US20010051128A1 - On-site generation of ultra-high-purity buffered-hf and ammonium fluoride - Google Patents
On-site generation of ultra-high-purity buffered-hf and ammonium fluoride Download PDFInfo
- Publication number
- US20010051128A1 US20010051128A1 US08/881,747 US88174797A US2001051128A1 US 20010051128 A1 US20010051128 A1 US 20010051128A1 US 88174797 A US88174797 A US 88174797A US 2001051128 A1 US2001051128 A1 US 2001051128A1
- Authority
- US
- United States
- Prior art keywords
- ammonia
- hydrogen fluoride
- hydrofluoric acid
- ultra
- vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/07—Purification ; Separation
- C01B7/0706—Purification ; Separation of hydrogen chloride
- C01B7/0712—Purification ; Separation of hydrogen chloride by distillation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/07—Purification ; Separation
- C01B7/0706—Purification ; Separation of hydrogen chloride
- C01B7/0731—Purification ; Separation of hydrogen chloride by extraction
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/19—Fluorine; Hydrogen fluoride
- C01B7/191—Hydrogen fluoride
- C01B7/195—Separation; Purification
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/19—Fluorine; Hydrogen fluoride
- C01B7/191—Hydrogen fluoride
- C01B7/195—Separation; Purification
- C01B7/196—Separation; Purification by distillation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/19—Fluorine; Hydrogen fluoride
- C01B7/191—Hydrogen fluoride
- C01B7/195—Separation; Purification
- C01B7/197—Separation; Purification by adsorption
- C01B7/198—Separation; Purification by adsorption by solid ion-exchangers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/024—Purification
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/16—Halides of ammonium
- C01C1/162—Ammonium fluoride
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D11/00—Control of flow ratio
- G05D11/02—Controlling ratio of two or more flows of fluid or fluent material
- G05D11/13—Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
- G05D11/135—Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by sensing at least one property of the mixture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67023—Apparatus for fluid treatment for general liquid treatment, e.g. etching followed by cleaning
Definitions
- the present invention relates to a method and system for producing ultra-high-purity buffered-hydrofluoric acid (buffered-HF or BHF) or ultra-high-purity ammonium fluoride (NH 4 F).
- BHF buffered-hydrofluoric acid
- NH 4 F ultra-high-purity ammonium fluoride
- Contamination is generally an overwhelmingly important concern in integrated circuit (IC) manufacturing.
- a large fraction of the steps used in modern integrated circuit manufacturing are cleanup steps of one kind or another. Such cleanup steps are used, for example, to remove organic contaminants, metallic contaminants, photoresist (or inorganic residues thereof), byproducts of etching, native oxides, etc.
- the cost of a new IC wafer fabrication facility is typically more than one billion dollars ($1,000,000,000). A large fraction of the cost for such facilities is directed to measures for particulate control, cleanup, and contamination control.
- Plasma etching is performed using a photoresist mask in place, and is not immediately followed by high-temperature processes. After plasma etching, the resist is stripped from the wafer surface using, for example, an O 2 plasma treatment. Cleanup of the resist stripped wafer(s) is then necessary.
- the materials which the cleanup process should remove include, for example, photoresist residues (organic polymers), sodium, alkaline earth metals (e.g., calcium, magnesium) and heavy metals (e.g., gold). Many of these contaminants do not form volatile halides. As a result, plasma etching will not remove such contaminants from the wafer surface. Hence, cleanup processes using wet chemistries are required.
- any dangerous contaminants stemming from the plasma etching process are removed prior to high-temperature processing steps by wet chemical treatment, the purities of plasma etching process chemicals (i.e., liquified or compressed gases) are not as critical as those of the liquid chemicals used in cleanup processes. This difference is due to the impingement rate of the liquid chemical at the semiconductor surface typically being one million times greater than that of the plasma species in plasma etching. Moreover, since the liquid cleanup steps are directly followed by high-temperature processes, contaminants on the wafer surface tend to be driven (i.e., diffused) into the wafer.
- plasma etching process chemicals i.e., liquified or compressed gases
- liquid solutions for treating semiconductor wafers should have extremely low levels of metal ions.
- concentration of all metals combined should be less than 300 ppt (parts per trillion), and less than 10 ppt for any single metal. Even lower concentrations are desirable.
- Contamination by anions and cations should also be controlled. Some anions may have adverse effects, such as complexed metal ions which reduce to mobile metal atoms or ions in the silicon lattice.
- Front end facilities typically include on-site purification systems for preparation of high-purity water (i.e., “deionized” or “DI” water). However, it is more difficult to obtain liquid process chemicals in the purities required.
- high-purity water i.e., “deionized” or “DI” water.
- hydrofluoric acid aqueous HF
- Hydrofluoric acid solutions are used as cleaning and etching agents for silicon wafers, circuit boards and high speed, high density chips for computers and optics. In semiconductor manufacturing, those materials are very important for deglazing (i.e., removal of thin native oxides) and for oxide removal generally.
- Ammonium fluoride and buffered-HF differ in their respective NH 3 to HF molar ratios. Ammonium fluoride solutions have a NH 3 to HF molar ratio of 1.00, whereas buffered-HF solutions have a molar excess of HF.
- Buffered-HF solutions are identified by the ratio in volume parts of 40%, ammonium fluoride to 49% HF.
- a 50:1 BHF solution consists of 50 parts by volume 40% ammonium fluoride to 1 part by volume 49% HF.
- Typical BHF solutions used in the semiconductor processing industry are 10:1, 50:1 and 200:1, although other ratios are also used.
- a novel method for preparing ultra-high-purity buffered-hydrofluoric acid or ultra-high-purity ammonium fluoride of controlled concentration comprises bubbling purified ammonia vapor into ultra-pure hydrofluoric acid.
- a system for preparing the ultra-high-purity buffered-hydrofluoric acid or ammonium fluoride of controlled concentration comprises a source of purified ammonia vapor, a source of ultrapure hydrofluoric acid and a generator which combines the ammonia vapor with the ultra-pure hydrofluoric acid to produce the ultra-high-purity buffered-hydrofluoric acid or ammonium fluoride.
- inventive system and method can be applied to an on-site subsystem, in a semiconductor device fabrication facility for supplying the buffered-HF or ammonium fluoride to points of use therein.
- FIG. 1 is a process flow diagram of a unit for the production of ultrapure ammonia
- FIG. 2 illustrates an on-site hydrofluoric acid generator
- FIG. 3 is a process flow diagram of a unit for producing buffered-hydrofluoric acid in accordance with the invention.
- FIG. 4 is a block diagram of a semiconductor fabrication line to which the hydrofluoric acid generator of FIG. 2 can be connected.
- the inventors have found methods and systems for the preparation of ultra-high-purity buffered-hydrofluoric acid (buffered-HF) or ultra-high-purity ammonium fluoride (NH 4 F) which have particular applicability in the semiconductor manufacturing industry.
- the ultrapure chemicals can be generated on-site, for example, at a semiconductor manufacturing facility, so that they can be piped directly to or generated directly at points of use.
- the disclosed systems are very compact units which can be located in the same building as a front end (or in an adjacent building), so that handling of the chemicals is avoided.
- the system is an on-site system which can be located at a semiconductor wafer production site.
- FIG. 1 A process flow diagram depicting one example of an ammonia purification unit 100 in accordance with this invention is shown in FIG. 1.
- Liquid ammonia 102 is stored in a reservoir 104 which acts as an evaporation source for ammonia vapor 106 .
- Ammonia vapor 106 is drawn from the vapor space 108 in the reservoir. Drawing vapor in this manner serves as a single-stage distillation, leaving certain solid and high-boiling impurities behind in the liquid phase.
- the supply reservoir can be any conventional supply tank or other reservoir suitable for containing ammonia, and the ammonia can be in anhydrous form or an aqueous solution.
- the reservoir can be maintained at atmospheric pressure or at a pressure above atmospheric if desired to enhance the flow of the ammonia through the system.
- the reservoir is preferably heat controlled, so that the temperature is within the range of from about 10° to about 50° C., preferably from about 15° to about 35° C., and most preferably from about 20° to about 25° C.
- Impurities that will be removed as a result of drawing the ammonia from the vapor phase include, for example, the following: Metals of Groups I and II of the Periodic Table, as well as aminated forms of these metals which form as a result of the contact with ammonia; oxides and carbonates of these metals, as well as hydrides such as beryllium hydride and magnesium hydride; Group III elements and their oxides, as well as ammonium adducts of hydrides and halides of these elements; transition metal hydrides; and heavy hydrocarbons and halocarbons, such as pump oil.
- the ammonia drawn from reservoir 104 is passed through a shut-off valve 110 and through filtration unit 112 which can remove any solid matter entrained with the vapor.
- Microfiltration and ultrafiltration units and membranes are commercially available and can be used for this purpose.
- the grade and type of filter can be selected according to need.
- the presently preferred embodiment uses a gross filter, followed by a 0.1 micron filter, in front of an ionic purifier 118 , and no filtration after the ionic purifier.
- the filtered ammonia vapor 114 is directed to an ionic purifier 118 , which preferably takes the form of a scrubber unit.
- ionic purifier 118 preferably takes the form of a scrubber unit.
- scrubbing column 118 contains a packed section 120 and a mist removal pad 122 .
- Saturated aqueous ammonia 124 flows downward as the ammonia vapor flows upward, the liquid being circulated by a circulation pump 126 , and the liquid level being controlled by a level sensor 128 . Waste 130 is drawn off periodically from the retained liquid in the bottom of the scrubber. Deionized water 132 is supplied to scrubber 118 , with an elevated pressure being maintained by a pump 134 .
- the vapor is scrubbed with high-pH purified (preferably deionized) water.
- the high-pH water is preferably an aqueous ammonia solution, with the concentration raised to saturation by recycling through the scrubber.
- the scrubber can be conveniently operated as a conventional scrubbing column in countercurrent fashion.
- the column is preferably run at a temperature ranging from about 10° to about 50° C., preferably from about 15° to about 35° C.
- the operating pressure is not critical, although preferred operation is at a pressure of from about atmospheric pressure to about 30 psi above atmospheric.
- the column typically contains a conventional column packing to provide for a high degree of contact between liquid and gas, and preferably a mist removal section as well.
- the column has a packed height of approximately 3 feet (0.9 meter) and an internal diameter of approximately 7 inches (18 cm), to achieve a packing volume of 0.84 cubic feet (24 liters).
- the column of the preferred example is operated at a pressure drop of about 0.3 inches of water (0.075 kPa) and less than 10% flood, with a recirculation flow of about 2.5 gallons per minute (0.16 liter per second) nominal or 5 gallons per minute (0.32 liter per second) at 20% flood, with the gas inlet below the packing, and the liquid inlet above the packing but below the mist removal section.
- Preferred packing materials for a column of this description are those which have a nominal dimension of less than one-eighth of the column diameter.
- the mist removal section of the column will have a similar or a more. dense packing, and is otherwise conventional in construction. It should be understood that all descriptions and dimensions with respect to the preferred embodiment are exemplary only. Each of the system parameters may be varied.
- startup is achieved by first saturating deionized water with ammonia to form a solution for use as the starting scrubbing medium.
- a small amount of liquid in the column sump is drained periodically to remove accumulated impurities.
- Examples of impurities that will be removed by the scrubber include reactive volatiles such as silane (SiH 4 ) and arsine (AsH 3 ) halides and hydrides of phosphorus, arsenic and antimony; transition metal halides in general; and Group III and Group VI metal halides and hydrides.
- reactive volatiles such as silane (SiH 4 ) and arsine (AsH 3 ) halides and hydrides of phosphorus, arsenic and antimony; transition metal halides in general; and Group III and Group VI metal halides and hydrides.
- the units described up to this point may be operated in either batchwise, continuous or semi-continuous manner. Continuous or semi-continuous operation is preferred.
- the volumetric processing rate of the ammonia purification system is not critical and may vary widely. In most operations, however, the flow rate of ammonia through the system is preferably within the range of from about 200 cm 3 /h to thousands of liters per hour.
- the scrubbed ammonia 136 can be directed to one of three alternate routes, including: (1) a distillation column 138 where the ammonia is further purified, the resulting distilled ammonia 140 then being directed to the point(s) of use; (2) a dissolving unit 142 where the ammonia is combined with deionized water 144 to form an aqueous solution 146 , which is directed to a point of use.
- the aqueous solution can be collected in a holding tank from which the ammonia is drawn into individual lines for a multitude of point-of-use destinations at the same plant; and (3) a transfer line 148 which carries the ammonia in gaseous form to a point of use.
- the second and third of these alternatives which do not utilize the distillation column 138 , are suitable for producing ammonia with less than 100 parts per trillion of any metallic impurity.
- the inclusion of the distillation column 138 is preferred. Examples are furnace or chemical vapor deposition (CVD) uses of the ammonia. If the ammonia is used for CVD, for example, the distillation column would remove non-condensables, such as oxygen and nitrogen, which might interfere with the CVD process.
- a dehydration unit can optionally be incorporated into the system between the scrubber 118 and the distillation column 138 , depending on the characteristics and efficiency of the distillation column.
- the resulting stream be it gaseous ammonia or an aqueous solution
- the purification unit can thereby supply purified ammonia to a number of use stations simultaneously.
- the liquid volume of the ammonia purifier is 10 l, and the maximum gas flow rate is about 10 standard l/min.
- the scrubbing liquid is purged, continuously or incrementally, such that it turns over at least once in 24 hours.
- a typical operating pressure can be 300 psia (2,068 kPa), with a batch size of 100 pounds (45.4 kg).
- the column in this example has a diameter of 8 inches (20 cm), aL height of 72 inches (183 cm), operating at 30% of flood, with a vapor velocity of 0.00221 feet per second (0.00067 meter per second), a height equivalent to a theoretical plate of 1.5 inches (3.8 cm) and 48 equivalent plates.
- the boiler size in this example is about 18 inches (45.7 cm) in diameter and 27 inches (68.6 cm) in length, with a reflux ratio of 0.5.
- Recirculating chilled water enters at 60° F. (15.6° C.) and leaves at 90° F. (32.2° C.).
- the purified ammonia can be used as a purified gas or as an aqueous solution.
- the purified ammonia is dissolved in purified (preferably deionized) water.
- the proportions and the means of mixing are conventional.
- Anhydrous HF is typically manufactured by the addition of sulfuric acid to fluorspar, CaF 2 .
- fluorspars contain arsenic, which leads to contamination of the resulting HF.
- Other impurities in conventional systems, are contributed by the HF generation and handling system. These impurities result from degradation of these systems, since they were designed for applications much less demanding than the semiconductor industry. These contaminants must be removed in order to achieve good semiconductor performance.
- FIG. 2 illustrates an on-site purification process flow and system 200 for preparing ultra-high-purity HF which can be used as a starting material in the manufacture of buffered-HF.
- the HF process flow includes a batch process arsenic removal and evaporation stage 202 , a fractionating column 206 to remove most other impurities, an ionic purifier column 208 to suppress contaminants not removed by the fractionating column, and a generator or supplier 210 .
- Arsenic is converted to the +5 state and held in the evaporator 202 during distillation by the addition of an oxidant (KMnO 4 or (NH 4 ) 2 S 2 O 8 ) and a cation source such as KHF 2 to form the salt K 2 AsF 7 .
- an oxidant KMnO 4 or (NH 4 ) 2 S 2 O 8
- KHF 2 a cation source
- This process typically requires contact times of approximately one hour at nominal temperatures. To achieve complete reaction in a continuous process would require high temperatures and pressures (which are undesirable from a safety standpoint) of very large vessels and piping.
- HF is introduced into a batch process evaporator vessel 202 and is treated with the oxidant while stirring for a suitable reaction time. The arsenic in the HF is oxidized into the +5 oxidation state and fractionation is performed to remove the As +5 and metallic impurities. See, U.S. Pat. No. 4,929,435, which is herein incorporated by reference.
- Fluorine (F 2 ) has been shown to work by the published work of others, and is regarded as a preferred embodiment. Fluorine requires expensive plumbing and safeguards, but has been shown to be workable.
- An alternative preferred embodiment uses ammonium persulfate ((NH 4 ) 2 S 2 O 8 ), which is conveniently available in ultra-high purity. In general, oxidizers which do not introduce metal atoms are preferred. Thus other candidates include H 2 O 2 and O 3 .
- a less preferred candidate is Caro's acid (persulfuric acid, H 2 SO 5 , which produces H 2 O 2 in solution).
- Another option is ClO 2 , but this has the severe disadvantage of being explosive.
- Other options include HNO 3 and Cl 2 , but both of these introduce anions which must be separated out.
- the reduction of non-metallic anions is not as critical as the reduction of metal cations, but it is still desirable to achieve anion levels of 1 ppb or less. The initial introduction of anions thus adds to the load on the ionic purification stage.
- KMnO 4 is a conventional oxidant, and is predicted to be useable for ultrapurification if followed by the disclosed ionic purifier and HF stripping process.
- this reagent imposes a substantial burden of cations on the purifier, so a metal-free oxidizer is preferred.
- high-purity hydrofluoric acid for example 49% HF, which is essentially arsenic-free can be used as a starting material.
- Such low-arsenic material can be used in combination with an on-site ionic purification process without the need for an arsenic oxidation step, to produce ultrapure HF on-site.
- the arsenic removal step can be omitted.
- Fractionating column 206 acts as a series of many simple distillations. This is achieved by packing the column with a high surface area material with a counter-current liquid flow, thus ensuring complete equilibrium between the descending liquid and the rising vapor.
- Column 206 includes a reboiler 211 and a partial condenser 212 provides reflux.
- Elements showing significant reduction at this step include the following: Group 1 (I) Na Group 2 (II) Ca, Sr, Ba Groups 3-12 (IIIA-IIA) Cr, W, Mo, Mn, Fe, Cu, Zn Group 13 (III) Ga Group 14 (IV) Sn, Pb Group 15 (VII) Sb.
- the purified gaseous HF is then conducted to HF ionic purifier 208 .
- the HF prior to treatment in the ionic purifier is pure by normal standards, except for the possible carryover of the arsenic treatment chemicals or the quench required to remove these chemicals.
- the HF ionic purifier is utilized as an additional purity guarantee prior to introduction of the HF gas into the supplier system 210 .
- Certain elements may be present in the treatment solution or introduced into the ionic purifier to absorb sulfate carried over in the HF stream. Ionic purifier testing has demonstrated significant reductions in the HF gas stream contamination for these elements: Group 2 (II) Sr, Ba Groups 6-12 (VIA-IIA) Cr, W, Cu Group 13 (III) B Group 14 (IV) Pb, Sn Group 15 (V) Sb.
- the HF once introduced into generator 210 , can be mixed with deionized water to provide an HF solution of desired concentration. During mixing, the solution in generator is continuously removed and transported by pump 214 through heat exchanger 216 to remove the heat of reaction therefrom.
- the methods for generating buffered-HF and those for generating ammonium fluoride (NH 4 F) in accordance with the invention differ only in their respective NH 3 to HF molar ratios.
- the same systems can be used in preparing both types of solutions, the only difference being in concentration set points to achieve the desired molar ratios.
- the set point would be set such that the NH 3 to HF molar ratio is 1.00, while a molar excess of HF would be used to prepare buffered-HF solutions.
- FIG. 3 illustrates an exemplary unit 300 and process flow for generating buffered-HF in accordance with the invention.
- the buffered-HF or ammonium fluoride can be prepared by bubbling ammonia vapor 302 into a hydrofluoric acid solution 304 .
- the piping for transporting the chemicals or gases, as well as other wetted surfaces of the system should be constructed of materials which are compatible with the chemicals or gases being contacted to avoid or minimize contamination. Suitable materials include, for example, polyfluorinated polymers such as Teflon® (tetrafluoroethylene), polyfluoroethane (PFA) and polyfluoroethylene (PFE).
- the buffered-HF/ammonium fluoride generation unit 300 includes a mixing tank 306 in which the starting materials are mixed.
- mixing tank 306 is a 20 gallon Teflon® tank.
- suitable materials of construction for the mixing tank include but are not limited to polyvinyldifluoroethylene (PVDF) and polyethylene.
- the mixing tank preferably has a volume of from about 1 to 20 gallons
- the present invention can easily be applied to substantially smaller (e.g., on the order of a few cubic centimeters) or larger (e.g., on the order of several thousand gallons) volumes.
- the buffered-HF/ammonium fluoride generation unit 300 includes a high-purity deionized (DI) water supply line 308 for feeding high-purity water into mixing tank 306 .
- HF is fed through supply line 310 into mixing tank 306 .
- Transport of the HF into the mixing tank is accomplished with the assistance of pump 312 .
- Suitable types of pumps are known in the art and include, for example, double diaphragm pumps, centrifugal pumps and metering pumps, the fluid contacting portions of which should be constructed of a non-contaminating material, such as Teflon®. Suitable pumps are commercially available from White Knight Corporation.
- Ultra-high-purity ammonia gas is fed into mixing tank 306 via supply line 314 .
- the ammonia can be fed directly from the ionic purifier (including any subsequent processing) as described above in reference to the ammonia purification unit, or an other ultra-high-purity ammonia source.
- Each of the DI water, HF and NH 3 supply lines 308 , 310 and 314 include a valve 316 , 318 and 320 , respectively, for regulating the amount of those materials introduced into the mixing tank.
- a first level sensor 322 is provided.
- Suitable level sensors are known in the art and include, for example, infrared (IR) or capacitance level sensors. Alternatively, any suitable volumetric or gravimetric scale can be used.
- Suitable heat exchangers include, for example, shell and tube, plate and frame, and jacket and tube-type heat exchangers.
- the heat exchanger is preferably formed of a material which allows for sufficient heat transfer and which does not add contamination to the product chemical. Suitable materials of construction for the heat exchanger include, for example, Teflon®, PVDF, PFA and polyethylene.
- sensor 328 allows for proper chemical blending during each chemical or gas addition step to be achieved. That is, sensor 328 can detect the proper endpoint for mixing the various components during formation of the buffered-HF/ammonium fluoride solutions. For example, sensor 328 can detect the endpoint for HF dilution with deionized water as well as during the step of bubbling ammonia vapor into the aqueous HF solution.
- An acoustic velocity sensor 328 can be used for this purpose. Such equipment is commercially available from Mesa Labs. The application of acoustic sensors to chemical blending is described in detail in PCT Application No. PCT/US96/10389, Attorney Docket No. 016499-263, filed on Jun. 5, 1996, the contents of which are herein incorporated by reference. In place of acoustic velocity measurement equipment, product concentration can be measured using, for example, conductivity, density, index of refraction, or infrared (IR) spectroscopy measurement equipment.
- IR infrared
- the chemical can optionally be passed through a filter 330 .
- the filter is preferably constructed of Teflon®. However, the filter can be formed from other materials which do not contaminate the formed chemical.
- Filter 330 preferably has a pore size of, for example, from 0.05 to 0.1 ⁇ m.
- the chemical can be withdrawn from the generation unit via line 332 as a final product by opening valve 334 and by closing valve 336 . If the chemical is not of the proper final concentration, it can be reintroduced into mixing tank 306 via recycle line 338 by opening valve 336 and by closing valve 324 .
- the concentration measurement system can be connected to a valve control system which will automatically operate the valves to control material flow throughout the system.
- a valve control system which will automatically operate the valves to control material flow throughout the system.
- Mixing tank 306 further includes a vent (exhaust) line 340 in an upper portion thereof for removing vapors from the tank.
- Vent line 340 can be connected to a downstream exhaust treatment apparatus, such as a gas scrubber.
- a flow of an inert gas, such as nitrogen or argon, across the entrance to the vent line i.e., an inert gas pad
- an inert gas pad i.e., an inert gas pad
- ultra-high-purity anhydrous HF is introduced into mixing tank 306 and is diluted to the proper concentration with deionized water.
- anhydrous ammonia can be added to the acid solution to an appropriate endpoint as determined by concentration analysis to obtain buffered-HF or ammonium fluoride.
- premixed 49% HF or HF of any other concentration can be added to the mixing tank.
- the HF is then diluted with deionized water, if necessary, to the appropriate concentration endpoint as determined by the concentration sensor.
- anhydrous ammonia can be added to an appropriate endpoint as determined by concentration analysis to obtain buffered-HF or ammonium fluoride.
- HF and high-purity water are mixed to the desired concentration, followed by the addition of ammonia to the requisite concentration to form buffered-HF or ammonium fluoride.
- buffered-HF can be prepared by first forming an ammonium fluoride solution, for example, a 40% NH 4 F solution, according to the above procedures. This can then be followed by the addition of HF until hydrofluoric acid of the desired concentration is obtained. The concentrations during this final HF addition step can be controlled gravimetrically or by using any of the concentration control techniques described above.
- an ammonium fluoride solution for example, a 40% NH 4 F solution
- the buffered-HF or NH 4 F generation system can be positioned in close proximity to the point of use of the ultrapure chemical in the production line, leaving only a short distance of travel between the purification unit and the production line.
- the ultrapure chemical from the generation unit can pass through an intermediate holding tank before reaching the point(s) of use.
- the mixing tank of the buffered-HF or NH 4 F generator system itself can be the point of use, in which the substrates are processed.
- Each point of use can be fed by an individual outlet line from the holding tank.
- the ultrapure chemical can therefore be directly applied to the semiconductor substrate without packaging or transport and without storage other than a small in-line reservoir, and thus without contact with the potential sources of contamination normally encountered when chemicals are manufactured and prepared for use at locations external to the manufacturing facility.
- the distance between the point at which the ultrapure chemical leaves the purification system and its point of use on the production line will generally be a few meters or less. This distance will be greater when the purification system is a central plant-wide system for piping to two or more use stations, in which case the distance may be two thousand feet or greater. Transfer can be achieved through an ultra-clean transfer line of a material which does not introduce contamination. In most applications, stainless steel or polymers such as high density polyethylene or fluorinated polymers can be used successfully.
- the water used in the unit can be purified in accordance with semiconductor manufacturing standards. These standards are commonly used in the semiconductor industry and are well known among those skilled in the art and experienced in the industry practices and standards.
- Ion exchange methods typically include most or all of the following units: chemical treatment such as chlorination to kill organisms; sand filtration for particle removal; activated charcoal filtration to remove chlorine and traces of organic matter; diatomaceous earth filtration; anion exchange to remove strongly ionized acids; mixed bed polishing, containing both cation and anion exchange resins to remove further ions; sterilization, involving chlorination or ultraviolet light; and filtration through a filter of 0.45 micron or less.
- Reverse osmosis methods will involve, in place of one or more of the units in the ion exchange process, the passage of the water under pressure through a selectively permeable membrane which does not pass many of the dissolved or suspended substances.
- Typical standards for the purity of the water resulting from these processes are a resistivity of at least about 15 megohm-cm at 25° C. (typically 18 megohm-cm at 25° C.), less than about 25 ppb of electrolytes, a particulate content of less than about 150/cm 3 and a particle size of less than 0.2 micron, a microorganism content of less than about 10/cm 3 , and total organic carbon of less than 100 ppb.
- FIG. 4 illustrates exemplary wafer cleanup stations in a conventional line 400 for semiconductor fabrication.
- the first unit in the cleaning line is a photoresist stripping station 402 , in which aqueous hydrogen peroxide 404 and sulfuric acid 406 are combined and applied to the semiconductor surface to strip off the resist.
- a rinse station 408 where deionized water is applied to rinse off the stripping solution.
- a cleaning station 410 into which an aqueous solution of ammonia and hydrogen peroxide are applied.
- This solution is supplied in one of two ways. In the first, aqueous ammonia 412 is combined with aqueous hydrogen peroxide 414 , and the resulting mixture 416 is directed to cleaning station 410 .
- pure gaseous ammonia 418 is bubbled into an aqueous hydrogen peroxide solution 420 to produce a similar mixture 422 , which is likewise directed to cleaning station 410 .
- the semiconductor passes to second rinse station 424 where deionized water is applied to remove the cleaning solution.
- the next station is a further cleaning station 426 where aqueous solutions of hydrochloric acid 428 and hydrogen peroxide 430 are combined and applied to the semiconductor surface for further cleaning. This is followed by a final rinse station 432 where deionized water is applied to remove the HCl and H 2 O 2 .
- dilute aqueous HF or dilute buffered-HF is applied to the wafer, for example, to remove a native or other oxide film.
- the dilute buffered-hydrofluoric acid can be supplied using a system as described above.
- the buffered-HF can be supplied directly, through sealed piping, from generator 436 .
- HF reservoir 438 holds anhydrous HF, from which a stream of gaseous HF is fed through ionic purifier 440 into the generator.
- gaseous ammonia can be bubbled into generator 436 and ultrapure deionized water can be added to achieve the desired dilution. This is followed by a rinse in ultrapure deionized water at station 442 , and drying at station 444 .
- the wafer or wafer batch 446 being treated is held on a wafer support 448 and is conveyed from one workstation to the next by a robot 450 or some other conventional means of achieving sequential treatment.
- the means of conveyance can be totally automated, partially automated or not automated at all.
- FIG. 4 The system shown in FIG. 4 is just one example of a cleaning line which can be used in the manufacture of semiconductor devices.
- cleaning lines for high-precision manufacture can vary widely from that shown in FIG. 4, either by eliminating one or more of the units shown or by adding or substituting one or more units not shown.
- the concept of the on-site preparation of high-purity buffered-HF and ammonium fluoride, however, in accordance with this invention is applicable to all such systems.
- additives can be introduced into the purification water if desired, although this is not done in the presently preferred embodiment.
- the disclosed methods and systems can be adapted to operate as part of a manufacturing unit to produce ultra-high-purity chemicals for packaging and/or shipment.
- the advantages associated with the generation and purification of the chemicals on-site would not be realized. While such applications are subject to the above-discussed problems associated with the handling of ultra-high-purity chemicals, the disclosed innovations nevertheless provide an initial purity which is higher than that available by other techniques.
- the primary embodiment is directed to providing ultrapure aqueous chemicals which are most critical for semiconductor manufacturing
- the disclosed system and method embodiments can also be used to supply purified gas streams.
- use of a dryer downstream from the purifier can be used for this purpose.
- piping for ultrapure chemical routing in semiconductor front ends may include in-line or pressure reservoirs.
- references to “direct” piping does not preclude the use of such reservoirs, but does preclude exposure to uncontrolled atmospheres.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Analytical Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Automation & Control Theory (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
- The application is a continuation-in-part of copending application Ser. No. 08/674,130, filed on Jul. 1, 1996, which document is herein incorporated by reference, which application in turn claims the benefit of priority of U.S. Provisional Application Ser. No. 60/018,104, filed on Jul. 7, 1995. The present application also claims benefit of PCT/US96/10388, filed on Jun. 5, 1996, which documents are herein incorporated by reference.
- 1. Field of the Invention
- The present invention relates to a method and system for producing ultra-high-purity buffered-hydrofluoric acid (buffered-HF or BHF) or ultra-high-purity ammonium fluoride (NH4F). The invention has particular applicability in semiconductor fabrication for providing ultra-high-purity materials to a semiconductor manufacturing operation.
- 2. Description of the Related Art
- a. Contamination Control
- Contamination is generally an overwhelmingly important concern in integrated circuit (IC) manufacturing. A large fraction of the steps used in modern integrated circuit manufacturing are cleanup steps of one kind or another. Such cleanup steps are used, for example, to remove organic contaminants, metallic contaminants, photoresist (or inorganic residues thereof), byproducts of etching, native oxides, etc.
- The cost of a new IC wafer fabrication facility is typically more than one billion dollars ($1,000,000,000). A large fraction of the cost for such facilities is directed to measures for particulate control, cleanup, and contamination control.
- One important and basic source of contamination in semiconductor fabrication is impurities in the process chemicals. Since the cleanup steps are performed so frequently in and are so critical to IC fabrication, contamination due to cleanup chemistry is very undesirable.
- b. Wet Versus Dry Processing
- One of the long-running technological shifts in semiconductor processing has been the changes (and attempted changes) between dry and wet processing. In dry processing, only gaseous or plasma-phase reactants come in contact with the wafer or wafers being treated. In wet processing, a variety of liquid reagents are used for a multitude of purposes, such as the etching of silicon dioxide, silicon nitride and silicon, and the removal of native oxide layers, organic materials, trace organic or inorganic contaminants and metals.
- While plasma etching has many attractive capabilities, it is not adequate for use in cleanup processes. There is simply no available chemistry with plasma etching to remove some of the most undesirable impurities, such as gold.
- Thus, wet cleanup processes are essential to modern semiconductor processing, and are likely to remain so for the foreseeable future.
- Plasma etching is performed using a photoresist mask in place, and is not immediately followed by high-temperature processes. After plasma etching, the resist is stripped from the wafer surface using, for example, an O2 plasma treatment. Cleanup of the resist stripped wafer(s) is then necessary.
- The materials which the cleanup process should remove include, for example, photoresist residues (organic polymers), sodium, alkaline earth metals (e.g., calcium, magnesium) and heavy metals (e.g., gold). Many of these contaminants do not form volatile halides. As a result, plasma etching will not remove such contaminants from the wafer surface. Hence, cleanup processes using wet chemistries are required.
- Because any dangerous contaminants stemming from the plasma etching process are removed prior to high-temperature processing steps by wet chemical treatment, the purities of plasma etching process chemicals (i.e., liquified or compressed gases) are not as critical as those of the liquid chemicals used in cleanup processes. This difference is due to the impingement rate of the liquid chemical at the semiconductor surface typically being one million times greater than that of the plasma species in plasma etching. Moreover, since the liquid cleanup steps are directly followed by high-temperature processes, contaminants on the wafer surface tend to be driven (i.e., diffused) into the wafer.
- Wet processing has a major drawback insofar as ionic contamination is concerned. Integrated circuit devices generally use only a few dopant species (e.g., boron, arsenic, phosphorus, and antimony) to form the requisite p-type and n-type doped regions of the device. However, many other species act as electrically active dopants, and are highly undesirable contaminants. These contaminants can have deleterious effects on the IC devices, such as increased junction leakage at concentrations well below 1013 cm−3.
- Moreover, some less desirable contaminants segregate into the silicon substrate. This occurs when silicon is in contact with an aqueous solution, and the equilibrium concentration of the contaminants is higher in the silicon than in the solution. Moreover, some less desirable contaminants have very high diffusion coefficients. Consequently, introduction of such contaminants into any part of the silicon wafer may result in diffusion of the contaminants throughout the wafer, including junction locations where leakage may result.
- Thus, liquid solutions for treating semiconductor wafers should have extremely low levels of metal ions. Preferably, the concentration of all metals combined should be less than 300 ppt (parts per trillion), and less than 10 ppt for any single metal. Even lower concentrations are desirable. Contamination by anions and cations should also be controlled. Some anions may have adverse effects, such as complexed metal ions which reduce to mobile metal atoms or ions in the silicon lattice.
- Front end facilities typically include on-site purification systems for preparation of high-purity water (i.e., “deionized” or “DI” water). However, it is more difficult to obtain liquid process chemicals in the purities required.
- c. Purity in Semiconductor Manufacturing
- Undetected contamination of chemicals increases the probability for costly damage to a large quantity of wafers. The extreme purity levels required by semiconductor manufacturing are rare and unique among industrial processes. With such extreme purity requirements, handling of chemicals is undesirable (though of course it cannot be entirely avoided). Exposure of ultrapure chemicals to air (particularly in an environment where workers are also present) should be minimized. Such exposure risks the introduction of particulates into the chemicals, which can result in the contamination of those chemicals. Furthermore, shipment of ultrapure chemicals in closed containers is not ideal, since such containers increase the risk of contaminants being generated at the manufacturer's or at the user's site.
- Since many corrosive and/or toxic chemicals are used in semiconductor processing, the reagent supply locations are commonly separated from the locations where front-end workers are present. Most gases and liquids can be transported to wafer fabrication stations from anywhere in the same building (or in the same site).
- d. Uses of Buffered-HF and Ammonium Fluoride in Semiconductor Processing
- One of the important chemicals in the electronics industry is hydrofluoric acid (aqueous HF). Hydrofluoric acid solutions are used as cleaning and etching agents for silicon wafers, circuit boards and high speed, high density chips for computers and optics. In semiconductor manufacturing, those materials are very important for deglazing (i.e., removal of thin native oxides) and for oxide removal generally.
- The reaction of HF with silicon produces fluosilicilic acid, a strong acid which shifts the pH of the etching solution and hence the etch rate. As a result, hydrofluoric acid is often used in buffered form (Buffered-HF or BHF), to reduce shifts in pH as the acid solution becomes loaded with etching by-products. In buffered-hydrofluoric acid, the buffering in the acid solution is usually provided by an ammonium component, such as ammonium fluoride (NH4F).
- Ammonium fluoride and buffered-HF differ in their respective NH3 to HF molar ratios. Ammonium fluoride solutions have a NH3 to HF molar ratio of 1.00, whereas buffered-HF solutions have a molar excess of HF.
- Buffered-HF solutions are identified by the ratio in volume parts of 40%, ammonium fluoride to 49% HF. Thus, a 50:1 BHF solution consists of 50 parts by volume 40% ammonium fluoride to 1 part by
volume 49% HF. Typical BHF solutions used in the semiconductor processing industry are 10:1, 50:1 and 200:1, although other ratios are also used. - The requirement for buffering with ultra-high-purity chemicals presents further problems, since the buffering agent too is a source of contaminants, and must be sufficiently pure so as not to degrade the cleaning or etching system.
- e. Objects and Advantages of the Invention
- To meet the requirements of the semiconductor processing industry and to overcome the disadvantages of the related art, it is an object of the present invention to provide novel methods and systems for the preparation of ultra-high-purity buffered-hydrofluoric acid and ultra-high-purity ammonium fluoride in which the hydrofluoric acid and ammonium fluoride can be formed at or introduced directly to a point of use. The system is very compact, and can be located in the same building as the point of use (or in an adjacent building), so that chemical handling can be avoided. As a result, low impurity levels on a semiconductor wafer surface can be achieved, resulting in better device characteristics and increased product yield.
- The foregoing objectives are met by the methods and systems of the present invention. According to a first aspect of the present invention, a novel method for preparing ultra-high-purity buffered-hydrofluoric acid or ultra-high-purity ammonium fluoride of controlled concentration is provided. The method comprises bubbling purified ammonia vapor into ultra-pure hydrofluoric acid.
- According to a second aspect of the invention, a system for preparing the ultra-high-purity buffered-hydrofluoric acid or ammonium fluoride of controlled concentration is provided. The system comprises a source of purified ammonia vapor, a source of ultrapure hydrofluoric acid and a generator which combines the ammonia vapor with the ultra-pure hydrofluoric acid to produce the ultra-high-purity buffered-hydrofluoric acid or ammonium fluoride.
- The inventive system and method can be applied to an on-site subsystem, in a semiconductor device fabrication facility for supplying the buffered-HF or ammonium fluoride to points of use therein.
- The objects and advantages of the invention will become apparent from the following detailed description of the preferred embodiments thereof in connection with the accompanying drawings, in which like reference numerals designate like elements, and in which:
- FIG. 1 is a process flow diagram of a unit for the production of ultrapure ammonia;
- FIG. 2 illustrates an on-site hydrofluoric acid generator;
- FIG. 3 is a process flow diagram of a unit for producing buffered-hydrofluoric acid in accordance with the invention; and
- FIG. 4 is a block diagram of a semiconductor fabrication line to which the hydrofluoric acid generator of FIG. 2 can be connected.
- The inventors have found methods and systems for the preparation of ultra-high-purity buffered-hydrofluoric acid (buffered-HF) or ultra-high-purity ammonium fluoride (NH4F) which have particular applicability in the semiconductor manufacturing industry. In particular, the ultrapure chemicals can be generated on-site, for example, at a semiconductor manufacturing facility, so that they can be piped directly to or generated directly at points of use. The disclosed systems are very compact units which can be located in the same building as a front end (or in an adjacent building), so that handling of the chemicals is avoided.
- The purities of the buffered-HF and ammonium fluoride starting materials, ammonia and HF, are important to the final product purity. Purification methods and systems for those materials are described below.
- On-Site Purification of NH3
- In accordance with this invention, provided are methods and systems for preparing ultra-high-purity ammonia which can be used as a starting material in the manufacture of buffered-HF. The system is an on-site system which can be located at a semiconductor wafer production site.
- A process flow diagram depicting one example of an
ammonia purification unit 100 in accordance with this invention is shown in FIG. 1.Liquid ammonia 102 is stored in a reservoir 104 which acts as an evaporation source for ammonia vapor 106. Ammonia vapor 106 is drawn from thevapor space 108 in the reservoir. Drawing vapor in this manner serves as a single-stage distillation, leaving certain solid and high-boiling impurities behind in the liquid phase. The supply reservoir can be any conventional supply tank or other reservoir suitable for containing ammonia, and the ammonia can be in anhydrous form or an aqueous solution. - The reservoir can be maintained at atmospheric pressure or at a pressure above atmospheric if desired to enhance the flow of the ammonia through the system. The reservoir is preferably heat controlled, so that the temperature is within the range of from about 10° to about 50° C., preferably from about 15° to about 35° C., and most preferably from about 20° to about 25° C.
- Impurities that will be removed as a result of drawing the ammonia from the vapor phase include, for example, the following: Metals of Groups I and II of the Periodic Table, as well as aminated forms of these metals which form as a result of the contact with ammonia; oxides and carbonates of these metals, as well as hydrides such as beryllium hydride and magnesium hydride; Group III elements and their oxides, as well as ammonium adducts of hydrides and halides of these elements; transition metal hydrides; and heavy hydrocarbons and halocarbons, such as pump oil.
- The ammonia drawn from reservoir104 is passed through a shut-off
valve 110 and throughfiltration unit 112 which can remove any solid matter entrained with the vapor. Microfiltration and ultrafiltration units and membranes are commercially available and can be used for this purpose. The grade and type of filter can be selected according to need. The presently preferred embodiment uses a gross filter, followed by a 0.1 micron filter, in front of anionic purifier 118, and no filtration after the ionic purifier. - The filtered
ammonia vapor 114, the flow of which is controlled bypressure regulator 116, is directed to anionic purifier 118, which preferably takes the form of a scrubber unit. In the exemplary ionic purifier, scrubbingcolumn 118 contains a packed section 120 and a mist removal pad 122. - Saturated
aqueous ammonia 124 flows downward as the ammonia vapor flows upward, the liquid being circulated by acirculation pump 126, and the liquid level being controlled by a level sensor 128.Waste 130 is drawn off periodically from the retained liquid in the bottom of the scrubber.Deionized water 132 is supplied toscrubber 118, with an elevated pressure being maintained by apump 134. - The vapor is scrubbed with high-pH purified (preferably deionized) water. The high-pH water is preferably an aqueous ammonia solution, with the concentration raised to saturation by recycling through the scrubber. The scrubber can be conveniently operated as a conventional scrubbing column in countercurrent fashion.
- Although the operating temperature is not critical, the column is preferably run at a temperature ranging from about 10° to about 50° C., preferably from about 15° to about 35° C. Likewise, the operating pressure is not critical, although preferred operation is at a pressure of from about atmospheric pressure to about 30 psi above atmospheric. The column typically contains a conventional column packing to provide for a high degree of contact between liquid and gas, and preferably a mist removal section as well.
- In one presently preferred example, the column has a packed height of approximately 3 feet (0.9 meter) and an internal diameter of approximately 7 inches (18 cm), to achieve a packing volume of 0.84 cubic feet (24 liters). The column of the preferred example is operated at a pressure drop of about 0.3 inches of water (0.075 kPa) and less than 10% flood, with a recirculation flow of about 2.5 gallons per minute (0.16 liter per second) nominal or 5 gallons per minute (0.32 liter per second) at 20% flood, with the gas inlet below the packing, and the liquid inlet above the packing but below the mist removal section.
- Preferred packing materials for a column of this description are those which have a nominal dimension of less than one-eighth of the column diameter. The mist removal section of the column will have a similar or a more. dense packing, and is otherwise conventional in construction. It should be understood that all descriptions and dimensions with respect to the preferred embodiment are exemplary only. Each of the system parameters may be varied.
- In typical operation, startup is achieved by first saturating deionized water with ammonia to form a solution for use as the starting scrubbing medium. During operation of the scrubber, a small amount of liquid in the column sump is drained periodically to remove accumulated impurities.
- Examples of impurities that will be removed by the scrubber include reactive volatiles such as silane (SiH4) and arsine (AsH3) halides and hydrides of phosphorus, arsenic and antimony; transition metal halides in general; and Group III and Group VI metal halides and hydrides.
- The units described up to this point may be operated in either batchwise, continuous or semi-continuous manner. Continuous or semi-continuous operation is preferred. The volumetric processing rate of the ammonia purification system is not critical and may vary widely. In most operations, however, the flow rate of ammonia through the system is preferably within the range of from about 200 cm3/h to thousands of liters per hour.
- The scrubbed ammonia136 can be directed to one of three alternate routes, including: (1) a
distillation column 138 where the ammonia is further purified, the resulting distilled ammonia 140 then being directed to the point(s) of use; (2) a dissolving unit 142 where the ammonia is combined withdeionized water 144 to form an aqueous solution 146, which is directed to a point of use. For plant operations with multiple points of use, the aqueous solution can be collected in a holding tank from which the ammonia is drawn into individual lines for a multitude of point-of-use destinations at the same plant; and (3) atransfer line 148 which carries the ammonia in gaseous form to a point of use. - The second and third of these alternatives, which do not utilize the
distillation column 138, are suitable for producing ammonia with less than 100 parts per trillion of any metallic impurity. For certain uses, however, the inclusion of thedistillation column 138 is preferred. Examples are furnace or chemical vapor deposition (CVD) uses of the ammonia. If the ammonia is used for CVD, for example, the distillation column would remove non-condensables, such as oxygen and nitrogen, which might interfere with the CVD process. In addition, since the ammonia leaving thescrubber 118 is saturated with water, a dehydration unit can optionally be incorporated into the system between thescrubber 118 and thedistillation column 138, depending on the characteristics and efficiency of the distillation column. - With any of these alternatives, the resulting stream, be it gaseous ammonia or an aqueous solution, can be divided into two or more branch streams, each directed to a different use station. The purification unit can thereby supply purified ammonia to a number of use stations simultaneously.
- In the presently preferred embodiment, the liquid volume of the ammonia purifier is 10 l, and the maximum gas flow rate is about 10 standard l/min. The scrubbing liquid is purged, continuously or incrementally, such that it turns over at least once in 24 hours.
- In a batch operation, a typical operating pressure can be 300 psia (2,068 kPa), with a batch size of 100 pounds (45.4 kg). The column in this example has a diameter of 8 inches (20 cm), aL height of 72 inches (183 cm), operating at 30% of flood, with a vapor velocity of 0.00221 feet per second (0.00067 meter per second), a height equivalent to a theoretical plate of 1.5 inches (3.8 cm) and 48 equivalent plates.
- The boiler size in this example is about 18 inches (45.7 cm) in diameter and 27 inches (68.6 cm) in length, with a reflux ratio of 0.5. Recirculating chilled water enters at 60° F. (15.6° C.) and leaves at 90° F. (32.2° C.). Again, the above is merely exemplary, and distillation columns varying widely in construction and operational parameters can be used.
- Depending on its use, the purified ammonia, either with or without the distillation step, can be used as a purified gas or as an aqueous solution. In the latter case, the purified ammonia is dissolved in purified (preferably deionized) water. The proportions and the means of mixing are conventional.
- On-site HF Purification and Vaporization
- Anhydrous HF is typically manufactured by the addition of sulfuric acid to fluorspar, CaF2. Unfortunately, many fluorspars contain arsenic, which leads to contamination of the resulting HF. Other impurities, in conventional systems, are contributed by the HF generation and handling system. These impurities result from degradation of these systems, since they were designed for applications much less demanding than the semiconductor industry. These contaminants must be removed in order to achieve good semiconductor performance.
- FIG. 2 illustrates an on-site purification process flow and
system 200 for preparing ultra-high-purity HF which can be used as a starting material in the manufacture of buffered-HF. The HF process flow includes a batch process arsenic removal andevaporation stage 202, a fractionating column 206 to remove most other impurities, anionic purifier column 208 to suppress contaminants not removed by the fractionating column, and a generator orsupplier 210. - Arsenic is converted to the +5 state and held in the
evaporator 202 during distillation by the addition of an oxidant (KMnO4 or (NH4)2S2O8) and a cation source such as KHF2 to form the salt K2AsF7. This should be a batch process, as the reaction is slow and sufficient time for completion must be allowed before the distillation takes place. This process typically requires contact times of approximately one hour at nominal temperatures. To achieve complete reaction in a continuous process would require high temperatures and pressures (which are undesirable from a safety standpoint) of very large vessels and piping. HF is introduced into a batch processevaporator vessel 202 and is treated with the oxidant while stirring for a suitable reaction time. The arsenic in the HF is oxidized into the +5 oxidation state and fractionation is performed to remove the As+5 and metallic impurities. See, U.S. Pat. No. 4,929,435, which is herein incorporated by reference. - A variety of oxidizing reagents have been used for this purpose, as shown in the literature. See e.g., U.S. Pat. Nos. 3,685,370, 5,047,226, 4,954,330, 4,955,430, 4,083,441; Canadian Patent Document Nos. CA 81-177347, CA 74-101216, CA 78-23343, CA 81-177348t, CA98-P200672f; European Patent Document Nos. EP 351,107, EP 276,542; Japanese Patent Document No. JP 61-151002; and U.S.S.R. Patent Document No. 379,533, all of which are herein incorporated by reference.
- Fluorine (F2) has been shown to work by the published work of others, and is regarded as a preferred embodiment. Fluorine requires expensive plumbing and safeguards, but has been shown to be workable. An alternative preferred embodiment uses ammonium persulfate ((NH4)2S2O8), which is conveniently available in ultra-high purity. In general, oxidizers which do not introduce metal atoms are preferred. Thus other candidates include H2O2 and O3.
- A less preferred candidate is Caro's acid (persulfuric acid, H2SO5, which produces H2O2 in solution). Another option is ClO2, but this has the severe disadvantage of being explosive. Other options include HNO3 and Cl2, but both of these introduce anions which must be separated out. The reduction of non-metallic anions is not as critical as the reduction of metal cations, but it is still desirable to achieve anion levels of 1 ppb or less. The initial introduction of anions thus adds to the load on the ionic purification stage.
- KMnO4 is a conventional oxidant, and is predicted to be useable for ultrapurification if followed by the disclosed ionic purifier and HF stripping process. However, this reagent imposes a substantial burden of cations on the purifier, so a metal-free oxidizer is preferred.
- In an alternative embodiment, high-purity hydrofluoric acid, for example 49% HF, which is essentially arsenic-free can be used as a starting material. Such low-arsenic material can be used in combination with an on-site ionic purification process without the need for an arsenic oxidation step, to produce ultrapure HF on-site. In this case, the arsenic removal step can be omitted.
- The HF is then distilled in fractionating column206 to remove the bulk of the metallic impurities therefrom. Fractionating column 206 acts as a series of many simple distillations. This is achieved by packing the column with a high surface area material with a counter-current liquid flow, thus ensuring complete equilibrium between the descending liquid and the rising vapor. Column 206 includes a
reboiler 211 and apartial condenser 212 provides reflux. Elements showing significant reduction at this step include the following:Group 1 (I) Na Group 2 (II) Ca, Sr, Ba Groups 3-12 (IIIA-IIA) Cr, W, Mo, Mn, Fe, Cu, Zn Group 13 (III) Ga Group 14 (IV) Sn, Pb Group 15 (VII) Sb. - The purified gaseous HF is then conducted to HF
ionic purifier 208. The HF prior to treatment in the ionic purifier is pure by normal standards, except for the possible carryover of the arsenic treatment chemicals or the quench required to remove these chemicals. - The HF ionic purifier is utilized as an additional purity guarantee prior to introduction of the HF gas into the
supplier system 210. Certain elements may be present in the treatment solution or introduced into the ionic purifier to absorb sulfate carried over in the HF stream. Ionic purifier testing has demonstrated significant reductions in the HF gas stream contamination for these elements:Group 2 (II) Sr, Ba Groups 6-12 (VIA-IIA) Cr, W, Cu Group 13 (III) B Group 14 (IV) Pb, Sn Group 15 (V) Sb. - Many of the above elements are useful in suppressing the arsenic contamination. Any carryover in the distillation column arising from their excess in the arsenic treatment can be rectified at this step.
- The HF, once introduced into
generator 210, can be mixed with deionized water to provide an HF solution of desired concentration. During mixing, the solution in generator is continuously removed and transported bypump 214 through heat exchanger 216 to remove the heat of reaction therefrom. - After the solution passes through heat exchanger216, the concentration thereof is monitored by
sensor 218, which allows for accurate chemical blending. Suitable generators, sensors, heat exchangers and other components are described below with reference to the buffered-HF generator system. - On-site Preparation of Ultrapure Buffered-HF and Ammonium Fluoride
- The methods for generating buffered-HF and those for generating ammonium fluoride (NH4F) in accordance with the invention differ only in their respective NH3 to HF molar ratios. As a result, the same systems can be used in preparing both types of solutions, the only difference being in concentration set points to achieve the desired molar ratios. Thus, to obtain ammonium fluoride solutions, the set point would be set such that the NH3 to HF molar ratio is 1.00, while a molar excess of HF would be used to prepare buffered-HF solutions.
- On-site generation of buffered-HF and ammonium fluoride will be described with reference to FIG. 3, which illustrates an
exemplary unit 300 and process flow for generating buffered-HF in accordance with the invention. - According to one aspect of the invention, the buffered-HF or ammonium fluoride can be prepared by bubbling ammonia vapor302 into a
hydrofluoric acid solution 304. The piping for transporting the chemicals or gases, as well as other wetted surfaces of the system should be constructed of materials which are compatible with the chemicals or gases being contacted to avoid or minimize contamination. Suitable materials include, for example, polyfluorinated polymers such as Teflon® (tetrafluoroethylene), polyfluoroethane (PFA) and polyfluoroethylene (PFE). - The buffered-HF/ammonium
fluoride generation unit 300 includes a mixing tank 306 in which the starting materials are mixed. In an exemplary embodiment, mixing tank 306 is a 20 gallon Teflon® tank. In addition to Teflon®, suitable materials of construction for the mixing tank include but are not limited to polyvinyldifluoroethylene (PVDF) and polyethylene. - While the mixing tank preferably has a volume of from about 1 to 20 gallons, the present invention can easily be applied to substantially smaller (e.g., on the order of a few cubic centimeters) or larger (e.g., on the order of several thousand gallons) volumes.
- The buffered-HF/ammonium
fluoride generation unit 300 includes a high-purity deionized (DI)water supply line 308 for feeding high-purity water into mixing tank 306. HF is fed throughsupply line 310 into mixing tank 306. Transport of the HF into the mixing tank is accomplished with the assistance of pump 312. Suitable types of pumps are known in the art and include, for example, double diaphragm pumps, centrifugal pumps and metering pumps, the fluid contacting portions of which should be constructed of a non-contaminating material, such as Teflon®. Suitable pumps are commercially available from White Knight Corporation. - Ultra-high-purity ammonia gas is fed into mixing tank306 via
supply line 314. The ammonia can be fed directly from the ionic purifier (including any subsequent processing) as described above in reference to the ammonia purification unit, or an other ultra-high-purity ammonia source. Each of the DI water, HF and NH3 supply lines 308, 310 and 314 include avalve 316, 318 and 320, respectively, for regulating the amount of those materials introduced into the mixing tank. - To roughly monitor the amount of chemicals introduced into mixing tank306, a
first level sensor 322 is provided. Suitable level sensors are known in the art and include, for example, infrared (IR) or capacitance level sensors. Alternatively, any suitable volumetric or gravimetric scale can be used. - During chemical mixing (including ammonia bubbling), the solution in mixing tank306 is continuously removed and transported by pump 324 through
heat exchanger 326 to remove the heat of reaction therefrom. Suitable heat exchangers include, for example, shell and tube, plate and frame, and jacket and tube-type heat exchangers. The heat exchanger is preferably formed of a material which allows for sufficient heat transfer and which does not add contamination to the product chemical. Suitable materials of construction for the heat exchanger include, for example, Teflon®, PVDF, PFA and polyethylene. - After the solution passes through
heat exchanger 326, the concentration thereof is monitored bysensor 328.Sensor 328 allows for proper chemical blending during each chemical or gas addition step to be achieved. That is,sensor 328 can detect the proper endpoint for mixing the various components during formation of the buffered-HF/ammonium fluoride solutions. For example,sensor 328 can detect the endpoint for HF dilution with deionized water as well as during the step of bubbling ammonia vapor into the aqueous HF solution. - An
acoustic velocity sensor 328 can be used for this purpose. Such equipment is commercially available from Mesa Labs. The application of acoustic sensors to chemical blending is described in detail in PCT Application No. PCT/US96/10389, Attorney Docket No. 016499-263, filed on Jun. 5, 1996, the contents of which are herein incorporated by reference. In place of acoustic velocity measurement equipment, product concentration can be measured using, for example, conductivity, density, index of refraction, or infrared (IR) spectroscopy measurement equipment. - To further purify the chemical withdrawn from mixing tank306, the chemical can optionally be passed through a filter 330. The filter is preferably constructed of Teflon®. However, the filter can be formed from other materials which do not contaminate the formed chemical. Filter 330 preferably has a pore size of, for example, from 0.05 to 0.1 μm.
- Depending upon the concentration measurement by
sensor 328 and the particular mixing step being monitored, the chemical can be withdrawn from the generation unit vialine 332 as a final product by openingvalve 334 and by closingvalve 336. If the chemical is not of the proper final concentration, it can be reintroduced into mixing tank 306 viarecycle line 338 by openingvalve 336 and by closing valve 324. - The concentration measurement system can be connected to a valve control system which will automatically operate the valves to control material flow throughout the system. Those skilled in the art will readily be able to design and integrate appropriate controls in the inventive system by use of well known devices, circuits and/or processors and means for their control. Further discussion of this matter is omitted as it is deemed within the scope of persons of ordinary skill in the art.
- Mixing tank306 further includes a vent (exhaust) line 340 in an upper portion thereof for removing vapors from the tank. Vent line 340 can be connected to a downstream exhaust treatment apparatus, such as a gas scrubber. To prevent contamination of the chemicals in mixing tank 306 resulting from the backflow of contaminants through the vent line, a flow of an inert gas, such as nitrogen or argon, across the entrance to the vent line (i.e., an inert gas pad) can be used.
- According to a method for preparing buffered-HF or ammonium fluoride according to a first aspect of the invention, ultra-high-purity anhydrous HF is introduced into mixing tank306 and is diluted to the proper concentration with deionized water. Next, anhydrous ammonia can be added to the acid solution to an appropriate endpoint as determined by concentration analysis to obtain buffered-HF or ammonium fluoride.
- The following example is provided to illustrate how 1 kg of 40% by weight ammonium fluoride solution can be generated according to one aspect of the invention. At first, the total respective amounts of HF and NH3 to be dissolved in water are determined. 1 kg of 40% by weight ammonium fluoride (NH4F) solution would contain 400 g of NH4F and 600 g of ultra pure water. Since the HF:NH3 molar ratio is 1:1 for pure NH4F, the 400 g of NH4F would include 216 g of anhydrous HF and 184 g of anhydrous NH3 (NH4F=37 g/mole; HF=20 g/mole; NH3=17 g/mole).
- At completion of the HF formation cycle, 216 g of anhydrous HF would be dissolved in 600 g of water, resulting in a 26.5% by weight HF solution. On-board instrumentation in the system controls the addition of HF to the water to achieve the proper HF concentration. As an alternative to starting with anhydrous HF, a 49% HF starting solution can be diluted to this concentration. After the 26.5% HF solution is formed, 189 g of NH3 are added to mixing tank 306 via
line 314 to form the 40% NH4F solution. - Other concentrations and molar ratios can be set by the concentration instrumentation for different applications simply by adjustment of the instrumentation. As a result, ammonium fluoride solutions and buffered-HF solutions of various concentrations can be generated.
- According to a method for preparing buffered-HF or ammonium fluoride according to another aspect of the invention, premixed 49% HF or HF of any other concentration can be added to the mixing tank. The HF is then diluted with deionized water, if necessary, to the appropriate concentration endpoint as determined by the concentration sensor. Next, anhydrous ammonia can be added to an appropriate endpoint as determined by concentration analysis to obtain buffered-HF or ammonium fluoride.
- According to the above-described methods, HF and high-purity water are mixed to the desired concentration, followed by the addition of ammonia to the requisite concentration to form buffered-HF or ammonium fluoride.
- According to a further aspect of the invention, buffered-HF can be prepared by first forming an ammonium fluoride solution, for example, a 40% NH4F solution, according to the above procedures. This can then be followed by the addition of HF until hydrofluoric acid of the desired concentration is obtained. The concentrations during this final HF addition step can be controlled gravimetrically or by using any of the concentration control techniques described above.
- The buffered-HF or NH4F generation system can be positioned in close proximity to the point of use of the ultrapure chemical in the production line, leaving only a short distance of travel between the purification unit and the production line. Alternatively, for plants with multiple points of use, the ultrapure chemical from the generation unit can pass through an intermediate holding tank before reaching the point(s) of use. Further, the mixing tank of the buffered-HF or NH4F generator system itself can be the point of use, in which the substrates are processed.
- Each point of use can be fed by an individual outlet line from the holding tank. In either case, the ultrapure chemical can therefore be directly applied to the semiconductor substrate without packaging or transport and without storage other than a small in-line reservoir, and thus without contact with the potential sources of contamination normally encountered when chemicals are manufactured and prepared for use at locations external to the manufacturing facility.
- In this class of embodiments, the distance between the point at which the ultrapure chemical leaves the purification system and its point of use on the production line will generally be a few meters or less. This distance will be greater when the purification system is a central plant-wide system for piping to two or more use stations, in which case the distance may be two thousand feet or greater. Transfer can be achieved through an ultra-clean transfer line of a material which does not introduce contamination. In most applications, stainless steel or polymers such as high density polyethylene or fluorinated polymers can be used successfully.
- Due to the proximity of the purification unit to the production line, the water used in the unit can be purified in accordance with semiconductor manufacturing standards. These standards are commonly used in the semiconductor industry and are well known among those skilled in the art and experienced in the industry practices and standards.
- Methods of purifying water in accordance with these standards include ion exchange and reverse osmosis. Ion exchange methods typically include most or all of the following units: chemical treatment such as chlorination to kill organisms; sand filtration for particle removal; activated charcoal filtration to remove chlorine and traces of organic matter; diatomaceous earth filtration; anion exchange to remove strongly ionized acids; mixed bed polishing, containing both cation and anion exchange resins to remove further ions; sterilization, involving chlorination or ultraviolet light; and filtration through a filter of 0.45 micron or less. Reverse osmosis methods will involve, in place of one or more of the units in the ion exchange process, the passage of the water under pressure through a selectively permeable membrane which does not pass many of the dissolved or suspended substances.
- Typical standards for the purity of the water resulting from these processes are a resistivity of at least about 15 megohm-cm at 25° C. (typically 18 megohm-cm at 25° C.), less than about 25 ppb of electrolytes, a particulate content of less than about 150/cm3 and a particle size of less than 0.2 micron, a microorganism content of less than about 10/cm3, and total organic carbon of less than 100 ppb.
- Wafer Cleaning
- FIG. 4 illustrates exemplary wafer cleanup stations in a conventional line400 for semiconductor fabrication. The first unit in the cleaning line is a
photoresist stripping station 402, in whichaqueous hydrogen peroxide 404 andsulfuric acid 406 are combined and applied to the semiconductor surface to strip off the resist. This is followed by a rinse station 408, where deionized water is applied to rinse off the stripping solution. - Immediately downstream of rinse station408 is a cleaning
station 410 into which an aqueous solution of ammonia and hydrogen peroxide are applied. This solution is supplied in one of two ways. In the first,aqueous ammonia 412 is combined with aqueous hydrogen peroxide 414, and the resultingmixture 416 is directed to cleaningstation 410. - According to the second method, pure
gaseous ammonia 418 is bubbled into an aqueous hydrogen peroxide solution 420 to produce asimilar mixture 422, which is likewise directed to cleaningstation 410. Once cleaned with the ammonia/hydrogen peroxide combination, the semiconductor passes to second rinsestation 424 where deionized water is applied to remove the cleaning solution. - The next station is a
further cleaning station 426 where aqueous solutions ofhydrochloric acid 428 andhydrogen peroxide 430 are combined and applied to the semiconductor surface for further cleaning. This is followed by a final rinsestation 432 where deionized water is applied to remove the HCl and H2O2. - At
deglaze station 434, dilute aqueous HF or dilute buffered-HF is applied to the wafer, for example, to remove a native or other oxide film. The dilute buffered-hydrofluoric acid can be supplied using a system as described above. For example, the buffered-HF can be supplied directly, through sealed piping, fromgenerator 436.HF reservoir 438 holds anhydrous HF, from which a stream of gaseous HF is fed through ionic purifier 440 into the generator. To provide a buffered solution, gaseous ammonia can be bubbled intogenerator 436 and ultrapure deionized water can be added to achieve the desired dilution. This is followed by a rinse in ultrapure deionized water at station 442, and drying atstation 444. - The wafer or
wafer batch 446 being treated is held on a wafer support 448 and is conveyed from one workstation to the next by arobot 450 or some other conventional means of achieving sequential treatment. The means of conveyance can be totally automated, partially automated or not automated at all. - The system shown in FIG. 4 is just one example of a cleaning line which can be used in the manufacture of semiconductor devices. In general, cleaning lines for high-precision manufacture can vary widely from that shown in FIG. 4, either by eliminating one or more of the units shown or by adding or substituting one or more units not shown. The concept of the on-site preparation of high-purity buffered-HF and ammonium fluoride, however, in accordance with this invention is applicable to all such systems.
- Modifications and Variations
- While the invention has been described in detail with reference to specific embodiments thereof, it will be apparent to those skilled in the art that various changes and modifications can be made, and equivalents employed, without departing from the scope of the appended claims. For example, the disclosed innovative techniques can be applied to the manufacture of products other than ICs, such as discrete semiconductor components (e.g., optoelectronic and power devices), and to other manufacturing technologies in which IC manufacturing methods have been adopted (e.g., the manufacture of thin-film magnetic heads and active-matrix liquid-crystal displays).
- Furthermore, filtration units or stages in addition to those described above can be combined with the disclosed purification apparatus.
- It should also be noted that additives can be introduced into the purification water if desired, although this is not done in the presently preferred embodiment.
- According to a further aspect of the invention, the disclosed methods and systems can be adapted to operate as part of a manufacturing unit to produce ultra-high-purity chemicals for packaging and/or shipment. In this case, however, the advantages associated with the generation and purification of the chemicals on-site would not be realized. While such applications are subject to the above-discussed problems associated with the handling of ultra-high-purity chemicals, the disclosed innovations nevertheless provide an initial purity which is higher than that available by other techniques.
- Furthermore, although the primary embodiment is directed to providing ultrapure aqueous chemicals which are most critical for semiconductor manufacturing, the disclosed system and method embodiments can also be used to supply purified gas streams. In many cases, use of a dryer downstream from the purifier can be used for this purpose.
- It should also be noted that piping for ultrapure chemical routing in semiconductor front ends may include in-line or pressure reservoirs. Thus references to “direct” piping does not preclude the use of such reservoirs, but does preclude exposure to uncontrolled atmospheres.
Claims (32)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/881,747 US6350425B2 (en) | 1994-01-07 | 1997-06-24 | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
US10/006,376 US20020081237A1 (en) | 1994-01-07 | 2001-12-10 | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
US10/006,353 US20020079478A1 (en) | 1994-01-07 | 2001-12-10 | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/179,001 US5496778A (en) | 1994-01-07 | 1994-01-07 | Point-of-use ammonia purification for electronic component manufacture |
PCT/US1995/007649 WO1996039358A1 (en) | 1995-06-05 | 1995-06-05 | Point-of-use ammonia purification for electronic component manufacture |
US1810495P | 1995-07-07 | 1995-07-07 | |
US08/610,261 US5755934A (en) | 1994-01-07 | 1996-03-04 | Point-of-use ammonia purification for electronic component manufacture |
PCT/US1996/010388 WO1996039266A1 (en) | 1995-06-05 | 1996-06-05 | On-site generation of ultra-high-purity buffered-hf for semiconductor processing |
USPCTUS9610388 | 1996-06-05 | ||
US08/674,130 US5722442A (en) | 1994-01-07 | 1996-07-01 | On-site generation of ultra-high-purity buffered-HF for semiconductor processing |
US08/881,747 US6350425B2 (en) | 1994-01-07 | 1997-06-24 | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/007649 Continuation-In-Part WO1996039358A1 (en) | 1994-01-07 | 1995-06-05 | Point-of-use ammonia purification for electronic component manufacture |
PCT/US1996/010388 Continuation-In-Part WO1996039266A1 (en) | 1994-01-07 | 1996-06-05 | On-site generation of ultra-high-purity buffered-hf for semiconductor processing |
US08/674,130 Continuation-In-Part US5722442A (en) | 1994-01-07 | 1996-07-01 | On-site generation of ultra-high-purity buffered-HF for semiconductor processing |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/006,353 Continuation US20020079478A1 (en) | 1994-01-07 | 2001-12-10 | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
US10/006,376 Division US20020081237A1 (en) | 1994-01-07 | 2001-12-10 | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010051128A1 true US20010051128A1 (en) | 2001-12-13 |
US6350425B2 US6350425B2 (en) | 2002-02-26 |
Family
ID=56289776
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/881,747 Expired - Fee Related US6350425B2 (en) | 1994-01-07 | 1997-06-24 | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
US10/006,376 Abandoned US20020081237A1 (en) | 1994-01-07 | 2001-12-10 | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
US10/006,353 Abandoned US20020079478A1 (en) | 1994-01-07 | 2001-12-10 | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/006,376 Abandoned US20020081237A1 (en) | 1994-01-07 | 2001-12-10 | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
US10/006,353 Abandoned US20020079478A1 (en) | 1994-01-07 | 2001-12-10 | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
Country Status (1)
Country | Link |
---|---|
US (3) | US6350425B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020139387A1 (en) * | 2000-08-31 | 2002-10-03 | Micron Technology, Inc. | Compositions for dissolution of low-k dielectric films, and methods of use |
US20040089152A1 (en) * | 2001-03-28 | 2004-05-13 | Ewald Neumann | Method for the purification of corrosive gases |
US20040108201A1 (en) * | 2002-11-20 | 2004-06-10 | Toyo Tanso Co., Ltd. | Fluorine gas generator |
US20050085076A1 (en) * | 2003-07-23 | 2005-04-21 | Nam Sang W. | Inorganic compound for removing polymers in semiconductor processes |
CN102557076A (en) * | 2010-12-08 | 2012-07-11 | 上海华谊微电子材料有限公司 | Method for producing electronic-grade ammonium fluoride water solution |
US20140260624A1 (en) * | 2013-03-13 | 2014-09-18 | Applied Materials, Inc. | Acoustically-monitored semiconductor substrate processing systems and methods |
WO2016164380A1 (en) * | 2015-04-06 | 2016-10-13 | Rasirc, Inc. | Methods and systems for purifying hydrogen peroxide solutions |
US20170073241A1 (en) * | 2014-03-05 | 2017-03-16 | Bechtel Hydrocarbon Technology Solutions, Inc. | Systems and methods for ammonia purification |
CN115309215A (en) * | 2022-08-05 | 2022-11-08 | 福建龙氟化工有限公司 | Automatic batching control system for preparing ammonium fluoride and control method thereof |
WO2024045247A1 (en) * | 2022-08-31 | 2024-03-07 | 福建天甫电子材料有限公司 | Production management and control system for ammonium fluoride production and control method therefor |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6350425B2 (en) * | 1994-01-07 | 2002-02-26 | Air Liquide America Corporation | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
US8153095B2 (en) * | 1999-03-29 | 2012-04-10 | Honeywell International Inc. | Method for producing highly pure solutions using gaseous hydrogen fluoride |
JP4590700B2 (en) * | 2000-07-14 | 2010-12-01 | ソニー株式会社 | Substrate cleaning method and substrate cleaning apparatus |
JP2005183937A (en) * | 2003-11-25 | 2005-07-07 | Nec Electronics Corp | Manufacturing method of semiconductor device and cleaning device for removing resist |
US9005464B2 (en) * | 2011-06-27 | 2015-04-14 | International Business Machines Corporation | Tool for manufacturing semiconductor structures and method of use |
JP7086068B2 (en) * | 2016-11-11 | 2022-06-17 | エムケイエス インストゥルメンツ, インコーポレイテッド | Systems and methods for producing conductive liquids containing deionized water in which ammonia gas is dissolved. |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE281173C (en) * | ||||
US3725536A (en) * | 1968-02-26 | 1973-04-03 | R Gentili | Method of the continuous production of hydrofluoric acid |
GB1192474A (en) | 1968-05-21 | 1970-05-20 | Vnii Khim Reaktinov I Osbo Chi | Method and Apparatus for Producing Hydrofluoric Acid of High Purity |
US3685370A (en) * | 1970-06-29 | 1972-08-22 | Gen Motors Corp | Transmission control having a shift overlap valve |
DE2360974C2 (en) * | 1973-12-07 | 1983-08-18 | Ibm Deutschland Gmbh, 7000 Stuttgart | Method for purifying ammonium fluoride solutions |
US4083441A (en) * | 1976-08-30 | 1978-04-11 | Sperry Rand Corporation | Clutch assembly |
JPS616121A (en) * | 1984-06-14 | 1986-01-11 | Hashimoto Kasei Kogyo Kk | Manufacture of high purity ammonium fluoride |
SU1326552A1 (en) * | 1984-08-28 | 1987-07-30 | Днепропетровский химико-технологический институт им.Ф.Э.Дзержинского | Method of producing ammonium fluoride |
JPH0238521B2 (en) | 1984-12-25 | 1990-08-30 | Hashimoto Chemical Ind | FUTSUKASUISOSAN NOSEISEIHO |
JPS62213127A (en) | 1986-03-13 | 1987-09-19 | Nec Corp | Semiconductor wafer washing equipment |
JPS63283028A (en) * | 1986-09-29 | 1988-11-18 | Hashimoto Kasei Kogyo Kk | Treating agent for fine working surface |
CA1299836C (en) * | 1986-09-29 | 1992-05-05 | William Lyon Sherwood | Continuous lead-float casting of steel |
US4828660A (en) | 1986-10-06 | 1989-05-09 | Athens Corporation | Method and apparatus for the continuous on-site chemical reprocessing of ultrapure liquids |
US5164049A (en) | 1986-10-06 | 1992-11-17 | Athens Corporation | Method for making ultrapure sulfuric acid |
JPS63152603A (en) | 1986-12-17 | 1988-06-25 | Showa Highpolymer Co Ltd | Photocurable resin composition |
JP2528854B2 (en) | 1987-01-27 | 1996-08-28 | 多摩化学工業株式会社 | Method and apparatus for manufacturing high-purity chemicals |
US4929435A (en) | 1987-02-12 | 1990-05-29 | Allied-Signal Inc. | Manufacture of high purity low arsenic anhydrous hydrogen fluoride |
US4756899A (en) | 1987-02-12 | 1988-07-12 | Allied-Signal Inc. | Manufacture of high purity low arsenic anhydrous hydrogen fluoride |
JPS63283027A (en) | 1987-05-15 | 1988-11-18 | Toshiba Corp | Cleaning method for semiconductor |
US4952386A (en) | 1988-05-20 | 1990-08-28 | Athens Corporation | Method and apparatus for purifying hydrogen fluoride |
US4980032A (en) | 1988-08-12 | 1990-12-25 | Alameda Instruments, Inc. | Distillation method and apparatus for reprocessing sulfuric acid |
US5047226A (en) | 1988-12-12 | 1991-09-10 | Fluorex, S.A. De C.V. | Process for the removal of arsenic in the manufacture of hydrofluoric acid |
US5288333A (en) | 1989-05-06 | 1994-02-22 | Dainippon Screen Mfg. Co., Ltd. | Wafer cleaning method and apparatus therefore |
US4954330A (en) | 1989-11-30 | 1990-09-04 | E. I. Dupont De Nemours And Company | Process for purifying hydrogen fluoride |
JP3616828B2 (en) * | 1991-03-06 | 2005-02-02 | ステラケミファ株式会社 | Dilute hydrofluoric acid supply method and dilute hydrofluoric acid supply device used in this method |
US5242468A (en) | 1991-03-19 | 1993-09-07 | Startec Ventures, Inc. | Manufacture of high precision electronic components with ultra-high purity liquids |
US5235235A (en) * | 1991-05-24 | 1993-08-10 | The United States Of America As Represented By The United States Department Of Energy | Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase |
JPH05121390A (en) | 1991-10-29 | 1993-05-18 | Koujiyundo Silicon Kk | Removing method for acid |
DE4135918A1 (en) | 1991-10-31 | 1993-05-06 | Solvay Fluor Und Derivate Gmbh, 3000 Hannover, De | MANUFACTURE OF HIGHLY PURE FLUORED HYDROGEN |
JPH05212274A (en) | 1991-11-12 | 1993-08-24 | Submicron Syst Inc | Chemical processing system |
US5108559A (en) * | 1991-12-17 | 1992-04-28 | E. I. Du Pont De Nemours And Company | Process for purifying hydrogen fluoride |
EP0563625A3 (en) * | 1992-04-03 | 1994-05-25 | Ibm | Immersion scanning system for fabricating porous silicon films and devices |
US5348722A (en) * | 1992-06-17 | 1994-09-20 | Nec Corporation | Removal of detrimental metal ions from hydrofluoric acid solution for cleaning silicon surfaces |
US5500098A (en) | 1993-08-05 | 1996-03-19 | Eco-Tec Limited | Process for regeneration of volatile acids |
US5785820A (en) * | 1994-01-07 | 1998-07-28 | Startec Ventures, Inc. | On-site manufacture of ultra-high-purity hydrofluoric acid for semiconductor processing |
US5496778A (en) | 1994-01-07 | 1996-03-05 | Startec Ventures, Inc. | Point-of-use ammonia purification for electronic component manufacture |
US5722442A (en) * | 1994-01-07 | 1998-03-03 | Startec Ventures, Inc. | On-site generation of ultra-high-purity buffered-HF for semiconductor processing |
US6350425B2 (en) * | 1994-01-07 | 2002-02-26 | Air Liquide America Corporation | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
US5846386A (en) * | 1994-01-07 | 1998-12-08 | Startec Ventures, Inc. | On-site ammonia purification for semiconductor manufacture |
US5632866A (en) * | 1994-01-12 | 1997-05-27 | Fsi International, Inc. | Point-of-use recycling of wafer cleaning substances |
US5533402A (en) * | 1994-05-11 | 1996-07-09 | Artann Corporation | Method and apparatus for measuring acoustic parameters in liquids using cylindrical ultrasonic standing waves |
US6001223A (en) * | 1995-07-07 | 1999-12-14 | Air Liquide America Corporation | On-site ammonia purification for semiconductor manufacture |
-
1997
- 1997-06-24 US US08/881,747 patent/US6350425B2/en not_active Expired - Fee Related
-
2001
- 2001-12-10 US US10/006,376 patent/US20020081237A1/en not_active Abandoned
- 2001-12-10 US US10/006,353 patent/US20020079478A1/en not_active Abandoned
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7432214B2 (en) | 2000-08-31 | 2008-10-07 | Micron Technology, Inc. | Compositions for dissolution of low-k dielectric film, and methods of use |
US20040248424A1 (en) * | 2000-08-31 | 2004-12-09 | Micron Technology, Inc. | Compositions for dissolution of low-k dielectric film, and methods of use |
US8142673B2 (en) * | 2000-08-31 | 2012-03-27 | Micron Technology, Inc. | Compositions for dissolution of low-k dielectric films, and methods of use |
US20040242016A1 (en) * | 2000-08-31 | 2004-12-02 | Micron Technology, Inc. | Compositions for dissolution of low-k dielectric films, and methods of use |
US7312159B2 (en) | 2000-08-31 | 2007-12-25 | Micron Technology, Inc. | Compositions for dissolution of low-k dielectric films, and methods of use |
US20040253832A1 (en) * | 2000-08-31 | 2004-12-16 | Micron Technology, Inc. | Compositions for dissolution of low-k dielectric films, and methods of use |
US20040250835A1 (en) * | 2000-08-31 | 2004-12-16 | Micron Technology, Inc. | Compositions for dissolution of low-k dielectric films, and methods of use |
US8951433B2 (en) | 2000-08-31 | 2015-02-10 | Micron Technology, Inc. | Compositions for use in semiconductor devices |
US7521373B2 (en) | 2000-08-31 | 2009-04-21 | Micron Technology, Inc. | Compositions for dissolution of low-k dielectric films, and methods of use |
US20090001314A1 (en) * | 2000-08-31 | 2009-01-01 | Yates Donald L | Compositions for Dissolution of Low-K Dielectric Films, and Methods of Use |
US20020139387A1 (en) * | 2000-08-31 | 2002-10-03 | Micron Technology, Inc. | Compositions for dissolution of low-k dielectric films, and methods of use |
US7399424B2 (en) | 2000-08-31 | 2008-07-15 | Micron Technology, Inc. | Compositions for dissolution of low-k dielectric films, and methods of use |
US8632692B2 (en) | 2000-08-31 | 2014-01-21 | Micron Technology, Inc. | Compositions for use in semiconductor devices |
US20080283796A1 (en) * | 2000-08-31 | 2008-11-20 | Yates Donald L | Compositions for Dissolution of Low-K Dielectric Films, and Methods of Use |
US20040089152A1 (en) * | 2001-03-28 | 2004-05-13 | Ewald Neumann | Method for the purification of corrosive gases |
US7108737B2 (en) * | 2001-03-28 | 2006-09-19 | Basf Aktiengesellschaft | Method for the purification of corrosive gases |
US20040108201A1 (en) * | 2002-11-20 | 2004-06-10 | Toyo Tanso Co., Ltd. | Fluorine gas generator |
US20050085076A1 (en) * | 2003-07-23 | 2005-04-21 | Nam Sang W. | Inorganic compound for removing polymers in semiconductor processes |
US7335268B2 (en) * | 2003-07-23 | 2008-02-26 | Dongbu Electronics Co., Ltd. | Inorganic compound for removing polymers in semiconductor processes |
CN102557076A (en) * | 2010-12-08 | 2012-07-11 | 上海华谊微电子材料有限公司 | Method for producing electronic-grade ammonium fluoride water solution |
US20140260624A1 (en) * | 2013-03-13 | 2014-09-18 | Applied Materials, Inc. | Acoustically-monitored semiconductor substrate processing systems and methods |
US9429247B2 (en) * | 2013-03-13 | 2016-08-30 | Applied Materials, Inc. | Acoustically-monitored semiconductor substrate processing systems and methods |
US20170073241A1 (en) * | 2014-03-05 | 2017-03-16 | Bechtel Hydrocarbon Technology Solutions, Inc. | Systems and methods for ammonia purification |
US10266418B2 (en) * | 2014-03-05 | 2019-04-23 | Bechtel Hydrocarbon Technology Solutions, Inc. | Systems and methods for ammonia purification |
WO2016164380A1 (en) * | 2015-04-06 | 2016-10-13 | Rasirc, Inc. | Methods and systems for purifying hydrogen peroxide solutions |
US10766771B2 (en) | 2015-04-06 | 2020-09-08 | Rasirc, Inc. | Methods and systems for purifying hydrogen peroxide solutions |
CN115309215A (en) * | 2022-08-05 | 2022-11-08 | 福建龙氟化工有限公司 | Automatic batching control system for preparing ammonium fluoride and control method thereof |
WO2024045247A1 (en) * | 2022-08-31 | 2024-03-07 | 福建天甫电子材料有限公司 | Production management and control system for ammonium fluoride production and control method therefor |
Also Published As
Publication number | Publication date |
---|---|
US6350425B2 (en) | 2002-02-26 |
US20020079478A1 (en) | 2002-06-27 |
US20020081237A1 (en) | 2002-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5722442A (en) | On-site generation of ultra-high-purity buffered-HF for semiconductor processing | |
US6050283A (en) | System and method for on-site mixing of ultra-high-purity chemicals for semiconductor processing | |
US6350425B2 (en) | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride | |
US6063356A (en) | On-site manufacture of ultra-high-purity hydrofluoric acid for semiconductor processing | |
EP0831978B1 (en) | On-site ammonia purification for semiconductor manufacture | |
US5755934A (en) | Point-of-use ammonia purification for electronic component manufacture | |
USRE37972E1 (en) | Manufacture of high precision electronic components with ultra-high purity liquids | |
US6001223A (en) | On-site ammonia purification for semiconductor manufacture | |
US5846386A (en) | On-site ammonia purification for semiconductor manufacture | |
US5846387A (en) | On-site manufacture of ultra-high-purity hydrochloric acid for semiconductor processing | |
KR100379886B1 (en) | On-site generation system of ultra-purity buffered HF for semiconductor process | |
JPH11509980A (en) | On-site production of ultra-high purity hydrochloric acid for semiconductor processing | |
WO1996039651A1 (en) | System and method for on-site mixing of ultra-high-purity chemicals for semiconductor processing | |
WO1996041687A1 (en) | On-site manufacture of ultra-high-purity hydrofluoric acid for semiconductor processing | |
WO1996039263A1 (en) | On-site manufacture of ultra-high-purity nitric acid for semiconductor processing | |
US6372022B1 (en) | Ionic purifier | |
US6214173B1 (en) | On-site manufacture of ultra-high-purity nitric acid | |
WO1996039264A1 (en) | On-site manufacture of ultra-high-purity hydrochloric acid for semiconductor processing | |
EP0833705A1 (en) | On-site manufacture of ultra-high-purity hydrofluoric acid for semiconductor processing | |
EP0836719A1 (en) | System and method for on-site mixing of ultra-high-purity chemicals for semiconductor processing | |
KR19990022280A (en) | Method for producing ultra-high purity hydrofluoric acid for semiconductor processing in situ | |
Tsukamoto et al. | Development of ozonated ultrapure water supplying system using direct-dissolving method | |
EP0835169A1 (en) | On-site manufacture of ultra-high-purity hydrochloric acid for semiconductor processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: STARTEC VENTURES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOFFMAN, JOE G.;CLARK, R. SCOT;REEL/FRAME:008887/0070 Effective date: 19971110 |
|
AS | Assignment |
Owner name: AIR LIQUIDE ELECTRONICS CHEMICALS & SERVICES, INC. Free format text: MERGER AND CHANGE OF NAME;ASSIGNOR:STARTEC VENTURES, INC.;REEL/FRAME:009146/0870 Effective date: 19971230 |
|
AS | Assignment |
Owner name: AIR LIQUIDE AMERICA CORPORATION, TEXAS Free format text: ASSIGNMENT/SECRETARY'S CERTIFICATE;ASSIGNOR:AIR LIQUIDE ELECTRONICS CHEMICALS & SERVICES, INC.;REEL/FRAME:009875/0068 Effective date: 19990307 |
|
AS | Assignment |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET, L' Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AIR LIQUIDE AMERICA CORPORATION;REEL/FRAME:009875/0027 Effective date: 19990402 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100226 |