975B2 (en) 2005-03-17 2012-05-23 エプソンイメージングデバイス株式会社 Image display device
JP4553769B2 (en) * 2005-03-29 2010-09-29 大日本印刷株式会社 Optical element manufacturing method
KR101086412B1 (en) * 2005-04-04 2011-11-25 삼성전자주식회사 Stereo-scopic display apparatus capable of switching 2D/3D image
EP2268050A3 (en) * 2005-05-31 2015-11-11 Epson Imaging Devices Corporation Image display
KR100910343B1 (en) 2005-06-02 2009-08-04 후지쓰 텐 가부시키가이샤 Electronic apparatus
KR20060130887A (en) * 2005-06-09 2006-12-20 삼성전자주식회사 Screen for projection 3d image and projection system
JP4741887B2 (en) * 2005-06-24 2011-08-10 Nec液晶テクノロジー株式会社 Light source device, display device, and terminal device
KR20060135450A (en) * 2005-06-25 2006-12-29 삼성전자주식회사 2d and 3d imaging display
KR20080021640A (en) * 2005-06-28 2008-03-07 후지쓰 텐 가부시키가이샤 Display device and display device mounting method
JP4215782B2 (en) * 2005-06-30 2009-01-28 富士通テン株式会社 Display device and sound adjustment method for display device
KR100813977B1 (en) * 2005-07-08 2008-03-14 삼성전자주식회사 High resolution 2D-3D switchable autostereoscopic display apparatus
GB2428345A (en) * 2005-07-13 2007-01-24 Sharp Kk A display having multiple view and single view modes
KR101170797B1 (en) * 2005-07-26 2012-08-02 삼성전자주식회사 3D image display using integral imaging technology
WO2007029578A1 (en) 2005-09-06 2007-03-15 Fujitsu Ten Limited Display device and display method
JPWO2007034611A1 (en) 2005-09-21 2009-03-19 富士通テン株式会社 Display device, inspection method and manufacturing method thereof, and display panel inspection method and manufacturing method
WO2007036816A2 (en) * 2005-09-28 2007-04-05 Koninklijke Philips Electronics N.V. 2d/3d switchable display device
EP1955553A2 (en) * 2005-11-23 2008-08-13 Koninklijke Philips Electronics N.V. Rendering views for a multi-view display device
EP1963910A2 (en) * 2005-12-15 2008-09-03 Koninklijke Philips Electronics N.V. A display system
TWI265315B (en) * 2005-12-16 2006-11-01 Ind Tech Res Inst Autostereoscopic display apparatus
DE602006018523D1 (en) * 2005-12-23 2011-01-05 Koninkl Philips Electronics Nv BACK PROJECTOR AND BACK PROJECTION METHOD
KR101291860B1 (en) * 2005-12-28 2013-07-31 엘지디스플레이 주식회사 2-dimension image and 3-dimension image display device and manufacturing for display device thereof
JPWO2007088939A1 (en) * 2006-02-03 2009-06-25 パナソニック株式会社 Information processing device
EP1988538B1 (en) * 2006-02-22 2014-07-23 Fujitsu Ten Limited Display device and display method
JP2007279245A (en) * 2006-04-04 2007-10-25 Sharp Corp Picture display device
JP4308219B2 (en) * 2006-04-14 2009-08-05 富士通テン株式会社 In-vehicle display device
KR101255209B1 (en) * 2006-05-04 2013-04-23 삼성전자주식회사 Hihg resolution autostereoscopic display apparatus with lnterlaced image
KR20070112567A (en) * 2006-05-22 2007-11-27 엘지전자 주식회사 Portable terminal
JP2007308084A (en) * 2006-05-22 2007-11-29 Fujitsu Ten Ltd On-vehicle display device and acoustic control method
KR101309313B1 (en) * 2006-06-30 2013-09-13 엘지디스플레이 주식회사 3-dimension display device using devided screen
WO2008024691A2 (en) * 2006-08-22 2008-02-28 Li Sun 2-d and 3-d display
US8493433B2 (en) * 2006-09-12 2013-07-23 Reald Inc. Shuttering eyewear for use with stereoscopic liquid crystal display
JP5635773B2 (en) 2006-09-29 2014-12-03 リアルディー インコーポレイテッドRealD Inc. Polarization conversion system for stereoscopic projection, projection system, and stereoscopic image projection method
US7857455B2 (en) * 2006-10-18 2010-12-28 Reald Inc. Combining P and S rays for bright stereoscopic projection
CN101170709B (en) * 2006-10-23 2010-12-01 奇美电子股份有限公司 Method and display for controlling multiple display area on display panel
US20100026797A1 (en) * 2007-01-03 2010-02-04 Koninklijke Philips Electronics, N.V. Display device
GB2445982A (en) 2007-01-24 2008-07-30 Sharp Kk Image data processing method and apparatus for a multiview display device
JP4311453B2 (en) * 2007-01-26 2009-08-12 ソニー株式会社 LASER LIGHT SOURCE DEVICE AND IMAGE GENERATION DEVICE USING THE SAME
US7808708B2 (en) * 2007-02-01 2010-10-05 Reald Inc. Aperture correction for lenticular screens
US7508589B2 (en) * 2007-02-01 2009-03-24 Real D Soft aperture correction for lenticular screens
WO2008097469A2 (en) 2007-02-02 2008-08-14 Wms Gaming Inc. Gaming systems having multi-output displays
JP2008241730A (en) * 2007-03-23 2008-10-09 Fujitsu Ten Ltd Display controller, display device, and display control method
US20080239483A1 (en) * 2007-03-30 2008-10-02 Arisawa Mfg. Co., Ltd. Stereoscopic displaying apparatus
US20080239485A1 (en) * 2007-03-30 2008-10-02 Arisawa Mfg. Co., Ltd. Method for manufacturing stereoscopic displaying apparatus, method for manufacturing phase shift plate, and the phase shift plate thereby
KR100839414B1 (en) 2007-04-19 2008-06-19 삼성에스디아이 주식회사 Electronic display device
CN103383494B (en) 2007-05-09 2021-10-29 瑞尔D股份有限公司 Polarization conversion system and method for stereoscopic projection
GB2449682A (en) 2007-06-01 2008-12-03 Sharp Kk Optical system for converting a flat image to a non-flat image
TWI347453B (en) * 2007-06-23 2011-08-21 Ind Tech Res Inst Hybrid multiplexed 3d display and a displaying method thereof
US20080316597A1 (en) * 2007-06-25 2008-12-25 Industrial Technology Research Institute Three-dimensional (3d) display
KR101387366B1 (en) * 2007-06-27 2014-04-21 삼성전자주식회사 Multiview autostereoscopic display device and multiview autostereoscopic display method
KR20080114169A (en) * 2007-06-27 2008-12-31 삼성전자주식회사 Method for displaying 3d image and video apparatus thereof
US7808564B2 (en) * 2007-08-09 2010-10-05 Arisawa Mfg. Co., Ltd. Stereoscopic image display apparatus and manufacturing method including applying a resin, degassing the resin in a vacuum furnace then laminating an image display section with a retarder
JP4946732B2 (en) * 2007-08-28 2012-06-06 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
JP5181582B2 (en) * 2007-08-31 2013-04-10 セイコーエプソン株式会社 Display device and electronic apparatus using the same
TWI406029B (en) * 2007-09-11 2013-08-21 Innolux Corp Autostereoscopic display device, parallax barrier and fabricating method thereof
KR20100113513A (en) * 2007-12-10 2010-10-21 리서치 파운데이션 오브 더 시티 유니버시티 오브 뉴욕 Sub-wavelength structures, devices and methods for light control in material composites
GB2457692A (en) * 2008-02-21 2009-08-26 Sharp Kk A display device with a plurality of viewing modes
TWI382380B (en) * 2008-02-25 2013-01-11 Ind Tech Res Inst 2d image and 3d image switchable display devices
TW200938877A (en) * 2008-03-07 2009-09-16 Wintek Corp Image display device and illumination control device therefor
EP2110703B1 (en) * 2008-04-15 2010-08-18 JDS Uniphase Corporation Retarder-based despeckle device and method for laser illumination systems
WO2010008208A2 (en) * 2008-07-17 2010-01-21 주식회사 파버나인코리아 Organic light-emitting diode three-dimensional image display device
JP4525808B2 (en) * 2008-07-28 2010-08-18 ソニー株式会社 Stereoscopic image display device and manufacturing method thereof
JP4582219B2 (en) * 2008-07-28 2010-11-17 ソニー株式会社 Stereoscopic image display device and manufacturing method thereof
JP2010032675A (en) * 2008-07-28 2010-02-12 Sony Corp Method for manufacturing stereoscopic image display, and stereoscopic image display
US20100033557A1 (en) * 2008-07-28 2010-02-11 Sony Corporation Stereoscopic image display and method for producing the same
KR101490481B1 (en) 2008-08-28 2015-02-06 삼성디스플레이 주식회사 3-dimention display apparatus
JP2010066511A (en) * 2008-09-10 2010-03-25 Pavonine Korea Inc 3d-display device of non-eyeglass system
KR101497511B1 (en) * 2008-09-19 2015-03-02 삼성전자주식회사 APPARATUS FOR MULTIPLEXING 2 DIMENSIONAL and 3 DIMENSIONAL IMAGE AND VIDEO
JP4547641B2 (en) * 2008-09-22 2010-09-22 ソニー株式会社 Production method of retardation plate
KR101323454B1 (en) * 2008-10-08 2013-10-29 엘지디스플레이 주식회사 Backlight unit and liquid crystal display device having the same
JP4457323B2 (en) * 2008-10-09 2010-04-28 健治 吉田 Game machine
KR101527111B1 (en) * 2008-10-15 2015-06-08 삼성전자주식회사 Device and method for displaying video
GB2465786A (en) 2008-11-28 2010-06-02 Sharp Kk An optical system for varying the perceived shape of a display surface
KR101324440B1 (en) * 2009-02-11 2013-10-31 엘지디스플레이 주식회사 Method of controlling view of stereoscopic image and stereoscopic image display using the same
US20120026418A1 (en) * 2009-04-15 2012-02-02 Kenichiro Tsuchida Liquid crystal display apparatus
KR101354329B1 (en) * 2009-04-17 2014-01-22 엘지디스플레이 주식회사 Image display device
KR101318443B1 (en) * 2009-05-29 2013-10-16 엘지디스플레이 주식회사 Stereoscopic Image Display Device
KR101291799B1 (en) * 2009-05-29 2013-07-31 엘지디스플레이 주식회사 Stereoscopic Image Display Device
GB2470752B (en) * 2009-06-03 2015-01-07 Au Optronics Corp Autostereoscopic Display Apparatus
DE102009024617A1 (en) * 2009-06-08 2010-12-16 Visumotion Gmbh Method for the two-dimensional perception of spatial representations
US7978407B1 (en) 2009-06-27 2011-07-12 Holovisions LLC Holovision (TM) 3D imaging with rotating light-emitting members
KR101084245B1 (en) * 2010-01-04 2011-11-16 삼성모바일디스플레이주식회사 Display device
JP5316444B2 (en) * 2010-03-04 2013-10-16 株式会社Jvcケンウッド 3D image display optical member and 3D image display device
US20130076997A1 (en) * 2010-03-08 2013-03-28 Akira Sakai Active shutter glasses, passive glasses, and stereoscopic image projection system
CN102253495B (en) * 2010-05-18 2013-10-30 京东方科技集团股份有限公司 Dual-view display equipment and system
US20110304909A1 (en) * 2010-06-10 2011-12-15 Industrial Technology Research Institute Image display
WO2012003215A1 (en) * 2010-06-30 2012-01-05 3M Innovative Properties Company Retarder film combinations with spatially selective birefringence reduction
KR101222996B1 (en) * 2010-07-23 2013-01-18 엘지디스플레이 주식회사 Liquid Crystal Display Device and Method for Manufacturing the Same
KR101710694B1 (en) 2010-08-10 2017-02-28 삼성디스플레이 주식회사 Mask for photoalignment, mathod for photoalignment and liquid crystal display
JP2012083383A (en) * 2010-10-06 2012-04-26 V Technology Co Ltd Exposure device
TW201215917A (en) 2010-10-08 2012-04-16 J Touch Corp Switching module of 3D/2D display device
US8913205B2 (en) 2010-10-22 2014-12-16 Reald Inc. Split segmented liquid crystal modulator
CN103180779B (en) * 2010-10-22 2015-10-21 Lg化学株式会社 Comprise the display device of conductive pattern
JP5462131B2 (en) 2010-10-29 2014-04-02 株式会社ジャパンディスプレイ Liquid crystal display
KR101732131B1 (en) * 2010-11-12 2017-05-04 삼성전자주식회사 Image providing apparatus and image providng method based on user's location
TWI424230B (en) * 2010-11-15 2014-01-21 Chunghwa Picture Tubes Ltd Stereoscopic display device and manufacturing method thereof
KR101279979B1 (en) * 2010-11-23 2013-07-05 제일모직주식회사 Autostereoscopic 3-dimension image display device
CN102478715B (en) * 2010-11-26 2014-06-25 京东方科技集团股份有限公司 Stereo display device
JP5693182B2 (en) * 2010-11-29 2015-04-01 住友化学株式会社 Method for manufacturing display device member and display device
KR101310922B1 (en) * 2010-12-10 2013-09-25 엘지디스플레이 주식회사 Stereoscopic image display and driving method thereof
US8508681B2 (en) 2010-12-30 2013-08-13 Smartershade, Inc. Variable transmission window
TWI417584B (en) * 2011-03-03 2013-12-01 Futis Internat Ltd Method for forming a microretarder film
CN102681191A (en) * 2011-03-16 2012-09-19 上海中航光电子有限公司 Device and system of passive polarized three-dimensional (3D) display
US20140015942A1 (en) * 2011-03-31 2014-01-16 Amir Said Adaptive monoscopic and stereoscopic display using an integrated 3d sheet
KR101829308B1 (en) 2011-04-22 2018-02-20 동우 화인켐 주식회사 Controlling device for preventing snaking of patterns of patterned flims
KR101822126B1 (en) * 2011-05-04 2018-01-26 삼성디스플레이 주식회사 Display apparatus, and method for manufacturing the same
JP2012242564A (en) * 2011-05-18 2012-12-10 Sony Corp Polarization module and image display device
KR101808530B1 (en) * 2011-05-25 2017-12-14 엘지디스플레이 주식회사 Image Display Device
JP2013011849A (en) * 2011-05-31 2013-01-17 Sony Corp Display device, barrier device, barrier driving circuit, and barrier device driving method
JP2013019924A (en) * 2011-06-17 2013-01-31 Sony Corp Polarization module and image display unit
US9324250B2 (en) * 2011-09-09 2016-04-26 Dolby Laboratories Licensing Corporation High dynamic range displays comprising MEMS/IMOD components
US8547489B2 (en) * 2011-09-21 2013-10-01 Shenzhen China Star Optoelectronics Technology Co., Ltd. 3D display panel and method for manufacturing the same
WO2013112426A1 (en) 2012-01-23 2013-08-01 Smartershade, Inc. Mechanical translation of a variable radiation transmission device
KR20130106217A (en) * 2012-03-19 2013-09-27 삼성디스플레이 주식회사 Method of displaying three-dimensional stereoscopic image and an display apparatus for performing the same
RU2518484C2 (en) * 2012-04-26 2014-06-10 Василий Александрович ЕЖОВ Method for autostereoscopic full-screen resolution display and apparatus for realising said method (versions)
JP6058911B2 (en) * 2012-05-11 2017-01-11 サターン ライセンシング エルエルシーSaturn Licensing LLC Video display system and eyeglass device
EP2860576B1 (en) * 2012-06-11 2018-11-07 Panasonic Intellectual Property Management Co., Ltd. Three-dimensional image display device and three-dimensional image display method
US9800862B2 (en) * 2012-06-12 2017-10-24 The Board Of Trustees Of The University Of Illinois System and methods for visualizing information
CN103018940B (en) * 2012-12-14 2015-04-22 京东方科技集团股份有限公司 3D (three-dimensional) display control method, control system and display device
JP2014153572A (en) * 2013-02-08 2014-08-25 Dainippon Printing Co Ltd Polarization disturbing element, and image displaying device and image displaying system
KR20150017199A (en) * 2013-08-06 2015-02-16 삼성전자주식회사 Display apparatus and controlling method thereof
WO2015073838A1 (en) 2013-11-15 2015-05-21 Reald Inc. High dynamic range, high contrast projection systems
KR20150072175A (en) * 2013-12-19 2015-06-29 삼성전자주식회사 Image display device
US10409079B2 (en) 2014-01-06 2019-09-10 Avegant Corp. Apparatus, system, and method for displaying an image using a plate
US10303242B2 (en) 2014-01-06 2019-05-28 Avegant Corp. Media chair apparatus, system, and method
TWI468729B (en) * 2014-02-06 2015-01-11 Benq Materials Corp Light switching module
KR20150116974A (en) * 2014-04-08 2015-10-19 삼성디스플레이 주식회사 Image display apparatus
TWI497116B (en) * 2014-05-12 2015-08-21 Au Optronics Corp 3d image display device and 3d image display method
US9823474B2 (en) 2015-04-02 2017-11-21 Avegant Corp. System, apparatus, and method for displaying an image with a wider field of view
US9995857B2 (en) 2015-04-03 2018-06-12 Avegant Corp. System, apparatus, and method for displaying an image using focal modulation
KR20160144730A (en) * 2015-06-09 2016-12-19 삼성전자주식회사 Display panel and display apparatus
DE102015212776A1 (en) * 2015-07-08 2017-01-12 Siemens Aktiengesellschaft Secure communication
EP3369034B1 (en) 2015-10-26 2023-07-05 RealD Spark, LLC Intelligent privacy system, apparatus, and method thereof
GB2546150A (en) 2015-11-23 2017-07-12 Vg Smartglass Llc Variable transmission window including blackout bars
JP7284581B2 (en) 2016-05-17 2023-05-31 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymerizable liquid crystal materials and polymerized liquid crystal films
EP3246378B1 (en) 2016-05-17 2019-03-20 Merck Patent GmbH Polymerisable liquid crystal material and polymerised liquid crystal film
CN114554177A (en) 2016-05-19 2022-05-27 瑞尔D斯帕克有限责任公司 Wide-angle imaging directional backlight source
CN106291957A (en) 2016-08-30 2017-01-04 京东方科技集团股份有限公司 A kind of parallax baffle, display device and manufacture method thereof
JP7021197B2 (en) 2016-09-05 2022-02-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング UV curable adhesion promoter based on functionalized polyvinyl alcohol
JP7179732B2 (en) 2016-09-14 2022-11-29 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymerizable liquid crystal materials and polymerized liquid crystal films
US10281630B2 (en) 2016-09-19 2019-05-07 Apple Inc. Optical films for electronic device displays
EP3519533B1 (en) 2016-09-28 2020-12-16 Merck Patent GmbH Polymerisable liquid crystal material and polymerised liquid crystal film
KR102497292B1 (en) 2016-12-01 2023-02-07 메르크 파텐트 게엠베하 Polymerizable liquid crystal media and polymeric films with flat optical dispersion
EP3548585B1 (en) 2016-12-01 2020-11-04 Merck Patent GmbH Polymerisable liquid crystal material and polymerised liquid crystal film
WO2018154991A1 (en) * 2017-02-24 2018-08-30 富士フイルム株式会社 Depolarizing film, depolarizing member, and method for producing depolarizing film
CN110785694B (en) * 2017-05-08 2023-06-23 瑞尔D斯帕克有限责任公司 Optical stack for directional display
US10126575B1 (en) 2017-05-08 2018-11-13 Reald Spark, Llc Optical stack for privacy display
JP7430631B2 (en) 2017-08-15 2024-02-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymerizable liquid crystal materials and polymerized liquid crystal films
CN111032826B (en) 2017-08-15 2023-08-22 默克专利股份有限公司 Polymerizable LC medium and polymer film with flat light dispersion
TW201921060A (en) 2017-09-15 2019-06-01 美商瑞爾D斯帕克有限責任公司 Optical stack for switchable directional display
US10948648B2 (en) 2017-09-29 2021-03-16 Reald Spark, Llc Backlights having stacked waveguide and optical components with different coefficients of friction
US11109014B2 (en) 2017-11-06 2021-08-31 Reald Spark, Llc Privacy display apparatus
JP7353007B2 (en) 2018-01-25 2023-09-29 リアルディー スパーク エルエルシー Touch screen for privacy display
JP7291444B2 (en) 2018-01-25 2023-06-15 リアルディー スパーク エルエルシー Display device and viewing angle control optical element
JP7495027B2 (en) 2018-03-22 2024-06-04 リアルディー スパーク エルエルシー Optical waveguide, backlight device and display device
RU2679544C1 (en) * 2018-04-23 2019-02-11 Василий Александрович ЕЖОВ Stereoscopic display with remote binocular filter on anti-phase liquid crystalline layers
WO2019207081A1 (en) 2018-04-27 2019-10-31 Merck Patent Gmbh Polymerisable liquid crystal material and polymerised liquid crystal film
WO2020005748A1 (en) 2018-06-29 2020-01-02 Reald Spark, Llc Optical stack for privacy display
WO2020018552A1 (en) 2018-07-18 2020-01-23 Reald Spark, Llc Optical stack for switchable directional display
WO2020035400A1 (en) 2018-08-13 2020-02-20 Merck Patent Gmbh Polymerisable liquid crystal material and polymerised liquid crystal film
WO2020035401A1 (en) 2018-08-13 2020-02-20 Merck Patent Gmbh Polymerizable liquid crystal material and polymerized liquid crystal film
CN109188760A (en) * 2018-09-30 2019-01-11 上海天马微电子有限公司 Display device and manufacturing method thereof
US11106103B2 (en) 2018-10-03 2021-08-31 Reald Spark, Llc Privacy display apparatus controlled in response to environment of apparatus
JP2022504376A (en) 2018-11-07 2022-01-13 リアルディー スパーク エルエルシー Directional display device
CN113166650A (en) 2018-12-03 2021-07-23 默克专利股份有限公司 Polymerizable liquid crystal material and polymerized liquid crystal film
US11287677B2 (en) 2019-01-07 2022-03-29 Reald Spark, Llc Optical stack for privacy display
EP3914669B1 (en) 2019-01-22 2024-10-02 Merck Patent GmbH Method for the preparation of a liquid crystal polymer film
CN113646695B (en) 2019-02-12 2024-05-24 瑞尔D斯帕克有限责任公司 Diffuser for privacy displays
US20220145180A1 (en) 2019-03-18 2022-05-12 Merck Patent Gmbh Polymerisable liquid crystal material and polymerised liquid crystal film
TW202102883A (en) 2019-07-02 2021-01-16 美商瑞爾D斯帕克有限責任公司 Directional display apparatus
JP7274370B2 (en) * 2019-07-10 2023-05-16 日本放送協会 image display device
EP4007930A4 (en) * 2019-08-02 2023-08-30 RealD Spark, LLC Optical stack for privacy display
EP4038605B1 (en) 2019-10-02 2024-09-25 RealD Spark, LLC Privacy display apparatus
JP2023501988A (en) 2019-11-13 2023-01-20 リアルディー スパーク エルエルシー off-axis display device
US11796828B2 (en) 2019-12-10 2023-10-24 Reald Spark, Llc Control of reflections of a display device
CN114902093A (en) 2019-12-18 2022-08-12 瑞尔D斯帕克有限责任公司 Control of ambient light for privacy display
CN111458963B (en) * 2020-04-15 2021-07-30 四川大学 Front projection type 2D/3D mixed projection display device
WO2021222606A1 (en) 2020-04-30 2021-11-04 Reald Spark, Llc Directional display apparatus
EP4143043A4 (en) 2020-04-30 2024-06-05 RealD Spark, LLC Directional display apparatus
EP4143631A4 (en) 2020-04-30 2024-05-29 RealD Spark, LLC Directional display apparatus
TW202200630A (en) 2020-04-30 2022-01-01 德商馬克專利公司 Polymerizable liquid crystal material and polymerized liquid crystal film
WO2021259825A1 (en) 2020-06-23 2021-12-30 Merck Patent Gmbh Polymerisable liquid crystal material and polymerised liquid crystal film
US20230265344A1 (en) 2020-07-03 2023-08-24 Merck Patent Gmbh Polymerisable liquid crystal material and polymerised liquid crystal film
US11624944B2 (en) 2020-07-29 2023-04-11 Reald Spark, Llc Backlight for switchable directional display
TW202204818A (en) 2020-07-29 2022-02-01 美商瑞爾D斯帕克有限責任公司 Pupillated illumination apparatus
EP4008759A1 (en) 2020-11-20 2022-06-08 Merck Patent GmbH Polymerisable liquid crystal material and polymerised liquid crystal film
CN114609797A (en) * 2020-12-04 2022-06-10 宁波舜宇车载光学技术有限公司 2D/3D switchable display system
US11892717B2 (en) 2021-09-30 2024-02-06 Reald Spark, Llc Marks for privacy display
US11977286B2 (en) 2022-02-09 2024-05-07 Reald Spark, Llc Observer-tracked privacy display
WO2023196440A1 (en) 2022-04-07 2023-10-12 Reald Spark, Llc Directional display apparatus

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2647440A (en) * 1947-08-08 1953-08-04 Miles P Rehorn Molecularly aligned sheet material
US2631496A (en) * 1947-08-08 1953-03-17 Miles P Rehorn Stereoscopic viewing method and apparatus
FR2549972B1 (en) * 1983-07-25 1990-01-26 Pund Marvin STEREOSCOPIC VISUALIZATION APPARATUS AND METHOD
JPS63158525A (en) * 1986-12-22 1988-07-01 Nec Corp Planar type liquid crystal stereoscopic display device
US5235449A (en) * 1990-03-02 1993-08-10 Hitachi, Ltd. Polarizer with patterned diacetylene layer, method for producing the same, and liquid crystal display device including such polarizer
US5537144A (en) * 1990-06-11 1996-07-16 Revfo, Inc. Electro-optical display system for visually displaying polarized spatially multiplexed images of 3-D objects for use in stereoscopically viewing the same with high image quality and resolution
US5327285A (en) * 1990-06-11 1994-07-05 Faris Sadeg M Methods for manufacturing micropolarizers
GB2252175B (en) * 1991-01-22 1994-03-30 British Aerospace A parallax barrier assembly and apparatus
JPH05122733A (en) * 1991-10-28 1993-05-18 Nippon Hoso Kyokai <Nhk> Three-dimensional picture display device
US5264964A (en) * 1991-12-18 1993-11-23 Sades Faris Multi-mode stereoscopic imaging system
DE4312918A1 (en) * 1993-04-14 1994-10-20 Hertz Inst Heinrich Playback device
GB2278223A (en) * 1993-05-21 1994-11-23 Sharp Kk Spatial light modulator and directional display
US5532852A (en) * 1994-02-23 1996-07-02 Kaiser Aerospace And Electronics Corporation High speed, high ambient viewability liquid crystal display assembly
DE59510708D1 (en) * 1994-06-24 2003-07-10 Rolic Ag Zug Optical component made from layers of crosslinked liquid-crystalline monomers and process for its production
GB2293021A (en) * 1994-09-09 1996-03-13 Sharp Kk Polarisation dependent refractive device
US5917562A (en) * 1994-12-16 1999-06-29 Sharp Kabushiki Kaisha Autostereoscopic display and spatial light modulator
GB2296617A (en) * 1994-12-29 1996-07-03 Sharp Kk Observer tracking autosteroscopic display
GB2297389A (en) * 1995-01-28 1996-07-31 Sharp Kk Three dimensional display having autostereoscopic and stereoscopic modes
GB2297876A (en) * 1995-02-09 1996-08-14 Sharp Kk Observer tracking autostereoscopic display
JP2778543B2 (en) * 1995-07-27 1998-07-23 日本電気株式会社 3D display device
JP3490554B2 (en) 1995-10-13 2004-01-26 株式会社東芝 Disk cartridge device
US5973831A (en) * 1996-01-22 1999-10-26 Kleinberger; Paul Systems for three-dimensional viewing using light polarizing layers
US5831698A (en) * 1996-08-20 1998-11-03 International Business Machines Corporation Electrically variable diffuser

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590605B1 (en) * 1998-10-14 2003-07-08 Dimension Technologies, Inc. Autostereoscopic display
US20040239758A1 (en) * 2001-10-02 2004-12-02 Armin Schwerdtner Autostereoscopic display
US7046272B2 (en) * 2001-10-02 2006-05-16 Seereal Technologies Gmbh Autostereoscopic display
US20060033976A1 (en) * 2002-01-07 2006-02-16 Xiang-Dong Mi Display apparatus with two polarization compensators
US20060203164A1 (en) * 2002-01-07 2006-09-14 Moxtek, Inc. Display with a wire grid polarizing beamsplitter
US20050151905A1 (en) * 2002-01-07 2005-07-14 Kurtz Andrew F. Spatially patterned polarization compensator
US7023512B2 (en) * 2002-01-07 2006-04-04 Moxtek, Inc. Spatially patterned polarization compensator
US20050185112A1 (en) * 2002-03-14 2005-08-25 Nitto Denko Corporation Back light and liquid crystal display unit using this
US20070052699A1 (en) * 2003-10-04 2007-03-08 Koninklijke Phillps Electronics N.V. Colour ratios in a 3d image display device
KR101110796B1 (en) 2003-10-04 2012-04-13 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Improving grey scale contrast in a 3d image display device
US20060279547A1 (en) * 2003-10-04 2006-12-14 Karman Gerardus P Grey scale contrast in a 3d image display device
WO2005034529A1 (en) * 2003-10-04 2005-04-14 Koninklijke Philips Electronics N.V. Improving grey scale contrast in a 3d image display device
CN1864413B (en) * 2003-10-04 2010-10-13 皇家飞利浦电子股份有限公司 Grey scale contrast device and method in a 3d image display device
WO2005034528A1 (en) 2003-10-04 2005-04-14 Koninklijke Philips Electronics N.V. Improving colour ratios in a 3d image display device
US20050200781A1 (en) * 2004-03-11 2005-09-15 Sharp Kabushiki Kaisha Liquid crystal display panel and liquid crystal display device
US7583327B2 (en) * 2004-03-11 2009-09-01 Sharp Kabushiki Kaisha Liquid crystal display panel and liquid crystal display device
US20050280894A1 (en) * 2004-04-02 2005-12-22 David Hartkop Apparatus for creating a scanning-column backlight in a scanning aperture display device
US20050264560A1 (en) * 2004-04-02 2005-12-01 David Hartkop Method for formating images for angle-specific viewing in a scanning aperture display device
US20050219693A1 (en) * 2004-04-02 2005-10-06 David Hartkop Scanning aperture three dimensional display device
US7573491B2 (en) 2004-04-02 2009-08-11 David Hartkop Method for formatting images for angle-specific viewing in a scanning aperture display device
WO2006024481A1 (en) * 2004-08-31 2006-03-09 X3D Technologies Gmbh Assembly for representing images in three dimensions
EP2149810A3 (en) * 2004-08-31 2010-07-28 X3D Technologies GmbH Assembly for representing images in three dimensions
WO2006029716A1 (en) * 2004-09-13 2006-03-23 X3D Technologies Gmbh Assembly for the selective three-dimensional or two-dimensional representation of images
US20080297670A1 (en) * 2004-09-13 2008-12-04 X3D Technologies Gmbh Assembly for the Selective Three-Dimensional or Two-Dimensional Representation of Images
GB2418315A (en) * 2004-09-21 2006-03-22 Sharp Kk Multiple view display
US20080266662A1 (en) * 2004-12-06 2008-10-30 Perkins Raymond T Polarization device to polarize and further control light
US20080278811A1 (en) * 2004-12-06 2008-11-13 Perkins Raymond T Selectively Absorptive Wire-Grid Polarizer
US8027087B2 (en) 2004-12-06 2011-09-27 Moxtek, Inc. Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid
US7961393B2 (en) 2004-12-06 2011-06-14 Moxtek, Inc. Selectively absorptive wire-grid polarizer
US20100328770A1 (en) * 2004-12-06 2010-12-30 Perkins Raymond T Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid
US20090168171A1 (en) * 2004-12-06 2009-07-02 Perkins Raymond T Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid
US7813039B2 (en) 2004-12-06 2010-10-12 Moxtek, Inc. Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid
US7800823B2 (en) 2004-12-06 2010-09-21 Moxtek, Inc. Polarization device to polarize and further control light
US7400377B2 (en) * 2004-12-14 2008-07-15 Sharp Kabushiki Kaisha Display having particular polarisation modifying layer
US20060126156A1 (en) * 2004-12-14 2006-06-15 Allan Evans Display
WO2006094780A3 (en) * 2005-03-09 2007-03-01 X3D Technologies Gmbh Method for autostereoscopically viewing images and autostereoscopic arrangement
WO2006094780A2 (en) * 2005-03-09 2006-09-14 X3D Technologies Gmbh Method for autostereoscopically viewing images and autostereoscopic arrangement
US20070002190A1 (en) * 2005-06-30 2007-01-04 Fujitsu Ten Limited Receiver
US7697080B2 (en) 2005-09-12 2010-04-13 Sharp Kabushiki Kaisha Manufacturing method for display device having thickness of first substrate reduced by second supporting substrate and then adhering third substrate with parallax optic to thinned first substrate
US20070058258A1 (en) * 2005-09-12 2007-03-15 Sharp Kabushiki Kaisha Multiple-view directional display
US7518664B2 (en) 2005-09-12 2009-04-14 Sharp Kabushiki Kaisha Multiple-view directional display having parallax optic disposed within an image display element that has an image display layer sandwiched between TFT and color filter substrates
US20080204871A1 (en) * 2005-09-12 2008-08-28 Sharp Kabushiki Kaisha Multiple-view directional display
US20070058127A1 (en) * 2005-09-12 2007-03-15 Sharp Kabushiki Kaisha Multiple-view directional display
US7813042B2 (en) 2005-09-12 2010-10-12 Sharp Kabushiki Kaisha Multiple-view directional display
US20090303157A1 (en) * 2005-09-16 2009-12-10 Akira Imai Display device
US20090135089A1 (en) * 2005-09-20 2009-05-28 Fujitsu Ten Limited In-Vehicle Display Apparatus
US20070063941A1 (en) * 2005-09-21 2007-03-22 Fujitsu Ten Limited Liquid crystal display apparatus
US20070063943A1 (en) * 2005-09-21 2007-03-22 Fujitsu Ten Limited Display apparatus
US7576708B2 (en) 2005-09-21 2009-08-18 Fujitsu Ten Limited Display apparatus
US20070064170A1 (en) * 2005-09-21 2007-03-22 Fujitsu Ten Limited Display apparatus
US7570315B2 (en) 2005-09-21 2009-08-04 Fujitsu Ten Limited Display apparatus
US7609227B2 (en) 2005-09-21 2009-10-27 Fujitsu Ten Limited Liquid crystal display apparatus
US20070064102A1 (en) * 2005-09-21 2007-03-22 Fujitsu Ten Limited Display apparatus
US20070129864A1 (en) * 2005-11-28 2007-06-07 Fujitsu Ten Limited In-vehicle display apparatus and display control method therefor
US7567222B2 (en) 2005-11-28 2009-07-28 Fujitsu Ten Limited In-vehicle display apparatus and display control method therefor
US20070146578A1 (en) * 2005-12-23 2007-06-28 Sharp Kabushiki Kaisha Display device, viewing angle control device, electronic display device, and multiple image display device
US7486350B2 (en) * 2005-12-23 2009-02-03 Sharp Kabushiki Kaisha Display device, viewing angle control device, electronic display device, and multiple image display device
DE112007000095B4 (en) * 2006-01-03 2016-02-18 Samsung Electronics Co., Ltd. Frame-Sequential Autostereographic Display
US8223089B2 (en) 2006-03-31 2012-07-17 Casio Computer Co., Ltd. Image display apparatus that allows viewing of three-dimensional image from directions
US20070229654A1 (en) * 2006-03-31 2007-10-04 Casio Computer Co., Ltd. Image display apparatus that allows viewing of three-dimensional image from directions
US20100177170A1 (en) * 2006-03-31 2010-07-15 Casio Computer Co., Ltd. Image display apparatus that allows viewing of three-dimensional image from directions
US7724209B2 (en) * 2006-03-31 2010-05-25 Casio Computer Co., Ltd. Image display apparatus that allows viewing of three-dimensional image from directions
US7688293B2 (en) 2006-04-14 2010-03-30 Fujitsu Ten Limited Display apparatus and in-vehicle display apparatus
US20070296921A1 (en) * 2006-06-26 2007-12-27 Bin Wang Projection display with a cube wire-grid polarizing beam splitter
US20070297052A1 (en) * 2006-06-26 2007-12-27 Bin Wang Cube wire-grid polarizing beam splitter
US20080055721A1 (en) * 2006-08-31 2008-03-06 Perkins Raymond T Light Recycling System with an Inorganic, Dielectric Grid Polarizer
US8755113B2 (en) 2006-08-31 2014-06-17 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer
US20080055549A1 (en) * 2006-08-31 2008-03-06 Perkins Raymond T Projection Display with an Inorganic, Dielectric Grid Polarizer
US20080055720A1 (en) * 2006-08-31 2008-03-06 Perkins Raymond T Optical Data Storage System with an Inorganic, Dielectric Grid Polarizer
US20080055722A1 (en) * 2006-08-31 2008-03-06 Perkins Raymond T Optical Polarization Beam Combiner/Splitter with an Inorganic, Dielectric Grid Polarizer
US20080055723A1 (en) * 2006-08-31 2008-03-06 Eric Gardner Durable, Inorganic, Absorptive, Ultra-Violet, Grid Polarizer
US7677733B2 (en) * 2006-10-06 2010-03-16 3M Innovative Properties Company Method of designing a matched light guide for a stereoscopic 3D liquid crystal display
US20080086289A1 (en) * 2006-10-06 2008-04-10 3M Innovative Properties Company Method of designing a matched light guide for a stereoscopic 3d liquid crystal display
US20080165296A1 (en) * 2007-01-05 2008-07-10 Samsung Electronics Co., Ltd. Highly efficient 2d/3d switchable display device
US7567307B2 (en) * 2007-01-05 2009-07-28 Samsung Electronics Co., Ltd. Highly efficient 2D/3D switchable display device
US20080185958A1 (en) * 2007-02-06 2008-08-07 Samsung Sdi Co., Ltd. Organic light emitting display apparatus
US7898175B2 (en) * 2007-02-06 2011-03-01 Samsung Mobile Display Co., Ltd. Organic light emitting display apparatus with an enhanced viewing angle
US7789515B2 (en) 2007-05-17 2010-09-07 Moxtek, Inc. Projection device with a folded optical path and wire-grid polarizer
US20080284984A1 (en) * 2007-05-17 2008-11-20 Hansen Douglas P Projection Device with a Folded Optical Path and Wire-Grid Polarizer
US20080316599A1 (en) * 2007-06-22 2008-12-25 Bin Wang Reflection-Repressed Wire-Grid Polarizer
US7750983B2 (en) * 2007-10-04 2010-07-06 3M Innovative Properties Company Stretched film for stereoscopic 3D display
US20090091668A1 (en) * 2007-10-04 2009-04-09 3M Innovative Properties Company Stretched film for stereoscopic 3d display
US20090141225A1 (en) * 2007-12-03 2009-06-04 Lg Display Co., Ltd. Display device and method of fabricating the same
US8284334B2 (en) * 2007-12-03 2012-10-09 Lg Display Co., Ltd. Display device and method of fabricating the same
US7894116B2 (en) * 2008-01-09 2011-02-22 Seiko Epson Corporation Electro-optical device and electronic apparatus
US20090174923A1 (en) * 2008-01-09 2009-07-09 Seiko Epson Corporation Electro-optical device and electronic apparatus
US20100081477A1 (en) * 2008-09-30 2010-04-01 Motorola, Inc. Portable device display presenting two and three dimensional images
WO2010136921A3 (en) * 2009-05-28 2011-01-20 Koninklijke Philips Electronics N.V. Autostereoscopic display device
WO2010136921A2 (en) 2009-05-28 2010-12-02 Koninklijke Philips Electronics N.V. Autostereoscopic display device
EP2365361A1 (en) * 2010-03-10 2011-09-14 Asahi Glass Company, Limited Front plate for display, display device, and method and apparatus for manufacturing front plate dor display
US20110222053A1 (en) * 2010-03-10 2011-09-15 Asahi Glass Company, Limited Front plate for display, display device, and method and apparatus for manufacturing front plate for display
US20110261173A1 (en) * 2010-04-22 2011-10-27 Hsiang-Tan Lin Stereoscopic image displaying method and stereoscopic display device thereof
US8462201B2 (en) * 2010-04-22 2013-06-11 Chunghwa Picture Tubes, Ltd. Stereoscopic image displaying method and stereoscopic display device thereof
CN103200411A (en) * 2012-01-05 2013-07-10 索尼公司 Display device
US20130176511A1 (en) * 2012-01-05 2013-07-11 Sony Corporation Display device
US20150153579A1 (en) * 2012-01-05 2015-06-04 Sony Corporation Display device
US9075255B2 (en) * 2012-01-05 2015-07-07 Sony Corporation Display device
US9235069B2 (en) * 2012-01-05 2016-01-12 Sony Corporation Display device
US20130335647A1 (en) * 2012-06-18 2013-12-19 Sony Corporation Stereoscopic display optical device and stereoscopic display unit
US9940901B2 (en) * 2012-09-21 2018-04-10 Nvidia Corporation See-through optical image processing
US20140085282A1 (en) * 2012-09-21 2014-03-27 Nvidia Corporation See-through optical image processing
CN104375229A (en) * 2013-08-14 2015-02-25 远东新世纪股份有限公司 Method for manufacturing phase difference film
US10191293B2 (en) * 2014-07-18 2019-01-29 Boe Technology Group Co., Ltd. Grating controlling method and apparatus, grating, display panel, and three-dimensional (3D) display device
US9947288B2 (en) * 2015-04-24 2018-04-17 Boe Technology Group Co., Ltd. Display device, display driving method and display system
US20170061921A1 (en) * 2015-04-24 2017-03-02 Boe Technology Group Co., Ltd. Display device, display driving method and display system
US10663657B2 (en) 2016-07-15 2020-05-26 Light Field Lab, Inc. Selective propagation of energy in light field and holographic waveguide arrays
US10488584B2 (en) 2016-07-15 2019-11-26 Light Field Lab, Inc. High density energy directing device
US10996393B2 (en) 2016-07-15 2021-05-04 Light Field Lab, Inc. High density energy directing device
US11681092B2 (en) 2016-07-15 2023-06-20 Light Field Lab, Inc. Selective propagation of energy in light field and holographic waveguide arrays
RU2659190C1 (en) * 2017-05-29 2018-06-28 Василий Александрович ЕЖОВ Autostereoscopic k-angle display with full screen resolution image of each angle (options)
WO2019140416A3 (en) * 2018-01-14 2019-11-28 Light Field Lab, Inc. Ordered geometries for optomized holographic projection
US10884251B2 (en) 2018-01-14 2021-01-05 Light Field Lab, Inc. Systems and methods for directing multiple 4D energy fields
US11181749B2 (en) 2018-01-14 2021-11-23 Light Field Lab, Inc. Systems and methods for transverse energy localization in energy relays using ordered structures
US11237307B2 (en) 2018-01-14 2022-02-01 Light Field Lab, Inc. Systems and methods for forming energy relays with transverse energy localization
US11719864B2 (en) 2018-01-14 2023-08-08 Light Field Lab, Inc. Ordered geometries for optomized holographic projection
US12032180B2 (en) 2018-01-14 2024-07-09 Light Field Lab, Inc. Energy waveguide system with volumetric structure operable to tessellate in three dimensions

Also Published As

Publication number Publication date
JP3998247B2 (en) 2007-10-24
EP0829744B1 (en) 2005-03-23
US6437915B2 (en) 2002-08-20
EP0829744A3 (en) 1999-02-03
US6046849A (en) 2000-04-04
DE69732820T2 (en) 2006-04-13
JP3888627B2 (en) 2007-03-07
DE69732820D1 (en) 2005-04-28
JP2003177357A (en) 2003-06-27
JP3452472B2 (en) 2003-09-29
JPH10123461A (en) 1998-05-15
EP0829744A2 (en) 1998-03-18
JP2003337226A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
US6046849A (en) Parallax barrier, display, passive polarisation modulating optical element and method of making such an element
US6055103A (en) Passive polarisation modulating optical element and method of making such an element
EP0770889B1 (en) Optical element, method of making an optical element, and 3D display
US5917562A (en) Autostereoscopic display and spatial light modulator
US8120718B2 (en) Parallax barrier device for viewing three-dimensional images, method for fabricating the same and display apparatus including a parallax barrier device
KR100878620B1 (en) Optical switching apparatus
US6816207B2 (en) Autostereoscopic display apparatus and method of manufacturing the same
JP4654183B2 (en) Lens array structure
JP5424915B2 (en) Video display system
US20110157698A1 (en) Retardation plate for stereoscopic image display, polarizing element, and methods for production thereof, and stereoscopic image display device
AU2002319509A1 (en) Optical switching apparatus
JP2011028286A (en) Switchable birefringent lens array and display device including the same
EP1182488A2 (en) Spatial light modulator
JP3533057B2 (en) Liquid crystal display
GB2317295A (en) Parallax barrier and display
GB2314167A (en) Liquid crystal display and polarized spectacles
GB2326728A (en) Passive polarising element

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140820