JPH0238521B2 - FUTSUKASUISOSAN NOSEISEIHO - Google Patents

FUTSUKASUISOSAN NOSEISEIHO

Info

Publication number
JPH0238521B2
JPH0238521B2 JP28009084A JP28009084A JPH0238521B2 JP H0238521 B2 JPH0238521 B2 JP H0238521B2 JP 28009084 A JP28009084 A JP 28009084A JP 28009084 A JP28009084 A JP 28009084A JP H0238521 B2 JPH0238521 B2 JP H0238521B2
Authority
JP
Japan
Prior art keywords
hydrofluoric acid
fluorine
arsenic
ppm
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28009084A
Other languages
Japanese (ja)
Other versions
JPS61151002A (en
Inventor
Masahiro Miki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HASHIMOTO CHEMICAL IND
Original Assignee
HASHIMOTO CHEMICAL IND
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HASHIMOTO CHEMICAL IND filed Critical HASHIMOTO CHEMICAL IND
Priority to JP28009084A priority Critical patent/JPH0238521B2/en
Priority to US06/813,219 priority patent/US4668497A/en
Publication of JPS61151002A publication Critical patent/JPS61151002A/en
Publication of JPH0238521B2 publication Critical patent/JPH0238521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はフツ化水素酸の精製方法に関し、更に
詳しくはヒ素化合物を含有するフツ化水素酸の精
製方法に関する。 〔従来の技術〕 フツ化水素酸の代表的な用途の一つに電子金属
工業就中半導体、たとえばシリコンの洗浄剤並び
に蝕刻剤の用途がある。この用途に使用されるフ
ツ化水素酸は純度の高いものが要求されるが、特
にヒ素化合物が不純物として存在すると高性能の
半導体素子の作製に重大な悪影響を及ぼし、この
ため最近特にヒ素化合物の少ないフツ化水素酸の
需要が増大している。このような現状に対し、従
来フツ化水素酸中のヒ素化合物を除去する方法も
幾つか開発されている。そのうちの一つの方法に
過マンガン酸カリウム等の酸化剤を用いる方法が
ある。たとえば特公昭47−16407記載の方法を例
にとると、酸化剤に含まれるマンガン分、クロム
分の蒸発に伴う留出がおこり精製フツ化水素酸が
汚染するので、2価の鉄塩を併用しなければ目的
が達せられない。しかし、加える鉄塩のために高
水準の鉄汚染が再度起こるという欠点が生ずる。 また、米国特許第3166379号記載の方法では、
酸化剤とヨウ素、塩素、臭素から成るハロゲン化
合物を併用しているのであるが、この方法の最大
の欠点は過剰に加えられたヨウ素、塩素、臭素が
製品に混在して留出し、これらによる別の著しい
汚染を起こすという新たな難点が生ずる。また別
のヒ素化合物の除去方法として過酸化水素を用い
る方法も開発されている。たとえば米国特許第
4083941号に記載の過酸化水素を用いる方法では、
精製処理に70時間以上もかかり、極めて非能率的
で工業化には向かない。 〔発明が解決しようとする問題点〕 本発明が解決しようとする問題点は、ヒ素化合
物を不純物として含有するフツ化水素酸の従来の
精製方法の上記各難点を解消することであり、こ
れを更に詳しく述べれば次の通りである。本発明
が解決しようとする問題点は、フツ化水素酸中に
存在する不純物たるヒ素化合物を有効に除去しう
る精製方法を提供することである。 本発明の他の解決すべき問題点は、酸化剤、鉄
分あるいはハロゲン元素に基づく新たな汚染の生
じないヒ素化合物のフツ化水素酸からの除去、精
製方法を提供することである。 〔上記問題点を解決するための手段〕 上記問題点を解決するためには、ヒ素化合物を
不純物として含有するフツ化水素酸にフツ素を添
加してヒ素化合物と反応せしめ次いでフツ化水素
酸を蒸留することによつて達成され、又はかくし
て得られた蒸留フツ化水素酸中に残存するフツ素
を水と反応せしめて除去することによつて達成さ
れる。 即ち本発明は、ヒ素化合物を含有するフツ化水
素酸にフツ素を添加してヒ素化合物と反応させた
後、フツ化水素酸を蒸留するフツ化水素酸の精製
法、及びヒ素化合物を含有するフツ化水素酸にフ
ツ素を添加してヒ素化合物と反応させた後フツ化
水素酸を蒸留し、蒸留後のフツ化水素酸中に残存
するフツ素を水と反応させて除去するフツ化水素
酸の精製法に係るものである。 〔発明の構成並びに作用〕 本発明の精製方法の対象となるものは、フツ化
水素酸であり、更に詳しくはヒ素化合物を含有す
るフツ化水素酸である。ここでフツ化水素酸とは
少なくとも全体の3%以下の水分を含有するフツ
化水素酸を意味する。 本発明のフツ化水素酸に不純物として含有され
ているヒ素化合物としては、特にその種類は限定
されるものでなく、ヒ素化合物であるかぎり、い
ずれも有効に除去される。不純物として存在する
ヒ素化合物の量としては通常500ppm以下、好ま
しくは100ppm以下であり、特に不純物の含有量
の高いフツ化水素酸は予め適当な従来公知の方法
たとえば蒸留によつてある程度の量まで低下させ
てから、本発明法の対象として例示すればよい。 これ等ヒ素化合物がフツ化水素酸中にどの様な
形態で存在しているかについては、必ずしも詳細
には不明であるが、存在していると考えられる化
合物の代表例を例示すればAsF3、AsF5、HAsF6
等である。 いずれの化合物の形態をとろうとも、本発明の
方法に於いては、フツ素を添加し蒸留することに
より、極めて有効にこれ等を除去することができ
る。 本発明の実施に際しては、上記不純物を含むフ
ツ化水素酸に先ずフツ素を添加して反応せしめ次
いで蒸留する。この際使用するフツ素はフツ素ガ
ス単独で、或いは他の不活性なガスとの混合ガス
として、或いはまた不活性な液体にフツ素を溶解
して添加する。この際の不活性なガス及び液体と
しては、いずれも反応に関与しないものであれば
良く、たとえばガスとしてはアルゴン、ヘリウ
ム、窒素、フツ化水素等が例示でき、また液体と
してはたとえばフツ化水素酸等が例示できる。 使用するフツ素の量はフツ化水素酸に含まれて
いる不純物の濃度により適宜に決定されれば良い
が、通常不純物の含有量が全体として約100ppm
以下の場合は、フツ素の使用量は約50〜100ppm
程度である。フツ化水素酸にはヒ素化合物のほか
不純物として、イオウ化合物、リン化合物、アン
チモン化合物等が存在することもあるのでこれら
の不純物もフツ素を消費するため、これらの存在
量を測定してフツ素の添加量を調整することが好
ましい。 フツ素と上記不純物との間の反応は、常温常圧
下で迅速に進行するので、特別な条件や装置を必
要としない。通常無水フツ化水素酸の沸点以下の
温度すなわち10〜20℃で実施されるのが好まし
い。 本発明に於いてはフツ素と不純物とを反応せし
めた後、蒸留することを必須としている。この蒸
留は、フツ素を添加して反応を行つた後に行つて
も良いし、また蒸留中にフツ素を添加しても良
い。この際の蒸留方法は、回分式蒸留精製法或い
は連続式蒸留精製法の何れの方法でもよく、それ
ぞれ充分な成果が得られる。 本発明の方法によればフツ素を添加して反応せ
しめ、ついで蒸留するという極めて簡単な操作で
フツ化水素酸中の上記不純物を有効に除去するこ
とができる。特に従来除去不可能とされていた極
めて低濃度即ち10-4ppmのオーダーにまでヒ素化
合物を除去することができる。このような優れた
作用は実に驚くべきことに、ハロゲン元素でも特
にフツ素を使用した場合にのみ発揮され、その他
のハロゲン元素たとえば塩素、臭素、ヨウ素等で
は全く上記の優れた効果は得られない。この点を
より明瞭にする為不純物としてヒ素化合物を含有
するフツ化水素酸を調製し、これについて種々の
ハロゲン元素を用いて実際に精製した実験例を示
す。この実験は下記第1表に示す所のハロゲン元
素を、ヒ素10ppmを含むフツ化水素酸に、それぞ
れ70ppmになるように常温、常圧で添加し、その
まま1時間静置した後に蒸留した。得られた精製
フツ化水素酸を加水分解した後、ヒ素及び残存ハ
ロゲン元素の濃度を水素化原子吸光光度法及びヨ
ードメトリーで分析した。その結果を第1表に示
す。
[Industrial Application Field] The present invention relates to a method for purifying hydrofluoric acid, and more particularly to a method for purifying hydrofluoric acid containing an arsenic compound. [Prior Art] One of the typical uses of hydrofluoric acid is as a cleaning agent and an etching agent for semiconductors such as silicon in the electronic metal industry. The hydrofluoric acid used for this purpose is required to be of high purity, but the presence of arsenic compounds as impurities has a serious adverse effect on the production of high-performance semiconductor devices. The demand for less hydrofluoric acid is increasing. In response to the current situation, several methods have been developed to remove arsenic compounds from hydrofluoric acid. One of these methods is to use an oxidizing agent such as potassium permanganate. For example, if we take the method described in Japanese Patent Publication No. 47-16407, distillation occurs due to the evaporation of manganese and chromium contained in the oxidizing agent, which contaminates purified hydrofluoric acid, so divalent iron salts are used in combination. If you don't, you won't be able to achieve your goal. However, the disadvantage arises that high levels of iron contamination occur again due to the added iron salts. Additionally, in the method described in US Pat. No. 3,166,379,
An oxidizing agent and a halogen compound consisting of iodine, chlorine, and bromine are used together, but the biggest drawback of this method is that the excessively added iodine, chlorine, and bromine are mixed in the product and distill out, resulting in separation. A new difficulty arises in that significant contamination occurs. A method using hydrogen peroxide has also been developed as another method for removing arsenic compounds. For example, U.S. Patent No.
In the method using hydrogen peroxide described in No. 4083941,
The purification process takes over 70 hours, making it extremely inefficient and unsuitable for industrialization. [Problems to be Solved by the Invention] The problems to be solved by the present invention are to solve the above-mentioned problems of the conventional purification method of hydrofluoric acid containing arsenic compounds as impurities. More details are as follows. The problem to be solved by the present invention is to provide a purification method that can effectively remove arsenic compounds as impurities present in hydrofluoric acid. Another problem to be solved by the present invention is to provide a method for removing and purifying arsenic compounds from hydrofluoric acid without causing new contamination due to oxidizing agents, iron or halogen elements. [Means for solving the above problems] In order to solve the above problems, fluorine is added to hydrofluoric acid containing an arsenic compound as an impurity to react with the arsenic compound, and then the hydrofluoric acid is reacted with the arsenic compound. This can be achieved by distillation, or by removing the fluorine remaining in the distilled hydrofluoric acid thus obtained by reacting it with water. That is, the present invention provides a method for purifying hydrofluoric acid, which involves adding fluorine to hydrofluoric acid containing an arsenic compound and reacting with the arsenic compound, and then distilling the hydrofluoric acid, and a method for purifying hydrofluoric acid containing an arsenic compound. Hydrofluoric acid is produced by adding fluorine to hydrofluoric acid and reacting it with an arsenic compound, then distilling the hydrofluoric acid, and removing the fluorine remaining in the hydrofluoric acid after the distillation by reacting with water. This relates to a method for purifying acids. [Structure and operation of the invention] The object of the purification method of the present invention is hydrofluoric acid, and more specifically, hydrofluoric acid containing an arsenic compound. Here, hydrofluoric acid means hydrofluoric acid containing at least 3% or less of water. The type of arsenic compound contained as an impurity in the hydrofluoric acid of the present invention is not particularly limited, and any arsenic compound can be effectively removed. The amount of arsenic compounds present as impurities is usually 500 ppm or less, preferably 100 ppm or less, and hydrofluoric acid, which has a particularly high content of impurities, is reduced to a certain level by an appropriate conventionally known method such as distillation. After that, it may be exemplified as a target of the method of the present invention. It is not necessarily clear in detail what forms these arsenic compounds exist in hydrofluoric acid, but typical examples of compounds that are thought to exist include AsF 3 , AsF5 , HAsF6
etc. Regardless of the form of the compound, it can be removed very effectively in the method of the present invention by adding fluorine and distilling it. In carrying out the present invention, fluorine is first added to the impurity-containing hydrofluoric acid to cause a reaction, and then distilled. The fluorine used at this time is added as a fluorine gas alone, as a mixed gas with another inert gas, or as a solution of fluorine in an inert liquid. In this case, the inert gas and liquid may be any gas that does not participate in the reaction. Examples of the gas include argon, helium, nitrogen, hydrogen fluoride, etc., and examples of the liquid include hydrogen fluoride. Examples include acids. The amount of fluorine used may be determined appropriately depending on the concentration of impurities contained in hydrofluoric acid, but usually the total content of impurities is about 100 ppm.
In the following cases, the amount of fluorine used is approximately 50 to 100 ppm
That's about it. In addition to arsenic compounds, hydrofluoric acid may also contain impurities such as sulfur compounds, phosphorus compounds, and antimony compounds. These impurities also consume fluorine, so the amount of these present can be measured to determine the amount of fluorine present. It is preferable to adjust the amount of addition. The reaction between fluorine and the above-mentioned impurities proceeds rapidly at room temperature and pressure, so no special conditions or equipment are required. Usually, it is preferable to carry out the reaction at a temperature below the boiling point of hydrofluoric anhydride, that is, 10 to 20°C. In the present invention, it is essential that fluorine and impurities be reacted and then distilled. This distillation may be performed after fluorine is added and the reaction is carried out, or fluorine may be added during distillation. The distillation method at this time may be either a batch distillation purification method or a continuous distillation purification method, and sufficient results can be obtained with each method. According to the method of the present invention, the above-mentioned impurities in hydrofluoric acid can be effectively removed by an extremely simple operation of adding fluorine, causing a reaction, and then distilling. In particular, it is possible to remove arsenic compounds down to extremely low concentrations, that is, on the order of 10 -4 ppm, which were conventionally considered impossible to remove. Surprisingly, such an excellent effect is only achieved when halogen elements, especially fluorine, are used; other halogen elements, such as chlorine, bromine, and iodine, do not produce the above-mentioned excellent effects at all. . In order to make this point clearer, we will show an experimental example in which hydrofluoric acid containing an arsenic compound as an impurity was prepared and it was actually purified using various halogen elements. In this experiment, the halogen elements shown in Table 1 below were added to hydrofluoric acid containing 10 ppm of arsenic at room temperature and pressure to a concentration of 70 ppm, and the mixture was allowed to stand for 1 hour and then distilled. After the obtained purified hydrofluoric acid was hydrolyzed, the concentrations of arsenic and residual halogen elements were analyzed by hydrogenation atomic absorption spectrometry and iodometry. The results are shown in Table 1.

〔実施例〕〔Example〕

以下に実施例を示して更に具体的に本発明方法
を説明する。 実施例 1 還流冷却器および蒸留管をつけたポリ(トリフ
ルオロクロルエチレン)製容器(容量1)に、
フツ化水素酸(HF99.8%、As10ppm)800gを
入れ、フツ素ガス(F299.1%、HF0.3%)をボン
ベから、原料に対して、75ppmになるように吹き
込んで溶解させたのち、容器を加熱し軽質ガスを
除去したのち、フツ化水素酸留分を蒸留捕集す
る。この精製フツ化水素酸はヒ素含有量を測定し
たところ、0.0001ppm以下であり、電子材料用の
フツ化水素酸として有用なものであつた。 実施例 2 実施例1と同じ装置を用い、容器にフツ化水素
酸(HF97.1%、H2O2.8%、As8ppm)750gを入
れ、フツ素電解槽から発生させたフツ素ガス
(F288.2%、HF11.8%)をF2として0.3g吹き込ん
で溶解させ、容器を加熱してフツ化水素酸を蒸留
し、精製フツ化水素酸を得た。この精製フツ化水
素酸はヒ素含有量を測定したところ、0.0001ppm
以下であり、電子材料用のフツ化水素酸として有
用なものであつた。 実施例 3 ポリ(テトラフルオロエチレン)製冷却器を有
するポリ(テトラフルオロエチレン)製の充填塔
を有する精留装置を用いる。原料フツ化水素酸を
この装置に仕込む連続供給装置に接続して、フツ
素用電解槽(20)を設けてある。原料フツ化水
素酸(HF99.9%、As9ppm)を80Kg/時で連続
的に仕込みながら、フツ素電解槽からフツ素ガス
(F287.5%、HF12.5%)をガス供給口より原料フ
ツ化水素酸に対してF2100ppmになるように連続
的に吹き込んで、加熱して精留する。この方法で
10時間連続運転して得られた精製フツ化水素酸の
ヒ素含有量を測定したところ、0.0001ppm以下で
あつた。 このフツ化水素酸を、別に設けられたポリ(テ
トラフルオロエチレン)製稀釈装置を用い、超高
純度水で稀釈して50%フツ化水素酸にしたときの
フツ素残存量を測定したところ、0.1ppm以下で
あつた。 実施例 4 実施例3と同じ装置を用い、フツ素ガス供給口
を通じて、フツ素電解槽からフツ素ガス(F288.0
%、HF12%)を発生させて、原料フツ化水素酸
(HF99.9%、As9ppm)80Kg/時に対し、
F2100ppmになるように連続的に吹き込んで精留
した。この精製フツ化水素酸はヒ素含有量を測定
したところ、0.0001ppm以下であつた。このフツ
化水素酸1m3に対し、清浄空気1m3を流通させ
て、易揮発性ガスを追い出し、フツ素残存量を測
定したところ、0.1ppm以下であつた。 〔発明の効果〕 本発明の方法に依ればヒ素化合物を含有するフ
ツ化水素酸をヒ素濃度10-4ppmという極めて高レ
ベルにまで精製することができる。また従来の如
き除去用薬剤に基づく第二の汚染が全く生じるこ
とはなく、極めて有効に目的を達成できる。更に
加えて使用するフツ素の量も、従来の薬剤の使用
量に比しかなり少量で済むという利点がある。た
とえば過マンガン酸カリウムでは含有されている
ヒ素濃度100ppmに対し1000〜10000ppm、過酸化
水素では9000ppm程度であつたのであるが、フツ
素の場合は多くの場合100ppm以下、通常10〜
100ppmで充分その効果を発揮する。 また本発明に於いては、添加したフツ素は加水
分解という極めて簡単な手段で完全に除去するこ
とができ、全く二次汚染は生じないという長所が
ある。
The method of the present invention will be explained in more detail with reference to Examples below. Example 1 In a poly(trifluorochloroethylene) container (capacity 1) equipped with a reflux condenser and a distillation tube,
Add 800g of hydrofluoric acid (HF99.8%, As10ppm) and blow fluorine gas (F 2 99.1%, HF0.3%) into the raw material from a cylinder to a concentration of 75ppm to dissolve it. After heating the container and removing light gases, the hydrofluoric acid fraction is collected by distillation. When the arsenic content of this purified hydrofluoric acid was measured, it was found to be less than 0.0001 ppm, and it was found to be useful as hydrofluoric acid for electronic materials. Example 2 Using the same equipment as in Example 1, 750 g of hydrofluoric acid (HF97.1%, H2O2.8 %, As8ppm) was placed in a container, and fluorine gas (F 2 (88.2%, HF 11.8%) was blown in as F2 to dissolve it, and the container was heated to distill the hydrofluoric acid to obtain purified hydrofluoric acid. When the arsenic content of this purified hydrofluoric acid was measured, it was found to be 0.0001ppm.
It was found to be useful as hydrofluoric acid for electronic materials. Example 3 A rectification apparatus having a poly(tetrafluoroethylene) packed column with a poly(tetrafluoroethylene) cooler is used. A fluorine electrolytic cell (20) is provided connected to a continuous supply device for feeding raw material hydrofluoric acid into this device. While continuously charging raw material hydrofluoric acid (HF99.9%, As9ppm) at 80 kg/hour, fluorine gas (F 2 87.5%, HF12.5%) is fed into the raw material from the gas supply port from the fluorine electrolytic tank. Continuously blow in F 2 to 100 ppm of hydrohydric acid, heat and rectify. using this method
When the arsenic content of purified hydrofluoric acid obtained after 10 hours of continuous operation was measured, it was 0.0001 ppm or less. When this hydrofluoric acid was diluted with ultra-high purity water to 50% hydrofluoric acid using a poly(tetrafluoroethylene) diluter provided separately, the remaining amount of fluorine was measured. It was below 0.1ppm. Example 4 Using the same equipment as in Example 3, fluorine gas (F 2 88.0
%, HF12%) to generate 80Kg/hour of raw material hydrofluoric acid (HF99.9%, As9ppm),
It was rectified by continuously blowing F 2 to 100 ppm. When the arsenic content of this purified hydrofluoric acid was measured, it was found to be 0.0001 ppm or less. 1 m 3 of clean air was passed through 1 m 3 of this hydrofluoric acid to drive out easily volatile gases, and the residual amount of fluorine was measured, and it was found to be 0.1 ppm or less. [Effects of the Invention] According to the method of the present invention, hydrofluoric acid containing an arsenic compound can be purified to an extremely high arsenic concentration of 10 −4 ppm. Further, there is no occurrence of secondary contamination caused by conventional removal chemicals, and the objective can be achieved very effectively. Furthermore, there is an advantage that the amount of fluorine used is considerably smaller than that of conventional chemicals. For example, in potassium permanganate, the concentration of arsenic contained is 1000 to 10,000 ppm, and in hydrogen peroxide it is about 9,000 ppm, but in the case of fluorine, it is often less than 100 ppm, and usually 10 to 100 ppm.
It is fully effective at 100ppm. Furthermore, the present invention has the advantage that the added fluorine can be completely removed by an extremely simple means of hydrolysis, and no secondary contamination occurs.

Claims (1)

【特許請求の範囲】 1 ヒ素化合物を含有するフツ化水素酸にフツ素
を添加してヒ素化合物と反応させた後、フツ化水
素酸を蒸留することを特徴とするフツ化水素酸の
精製法。 2 ヒ素化合物を含有するフツ化水素酸にフツ素
を添加してヒ素化合物と反応させた後フツ化水素
酸を蒸留し、蒸留後のフツ化水素酸中に残存する
フツ素を水分と反応させて除去することを特徴と
するフツ化水素酸の精製法。
[Claims] 1. A method for purifying hydrofluoric acid, which comprises adding fluorine to hydrofluoric acid containing an arsenic compound and reacting with the arsenic compound, and then distilling the hydrofluoric acid. . 2. Fluorine is added to hydrofluoric acid containing an arsenic compound and reacted with the arsenic compound, then the hydrofluoric acid is distilled, and the fluorine remaining in the hydrofluoric acid after distillation is reacted with moisture. A method for purifying hydrofluoric acid, characterized by removing it by
JP28009084A 1984-12-25 1984-12-25 FUTSUKASUISOSAN NOSEISEIHO Expired - Lifetime JPH0238521B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28009084A JPH0238521B2 (en) 1984-12-25 1984-12-25 FUTSUKASUISOSAN NOSEISEIHO
US06/813,219 US4668497A (en) 1984-12-25 1985-12-24 Process for purifying hydrogen fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28009084A JPH0238521B2 (en) 1984-12-25 1984-12-25 FUTSUKASUISOSAN NOSEISEIHO

Publications (2)

Publication Number Publication Date
JPS61151002A JPS61151002A (en) 1986-07-09
JPH0238521B2 true JPH0238521B2 (en) 1990-08-30

Family

ID=17620173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28009084A Expired - Lifetime JPH0238521B2 (en) 1984-12-25 1984-12-25 FUTSUKASUISOSAN NOSEISEIHO

Country Status (1)

Country Link
JP (1) JPH0238521B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528854B2 (en) * 1987-01-27 1996-08-28 多摩化学工業株式会社 Method and apparatus for manufacturing high-purity chemicals
US4756899A (en) * 1987-02-12 1988-07-12 Allied-Signal Inc. Manufacture of high purity low arsenic anhydrous hydrogen fluoride
US4929435A (en) * 1987-02-12 1990-05-29 Allied-Signal Inc. Manufacture of high purity low arsenic anhydrous hydrogen fluoride
DE4135917C2 (en) * 1991-10-31 1998-07-16 Solvay Fluor & Derivate Process for the separation of organic carbon compounds from hydrogen fluoride
US6350425B2 (en) 1994-01-07 2002-02-26 Air Liquide America Corporation On-site generation of ultra-high-purity buffered-HF and ammonium fluoride
JP2005281048A (en) * 2004-03-29 2005-10-13 Stella Chemifa Corp Method and apparatus for refining hydrofluoric acid
CN102232060B (en) 2008-11-28 2013-11-06 国立大学法人京都大学 Hydrogen fluoride purification method
KR102310763B1 (en) * 2021-06-03 2021-10-08 램테크놀러지 주식회사 Purification method and apparatus for ultra-high purity hydrogen fluoride

Also Published As

Publication number Publication date
JPS61151002A (en) 1986-07-09

Similar Documents

Publication Publication Date Title
US4668497A (en) Process for purifying hydrogen fluoride
US4032621A (en) Preparation of hydrogen fluoride with low levels of arsenic, iron and sulfite
EP0739228B1 (en) Recycling of wafer cleaning substances
JP3616648B2 (en) Method for producing high purity hydrogen fluoride
US4491570A (en) Removal of arsenic from hydrogen fluoride
JPH0238521B2 (en) FUTSUKASUISOSAN NOSEISEIHO
CN109678114B (en) Method for removing arsenic impurity in electronic grade hydrochloric acid
US4515762A (en) Process for processing waste gases resulting during the production of silicon
WO2005092786A1 (en) Method of purifying hydrofluoric acid and purification apparatus
CA1132091A (en) Process and apparatus for removing nitrogen trichloride from chlorine gas
US3663382A (en) Process of recovering hydrogen fluoride free of arsenic by distillation
US5108559A (en) Process for purifying hydrogen fluoride
JPH03146401A (en) Purification of hydrogen fluoride
EP0517723B1 (en) Process for purifying hydrogen fluoride
JPH08337406A (en) Production of high-purity sulfuric acid
JPH06298720A (en) Purification of fluoroalkyl sulfonic acid
US4990320A (en) Process for purifying hydrogen fluoride
JP2821947B2 (en) Method for producing ultrapure hydrofluoric acid
JP3959259B2 (en) Method for recovering hydrogen fluoride
JPH0532568A (en) Method for removing hydrogen fluoride from mixture of hydrogen fluoride and dichlorofluoromethane
JPH05229803A (en) Method of separating water and carbon compound from hydrogen fluoride
JPS61191502A (en) Method for purifying hydrofluoric acid
EP0879211A1 (en) Manufacture of very low arsenic hydrogen fluoride
US3102786A (en) Purification of germanium tetrachloride
KR20130009201A (en) Method for manufacturing of ultra-high-purity hydrofluoric acid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees