US20010047540A1 - Fail-safe safety swimming pool net - Google Patents
Fail-safe safety swimming pool net Download PDFInfo
- Publication number
- US20010047540A1 US20010047540A1 US09/872,032 US87203201A US2001047540A1 US 20010047540 A1 US20010047540 A1 US 20010047540A1 US 87203201 A US87203201 A US 87203201A US 2001047540 A1 US2001047540 A1 US 2001047540A1
- Authority
- US
- United States
- Prior art keywords
- pool
- safety
- cylinders
- cylinder
- rescue apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H4/00—Swimming or splash baths or pools
- E04H4/06—Safety devices; Coverings for baths
- E04H4/065—Floors adjustable in height
Definitions
- the present invention relates to swimming pool rescue devices.
- One prior art system uses a submerged inflatable bladder and a storage tank filled with compressed air to quickly inflate the bladder thereby lifting the submerged safety net during an emergency. While fast acting in an emergency, the reliability of rubber-like inflatable bladders over long dormant periods is questionable. The difficulty in deflating such a bladder after use makes it unlikely that safety checks by deployment at scheduled intervals would be actually performed. Also, the requirement of a large diameter hose and an enormous air valve orifice to facilitate rapid inflation have adverse aesthetic and cost consequences.
- this invention uses a permanently buoyant safety net structure to avoid many of the shortcomings of the prior art.
- the only negative aspect of such an approach is the reduction of usable pool depth by three to five inches (76 to 127 mm); this seem to be a small price to pay for the benefits to be described.
- Mechanisms are used to force the net structure to a ready position at the bottom of the pool and keep it in a ready position for deployment in case of emergency.
- the buoyant force of the net structure must accommodate lifting a potential victim or victims as well as the net structure itself in a timely manner while encountering water resistance.
- the potential energy of a submerged buoyant net structure is substantial. This must be provided by the submerging mechanisms after a deployment during a system test or actual emergency. However, this energy can be supplied at a slow rate (i.e.—low power) since this is not an emergency situation.
- the system is fail-safe in the sense that a faulty trigger failing in the false-trigger mode would cause the net to rise in the vicinity of the failed mechanism.
- This also provides visual cues to a potential problem that can be repaired.
- the reliability design of actual components must be concerned with jamming of the deployment trigger mechanism and subsystem which is primarily a materials problem to be avoided through accelerated life testing and scheduled routine testing of the entire system by the pool owner. Thus from a system reliability design point of view, the actual design is biased toward false triggering since this is the fail-safe situation.
- the safety net of this invention floats about three inches (76 mm) above the surface of the water when floating. In this position, it serves as a protective covering over the entire pool during periods when the pool is not in use or is unattended. By positioning submerging mechanisms where needed along the periphery of the pool, any shape pool can be accommodated even with multiple levels. With the safety net in the floating position, sections can be removed from the attachment to the submerging mechanisms and folded back to permit cleaning, maintenance and repairs of the pool bottom. For security, a wrench with a matching female configuration to special screw heads should be used to prevent unauthorized detachment of the safety net.
- FIG. 1 is a top perspective view of a pool with another embodiment for a safety net of this invention
- FIG. 2 is a top detail view of a detail of a woven net material of this invention.
- FIG. 3 is a side elevational view in crossection of a pool with the safety net of this invention.
- FIG. 4 is a top plan view of a hydraulic submerging mechanism of this invention.
- FIG. 5 is a side elevational view of a hydraulic submerging mechanism
- FIG. 6 is a block diagram of a hydraulic system embodiment of this invention.
- FIG. 7 is a front view of an alternate embodiment for an electromechanical submerging mechanism.
- FIG. 8 is a block diagram of the electromechanical system embodiment thereof.
- FIG. 1 shows pool 1 with submerged buoyant safety bottom 4 held down by hydraulic submerging mechanisms 5 .
- Water level is shown at 3 .
- a rigid non-buoyant material is depicted for safety bottom 4 , peripheral floats 10 are illustrated. Additional floatation is provided as a thick ring of floatation material at the site of each of the circular drains 6 which are distributed over the surface.
- the material of bottom 4 is preferably a fiber reinforced light weight plastic sheet.
- Each of the drain rings 6 is sealed with wire or plastic mesh with openings of the order of 1 ⁇ 2′′ (12.7 mm) or less precluding entanglement of fingers or toes.
- edge 10 and central 6 floatation insures that the weight distribution of a disabled person on a floating safety bottom 4 would not cause any part of the person's body to sink below the surface of the water.
- the buoyant material is a rigid closed cell foam as used in marine floatation safety devices; it must also have a skin that is resistant to chlorine as is often used in pools. Material with a specific gravity of 0.25 provides the minimal required peripheral floatation 10 in a mere 3′′ diameter (76 mm) tubular form (although this would not be the ideal crossection shape) if the area density of the bottom 4 sheeting is of the order 0.2 pounds per square foot (977 gm/square meter).
- FIG. 2 shows a detail of an alternative more flexible woven material 7 with a floatation device 8 attached below for a safety pool bottom; it is a true net.
- Flat fiber reinforced plastic straps or even buoyant tubular members can be woven.
- a 25% open weave wherein the warp and weft strands are bonded at each intersection is strongly suggested.
- the open weave permits easy drainage; the openings should be kept to 1 ⁇ 2′′ squares (12.7 mm) or smaller to prevent entanglement of fingers or toes. The bonding prevents shifting of the strands.
- FIG. 3 shows a crossection of a pool 1 with different depths.
- Submerging mechanisms 5 are positioned at inflection points in the bottom contour. Also, their length is related to the local depth.
- the material of the safety pool bottom 4 must have a flexible seam at the inflection point if it is of a rigid material.
- FIGS. 4 and 5 depict a hydraulic submerging mechanism 5 .
- It is a hydraulic cylinder 16 of the order of 2.5′′ (63.5 mm) bore operated by pressurized pool water.
- Side baffles 17 are stationary members which blend into the pool sides.
- Pushing member 18 is attached to the cylinder 16 piston rod and forces down the edge of safety pool bottom 4 and its peripheral floatation 10 which is attached to mounting flange 19 .
- Cylinder 16 is attached to pool bottom by flange 23 .
- Ring 24 attached to pushing member 18 rides along the outside surface of cylinder 16 to counteract twisting moments; it guides member 18 in straight line motion in both up and down excursions.
- the pressurized water enters the top of cylinder 16 at conduit 21 while dump valve 20 is opened by the triggering system to depressurize cylinder 16 permitting water above the internal piston to be dumped into the pool quickly thereby permitting the buoyant pool bottom structure 4 to rise.
- Cylinder 16 is open at the bottom to permit water in cylinder 16 below the piston to enter or leave in a relatively unimpeded manner so as not to restrict motion.
- FIG. 6 shows a system block diagram of the hydraulic and triggering system.
- a hard-wired electrical connection 37 to the supply mains is fed to a UPS 38 with internal storage battery.
- a switching circuit 39 such as a relay which powers all dump valves 20 through conductor 41 (which is “daisy-chained”) on all cylinders 16 if a trigger signal 40 is received from the detection circuit (not shown).
- a trigger signal 40 is received from the detection circuit (not shown).
- the detection system also has a manual switch which simulates an emergency for testing purposes or can be used in actual emergencies.
- the detectors themselves consist of any number of prior art devices including infrared/acoustic systems, acoustic transmitters with hydrophones, visual detection systems and so forth. Some of these systems incorporate computers and sophisticated detection software with time delays. The detection system is not claimed by this invention.
- a pump 30 is used to pressurize pool water 33 suctioned through inlet conduit 32 and discharged through pressurized conduit 34 .
- Each cylinder 16 receives pressurized water through check valve 35 . In this manner, the cylinder 16 will remain pressurized after pump 30 is stopped; indeed, conduit 34 can even be disconnected from each cylinder 16 .
- the entire deployment subsystem can be portable and removable.
- Motor 31 can be just plugged into an outlet at 33 with manual switch 32 turned on after conduit 34 is connected via “pigtails” to each cylinder.
- Subsystem consisting of motor 31 and pump 30 can be mounted on a wheeled carriage.
- Conduit 32 is simply a hose with its end dipped into the pool.
- a 1 ⁇ 2 HP motor can power a jet pump which would redeploy a safety net 4 in less than 2 minutes for a small pool.
- an electromechanical system is used for deployment (submerging) the safety pool bottom or net 4 .
- FIG. 7 shows the design of such an electromagnetic mechanism 49 . These are distributed around the periphery of the pool just as the hydraulic units 5 above. Each mechanism 49 has a small gear motor 53 , a drive belt pulley 51 , timing belt 54 , engagement nib 55 and bottom idler belt pulley 52 . A member 50 which attaches to pool safety bottom 4 is held down by engagement nib 55 but is able to ride up along belt 54 by guidance rails (not shown) if nib 55 is permitted to rise. Motor 53 uses a worm gear in the gear train such that it will not be backdriven by the buoyant force of member 50 .
- drive pulley 51 is driven by motor 53 through an electrically disengageable clutch such as a solenoid-operated wrap-spring clutch of known construction.
- motor 53 is unidirectional, a fact that reduces its cost by permitting the use of simple AC induction motors.
- the clutch release mechanisms are energized (e.g. solenoids) which permit drive pulleys 51 to rotate freely (in a direction opposite to their motor driven direction). This releases tension on belt 54 allowing engagement nib 55 to rise under buoyant force from safety net 4 as transmitted by member 50 .
- FIG. 8 A block diagram of this alternate embodiment is shown in FIG. 8.
- hard wired electrical supply at 37 supplies power to UPS 38 which powers the triggering mechanisms through switching circuit 39 upon signals from detectors or manual switch 40 .
- Line 62 is “daisy-chained” to each submerging mechanism triggering element such as a solenoid.
- For redeployment (submerging) plug 33 supplies AC mains power through manual switch 60 and conductors 61 to each motor 53 in each electromechanical submerging mechanism.
- Each submerging mechanism 49 has a switch which automatically turns motor 53 off when the bottom position is reached; alternatively, a stall detector can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Emergency Lowering Means (AREA)
Abstract
Description
- The present invention relates to swimming pool rescue devices.
- Safety swimming pool nets have been represented in the prior art as discussed in the background to this invention. Both hydraulic and mechanical means have been described for raising a net at the bottom of a pool during a potential drowning emergency.
- In these cases, the power requirements for performing this task are high since time is of the essence in raising a swimmer in distress to safety. The mechanisms must raise the weight of the potential victim as well as the weight of the net structure and net through resisting water in a short time.
- To increase reliability, it is desirable to have redundant power sources and/or an uninterruptable power supply (UPS) to power such a safety system during a power outage. With high power/energy requirements, this is an expensive proposition.
- One prior art system uses a submerged inflatable bladder and a storage tank filled with compressed air to quickly inflate the bladder thereby lifting the submerged safety net during an emergency. While fast acting in an emergency, the reliability of rubber-like inflatable bladders over long dormant periods is questionable. The difficulty in deflating such a bladder after use makes it unlikely that safety checks by deployment at scheduled intervals would be actually performed. Also, the requirement of a large diameter hose and an enormous air valve orifice to facilitate rapid inflation have adverse aesthetic and cost consequences.
- It is therefore an object of the present invention to provide a reliable device for bringing non-swimmer quickly to the surface of a swimming pool.
- In keeping with these objects and others which may become apparent, this invention uses a permanently buoyant safety net structure to avoid many of the shortcomings of the prior art. The only negative aspect of such an approach is the reduction of usable pool depth by three to five inches (76 to 127 mm); this seem to be a small price to pay for the benefits to be described. Mechanisms are used to force the net structure to a ready position at the bottom of the pool and keep it in a ready position for deployment in case of emergency. The buoyant force of the net structure must accommodate lifting a potential victim or victims as well as the net structure itself in a timely manner while encountering water resistance. Thus the potential energy of a submerged buoyant net structure is substantial. This must be provided by the submerging mechanisms after a deployment during a system test or actual emergency. However, this energy can be supplied at a slow rate (i.e.—low power) since this is not an emergency situation.
- The latter means that system cost can be reduced as compared to prior art systems since lower power mechanisms with low power wiring or piping requirements are used. Another factor is that there is no reason for a redundant or UPS power supply for this substantial energy requirement since it is not needed during an emergency situation. The very low energy required to trigger deployment of the buoyant submerged safety net can easily be supplied by a small UPS or alternate redundant power supply. This increases system emergency reliability by facilitating the incorporation of such redundant features since the cost for a triggering UPS is low due to its modest energy storage and power requirements.
- Finally, the system is fail-safe in the sense that a faulty trigger failing in the false-trigger mode would cause the net to rise in the vicinity of the failed mechanism. This also provides visual cues to a potential problem that can be repaired. The reliability design of actual components must be concerned with jamming of the deployment trigger mechanism and subsystem which is primarily a materials problem to be avoided through accelerated life testing and scheduled routine testing of the entire system by the pool owner. Thus from a system reliability design point of view, the actual design is biased toward false triggering since this is the fail-safe situation.
- The safety net of this invention floats about three inches (76 mm) above the surface of the water when floating. In this position, it serves as a protective covering over the entire pool during periods when the pool is not in use or is unattended. By positioning submerging mechanisms where needed along the periphery of the pool, any shape pool can be accommodated even with multiple levels. With the safety net in the floating position, sections can be removed from the attachment to the submerging mechanisms and folded back to permit cleaning, maintenance and repairs of the pool bottom. For security, a wrench with a matching female configuration to special screw heads should be used to prevent unauthorized detachment of the safety net.
- The present invention can best be understood in conjunction with the accompanying drawings, in which:
- FIG. 1 is a top perspective view of a pool with another embodiment for a safety net of this invention;
- FIG. 2 is a top detail view of a detail of a woven net material of this invention;
- FIG. 3 is a side elevational view in crossection of a pool with the safety net of this invention;
- FIG. 4 is a top plan view of a hydraulic submerging mechanism of this invention;
- FIG. 5 is a side elevational view of a hydraulic submerging mechanism;
- FIG. 6 is a block diagram of a hydraulic system embodiment of this invention;
- FIG. 7 is a front view of an alternate embodiment for an electromechanical submerging mechanism; and
- FIG. 8 is a block diagram of the electromechanical system embodiment thereof.
- FIG. 1 shows pool1 with submerged
buoyant safety bottom 4 held down byhydraulic submerging mechanisms 5. Water level is shown at 3. A rigid non-buoyant material is depicted forsafety bottom 4,peripheral floats 10 are illustrated. Additional floatation is provided as a thick ring of floatation material at the site of each of the circular drains 6 which are distributed over the surface. - The material of
bottom 4 is preferably a fiber reinforced light weight plastic sheet. Each of the drain rings 6 is sealed with wire or plastic mesh with openings of the order of ½″ (12.7 mm) or less precluding entanglement of fingers or toes. - The distribution of
edge 10 and central 6 floatation insures that the weight distribution of a disabled person on a floatingsafety bottom 4 would not cause any part of the person's body to sink below the surface of the water. - The buoyant material is a rigid closed cell foam as used in marine floatation safety devices; it must also have a skin that is resistant to chlorine as is often used in pools. Material with a specific gravity of 0.25 provides the minimal required
peripheral floatation 10 in a mere 3″ diameter (76 mm) tubular form (although this would not be the ideal crossection shape) if the area density of thebottom 4 sheeting is of the order 0.2 pounds per square foot (977 gm/square meter). - FIG. 2 shows a detail of an alternative more flexible woven material7 with a
floatation device 8 attached below for a safety pool bottom; it is a true net. Flat fiber reinforced plastic straps or even buoyant tubular members can be woven. A 25% open weave wherein the warp and weft strands are bonded at each intersection is strongly suggested. The open weave permits easy drainage; the openings should be kept to ½″ squares (12.7 mm) or smaller to prevent entanglement of fingers or toes. The bonding prevents shifting of the strands. - FIG. 3 shows a crossection of a pool1 with different depths.
Submerging mechanisms 5 are positioned at inflection points in the bottom contour. Also, their length is related to the local depth. The material of thesafety pool bottom 4 must have a flexible seam at the inflection point if it is of a rigid material. - FIGS. 4 and 5 depict a
hydraulic submerging mechanism 5. It is ahydraulic cylinder 16 of the order of 2.5″ (63.5 mm) bore operated by pressurized pool water. Side baffles 17 are stationary members which blend into the pool sides. Pushingmember 18 is attached to thecylinder 16 piston rod and forces down the edge ofsafety pool bottom 4 and itsperipheral floatation 10 which is attached to mountingflange 19.Cylinder 16 is attached to pool bottom byflange 23.Ring 24 attached to pushingmember 18 rides along the outside surface ofcylinder 16 to counteract twisting moments; it guidesmember 18 in straight line motion in both up and down excursions. - The pressurized water enters the top of
cylinder 16 atconduit 21 whiledump valve 20 is opened by the triggering system to depressurizecylinder 16 permitting water above the internal piston to be dumped into the pool quickly thereby permitting the buoyant poolbottom structure 4 to rise. -
Cylinder 16 is open at the bottom to permit water incylinder 16 below the piston to enter or leave in a relatively unimpeded manner so as not to restrict motion. - FIG. 6 shows a system block diagram of the hydraulic and triggering system. A hard-wired
electrical connection 37 to the supply mains is fed to aUPS 38 with internal storage battery. This, in turn, supplies power to aswitching circuit 39 such as a relay which powers all dumpvalves 20 through conductor 41 (which is “daisy-chained”) on allcylinders 16 if a trigger signal 40 is received from the detection circuit (not shown). When such a signal is received, water fromcylinders 16 quickly escapes throughdischarge tubes 42 back into the pool. - Since there is now an unbalanced force, the safety pool bottom or net4 rises quickly.
- The detection system also has a manual switch which simulates an emergency for testing purposes or can be used in actual emergencies. The detectors themselves consist of any number of prior art devices including infrared/acoustic systems, acoustic transmitters with hydrophones, visual detection systems and so forth. Some of these systems incorporate computers and sophisticated detection software with time delays. The detection system is not claimed by this invention.
- To redeploy the safety pool bottom or net4 to the bottom of the pool after an emergency or test, a
pump 30 is used to pressurizepool water 33 suctioned throughinlet conduit 32 and discharged through pressurizedconduit 34. Eachcylinder 16 receives pressurized water throughcheck valve 35. In this manner, thecylinder 16 will remain pressurized afterpump 30 is stopped; indeed,conduit 34 can even be disconnected from eachcylinder 16. - Actually, for small pools or above-ground pools with
few cylinders 16, the entire deployment subsystem can be portable and removable.Motor 31 can be just plugged into an outlet at 33 withmanual switch 32 turned on afterconduit 34 is connected via “pigtails” to each cylinder. Subsystem consisting ofmotor 31 and pump 30 can be mounted on a wheeled carriage.Conduit 32 is simply a hose with its end dipped into the pool. A ½ HP motor can power a jet pump which would redeploy asafety net 4 in less than 2 minutes for a small pool. Of course, it is more convenient to have a permanently installed deployment subsystem, especially for large pools. - In an alternate embodiment, an electromechanical system is used for deployment (submerging) the safety pool bottom or
net 4. - FIG. 7 shows the design of such an
electromagnetic mechanism 49. These are distributed around the periphery of the pool just as thehydraulic units 5 above. Eachmechanism 49 has asmall gear motor 53, adrive belt pulley 51,timing belt 54, engagement nib 55 and bottomidler belt pulley 52. Amember 50 which attaches to poolsafety bottom 4 is held down by engagement nib 55 but is able to ride up alongbelt 54 by guidance rails (not shown) if nib 55 is permitted to rise.Motor 53 uses a worm gear in the gear train such that it will not be backdriven by the buoyant force ofmember 50. - The key to the operation of this system is that
drive pulley 51 is driven bymotor 53 through an electrically disengageable clutch such as a solenoid-operated wrap-spring clutch of known construction. Preferablymotor 53 is unidirectional, a fact that reduces its cost by permitting the use of simple AC induction motors. - When an emergency is detected or a system test is performed, the clutch release mechanisms are energized (e.g. solenoids) which permit drive pulleys51 to rotate freely (in a direction opposite to their motor driven direction). This releases tension on
belt 54 allowing engagement nib 55 to rise under buoyant force fromsafety net 4 as transmitted bymember 50. - A block diagram of this alternate embodiment is shown in FIG. 8. As in the previous embodiment, hard wired electrical supply at37 supplies power to
UPS 38 which powers the triggering mechanisms through switchingcircuit 39 upon signals from detectors or manual switch 40.Line 62 is “daisy-chained” to each submerging mechanism triggering element such as a solenoid. For redeployment (submerging) plug 33 supplies AC mains power throughmanual switch 60 andconductors 61 to eachmotor 53 in each electromechanical submerging mechanism. Eachsubmerging mechanism 49 has a switch which automatically turnsmotor 53 off when the bottom position is reached; alternatively, a stall detector can be used. - It is further noted that other modifications may be made to the present invention without departing from the scope of the invention, as noted in the appended claims.
Claims (17)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/872,032 US6389615B2 (en) | 2000-06-02 | 2001-06-01 | Fail-safe safety swimming pool net |
US10/143,446 US6493885B2 (en) | 2000-06-02 | 2002-05-11 | Fail-safe safety swimming pool net |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20916000P | 2000-06-02 | 2000-06-02 | |
US09/872,032 US6389615B2 (en) | 2000-06-02 | 2001-06-01 | Fail-safe safety swimming pool net |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/143,446 Continuation US6493885B2 (en) | 2000-06-02 | 2002-05-11 | Fail-safe safety swimming pool net |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010047540A1 true US20010047540A1 (en) | 2001-12-06 |
US6389615B2 US6389615B2 (en) | 2002-05-21 |
Family
ID=26903883
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/872,032 Expired - Lifetime US6389615B2 (en) | 2000-06-02 | 2001-06-01 | Fail-safe safety swimming pool net |
US10/143,446 Expired - Fee Related US6493885B2 (en) | 2000-06-02 | 2002-05-11 | Fail-safe safety swimming pool net |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/143,446 Expired - Fee Related US6493885B2 (en) | 2000-06-02 | 2002-05-11 | Fail-safe safety swimming pool net |
Country Status (1)
Country | Link |
---|---|
US (2) | US6389615B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030213195A1 (en) * | 2002-01-16 | 2003-11-20 | Pool Cover Specialists National, Inc. | Radius corner plate for a pool |
WO2009044039A2 (en) * | 2007-09-04 | 2009-04-09 | Demoisson Andre | Self-contained lifting device for the mobile bottom of a swimming pool |
US20090151067A1 (en) * | 2007-12-13 | 2009-06-18 | Mathis Wesley L | Corner plate for holding a pool liner |
US20110056011A1 (en) * | 2009-08-21 | 2011-03-10 | Drechsel Lamont | Corner assemblies for swimming pools |
WO2014194921A1 (en) * | 2013-06-03 | 2014-12-11 | Beggah Ayoub | Rescue safety system for swimming pools |
CN105239634A (en) * | 2015-10-21 | 2016-01-13 | 郑运婷 | Use method of anti-drowning water storage box |
CN113047672A (en) * | 2021-03-26 | 2021-06-29 | 郝刚 | Construction method of floating and diving type intelligent control safe swimming pool suitable for natural water area |
EP4339397A1 (en) * | 2022-09-09 | 2024-03-20 | Depotec GmbH | Swimming pool with a raisable bottom |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005535041A (en) * | 2002-08-08 | 2005-11-17 | クレイレー リーズ ボウジョン | Rescue and safety equipment for swimming pools and leisure parks |
US7131789B2 (en) * | 2004-06-07 | 2006-11-07 | Derek Elliott Walton | Object retrieval system |
EP2356299B1 (en) * | 2008-11-17 | 2020-09-30 | Dovi Brock | A method and a system for rapidly and controlled elevation of a raisable floor for pools |
US8255820B2 (en) | 2009-06-09 | 2012-08-28 | Skiff, Llc | Electronic paper display device event tracking |
US20120017365A1 (en) * | 2010-07-25 | 2012-01-26 | Gregory Perrier | Safety swimming pool apparatus |
US20110308004A1 (en) * | 2010-12-16 | 2011-12-22 | Hamidreza Khorsandraftar | Security system for artificial water bodies |
CN102417022B (en) * | 2011-11-01 | 2013-12-04 | 陕西科技大学 | Swimming pool drowning automatic lifesaving system |
US9157250B2 (en) * | 2012-04-16 | 2015-10-13 | Fahad M. ALAMMARI | Swimming pool safety apparatus and method |
US20140165281A1 (en) * | 2014-02-19 | 2014-06-19 | Hamidreza Khorsandraftar | Security system for artificial water bodies |
US11624197B1 (en) | 2021-02-16 | 2023-04-11 | Dennis Mc Gill | Pool safety net system |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1091909A (en) | 1913-06-03 | 1914-03-31 | George F Birmingham | Life-saving apparatus. |
US1796762A (en) | 1930-04-22 | 1931-03-17 | Paston Louis | Life-saving device |
US2812520A (en) | 1955-01-05 | 1957-11-12 | Pinckard Dorothy Helen | Swimming pool guard |
US2970320A (en) | 1959-01-12 | 1961-02-07 | Lifeguard Swim Pool Corp | Combination swimming pool cover and floor |
US3045253A (en) * | 1959-02-27 | 1962-07-24 | Hollas K Price | Safety swimming pool |
US3000017A (en) | 1959-07-10 | 1961-09-19 | Leonard A Skovira | Safety-net for swimming pools |
US3046566A (en) * | 1959-12-30 | 1962-07-31 | Simon A Berman | Swimming pool protective means |
US3413661A (en) | 1965-10-21 | 1968-12-03 | Ross Norman Jack | Swimming pool and cover construction |
US3423768A (en) | 1965-10-22 | 1969-01-28 | Lee E Glenn | Safety platform for swimming pools |
US3668711A (en) | 1971-01-21 | 1972-06-13 | Charles J Liermann | Swimming pool cover and rescue device |
US3760432A (en) | 1972-06-08 | 1973-09-25 | F Glorisi | Safety system for swimming pool |
US3813704A (en) | 1972-06-19 | 1974-06-04 | D Troiano | Floatable safety cover for swimming pools |
US4181986A (en) | 1973-06-05 | 1980-01-08 | Aine Harry E | Method of covering and uncovering a swimming pool |
US3955797A (en) | 1974-01-24 | 1976-05-11 | Autoquip Corporation | Swimming pool lift |
US3889303A (en) | 1974-03-27 | 1975-06-17 | Augustus B Kinzel | Displaceable swimming pool cover |
US4000527A (en) | 1975-08-26 | 1977-01-04 | Vinyl-Fab Industries, Inc. | Swimming pool cover floating support |
US4151617A (en) | 1976-12-21 | 1979-05-01 | Kinzel Augustus B | Swimming pool cover |
US4129905A (en) | 1977-06-30 | 1978-12-19 | Jerzy Niemirow | Swimming pool rescue net |
US4271542A (en) | 1979-01-15 | 1981-06-09 | Daf Indal Ltd. | Swimming pool platform and components |
US4236258A (en) | 1979-04-17 | 1980-12-02 | French Masterpieces, Incorporated | Automatic swimming pool cover |
US4831672A (en) * | 1985-09-27 | 1989-05-23 | Masateru Niimura | Floor-level adjusting device for a pool |
US4747168A (en) | 1986-07-08 | 1988-05-31 | Peter Sing | Pool recovery apparatus |
FR2638366A1 (en) | 1988-10-28 | 1990-05-04 | Thomson Csf | SYSTEM FOR PREVENTING ACCIDENTAL NOYADS |
US5019802A (en) | 1989-12-15 | 1991-05-28 | Brittain Raymond C | Intrusion detection apparatus |
US5023593A (en) | 1990-08-20 | 1991-06-11 | Brox Steven E | Passive infrared/acoustic pool security system |
US5267358A (en) | 1992-02-14 | 1993-12-07 | Roy Mildred H | Swimming pool safety net apparatus |
US5271483A (en) * | 1992-12-02 | 1993-12-21 | Hong Young K | Apparatus for lifting false floor in swimming pool |
US5484313A (en) | 1995-01-19 | 1996-01-16 | Rachal; Don P. | Rescue net |
US5832547A (en) | 1996-11-12 | 1998-11-10 | Burroughs; Vance | Swimming pool automatic rescue device |
US6127930A (en) | 1998-12-02 | 2000-10-03 | Steffanus; Robert D. | Motion responsive swimming pool safety mat |
-
2001
- 2001-06-01 US US09/872,032 patent/US6389615B2/en not_active Expired - Lifetime
-
2002
- 2002-05-11 US US10/143,446 patent/US6493885B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030213195A1 (en) * | 2002-01-16 | 2003-11-20 | Pool Cover Specialists National, Inc. | Radius corner plate for a pool |
US7114297B2 (en) | 2002-01-16 | 2006-10-03 | Pool Cover Specialists National, Inc. | Radius corner plate for a pool |
WO2009044039A2 (en) * | 2007-09-04 | 2009-04-09 | Demoisson Andre | Self-contained lifting device for the mobile bottom of a swimming pool |
WO2009044039A3 (en) * | 2007-09-04 | 2009-05-28 | Andre Demoisson | Self-contained lifting device for the mobile bottom of a swimming pool |
US20100199416A1 (en) * | 2007-09-04 | 2010-08-12 | Demoisson Andre | Self-contained lifting module for the mobile bottom of a swimming pool |
US20090151067A1 (en) * | 2007-12-13 | 2009-06-18 | Mathis Wesley L | Corner plate for holding a pool liner |
US8584271B2 (en) | 2007-12-13 | 2013-11-19 | Pool Cover Specialists National, Inc. | Corner plate for holding a pool liner |
US20110056011A1 (en) * | 2009-08-21 | 2011-03-10 | Drechsel Lamont | Corner assemblies for swimming pools |
WO2014194921A1 (en) * | 2013-06-03 | 2014-12-11 | Beggah Ayoub | Rescue safety system for swimming pools |
CN105239634A (en) * | 2015-10-21 | 2016-01-13 | 郑运婷 | Use method of anti-drowning water storage box |
CN113047672A (en) * | 2021-03-26 | 2021-06-29 | 郝刚 | Construction method of floating and diving type intelligent control safe swimming pool suitable for natural water area |
EP4339397A1 (en) * | 2022-09-09 | 2024-03-20 | Depotec GmbH | Swimming pool with a raisable bottom |
Also Published As
Publication number | Publication date |
---|---|
US20020124304A1 (en) | 2002-09-12 |
US6493885B2 (en) | 2002-12-17 |
US6389615B2 (en) | 2002-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6389615B2 (en) | Fail-safe safety swimming pool net | |
US7357688B2 (en) | Floatation apparatus and method | |
US3813704A (en) | Floatable safety cover for swimming pools | |
EP0259317A1 (en) | A barrier arrangement and a method for producing the same. | |
EP2839097B1 (en) | Lifting floor for bodies of water | |
KR102173166B1 (en) | Multipurpose pontoon and floating dock using the same | |
JP2007077758A (en) | Base isolation building coping with flood damage | |
US20130129421A1 (en) | Oil containment assembly and method of using same | |
CA2561318A1 (en) | Submersible boom gate | |
CN106005260B (en) | A kind of ship mooring method and device | |
US9316010B2 (en) | Safety swimming pool apparatus | |
US9647149B2 (en) | Method and system for rapid and controlled elevation of a raisable floor for pools | |
JP3124761B1 (en) | Elevating device for underwater observation equipment | |
WO2018059501A1 (en) | Floating swimming net cage and control method thereof | |
DE102020132287A1 (en) | water rescue robot | |
US20060252606A1 (en) | Recreational guidance system and methods thereof | |
JP2014121932A (en) | Structure of refuge capsule for earthquake and tsunami and structure for waiting in passenger car | |
US20200256074A1 (en) | Fluid current producing apparatus assembly | |
CN201321151Y (en) | Waterborne soft pleasure bed | |
WO2024004244A1 (en) | Rescue device | |
JP7498304B2 (en) | Water Walking Stage System | |
LT2010052A (en) | Energy free floating platform and its wheel system | |
CN210352707U (en) | Marine ecological aquaculture net cage | |
CN212766693U (en) | Life-saving device for water pool | |
JP2007070982A (en) | Multipurpose disaster refuge building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
REIN | Reinstatement after maintenance fee payment confirmed | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100521 |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
PRDP | Patent reinstated due to the acceptance of a late maintenance fee |
Effective date: 20120518 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
SULP | Surcharge for late payment | ||
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Free format text: PAT HLDR NO LONGER CLAIMS MICRO ENTITY STATE, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: MTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PATENT HOLDER CLAIMS MICRO ENTITY STATUS, ENTITY STATUS SET TO MICRO (ORIGINAL EVENT CODE: STOM); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |