US20020000262A1 - Exchange spring magnet powder and a method of producing the same - Google Patents
Exchange spring magnet powder and a method of producing the same Download PDFInfo
- Publication number
- US20020000262A1 US20020000262A1 US09/893,892 US89389201A US2002000262A1 US 20020000262 A1 US20020000262 A1 US 20020000262A1 US 89389201 A US89389201 A US 89389201A US 2002000262 A1 US2002000262 A1 US 2002000262A1
- Authority
- US
- United States
- Prior art keywords
- exchange spring
- magnetic material
- spring magnet
- magnet powder
- metal element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/02—Amorphous alloys with iron as the major constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0579—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/058—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/059—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/03—Amorphous or microcrystalline structure
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
Definitions
- the present invention relates to an exchange spring magnet powder and a method of producing the same, more particularly, to an exchange spring magnet powder realizing an exchange spring magnet having anisotropy, which can suitably used in motors, magnetic field sensors, rotation sensors, acceleration sensors, torque sensors and the like, and a method of producing the same.
- ferrite magnets which are chemically stable and inexpensive and rare earth metal-based magnets having high ability are practically used. These magnets are constituted of approximately a single compound as a magnet compound, and recently, exchange spring magnets are noticed which are obtained by complexing a permanent magnet material having high coercive force with a soft magnetic material having high magnetic flux density.
- Such exchange spring magnets are expected to have high maximum energy product, and theoretically, extremely high magnetic property of 100 MGOe( ⁇ 796 kJ/m 3 ) or more can be realized.
- exchange spring magnets developed to date have isotropy, and the resulting maximum energy product is as low as about 20 MGOe( ⁇ 159 kJ/m 3 ).
- the maximum reason for this is that orientations of crystal particles constituting an exchange spring magnet are not arranged to a constant direction, therefore, there are a lot of studies to realize an anisotropic exchange spring magnet which is so fine and has crystal directions arranged toward the same direction as to manifest exchange connection.
- the present invention has been accomplished in view of such problems of earlier technologies, and an object of the present invention is to provide an anisotropic exchange spring magnetic powder which can realize an exchange spring magnet having more excellent anisotropy and higher maximum energy product as compared with conventional magnets, and a method of producing the same, and an anisotropic exchange spring magnet obtained by using this magnetic powder.
- the present inventors have intensively investigated to attain the above-mentioned object, and resultantly, found that the above-mentioned object can be accomplished by treating a given crystalline mother material in specific amorphousating process and crystallizing process, leading to completion of the present invention.
- the anisotropic exchange spring magnet powder of the present invention comprises a hard magnetic material phase containing a rare earth metal element, a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), and a soft magnetic material phase containing a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), wherein the above-mentioned hard magnetic material phase and soft magnetic material phase have crystal particle diameters of 150 nm or less.
- the method of producing an anisotropic exchange spring magnet powder of the present invention comprises: preparing a crystalline mother material containing a hard magnetic material phase containing a rare earth metal element, a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), and a soft magnetic material phase containing a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), and/or, the crystalline mother material partially having amorphous parts; amorphousating the above-mentioned crystalline mother material, and re-crystallizing the above-mentioned amorphousated mother material.
- an anisotropic exchange spring magnet powder having a fine crystal particle diameter and crystal orientations arranged to the constant direction is obtained.
- an anisotropic exchange spring magnet powder can be obtained which is finer and more excellent in magnetic property by repeating a continuous process composed of an amorphousating process and a crystallizing process.
- the anisotropic exchange spring magnet of the present invention is obtained by treatment, in an anisotropy-imparting molding process and a solidification process, of an anisotropic exchange spring magnet powder comprising a hard magnetic material phase containing a rare earth metal element, a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), and a soft magnetic material phase containing a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), wherein the above-mentioned hard magnetic material phase and soft magnetic material phase have crystal particle diameters of 150 nm or less.
- an anisotropic exchange spring magnet powder having a fine crystal particle diameter and crystal orientations arranged to the constant direction is obtained.
- FIG. 1 is a graph showing a relation between the number of process cycles and the relative value of anisotropic strength in the first embodiment.
- FIG. 2 is a graph showing relations between the numbers of process cycles and the relative values of coercive force, of materials shown in FIG. 14 of the first embodiment.
- FIG. 3 is a graph showing a relation between the number of process cycles and the relative value of anisotropic strength in the first embodiment.
- FIG. 4 is a graph showing a relation between the number of process cycles and the relative value of coercive force in the first embodiment.
- FIG. 5 is a graph showing a relation between the content x and the maximum energy product in the first embodiment.
- FIG. 6 is a graph showing a relation between the amorphous content and the relative value of maximum energy product in the first embodiment.
- FIG. 7 is a graph showing a relation between the number of process cycles and the relative value of anisotropic strength in the second embodiment.
- FIG. 8 is a graph showing a relation between the number of process cycles and the relative value of coercive force in the second embodiment.
- FIG. 9 is a graph showing a relation between the number of process cycles and the relative value of anisotropic strength in the second embodiment.
- FIG. 10 is a graph showing a relation between the number of process cycles and the relative value of coercive force in the second embodiment.
- FIG. 11 is a graph showing a relation between the content x and the maximum energy product in the second embodiment.
- FIG. 12 is a graph showing relations between the numbers of process cycles and the relative values of anisotropic strength, when different crystallizing treatments are used, in the second embodiment.
- FIG. 13 is a schematic view showing the structure of a driving motor in the third embodiment.
- FIG. 14 is a table showing combinations of permanent magnetic materials and soft magnetic materials in FIG. 2, and presence or absence of anisotropy.
- the exchange spring magnetic powder of the present invention is an exchange spring magnetic powder excellent in anisotropy obtained by complexing a permanent magnetic material with a soft magnetic material.
- a permanent magnetic material is called a hard magnetic material phase and a soft magnetic material is called a soft magnetic material phase.
- a rear earth metal element, a transition metal element, and boron (B), carbon (C), nitrogen (N) or oxygen (O) or any mixtures thereof are contained, and a hard magnetic material phase and a soft magnetic material phase have crystal particle diameters of 150 nm or less.
- Nd—Fe—B-based, Sm—Fe—N-based, Sm—Fe—N—B-based, Sm—Co-based, Sm—Co—B-based, BaFe 12 O 19 -based and SrFe 12 O 19 -based materials, and the like are listed
- soft magnetic material phase Fe, Co, Fe—B-based, Fe—C-based, Fe—Co-based and Fe—N-based materials, and Mn(manganese)-Zn(zinc)-based ferrite, Ni(nickel)-Zn-based ferrite and Fe 3 O 4 -based ferrite, and the like are listed.
- a hard magnetic material phase and a soft magnetic material phase are complexed, in other words, in this magnetic powder, a hard magnetic material phase and a soft magnetic material phase are present in admixture under the condition of exchange connection of magnetization of a hard magnetic material phase and magnetization of an adjacent soft magnetic material phase.
- the exchange spring magnetic powder of the present invention manifests high anisotropy, and typically, has anisotropic strength represented by the following formula:
- the exchange spring magnetic powder of the present invention contains a rare earth metal element, a transition metal element, and B, C, N or O or any combinations thereof, and contains, as essential components, a rare earth metal element, a transition metal element, and an element such as B, C and the like, from the standpoint of element components.
- the rare earth metal element is not particularly restricted, and Nd, Pr or Sm and any combinations thereof are suitable, and also the transition metal element is not particularly restricted, and it is preferable to use Fe and/or Co as the main component.
- the transition metal element other transition metal elements such as vanadium (V), niobium (Nb), chromium (Cr), nickel (Ni), aluminum (Al), titanium (Ti), gallium (Ga), zirconium (Zr) and the like can also be used.
- the content of the above-mentioned rare earth metal element and an element such as B, C or the like is not particularly restricted providing the above-mentioned property is manifested, and typically, it is preferable that the content of rare earth metal element is from 2 to 15 atomic %, the content of elements such as B, C and the like is from 1 to 25 atomic % or less.
- the content of rare earth metal element is less than 2 atomic %, the content of a hard magnetic material phase in a magnet produced thereafter lowers, while when over 15 atomic %, the content of a soft magnetic material phase lowers, namely, in any case, magnetic ability may decrease.
- the content of elements such as B, C and the like is out of the above-described range, disadvantages occur such as production of compounds not preferable for the intended magnetic material in the present invention, deviation of a formulation ratio of compounds in a magnetic material out of the preferable range, and the like, and resultantly, the ability of the magnetic material may decrease.
- the content is preferably from 70 to 85 atomic %.
- the crystal particle diameter of the above-mentioned hard magnetic material phase and soft magnetic material phase is controlled to 150 nm or less, and by this, this magnetic powder shows excellent change connection property.
- the particle diameter is over 150 nm, the center part of a soft magnetic material phase is not easily affected by a hard magnetic material phase, consequently, excellent magnetic property, namely high maximum energy product may not be obtained, and the intended magnetic material in the present invention is not obtained.
- the method of producing an exchange spring magnetic powder of the present invention is a method for obtaining an exchange spring powder as described above, and in this method, a crystalline mother material containing the above-mentioned hard magnetic material phase and soft magnetic material phase, a material obtained by forming amorphous parts partially in this crystalline mother material, or a mixture of them, is subjected continuously to amorphousating treatment and crystallizing treatment each at least once.
- the above-mentioned crystalline mother material is a crystalline magnetic material containing a hard magnetic material phase and a soft magnetic material phase as described above, and element components thereof are also as described above, and a large difference from the exchange spring magnetic powder of the present invention is presence or absence of exchange of magnetization of a hard magnetic material phase and magnetization of an adjacent soft magnetic material phase.
- introduction of amorphous parts into such a crystalline mother material can be conducted by known technologies, for example, a high frequency introduction meeting and casting method, liquid quenching method, atomizing method and the like.
- a benefit of thus introducing amorphous parts partially into a crystalline mother material previously is that oxidation of the mother material can be suppressed sufficiently since the following amorphousating process can be simplified and shortened, and by this merit, the magnetic property of the resulting exchange spring magnetic powder can be further improved.
- the content of amorphous parts in the mother material can be evaluated from the temperature dependence of magnetization, and it is desirably 95% or less. When the content of amorphous parts is over this range, the degree of orientation of the mother material crystal may lower to decrease magnetic property.
- the above-mentioned amorphousating process can be conducted by applying a ball mill method, plasma irradiation method and the like, and by this process, a crystalline mother material and/or a material obtained by introducing amorphous parts into this crystalline mother material is amorphousated into a condition in which fine crystal particles remain in an amorphous matrix.
- a crystallizing process by heat treatment is conducted following this amorphousating process, and by this process, crystal particles in the above-mentioned amorphous matrix are crystallized so finely as to cause exchange connection of the particles, and in this procedure, crystals grow continuously toward the direction of fine crystal particles remaining, resultantly, in one crystal particle, an anisotropic exchange spring magnet powder which is fine and has crystal particle diameters of approximately the same size is formed.
- the above-mentioned amorphousating process and/or crystallizing process is desirably conducted under a condition in which oxygen is blocked, for example, in vacuum, in an inert gas, in nitrogen or in an organic solvent.
- a condition in which oxygen is blocked for example, in vacuum, in an inert gas, in nitrogen or in an organic solvent.
- the temperature of heat treatment for crystallization is 950° C. or less.
- the crystallization is desirably conducted at 950° C. or less, and due to the same reason, the time of heating treatment for crystallization is desirably 1 hour or less.
- the compressing method for example, hot press and spark plasma sintering methods can be applied, and it is desirable to conduct compression at a pressure from 49 to 98 MPa (0.5 to 1.0 ton/cm 2 ) in the case of the hot press method, and at a pressure from 490 to 980 MPa (5 to 10 ton/cm 2 ) in the case of the spark plasma sintering method.
- a method of imparting anisotropy there is, for example, a method in which compression-molding is conducted under a condition in which crystallization directions are arranged to the constant direction in magnetic field.
- the magnetic strength is 20 kOe ( ⁇ 1592 kA/m) or more
- the compression pressure is from 98 to 294 MPa (1 to 3 ton/cm 2 )
- the treatment temperature is ordinary temperature.
- the anisotropic exchange spring magnet of the present invention is obtained by using the above-mentioned anisotropic exchange spring magnet powder of the present invention, and obtained by treatment of this magnetic powder in an isotropy-imparting molding process and a solidification process.
- anisotropic exchange spring magnet of the present invention is obtained typically as an anisotropic exchange spring magnet of bulk type, since this spring magnet shows higher maximum energy product as compared with known resins and metal bonded magnets having low melting point or full dense magnets, of the same form, when this spring magnet is applied to motors, magnetic field sensors, rotation sensors, acceleration sensors, torque sensors and the like, production of smaller and lighter products is promoted, and in the case of application to automobile parts for example, remarkable improvement in fuel consumption can be attained.
- a crystalline mother material containing amorphous parts was produced according to a liquid quenching method using an alloy of the formula: Nd 4 Fe 88-x Co 5 Nb 3 B x which had been high frequency induction-fused. Then, this crystalline mother material was ground into a coarse powder of 1 mm or less which was amorphousated by a plasma irradiation method, then, crystallizing treatment was conducted for given cycles to obtain an anisotropic exchange spring magnet powder of this embodiment.
- a hard magnetic material phase: Nd 2 Fe 14 B had a crystal particle diameter of about 40 nm
- a soft magnetic material phase: Fe 3 B had a crystal particle diameter of about 40 nm.
- the resulted exchange spring magnetic powder was ground into a powder of 100 ⁇ m or less, then, press-molded in a magnetic field of 25 kOe ( ⁇ 1990 kA/m) to produce a compressed powder body, and magnetization curves along magnetic field application direction and vertical direction to this of the powder body were measured by a direct current BH tracer manifesting a maximum field of 25 kOe ( ⁇ 1990 kA/m), and presence or absence of anisotropy was confirmed by a difference between these curves.
- FIG. 1 shows that the effect of the process of the present invention is extremely high, and anisotropy can be imparted by conducting amorphism and crystallization each once. Further, there is also shown a tendency of increase in extent of anisotropy by repetition of once or more times.
- FIG. 2 shows the relative value of coercive force of the same material as in FIG. 1. It is apparent that coercive force important as magnetic property can not be obtained in the form of mother material, and is improved by conducting amorphism and crystallization each once or more times.
- FIG. 4 shows the relative value of coercive force of the same material as in FIG. 3. It is apparent that coercive force important as magnetic property can not be obtained in the form of mother material, and is improved by conducting amorphism and crystallization each once or more times.
- the maximum energy product of the compressed powder body in this procedure was obtained from a magnetization curve along magnetic field application direction in producing the compressed powder body, and represents magnetic property of the powder.
- composition range it is known that higher property over that of conventional magnetic materials is obtained when the amount of B is from 1 to 25 atomic %.
- the content of amorphous parts was evaluated by magnetization-temperature dependence of the mother material.
- a crystalline mother material containing amorphous parts was produced according to a liquid quenching method using an alloy of the formula: Nd x Fe 84-x Co 8 V 2 B 6 which had been high frequency induction meeting and casting, and this mother material was placed in a stainless steel ball mill pot together with stainless steel balls using cyclohexane as a solvent, and amorphousating treatment was conducted according to a ball mill method.
- a crystallizing process was conducted for given cycles to obtain an anisotropic exchange spring magnet powder of this embodiment.
- a hard magnetic material phase: Nd 2 Fe 14 B had a crystal particle diameter of about 50 nm
- a soft magnetic material phase: Fe had a crystal particle diameter of about 50 nm.
- the resulted powder was ground into a powder of 100 ⁇ m or less, then, press-molded in a magnetic field of 25 kOe (1990 kA/m) to produce a compressed powder body, and magnetization curves along magnetic field application direction and vertical direction to this of the powder body were measured by a direct current BH tracer manifesting a maximum field of 25 kOe (1990 kA/m), and presence or absence of anisotropy was confirmed by a difference between these curves.
- FIG. 8 shows the relative value of coercive force of the same material as in FIG. 7.
- FIG. 10 shows the relative value of coercive force of the same material as in FIG. 9.
- the maximum energy product of the compressed powder body in this procedure was obtained from a magnetization curve along magnetic field application direction in producing the compressed powder body, and represents magnetic property of the powder.
- composition range it is known that higher property over that of conventional magnetic materials is obtained when the atomic % is from 2 to 15. Further, the same effect and high ability could be realized also when Nd—Pr, Pr, Nd—Dy (dysprosium) and the like were used as a rare earth metal element for a rare earth metal element Nd, and these data are illustrated together.
- FIG. 13 shows an embodiment in which a bulk spring magnet having an anisotropic effect was made using the anisotropic exchange spring magnet powder obtained in the second embodiment, and this was applied to a driving motor of an electric automobile or a hybrid electric automobile.
- the production method of the present invention is a production method providing an anisotropic exchange spring magnet having excellent magnetic ability, and an anisotropic exchange spring magnet powder obtained from this magnet can realize a bond magnet and full dense magnet having high ability which have not been obtained from conventional isotropic magnetic powders, therefore, when the anisotropic exchange spring magnet of the present invention is applied to motors, magnetic sensors, rotation sensors, acceleration sensors, torque sensors and the like using magnets, production of smaller and lighter products is promoted, and when this magnet is applied to automobile parts, remarkable improvement in fuel consumption is possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Power Engineering (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
An anisotropic exchange spring magnet powder complexing a hard magnetic material and a soft magnetic material, wherein a rare earth metal element, a transition metal element, boron and carbon and the like are contained, and the hard magnetic material and soft magnetic material have crystal particle diameters of 150 nm or less. A method of producing an anisotropic exchange spring magnet powder comprises treating a crystalline mother material containing a hard magnetic material and soft magnetic material or the crystalline mother material having amorphous parts, in a continuous process composed of an amorphousating process and the following crystallizing process, repeated once or more times. An anisotropic exchange spring magnet is obtained by treatment, in an anisotropy-imparting molding process and a solidification process, of an anisotropic exchange spring magnet powder.
Description
- The present invention relates to an exchange spring magnet powder and a method of producing the same, more particularly, to an exchange spring magnet powder realizing an exchange spring magnet having anisotropy, which can suitably used in motors, magnetic field sensors, rotation sensors, acceleration sensors, torque sensors and the like, and a method of producing the same.
- As related permanent magnet materials, ferrite magnets which are chemically stable and inexpensive and rare earth metal-based magnets having high ability are practically used. These magnets are constituted of approximately a single compound as a magnet compound, and recently, exchange spring magnets are noticed which are obtained by complexing a permanent magnet material having high coercive force with a soft magnetic material having high magnetic flux density.
- Such exchange spring magnets are expected to have high maximum energy product, and theoretically, extremely high magnetic property of 100 MGOe(≈796 kJ/m3) or more can be realized.
- However, exchange spring magnets developed to date have isotropy, and the resulting maximum energy product is as low as about 20 MGOe(≈159 kJ/m3). The maximum reason for this is that orientations of crystal particles constituting an exchange spring magnet are not arranged to a constant direction, therefore, there are a lot of studies to realize an anisotropic exchange spring magnet which is so fine and has crystal directions arranged toward the same direction as to manifest exchange connection.
- The present invention has been accomplished in view of such problems of earlier technologies, and an object of the present invention is to provide an anisotropic exchange spring magnetic powder which can realize an exchange spring magnet having more excellent anisotropy and higher maximum energy product as compared with conventional magnets, and a method of producing the same, and an anisotropic exchange spring magnet obtained by using this magnetic powder.
- The present inventors have intensively investigated to attain the above-mentioned object, and resultantly, found that the above-mentioned object can be accomplished by treating a given crystalline mother material in specific amorphousating process and crystallizing process, leading to completion of the present invention.
- Namely, the anisotropic exchange spring magnet powder of the present invention comprises a hard magnetic material phase containing a rare earth metal element, a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), and a soft magnetic material phase containing a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), wherein the above-mentioned hard magnetic material phase and soft magnetic material phase have crystal particle diameters of 150 nm or less.
- The method of producing an anisotropic exchange spring magnet powder of the present invention comprises: preparing a crystalline mother material containing a hard magnetic material phase containing a rare earth metal element, a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), and a soft magnetic material phase containing a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), and/or, the crystalline mother material partially having amorphous parts; amorphousating the above-mentioned crystalline mother material, and re-crystallizing the above-mentioned amorphousated mother material.
- According to the present invention, an anisotropic exchange spring magnet powder having a fine crystal particle diameter and crystal orientations arranged to the constant direction is obtained.
- When the production method of the present invention is effected, an anisotropic exchange spring magnet powder can be obtained which is finer and more excellent in magnetic property by repeating a continuous process composed of an amorphousating process and a crystallizing process.
- Further, the anisotropic exchange spring magnet of the present invention is obtained by treatment, in an anisotropy-imparting molding process and a solidification process, of an anisotropic exchange spring magnet powder comprising a hard magnetic material phase containing a rare earth metal element, a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), and a soft magnetic material phase containing a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), wherein the above-mentioned hard magnetic material phase and soft magnetic material phase have crystal particle diameters of 150 nm or less.
- According to the present invention, an anisotropic exchange spring magnet powder having a fine crystal particle diameter and crystal orientations arranged to the constant direction is obtained.
- FIG. 1 is a graph showing a relation between the number of process cycles and the relative value of anisotropic strength in the first embodiment.
- FIG. 2 is a graph showing relations between the numbers of process cycles and the relative values of coercive force, of materials shown in FIG. 14 of the first embodiment.
- FIG. 3 is a graph showing a relation between the number of process cycles and the relative value of anisotropic strength in the first embodiment.
- FIG. 4 is a graph showing a relation between the number of process cycles and the relative value of coercive force in the first embodiment.
- FIG. 5 is a graph showing a relation between the content x and the maximum energy product in the first embodiment.
- FIG. 6 is a graph showing a relation between the amorphous content and the relative value of maximum energy product in the first embodiment.
- FIG. 7 is a graph showing a relation between the number of process cycles and the relative value of anisotropic strength in the second embodiment.
- FIG. 8 is a graph showing a relation between the number of process cycles and the relative value of coercive force in the second embodiment.
- FIG. 9 is a graph showing a relation between the number of process cycles and the relative value of anisotropic strength in the second embodiment.
- FIG. 10 is a graph showing a relation between the number of process cycles and the relative value of coercive force in the second embodiment.
- FIG. 11 is a graph showing a relation between the content x and the maximum energy product in the second embodiment.
- FIG. 12 is a graph showing relations between the numbers of process cycles and the relative values of anisotropic strength, when different crystallizing treatments are used, in the second embodiment.
- FIG. 13 is a schematic view showing the structure of a driving motor in the third embodiment.
- FIG. 14 is a table showing combinations of permanent magnetic materials and soft magnetic materials in FIG. 2, and presence or absence of anisotropy.
- The exchange spring magnetic powder of the present invention will be illustrated in detail below. In the present specification, “%” is by weight unless otherwise stated.
- As described above, the exchange spring magnetic powder of the present invention is an exchange spring magnetic powder excellent in anisotropy obtained by complexing a permanent magnetic material with a soft magnetic material. Hereinafter, according to conventional manners, a permanent magnetic material is called a hard magnetic material phase and a soft magnetic material is called a soft magnetic material phase.
- As element components, a rear earth metal element, a transition metal element, and boron (B), carbon (C), nitrogen (N) or oxygen (O) or any mixtures thereof are contained, and a hard magnetic material phase and a soft magnetic material phase have crystal particle diameters of 150 nm or less.
- Here, as the hard magnetic material phase, Nd—Fe—B-based, Sm—Fe—N-based, Sm—Fe—N—B-based, Sm—Co-based, Sm—Co—B-based, BaFe12O19-based and SrFe12O19-based materials, and the like are listed, and as the soft magnetic material phase, Fe, Co, Fe—B-based, Fe—C-based, Fe—Co-based and Fe—N-based materials, and Mn(manganese)-Zn(zinc)-based ferrite, Ni(nickel)-Zn-based ferrite and Fe3O4-based ferrite, and the like are listed.
- In the exchange spring magnetic powder of the present invention, a hard magnetic material phase and a soft magnetic material phase, as described above, are complexed, in other words, in this magnetic powder, a hard magnetic material phase and a soft magnetic material phase are present in admixture under the condition of exchange connection of magnetization of a hard magnetic material phase and magnetization of an adjacent soft magnetic material phase.
- The exchange spring magnetic powder of the present invention manifests high anisotropy, and typically, has anisotropic strength represented by the following formula:
- Br///Br⊥=10 to 30
- (wherein, Br// represents residual magnetic flux density along magnetic field application direction in molding in magnetic field, and Br⊥ represents residual magnetic flux density along vertical direction to this magnetic field application direction).
- On the other hand, as described above, the exchange spring magnetic powder of the present invention contains a rare earth metal element, a transition metal element, and B, C, N or O or any combinations thereof, and contains, as essential components, a rare earth metal element, a transition metal element, and an element such as B, C and the like, from the standpoint of element components.
- In this case, the rare earth metal element is not particularly restricted, and Nd, Pr or Sm and any combinations thereof are suitable, and also the transition metal element is not particularly restricted, and it is preferable to use Fe and/or Co as the main component. As the transition metal element, other transition metal elements such as vanadium (V), niobium (Nb), chromium (Cr), nickel (Ni), aluminum (Al), titanium (Ti), gallium (Ga), zirconium (Zr) and the like can also be used.
- Further, in the exchange spring magnetic powder of the present invention, the content of the above-mentioned rare earth metal element and an element such as B, C or the like is not particularly restricted providing the above-mentioned property is manifested, and typically, it is preferable that the content of rare earth metal element is from 2 to 15 atomic %, the content of elements such as B, C and the like is from 1 to 25 atomic % or less.
- When the content of rare earth metal element is less than 2 atomic %, the content of a hard magnetic material phase in a magnet produced thereafter lowers, while when over 15 atomic %, the content of a soft magnetic material phase lowers, namely, in any case, magnetic ability may decrease.
- On the other hand, when the content of elements such as B, C and the like is out of the above-described range, disadvantages occur such as production of compounds not preferable for the intended magnetic material in the present invention, deviation of a formulation ratio of compounds in a magnetic material out of the preferable range, and the like, and resultantly, the ability of the magnetic material may decrease. Regarding the transition metal elements, the content is preferably from 70 to 85 atomic %.
- Further, in the exchange spring magnetic powder of the present invention, the crystal particle diameter of the above-mentioned hard magnetic material phase and soft magnetic material phase is controlled to 150 nm or less, and by this, this magnetic powder shows excellent change connection property.
- When the particle diameter is over 150 nm, the center part of a soft magnetic material phase is not easily affected by a hard magnetic material phase, consequently, excellent magnetic property, namely high maximum energy product may not be obtained, and the intended magnetic material in the present invention is not obtained.
- Next, the method of producing an exchange spring magnetic powder of the present invention will be explained in detail.
- The method of producing an exchange spring magnetic powder of the present invention is a method for obtaining an exchange spring powder as described above, and in this method, a crystalline mother material containing the above-mentioned hard magnetic material phase and soft magnetic material phase, a material obtained by forming amorphous parts partially in this crystalline mother material, or a mixture of them, is subjected continuously to amorphousating treatment and crystallizing treatment each at least once.
- Here, the above-mentioned crystalline mother material is a crystalline magnetic material containing a hard magnetic material phase and a soft magnetic material phase as described above, and element components thereof are also as described above, and a large difference from the exchange spring magnetic powder of the present invention is presence or absence of exchange of magnetization of a hard magnetic material phase and magnetization of an adjacent soft magnetic material phase.
- In the production method of the present invention, introduction of amorphous parts into such a crystalline mother material can be conducted by known technologies, for example, a high frequency introduction meeting and casting method, liquid quenching method, atomizing method and the like.
- A benefit of thus introducing amorphous parts partially into a crystalline mother material previously is that oxidation of the mother material can be suppressed sufficiently since the following amorphousating process can be simplified and shortened, and by this merit, the magnetic property of the resulting exchange spring magnetic powder can be further improved.
- The content of amorphous parts in the mother material can be evaluated from the temperature dependence of magnetization, and it is desirably 95% or less. When the content of amorphous parts is over this range, the degree of orientation of the mother material crystal may lower to decrease magnetic property.
- The above-mentioned amorphousating process can be conducted by applying a ball mill method, plasma irradiation method and the like, and by this process, a crystalline mother material and/or a material obtained by introducing amorphous parts into this crystalline mother material is amorphousated into a condition in which fine crystal particles remain in an amorphous matrix.
- In the production method of the present invention, a crystallizing process by heat treatment is conducted following this amorphousating process, and by this process, crystal particles in the above-mentioned amorphous matrix are crystallized so finely as to cause exchange connection of the particles, and in this procedure, crystals grow continuously toward the direction of fine crystal particles remaining, resultantly, in one crystal particle, an anisotropic exchange spring magnet powder which is fine and has crystal particle diameters of approximately the same size is formed.
- In the production method of the present invention, the above-mentioned amorphousating process and/or crystallizing process is desirably conducted under a condition in which oxygen is blocked, for example, in vacuum, in an inert gas, in nitrogen or in an organic solvent. By conducting the process under such a condition, deterioration of a rare earth metal-based magnetic compound can be prevented, and decrease in magnetic property of the resulting exchange spring magnetic powder can be prevented.
- Further, in the production method of the present invention, it is desirable to repeat the above-mentioned amorphousating process and crystallizing process (continuous process of amorphism-crystallization) once or more times, and by this, the degree of orientation of crystal is further improved, and consequently, an anisotropy-imparting effect increases, which is effective for improvement of magnetic property.
- In the above-mentioned crystallizing process, it is sufficient that crystallization realizing the above-mentioned exchange connection can be conducted, and typically, it is preferable that the temperature of heat treatment for crystallization is 950° C. or less. When over 950° C., an anisotropic exchange spring magnet powder having fine crystal particles may not be obtained, and deterioration in magnetic property occurs, therefore, the crystallization is desirably conducted at 950° C. or less, and due to the same reason, the time of heating treatment for crystallization is desirably 1 hour or less.
- In the production method of the present invention, it is also possible to conduct this crystallizing process under compression, and by this, crystal growth can be promoted.
- As the compressing method, for example, hot press and spark plasma sintering methods can be applied, and it is desirable to conduct compression at a pressure from 49 to 98 MPa (0.5 to 1.0 ton/cm2) in the case of the hot press method, and at a pressure from 490 to 980 MPa (5 to 10 ton/cm2) in the case of the spark plasma sintering method.
- Further, in such a crystallizing process by heat treatment, it may also be permissible that anisotropy is imparted to a magnetic material amorphousated in the previous process, then, the material is molded while being solidified, and the molded particle is crystallized, and by this, the degree of orientation of crystal can be further enhanced and magnetic property can be further improved.
- As such a method of imparting anisotropy, there is, for example, a method in which compression-molding is conducted under a condition in which crystallization directions are arranged to the constant direction in magnetic field. Regarding treatment conditions in this procedure, it is desirable that the magnetic strength is 20 kOe (≈1592 kA/m) or more, the compression pressure is from 98 to 294 MPa (1 to 3 ton/cm2), and the treatment temperature is ordinary temperature.
- Next, the anisotropic exchange spring magnet of the present invention will be explained in detail.
- The anisotropic exchange spring magnet of the present invention is obtained by using the above-mentioned anisotropic exchange spring magnet powder of the present invention, and obtained by treatment of this magnetic powder in an isotropy-imparting molding process and a solidification process.
- As the solidification process in this procedure, hot press and spark plasma sintering methods which can effect full densifying at constant temperature, and the like are effective.
- Further, though the anisotropic exchange spring magnet of the present invention is obtained typically as an anisotropic exchange spring magnet of bulk type, since this spring magnet shows higher maximum energy product as compared with known resins and metal bonded magnets having low melting point or full dense magnets, of the same form, when this spring magnet is applied to motors, magnetic field sensors, rotation sensors, acceleration sensors, torque sensors and the like, production of smaller and lighter products is promoted, and in the case of application to automobile parts for example, remarkable improvement in fuel consumption can be attained.
- Further, since such a bulk magnet has extremely high maximum energy product, by application of this magnet particularly to a driving motor in electric automobiles and hybrid electric automobiles, among magnetic field sensors, rotation sensors, acceleration sensors and torque sensors, the driving motor can be installed at a place in which space can not be secured easily conventionally, and environmental problems can be solved at one time.
- The following embodiments and comparative examples will illustrate the present invention further in detail below, but do not limit the scope of the present invention.
- First Embodiment
- A crystalline mother material containing amorphous parts was produced according to a liquid quenching method using an alloy of the formula: Nd4Fe88-xCo5Nb3Bx which had been high frequency induction-fused. Then, this crystalline mother material was ground into a coarse powder of 1 mm or less which was amorphousated by a plasma irradiation method, then, crystallizing treatment was conducted for given cycles to obtain an anisotropic exchange spring magnet powder of this embodiment. In this magnetic powder, a hard magnetic material phase: Nd2Fe14B had a crystal particle diameter of about 40 nm, and a soft magnetic material phase: Fe3B had a crystal particle diameter of about 40 nm.
- In this plasma irradiation method, the above-mentioned coarse powder was exposed in high frequency Argon (Ar) plasma, and this coarse powder was amorphousated from the surface direction by plasma energy.
- The resulted exchange spring magnetic powder was ground into a powder of 100 μm or less, then, press-molded in a magnetic field of 25 kOe (≈1990 kA/m) to produce a compressed powder body, and magnetization curves along magnetic field application direction and vertical direction to this of the powder body were measured by a direct current BH tracer manifesting a maximum field of 25 kOe (≈1990 kA/m), and presence or absence of anisotropy was confirmed by a difference between these curves.
- FIG. 1 shows the cycle number of amorphism and crystallization and the relative value of the anisotropic strength (ratio of residual magnetic flux density Br// along magnetic field application direction in molding in magnetic field to residual magnetic flux density Br⊥ along vertical direction to this), when using a mother material having a composition of the above-mentioned alloy in which x=19 and an amorphous content evaluated by temperature property of magnetization of 80%, the crystallizing process being heat treatment in vacuum at 650° C. for 10 minutes.
- FIG. 1 shows that the effect of the process of the present invention is extremely high, and anisotropy can be imparted by conducting amorphism and crystallization each once. Further, there is also shown a tendency of increase in extent of anisotropy by repetition of once or more times.
- FIG. 2 shows the relative value of coercive force of the same material as in FIG. 1. It is apparent that coercive force important as magnetic property can not be obtained in the form of mother material, and is improved by conducting amorphism and crystallization each once or more times.
- Further, such increase in isotropy by repetition of the processes is the same also in an exchange spring magnetic powder combining various hard magnetic material phases with soft magnetic material phases as shown in FIG. 14, and data are described together in FIG. 2.
- FIG. 3 shows the cycle number of amorphism and crystallization and the relative value of the anisotropic strength (Br///Br195 ratio), when using a mother material having a composition in which x=20 and an amorphous content evaluated by temperature property of magnetization of 90%, the crystallizing process being a process in which compression molding is effected while imparting anisotropy in a magnetic field of 25 kOe (≈1990 kA/m), then, hot press is conducted in vacuum at a hot press compression pressure of 59 MPa (0.6 ton/cm2) and 650° C. for 10 minutes.
- The effect of this process is extremely large, and it is known that anisotropy can be imparted by practicing once. Further, there is also shown a tendency of increase in extent of anisotropy by repetition of once or more times.
- FIG. 4 shows the relative value of coercive force of the same material as in FIG. 3. It is apparent that coercive force important as magnetic property can not be obtained in the form of mother material, and is improved by conducting amorphism and crystallization each once or more times.
- FIG. 5 shows the maximum energy product of a compressed powder body, when evaluating a relation between x and the anisotropic strength, when using a mother material having a composition in which x=0.5 to 30 and an amorphous content evaluated by temperature property of magnetization of 75%, the crystallizing process being heat treatment in vacuum at 650° C. for 10 minutes, and the number of cycles of amorphism and crystallization being 3.
- The maximum energy product of the compressed powder body in this procedure was obtained from a magnetization curve along magnetic field application direction in producing the compressed powder body, and represents magnetic property of the powder.
- Regarding composition range, it is known that higher property over that of conventional magnetic materials is obtained when the amount of B is from 1 to 25 atomic %.
- FIG. 6 shows the relative value of the maximum energy product of a compressed powder body, when evaluating the content of amorphous parts and the anisotropic strength, when using a mother material having a composition in which x=19, the crystallizing process being heat treatment in vacuum at 650° C. for 1 minute, and the number of cycles of crystallization being 3. The content of amorphous parts was evaluated by magnetization-temperature dependence of the mother material.
- The cause of steep reduction in magnetic property when the content of amorphous parts is 90% or more is lowering of anisotropy. Further, it was proved that oxidation of materials could be reduced by inclusion of amorphous parts by quantitative evaluation of oxygen concentration.
- Second Embodiment
- A crystalline mother material containing amorphous parts was produced according to a liquid quenching method using an alloy of the formula: NdxFe84-xCo8V2B6 which had been high frequency induction meeting and casting, and this mother material was placed in a stainless steel ball mill pot together with stainless steel balls using cyclohexane as a solvent, and amorphousating treatment was conducted according to a ball mill method.
- Then, a crystallizing process was conducted for given cycles to obtain an anisotropic exchange spring magnet powder of this embodiment. In this magnetic powder, a hard magnetic material phase: Nd2Fe14B had a crystal particle diameter of about 50 nm, and a soft magnetic material phase: Fe had a crystal particle diameter of about 50 nm.
- The resulted powder was ground into a powder of 100 μm or less, then, press-molded in a magnetic field of 25 kOe (1990 kA/m) to produce a compressed powder body, and magnetization curves along magnetic field application direction and vertical direction to this of the powder body were measured by a direct current BH tracer manifesting a maximum field of 25 kOe (1990 kA/m), and presence or absence of anisotropy was confirmed by a difference between these curves.
- FIG. 7 shows the cycle number of amorphism and crystallization and the relative value of the anisotropic strength (Br///Br⊥ ratio), when using a mother material having a composition of the above-mentioned alloy in which x=9 and an amorphous content evaluated by temperature property of magnetization of 50%, the crystallizing process being heat treatment in vacuum at 600° C. for 10 minutes.
- It is known that the effect of the process of the present invention is extremely high, and anisotropy can be imparted by practicing once. Further, there is also shown a tendency of increase in extent of anisotropy by repetition of once or more times.
- FIG. 8 shows the relative value of coercive force of the same material as in FIG. 7.
- It is apparent that coercive force important as magnetic property can not be obtained in the form of mother material, and is improved by conducting amorphism and crystallization each once or more times.
- FIG. 9 shows the cycle number of amorphism and crystallization and the relative value of the anisotropic strength (Br///Br⊥ ratio), when using a mother material having a composition in which x=8 and an amorphous content evaluated by temperature property of magnetization of 60%, the crystallizing process being a process in which compression molding is effected while imparting anisotropy in a magnetic field of 25 kOe (1990 kA/m), then, spark plasma sintering was conducted in vacuum at a compression pressure of 980 MPa (10 ton/cm2) and 600° C. for 10 minutes.
- The effect of this process is extremely large, and it is known that anisotropy can be imparted by practicing once. Further, there is also shown a tendency of increase in extent of anisotropy by repetition of once or more times.
- FIG. 10 shows the relative value of coercive force of the same material as in FIG. 9.
- It is apparent that coercive force important as magnetic property can not be obtained in the form of mother material, and is improved by conducting amorphism and crystallization each once or more times.
- FIG. 11 shows the maximum energy product of a compressed powder body, when evaluating a relation between x and the anisotropic strength, using a mother material having a composition in which x=0.5 to 20 and an amorphous content evaluated by temperature property of magnetization of 45%, the number of cycles of amorphism and crystallization being 2. The maximum energy product of the compressed powder body in this procedure was obtained from a magnetization curve along magnetic field application direction in producing the compressed powder body, and represents magnetic property of the powder.
- Regarding composition range, it is known that higher property over that of conventional magnetic materials is obtained when the atomic % is from 2 to 15. Further, the same effect and high ability could be realized also when Nd—Pr, Pr, Nd—Dy (dysprosium) and the like were used as a rare earth metal element for a rare earth metal element Nd, and these data are illustrated together.
- FIG. 12 shows the number of cycles of amorphism and crystallization and the relative value of the anisotropic strength (Br///Br⊥ ratio), when using a mother material having a composition in which x=7, and an amorphous content evaluated by temperature property of magnetization of 50%, the crystallizing process being “heat treatment in vacuum at 650° C. for 5 minutes” or “spark plasma sintering conducted in vacuum at 784 MPa (8 ton/cm2) and 650° C. for 5 minutes, after compression-molding in magnetic field of 25 kOe (1990 kA/m)”.
- It is known that extent of anisotropy further increases when sintering is conducted after molding in magnetic field as compared with the case of heat treatment in vacuum as a crystallizing process.
- Third Embodiment
- FIG. 13 shows an embodiment in which a bulk spring magnet having an anisotropic effect was made using the anisotropic exchange spring magnet powder obtained in the second embodiment, and this was applied to a driving motor of an electric automobile or a hybrid electric automobile.
- The maximum torque increased to 1.67-fold based on a motor using a conventional magnet.
- As described above, according to the present invention, since a given crystalline mother material is treated in an amorphousating process and a crystallizing process, an exchange spring magnet having excellent anisotropy and high maximum energy product can be realized. Namely, the production method of the present invention is a production method providing an anisotropic exchange spring magnet having excellent magnetic ability, and an anisotropic exchange spring magnet powder obtained from this magnet can realize a bond magnet and full dense magnet having high ability which have not been obtained from conventional isotropic magnetic powders, therefore, when the anisotropic exchange spring magnet of the present invention is applied to motors, magnetic sensors, rotation sensors, acceleration sensors, torque sensors and the like using magnets, production of smaller and lighter products is promoted, and when this magnet is applied to automobile parts, remarkable improvement in fuel consumption is possible.
- The entire content of a Japanese Application No. P2000-195890 with a filling date of Jun. 29, 2000 is herein incorporated by reference.
- Although the invention has been described above by reference to certain embodiments of the invention, the invention is not limited to the embodiments described above will occur to these skilled in the art, in light of the teachings. The scope of the invention is defined with reference to the following claims.
Claims (13)
1. An anisotropic exchange spring magnet powder comprising:
a hard magnetic material phase containing a rare earth metal element, a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O);
a soft magnetic material phase containing a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), and wherein
said hard magnetic material phase and soft magnetic material phase have crystal particle diameters of 150 nm or less.
2. The anisotropic exchange spring magnet powder according to claim 1 , wherein the content of said rare earth metal element is from 2 to 15 atomic %, and the content of at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O) is from 1 to 25 atomic %.
3. The anisotropic exchange spring magnet powder according to claim 1 , wherein said rare earth metal element is at least one element selected from the group consisting of neodymium (Nd), praseodymium (Pr) and samarium (Sm).
4. The anisotropic exchange spring magnet powder according to claim 1 , wherein said transition metal element is composed mainly of iron (Fe) or (Co).
5. A method of producing an anisotropic exchange spring magnet powder comprising steps of:
preparing a crystalline mother material containing a hard magnetic material phase containing a rare earth metal element, a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), and a soft magnetic material phase containing a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), and/or, the crystalline mother material partially having amorphous parts;
amorphousating said crystalline mother material, and
re-crystallizing said amorphousated mother material.
6. The method of producing an anisotropic exchange spring magnet powder according to claim 5 wherein treatment is conducted by repeating a continuous process composed of said amorphousating process and crystallizing process, once or more times.
7. The method of producing an anisotropic exchange spring magnet powder according to claim 5 wherein said crystalline mother material having amorphous parts has a content of amorphous parts obtained by temperature property of magnetization of 95% or less.
8. The method of producing an anisotropic exchange spring magnet powder according to claim 5 wherein in said crystallizing process, anisotropy is imparted to the crystalline mother material amorphousated in said amorphousating process and the material is molded while solidifying.
9. The method of producing an anisotropic exchange spring magnet powder according to claim 5 wherein said amorphousating process is conducted under a condition in which oxygen is blocked, in any of vacuum, an inert gas, nitrogen and an organic solvent.
10. The method of producing an anisotropic exchange spring magnet powder according to claim 5 wherein said crystallizing process is conducted under a condition in which oxygen is blocked, in any of vacuum, an inert gas, nitrogen and an organic solvent.
11. The method of producing an anisotropic exchange spring magnet powder according to claim 5 wherein said crystallizing process has a crystallization heating treatment temperature of 950° C. or less.
12. The method of producing an anisotropic exchange spring magnet powder according to claim 5 wherein said crystallizing process has a crystallization heating treatment time of 1 hour or less.
13. An anisotropic exchange spring magnet obtained by treatment, in an anisotropy-imparting molding process and a solidification process, of an anisotropic exchange spring magnet powder comprising a hard magnetic material phase containing a rare earth metal element, a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), and a soft magnetic material phase containing a transition metal element, and at least one element selected from the group consisting of boron (B), carbon (C), nitrogen (N) and oxygen (O), wherein said hard magnetic material phase and soft magnetic material phase have crystal particle diameters of 150 nm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/311,148 US7344605B2 (en) | 2000-06-29 | 2005-12-20 | Exchange spring magnet powder and a method of producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPP2000-195890 | 2000-06-29 | ||
JP2000195890A JP3822031B2 (en) | 2000-06-29 | 2000-06-29 | Method for producing replacement spring magnet powder |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/311,148 Division US7344605B2 (en) | 2000-06-29 | 2005-12-20 | Exchange spring magnet powder and a method of producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020000262A1 true US20020000262A1 (en) | 2002-01-03 |
Family
ID=18694480
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/893,892 Abandoned US20020000262A1 (en) | 2000-06-29 | 2001-06-29 | Exchange spring magnet powder and a method of producing the same |
US11/311,148 Expired - Fee Related US7344605B2 (en) | 2000-06-29 | 2005-12-20 | Exchange spring magnet powder and a method of producing the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/311,148 Expired - Fee Related US7344605B2 (en) | 2000-06-29 | 2005-12-20 | Exchange spring magnet powder and a method of producing the same |
Country Status (2)
Country | Link |
---|---|
US (2) | US20020000262A1 (en) |
JP (1) | JP3822031B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090129966A1 (en) * | 2005-03-24 | 2009-05-21 | Hitachi Metals, Ltd. | Iron-based rare-earth-containing nanocomposite magnet and process for producing the same |
US20150274159A1 (en) * | 2014-03-25 | 2015-10-01 | Ford Global Technologies, Llc | E-drive torque sensing vehicle state estimation methods for vehicle control |
US20170171146A1 (en) * | 2015-12-14 | 2017-06-15 | Microsoft Technology Licensing, Llc | Shared Multi-Tenant Domain Name System (DNS) Server For Virtual Networks |
US9691545B2 (en) | 2012-03-27 | 2017-06-27 | Lawrence Livermore National Security, Llc | Developing bulk exchange spring magnets |
CN109192428A (en) * | 2018-10-19 | 2019-01-11 | 广东省稀有金属研究所 | A kind of low cost monocrystalline magnetic powder and the preparation method and application thereof |
US20220166264A1 (en) * | 2020-11-26 | 2022-05-26 | GM Global Technology Operations LLC | Bi-material permanent magnets for electric machines |
CN114835484A (en) * | 2022-04-13 | 2022-08-02 | 四川高鑫磁性材料有限公司 | Permanent magnet composite material and preparation method thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1762632B1 (en) * | 2005-03-24 | 2011-05-25 | Hitachi Metals, Ltd. | Iron-based rare-earth-containing nanocomposite magnet and process for producing the same |
US7846642B2 (en) * | 2007-08-17 | 2010-12-07 | The University Of Massachusetts | Direct incident beam lithography for patterning nanoparticles, and the articles formed thereby |
EP2382254B1 (en) | 2008-12-23 | 2017-08-16 | Dow Global Technologies LLC | Adhesive useful for installing vehicle windows providing rapid drive away time |
CN101853723B (en) * | 2009-03-31 | 2012-11-21 | 比亚迪股份有限公司 | Composite magnetic material and preparation method thereof |
JP5339644B2 (en) * | 2012-02-17 | 2013-11-13 | 旭化成ケミカルズ株式会社 | Manufacturing method of solid material for magnet |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5545266A (en) * | 1991-11-11 | 1996-08-13 | Sumitomo Special Metals Co., Ltd. | Rare earth magnets and alloy powder for rare earth magnets and their manufacturing methods |
JP3118740B2 (en) | 1993-05-24 | 2000-12-18 | ミネベア株式会社 | Rare earth magnet materials and rare earth bonded magnets |
DE69823252T2 (en) * | 1997-02-20 | 2005-04-14 | Alps Electric Co., Ltd. | Permanent magnet alloy, permanent magnet alloy compact and manufacturing method thereto |
DE69814762T2 (en) * | 1997-08-22 | 2003-12-04 | Alps Electric Co Ltd | Hard magnetic alloy with supercooled melting region, sintered product thereof and applications |
JPH1197222A (en) * | 1997-09-19 | 1999-04-09 | Shin Etsu Chem Co Ltd | Anisotropic rare earth permanent magnet material and magnet powder |
JP2000003808A (en) | 1997-12-02 | 2000-01-07 | Alps Electric Co Ltd | Hard magnetic material |
JP3549382B2 (en) | 1997-12-22 | 2004-08-04 | 信越化学工業株式会社 | Rare earth element / iron / boron permanent magnet and method for producing the same |
JPH11233322A (en) | 1998-02-06 | 1999-08-27 | Tdk Corp | Magnet and bonded magnet |
JP3278647B2 (en) * | 1999-01-27 | 2002-04-30 | 住友特殊金属株式会社 | Rare earth bonded magnet |
EP1031388B1 (en) * | 1999-02-26 | 2012-12-19 | Hitachi Metals, Ltd. | Surface-treatment of hollow work, and ring-shaped bonded magnet produced by the process |
JP3389193B2 (en) * | 1999-04-26 | 2003-03-24 | 住友特殊金属株式会社 | Method for Sealing Holes in Ring-Shaped Bonded Magnet and Ring-Shaped Bonded Magnet Sealed by the Method |
US6589367B2 (en) * | 1999-06-14 | 2003-07-08 | Shin-Etsu Chemical Co., Ltd. | Anisotropic rare earth-based permanent magnet material |
-
2000
- 2000-06-29 JP JP2000195890A patent/JP3822031B2/en not_active Expired - Fee Related
-
2001
- 2001-06-29 US US09/893,892 patent/US20020000262A1/en not_active Abandoned
-
2005
- 2005-12-20 US US11/311,148 patent/US7344605B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090129966A1 (en) * | 2005-03-24 | 2009-05-21 | Hitachi Metals, Ltd. | Iron-based rare-earth-containing nanocomposite magnet and process for producing the same |
US9691545B2 (en) | 2012-03-27 | 2017-06-27 | Lawrence Livermore National Security, Llc | Developing bulk exchange spring magnets |
US20150274159A1 (en) * | 2014-03-25 | 2015-10-01 | Ford Global Technologies, Llc | E-drive torque sensing vehicle state estimation methods for vehicle control |
US9296391B2 (en) * | 2014-03-25 | 2016-03-29 | Ford Global Technologies, Llc | E-drive torque sensing vehicle state estimation methods for vehicle control |
US20170171146A1 (en) * | 2015-12-14 | 2017-06-15 | Microsoft Technology Licensing, Llc | Shared Multi-Tenant Domain Name System (DNS) Server For Virtual Networks |
CN109192428A (en) * | 2018-10-19 | 2019-01-11 | 广东省稀有金属研究所 | A kind of low cost monocrystalline magnetic powder and the preparation method and application thereof |
US20220166264A1 (en) * | 2020-11-26 | 2022-05-26 | GM Global Technology Operations LLC | Bi-material permanent magnets for electric machines |
US11936239B2 (en) * | 2020-11-26 | 2024-03-19 | GM Global Technology Operations LLC | Bi-material permanent magnets for electric machines |
CN114835484A (en) * | 2022-04-13 | 2022-08-02 | 四川高鑫磁性材料有限公司 | Permanent magnet composite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2002015907A (en) | 2002-01-18 |
US7344605B2 (en) | 2008-03-18 |
US20060096669A1 (en) | 2006-05-11 |
JP3822031B2 (en) | 2006-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7344605B2 (en) | Exchange spring magnet powder and a method of producing the same | |
JP3741597B2 (en) | Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them | |
US4836868A (en) | Permanent magnet and method of producing same | |
US6290782B1 (en) | Magnetic material and manufacturing method thereof, and bonded magnet using the same | |
KR20000048146A (en) | Rare earth/iron/boron-based per manent magnet alloy composition | |
JPH01704A (en) | Rare earth-iron permanent magnet | |
JPH0974006A (en) | Magnetic material and bonded magnet | |
JP4314244B2 (en) | Magnetic material powder manufacturing method and bonded magnet manufacturing method | |
JPH0447024B2 (en) | ||
EP0542529A1 (en) | Method of making alloy powders of the RE-Fe/Co-B-M-type and bonded magnets containing this alloy powder | |
JP2705985B2 (en) | MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM | |
EP0029071B1 (en) | Process for producing permanent magnet alloy | |
JPH1053844A (en) | (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy | |
JPS63313807A (en) | Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof | |
JP3247508B2 (en) | permanent magnet | |
JPH07263210A (en) | Permanent magnet, alloy powder for permanent magnet and their production | |
JP3519443B2 (en) | Permanent magnet alloy powder and method for producing the same | |
JP3622550B2 (en) | Anisotropic exchange spring magnet powder and method for producing the same | |
JP3386552B2 (en) | Magnetic material | |
JPS6386502A (en) | Rare earth magnet and manufacture thereof | |
JP3713326B2 (en) | Permanent magnet material | |
JP3779338B2 (en) | Method for producing magnetic material powder and method for producing bonded magnet | |
JP3710154B2 (en) | Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet | |
JP2868963B2 (en) | Permanent magnet material, bonded magnet raw material, bonded magnet raw material powder, and method for producing bonded magnet | |
JP3040895B2 (en) | Rare earth bonded magnet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NISSAN MOTOR CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ONO, HIDEAKI;WAKI, NORIHISA;SHIMADA, MUNEKATSU;REEL/FRAME:011960/0144 Effective date: 20010601 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |