US20010044373A1 - Method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell - Google Patents
Method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell Download PDFInfo
- Publication number
- US20010044373A1 US20010044373A1 US09/792,085 US79208501A US2001044373A1 US 20010044373 A1 US20010044373 A1 US 20010044373A1 US 79208501 A US79208501 A US 79208501A US 2001044373 A1 US2001044373 A1 US 2001044373A1
- Authority
- US
- United States
- Prior art keywords
- diffusion layer
- applying
- electrolyte membrane
- ion conducting
- providing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/247—Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S429/00—Chemistry: electrical current producing apparatus, product, and process
- Y10S429/90—Fuel cell including means for power conditioning, e.g. Conversion to ac
Definitions
- the present invention relates to a method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell.
- a fuel cell generates electricity from a fuel source, such as hydrogen gas, and an oxidant such as oxygen or air.
- a fuel source such as hydrogen gas
- an oxidant such as oxygen or air.
- the resulting chemical reaction does not result in a burning of the fuel, therefore the thermodynamic limits on the efficiency of such a chemical reaction are much greater than conventional power generation processes.
- the fuel gas hydrogen
- the hydrogen ions diffuse across the membrane to recombine with oxygen ions on the cathode.
- the resulting byproduct of the reaction is water and the production of an electrical current.
- One aspect of the present invention is to provide a method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell which includes providing an ion conducting electrolyte membrane having opposite sides; and applying a first diffusion layer to one of the opposite sides of the ion conducting electrolyte membrane by the application of force sufficient to fabricate a resulting membrane electrode diffusion assembly which has an optimal operational temperature range when utilized in an ion exchange membrane fuel cell of less than about 95 degrees C.
- Another aspect of the present invention relates to a method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell which includes providing an ion conducting electrolyte membrane having opposite anode and cathode sides; affixing an anode and cathode electrode on the respective anode and cathode sides; positioning a first diffusion layer on one of the anode and/or cathode sides of the ion conducting electrolyte membrane and in covering relation over the respective anode and/or cathode electrode; and applying a force of at least about 400 pounds to about 10,000 pounds per square inch to the first diffusion layer to affix the first diffusion layer on the ion conducting electrolyte membrane to form a resulting membrane electrode diffusion assembly.
- another aspect of the present invention relates to a method of forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell, and which includes, first, providing an ion conducting electrolyte membrane having opposite anode and cathode sides; second, providing anode and cathode electrodes which are individually affixed on and located at least in partial covering relation relative to the respective anode and cathode sides of the electrolyte membrane; third, providing a first diffusion layer comprising carbon and a fluropolymer, and then heating the first diffusion layer to a temperature of about 100 degrees C. to about 500 degrees C.
- FIG. 1 is a greatly enlarged, diagrammatic section of a membrane electrode diffusion assembly shown at one processing step in accordance with the present invention.
- FIG. 2 is a greatly enlarged, diagrammatic section of a membrane electrode diffusion assembly shown at a processing step subsequent to that shown in FIG. 1.
- FIG. 3 is a greatly enlarged, diagrammatic section of a membrane electrode diffusion assembly shown at a processing step subsequent to that shown in FIG. 2.
- FIG. 4 is a greatly enlarged, diagrammatic section of a portion of a membrane electrode diffusion assembly at one processing step in accordance with the present invention.
- FIG. 5 is a greatly enlarged, diagrammatic section of a portion of a membrane electrode diffusion assembly shown at a processing step subsequent to that shown in FIG. 4.
- FIG. 6 is a greatly enlarged, diagrammatic section of a membrane electrode diffusion assembly at a processing step subsequent to that shown in FIG. 5.
- an ion conducting electrolyte membrane having opposite sides 11 and 12 is shown.
- the term “ion conducting electrolyte membrane” is defined as a proton or anion conducting membrane either alone, or in combination with other materials.
- side 11 is the anode side
- side 12 is designated as the cathode side.
- a suitable proton-conducting membrane may be purchased from the W. L. Gore Company under the trade designation Primea 6000 series. Of course any membrane which allows for the movement of protons or anions across the membrane interface may be potentially suitable for use.
- the ion conducting electrolyte membrane is shown at a second step in the method wherein individual anode and cathode electrodes designated by the numerals 20 and 30 are affixed on the opposite anode and cathode sides 11 and 12 , respectively, thereby placing them in ionic contact with the underlying ion conducting electrolyte membrane 10 .
- the anode and cathode electrodes are located at least in partial covering relation relative to the respective anode and cathode sides 11 and 12 of the electrolyte membrane.
- the anode and cathode electrodes are provided before any of the following steps are conducted.
- the method further includes providing a first diffusion layer 40 which comprises carbon and a fluropolymer.
- This first diffusion layer is first heated to a temperature of about 100 degrees C. to about 500 degrees C. in an oxygen-containing environment such as air for a predetermined period of time which lies in a range of about 1 second to about 2 minutes.
- the first diffusion layer is positioned at least in partial covering relation relative to each of the anode and cathode electrodes 20 and 30 and is affixed thereto by the application of pressure in the amount of about 400 pounds to about 10,000 pounds per square inch of surface area of the first diffusion layer.
- the carbon portion of the first diffusion layer 40 is selected from the group consisting essentially of carbon cloth, carbon paper or carbon sponge or a suitable equivalent.
- the fluropolymer is selected from the group consisting essentially of perfluorinated hydrocarbons or suitable equivalents. The resulting combination of these two materials results in a first diffusion layer 40 which is rendered substantially hydrophobic.
- first diffusion layer 40 may be attached first to the anode, or alternatively to the cathode electrode, or further may be attached simultaneously to both the anode and cathode electrodes by the application of a force of about 400 pounds to about 10,000 pounds per square inch.
- a porous substrate 50 is provided and which is selected from the group consisting essentially of carbon cloth, carbon paper or carbon sponge or a suitable equivalent.
- the porous substrate 50 has a thickness of about 0.2 mm to about 2.0 mm.
- a slurry is later prepared and which comprises at least about 20% to about 90% by weight of a particulate carbon and a hydrophobic binding resin dispersed in a water solution which may contain a small amount of a surfactant such as an alcohol.
- the slurry 60 is applied to coat one of the sides of the permeable substrate 50 .
- an air drying step is conducted to evaporate the water and any surfactant, and thereby deposit the particulate carbon and hydrophobic resin on the coated side.
- additional coats of the slurry 60 are applied, each separated by the aforementioned air drying step to form a second diffusion layer 70 (FIG. 5) having a resulting hydrophobic gradient.
- the second diffusion layer 70 is positioned in juxtaposed covering relation relative to the first diffusion layer 40 and affixed thereto to form a resulting membrane electrode diffusion assembly 100 .
- the hydrophobic binding resin selected for use in the second diffusion layer can be selected from the group including perfluorinated hydrocarbons.
- the method of the present invention includes providing an ion conducting electrolyte membrane 10 having opposite anode and cathode sides 11 and 12 , respectively.
- the method further includes, third, providing a first diffusion layer 40 comprising carbon and a fluropolymer and then heating the first diffusion layer to a temperature of about 100 degrees C. to about 500 degrees C. for a predetermined period of time in an oxygen-containing environment such as air. Following the heating of the first diffusion layer, affixing the previously heated first diffusion layer in at least partial covering relation relative to the anode and cathode electrodes 20 and 30 by the application of pressure in the amount of about 400 pounds to about 10,000 pounds per square inch of surface are of the first diffusion layer. As seen in FIG. 4, the method of the present invention further includes, providing a permeable substrate 50 having a predetermined thickness dimension and opposite sides.
- the method further includes preparing a slurry comprising at least 20% to about 90% by weight of a particular carbon and a hydrophobic binding resin dispersed in a water solution which may include a surfactant such as alcohol, and applying the slurry to coat one of the sides of the permeable substrate 50 .
- the method further includes a step of air drying the coated side of the porous substrate, and after the step of air drying the coated side, applying additional coats of the slurry, each separated by the aforementioned air drying step, to form a second diffusion layer 70 (FIG. 5) having a resulting hydrophobic gradient.
- the method further includes positioning the second diffusion layer in juxtaposed covering relation relative to the first diffusion layer 40 . This forms a resulting membrane electrode diffusion assembly 100 for use in an ion exchange membrane fuel cell.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
- This application is a continuation in part of application Ser. No. 09/577,407 which was filled on May 17, 2000.
- 1. Field of the Invention
- The present invention relates to a method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell.
- 2. Description of the Prior Art
- The operation of fuel cells are well known. In this regard, a fuel cell generates electricity from a fuel source, such as hydrogen gas, and an oxidant such as oxygen or air. The resulting chemical reaction does not result in a burning of the fuel, therefore the thermodynamic limits on the efficiency of such a chemical reaction are much greater than conventional power generation processes. In a proton exchange membrane fuel cell the fuel gas (hydrogen) is ionized on one electrode, and the hydrogen ions diffuse across the membrane to recombine with oxygen ions on the cathode. The resulting byproduct of the reaction is water and the production of an electrical current.
- In U.S. Pat. No. 6,030,718, the teachings of which are incorporated by reference herein, a proton exchange membrane fuel cell power system is disclosed and which includes discrete and novel proton exchange membrane fuel cell modules which are self humidifying and which employ a membrane electrode diffusion assembly which provides increased reliability and other advantages not possible heretofore with respect to fuel cell designs which have been primarily directed to stack-type arrangements. While this prior art patent discloses a method of producing a suitable membrane electrode diffusion assembly which operates with a great deal of success, the inventors have endeavored to improve upon this inventive concept by focusing further investigation on a method of manufacturing a membrane electrode diffusion assembly which increases the performance, and versatility of same and which further may be utilized in a modular design such as disclosed in this previous patent, or which may be also utilized in more traditional stack-type arrangements.
- Accordingly, a method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell which achieves the benefits to be derived from the aforementioned teaching is the subject matter of the present invention.
- One aspect of the present invention is to provide a method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell which includes providing an ion conducting electrolyte membrane having opposite sides; and applying a first diffusion layer to one of the opposite sides of the ion conducting electrolyte membrane by the application of force sufficient to fabricate a resulting membrane electrode diffusion assembly which has an optimal operational temperature range when utilized in an ion exchange membrane fuel cell of less than about 95 degrees C.
- Another aspect of the present invention relates to a method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell which includes providing an ion conducting electrolyte membrane having opposite anode and cathode sides; affixing an anode and cathode electrode on the respective anode and cathode sides; positioning a first diffusion layer on one of the anode and/or cathode sides of the ion conducting electrolyte membrane and in covering relation over the respective anode and/or cathode electrode; and applying a force of at least about 400 pounds to about 10,000 pounds per square inch to the first diffusion layer to affix the first diffusion layer on the ion conducting electrolyte membrane to form a resulting membrane electrode diffusion assembly.
- Yet further, another aspect of the present invention relates to a method of forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell, and which includes, first, providing an ion conducting electrolyte membrane having opposite anode and cathode sides; second, providing anode and cathode electrodes which are individually affixed on and located at least in partial covering relation relative to the respective anode and cathode sides of the electrolyte membrane; third, providing a first diffusion layer comprising carbon and a fluropolymer, and then heating the first diffusion layer to a temperature of about 100 degrees C. to about 500 degrees C. for a predetermined period of time in an oxygen-containing environment; fourth, affixing the previously heated first diffusion layer in at least partial covering relation relative to each of the anode and cathode electrodes by the application of pressure in the amount of about 400 pounds to about 10,000 pounds per square inch of surface area of the first diffusion layer; providing a permeable substrate having a predetermined thickness dimension and opposite sides; preparing a slurry comprising at least about 20% to about 90% by weight of a particulate carbon and a hydrophobic binding resin dispersed in a water solution which may include surfactant, and applying the slurry to coat one of the sides of the permeable substrate; air drying the coated side of the porous substrate, and after the step of air drying the coated side, applying additional coats of the slurry, each separated by the aforementioned air drying step, to form a second diffusion layer having a resulting hydrophobic gradient; and positioning the second diffusion layer in juxtaposed covering relation relative to the first diffusion layer.
- These and other aspects of the present invention will be discussed in further detail hereinafter.
- Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
- FIG. 1 is a greatly enlarged, diagrammatic section of a membrane electrode diffusion assembly shown at one processing step in accordance with the present invention.
- FIG. 2 is a greatly enlarged, diagrammatic section of a membrane electrode diffusion assembly shown at a processing step subsequent to that shown in FIG. 1.
- FIG. 3 is a greatly enlarged, diagrammatic section of a membrane electrode diffusion assembly shown at a processing step subsequent to that shown in FIG. 2.
- FIG. 4 is a greatly enlarged, diagrammatic section of a portion of a membrane electrode diffusion assembly at one processing step in accordance with the present invention.
- FIG. 5 is a greatly enlarged, diagrammatic section of a portion of a membrane electrode diffusion assembly shown at a processing step subsequent to that shown in FIG. 4.
- FIG. 6 is a greatly enlarged, diagrammatic section of a membrane electrode diffusion assembly at a processing step subsequent to that shown in FIG. 5.
- This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
- Referring now to FIG. 1, an ion conducting electrolyte membrane having
opposite sides side 11 is the anode side, andside 12 is designated as the cathode side. As discussed in U.S. Pat. No. 6,030,718 a suitable proton-conducting membrane may be purchased from the W. L. Gore Company under the trade designation Primea 6000 series. Of course any membrane which allows for the movement of protons or anions across the membrane interface may be potentially suitable for use. - Referring now to FIG. 2, the ion conducting electrolyte membrane is shown at a second step in the method wherein individual anode and cathode electrodes designated by the
numerals cathode sides electrolyte membrane 10. As seen, the anode and cathode electrodes are located at least in partial covering relation relative to the respective anode andcathode sides - Referring now to FIG. 3, following the step of providing the anode and
cathode electrodes first diffusion layer 40 which comprises carbon and a fluropolymer. This first diffusion layer is first heated to a temperature of about 100 degrees C. to about 500 degrees C. in an oxygen-containing environment such as air for a predetermined period of time which lies in a range of about 1 second to about 2 minutes. Subsequent to the heating step noted above, the first diffusion layer is positioned at least in partial covering relation relative to each of the anode andcathode electrodes first diffusion layer 40 is selected from the group consisting essentially of carbon cloth, carbon paper or carbon sponge or a suitable equivalent. Yet further, the fluropolymer is selected from the group consisting essentially of perfluorinated hydrocarbons or suitable equivalents. The resulting combination of these two materials results in afirst diffusion layer 40 which is rendered substantially hydrophobic. It should be recognized that in the step of affixing thefirst diffusion layer 40 to the underlying anode andcathode electrodes first diffusion layer 40 may be attached first to the anode, or alternatively to the cathode electrode, or further may be attached simultaneously to both the anode and cathode electrodes by the application of a force of about 400 pounds to about 10,000 pounds per square inch. - Referring now to FIG. 4, a
porous substrate 50 is provided and which is selected from the group consisting essentially of carbon cloth, carbon paper or carbon sponge or a suitable equivalent. Theporous substrate 50 has a thickness of about 0.2 mm to about 2.0 mm. As seen in FIG. 4, and then subsequently in FIG. 5, a slurry is later prepared and which comprises at least about 20% to about 90% by weight of a particulate carbon and a hydrophobic binding resin dispersed in a water solution which may contain a small amount of a surfactant such as an alcohol. As seen in FIG. 4, theslurry 60 is applied to coat one of the sides of thepermeable substrate 50. Thereafter, an air drying step is conducted to evaporate the water and any surfactant, and thereby deposit the particulate carbon and hydrophobic resin on the coated side. Thereafter, as seen in FIG. 5, additional coats of theslurry 60 are applied, each separated by the aforementioned air drying step to form a second diffusion layer 70 (FIG. 5) having a resulting hydrophobic gradient. - Referring now to FIG. 6, it will be seen that the
second diffusion layer 70 is positioned in juxtaposed covering relation relative to thefirst diffusion layer 40 and affixed thereto to form a resulting membrane electrode diffusion assembly 100. It should be understood that the hydrophobic binding resin selected for use in the second diffusion layer can be selected from the group including perfluorinated hydrocarbons. - The operation of the described embodiment of the present invention is believed to be readily apparent and is briefly summarized at this point.
- Referring now to FIG. 1, a method for forming a resulting membrane electrode diffusion assembly100 for use in an ion exchange membrane fuel cell is illustrated, and in a first step, the method of the present invention includes providing an ion conducting
electrolyte membrane 10 having opposite anode andcathode sides cathode electrodes electrolyte membrane 10. The method further includes, third, providing afirst diffusion layer 40 comprising carbon and a fluropolymer and then heating the first diffusion layer to a temperature of about 100 degrees C. to about 500 degrees C. for a predetermined period of time in an oxygen-containing environment such as air. Following the heating of the first diffusion layer, affixing the previously heated first diffusion layer in at least partial covering relation relative to the anode andcathode electrodes permeable substrate 50 having a predetermined thickness dimension and opposite sides. Following providing the permeable substrate, the method further includes preparing a slurry comprising at least 20% to about 90% by weight of a particular carbon and a hydrophobic binding resin dispersed in a water solution which may include a surfactant such as alcohol, and applying the slurry to coat one of the sides of thepermeable substrate 50. Subsequently, the method further includes a step of air drying the coated side of the porous substrate, and after the step of air drying the coated side, applying additional coats of the slurry, each separated by the aforementioned air drying step, to form a second diffusion layer 70 (FIG. 5) having a resulting hydrophobic gradient. As seen in FIG. 6, and following the formation of thesecond diffusion layer 70, the method further includes positioning the second diffusion layer in juxtaposed covering relation relative to thefirst diffusion layer 40. This forms a resulting membrane electrode diffusion assembly 100 for use in an ion exchange membrane fuel cell. - In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
Claims (24)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/792,085 US6383556B2 (en) | 2000-05-17 | 2001-02-23 | Method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell |
PCT/US2001/014071 WO2002069423A1 (en) | 2001-02-23 | 2001-05-01 | Method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/577,407 US6468682B1 (en) | 2000-05-17 | 2000-05-17 | Ion exchange membrane fuel cell |
US09/792,085 US6383556B2 (en) | 2000-05-17 | 2001-02-23 | Method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/577,407 Continuation-In-Part US6468682B1 (en) | 2000-05-17 | 2000-05-17 | Ion exchange membrane fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010044373A1 true US20010044373A1 (en) | 2001-11-22 |
US6383556B2 US6383556B2 (en) | 2002-05-07 |
Family
ID=24308578
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/577,407 Expired - Lifetime US6468682B1 (en) | 2000-05-17 | 2000-05-17 | Ion exchange membrane fuel cell |
US09/792,085 Expired - Lifetime US6383556B2 (en) | 2000-05-17 | 2001-02-23 | Method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell |
US09/854,056 Expired - Lifetime US6467334B2 (en) | 2000-05-17 | 2001-05-11 | Method for quickly rendering a MOS gas sensor operational, MOS gas sensor system, and fuel cell system |
US09/916,791 Expired - Lifetime US6743536B2 (en) | 2000-05-17 | 2001-07-26 | Fuel cell power system and method of controlling a fuel cell power system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/577,407 Expired - Lifetime US6468682B1 (en) | 2000-05-17 | 2000-05-17 | Ion exchange membrane fuel cell |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/854,056 Expired - Lifetime US6467334B2 (en) | 2000-05-17 | 2001-05-11 | Method for quickly rendering a MOS gas sensor operational, MOS gas sensor system, and fuel cell system |
US09/916,791 Expired - Lifetime US6743536B2 (en) | 2000-05-17 | 2001-07-26 | Fuel cell power system and method of controlling a fuel cell power system |
Country Status (8)
Country | Link |
---|---|
US (4) | US6468682B1 (en) |
EP (1) | EP1287575A4 (en) |
JP (1) | JP2004515881A (en) |
AU (2) | AU6129601A (en) |
BR (1) | BR0109656A (en) |
CA (1) | CA2401562A1 (en) |
MX (1) | MXPA02009467A (en) |
WO (1) | WO2001089016A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020090543A1 (en) * | 2000-11-22 | 2002-07-11 | Aisin Seiki Kabushiki Kaisha | Solid polymer electrolyte fuel cell and method for producing electrode thereof |
US20040033403A1 (en) * | 2002-08-14 | 2004-02-19 | Peter Mardilovich | MEMS-based fuel cell and methods |
US6884745B2 (en) | 2002-06-28 | 2005-04-26 | Advanced Energy Technology Inc. | Perforated cylindrical fuel cells |
US20070178367A1 (en) * | 2006-02-01 | 2007-08-02 | Matsushita Electric Industrial Co., Ltd. | Direct oxidation fuel cell and method for operating direct oxidation fuel cell system |
US20120308913A1 (en) * | 2010-03-02 | 2012-12-06 | Toyota Jidosha Kabushiki Kaisha | Controlling fuel cell |
Families Citing this family (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6468682B1 (en) | 2000-05-17 | 2002-10-22 | Avista Laboratories, Inc. | Ion exchange membrane fuel cell |
US20020022170A1 (en) * | 2000-08-18 | 2002-02-21 | Franklin Jerrold E. | Integrated and modular BSP/MEA/manifold plates for fuel cells |
US20020022382A1 (en) * | 2000-08-18 | 2002-02-21 | Franklin Jerrold E. | Compliant electrical contacts for fuel cell use |
MXPA02004950A (en) * | 2000-09-18 | 2003-10-14 | Mitsubishi Heavy Ind Ltd | Solid polymer type fuel battery. |
DE10050467A1 (en) * | 2000-10-12 | 2002-05-16 | Omg Ag & Co Kg | Method for producing a membrane electrode assembly for fuel cells |
US6532792B2 (en) | 2001-07-26 | 2003-03-18 | Avista Laboratories, Inc. | Method of compensating a MOS gas sensor, method of manufacturing a MOS gas sensor, MOS gas sensor, and fuel cell system |
US20090190273A1 (en) * | 2001-10-04 | 2009-07-30 | Ise Corporation | Ultracapacitor Overvoltage Protection Circuit With Self Verification |
US20090021871A1 (en) * | 2001-10-04 | 2009-01-22 | Ise Corporation | Energy Storage Pack Having Overvoltage Protection and Method of Protection |
US7085112B2 (en) * | 2001-10-04 | 2006-08-01 | Ise Corporation | High-power ultracapacitor energy storage pack and method of use |
US20070020513A1 (en) * | 2001-10-04 | 2007-01-25 | Ise Corporation | Energy Storage Cell Support Separator and Cooling System for a Multiple Cell Module |
US20080068801A1 (en) * | 2001-10-04 | 2008-03-20 | Ise Corporation | High-Power Ultracapacitor Energy Storage Cell Pack and Coupling Method |
US20070002518A1 (en) * | 2001-10-04 | 2007-01-04 | Ise Corporation | High-Power Ultracapacitor Energy Storage Pack and Method of Use |
US7144646B2 (en) * | 2001-12-14 | 2006-12-05 | Ballard Power Systems Inc. | Method and apparatus for multiple mode control of voltage from a fuel cell system |
US6716549B2 (en) * | 2001-12-27 | 2004-04-06 | Avista Laboratories, Inc. | Fuel cell having metalized gas diffusion layer |
WO2003057529A2 (en) * | 2002-01-08 | 2003-07-17 | Hypercar, Inc. | Advanced composite hybrid-electric vehicle |
US6620538B2 (en) | 2002-01-23 | 2003-09-16 | Avista Laboratories, Inc. | Method and apparatus for monitoring equivalent series resistance and for shunting a fuel cell |
FR2837024B1 (en) * | 2002-03-06 | 2007-04-27 | Air Liquide | FUEL CELL, CELL OR GROUP OF CELLS BELONGING TO SUCH BATTERY, REPLACEMENT KIT FOR THIS CELL AND ITS MANUFACTURING PROCESS |
US7083875B2 (en) * | 2002-04-22 | 2006-08-01 | Proton Energy Systems, Inc. | Method and apparatus for providing modular power |
EP1505386B1 (en) * | 2002-05-14 | 2013-04-24 | Honda Giken Kogyo Kabushiki Kaisha | Gas sensor operation method |
EP1512193A2 (en) * | 2002-05-16 | 2005-03-09 | Ballard Power Systems Inc. | Electric power plant with adjustable array of fuel cell systems |
US8188718B2 (en) * | 2002-05-28 | 2012-05-29 | Advanced Battery Management, Llc | Method and apparatus for a remote battery charger with a self contained power source |
US7393369B2 (en) | 2002-06-11 | 2008-07-01 | Trulite, Inc. | Apparatus, system, and method for generating hydrogen |
JP4121315B2 (en) * | 2002-06-11 | 2008-07-23 | 本田技研工業株式会社 | Fuel cell |
US6974646B2 (en) * | 2002-06-24 | 2005-12-13 | Delphi Technologies, Inc. | Solid-oxide fuel cell assembly having an electronic control unit within a structural enclosure |
FI118553B (en) * | 2002-06-28 | 2007-12-14 | Enfucell Oy | Apparatus and method for producing electric power and power source |
US20040001991A1 (en) * | 2002-07-01 | 2004-01-01 | Kinkelaar Mark R. | Capillarity structures for water and/or fuel management in fuel cells |
WO2004004054A1 (en) * | 2002-06-28 | 2004-01-08 | Foamex L.P. | Gas diffusion layer for fuel cells |
US6960402B2 (en) * | 2002-06-28 | 2005-11-01 | Advanced Energy Technology Inc. | Perforated cylindrical fuel cells |
JP3951841B2 (en) * | 2002-07-19 | 2007-08-01 | トヨタ自動車株式会社 | Fuel cell seal structure and manufacturing method thereof |
DE10235431A1 (en) * | 2002-08-02 | 2004-02-12 | Proton Motor Fuel Cell Gmbh | Electrical drive source for motor drive does not have direct voltage converter, but has controllable pre-chargeable circuit for pre-charging ultra-capacitor unit for temporary storage |
EP1396896B1 (en) * | 2002-09-04 | 2017-05-10 | Hexis AG | Grid-connected fuel cell system for providing heat and electrical power |
US20040062977A1 (en) * | 2002-10-01 | 2004-04-01 | Graftech, Inc. | Fuel cell power packs and methods of making such packs |
US7063912B2 (en) * | 2002-11-01 | 2006-06-20 | Deere & Company | Fuel cell assembly system |
US20040086775A1 (en) * | 2002-11-06 | 2004-05-06 | Lloyd Greg A. | Fuel cell having a variable gas diffusion layer |
US7329471B2 (en) * | 2002-12-10 | 2008-02-12 | General Electric Company | Methods and apparatus for assembling solid oxide fuel cells |
US20040191605A1 (en) * | 2002-12-27 | 2004-09-30 | Foamex L.P. | Gas diffusion layer containing inherently conductive polymer for fuel cells |
US20040126641A1 (en) * | 2002-12-27 | 2004-07-01 | Pearson Martin T. | Regenerative fuel cell electric power plant and operating method |
US7056608B2 (en) | 2003-02-14 | 2006-06-06 | Relion, Inc. | Current collector for use in a fuel cell |
US6806678B2 (en) | 2003-02-20 | 2004-10-19 | Relion, Inc. | Battery charger |
US20040180253A1 (en) * | 2003-03-12 | 2004-09-16 | Fisher John M. | Fuel cell power system |
US6939636B2 (en) * | 2003-04-28 | 2005-09-06 | Relion, Inc. | Air cooled fuel cell module |
US7378165B2 (en) * | 2003-04-29 | 2008-05-27 | Hewlett-Packard Development Company, L.P. | System and method for providing electrical power to an equipment rack using a fuel cell |
US7799474B2 (en) * | 2003-04-29 | 2010-09-21 | Hewlett-Packard Development Company, L.P. | System and method for managing electrically isolated fuel cell powered devices within an equipment rack |
US20040219397A1 (en) * | 2003-04-29 | 2004-11-04 | Lyon Geoff M. | Electrically isolated fuel cell powered server |
US7632583B2 (en) * | 2003-05-06 | 2009-12-15 | Ballard Power Systems Inc. | Apparatus for improving the performance of a fuel cell electric power system |
US7308510B2 (en) * | 2003-05-07 | 2007-12-11 | Intel Corporation | Method and apparatus for avoiding live-lock in a multinode system |
US20050130023A1 (en) * | 2003-05-09 | 2005-06-16 | Lebowitz Jeffrey I. | Gas diffusion layer having carbon particle mixture |
US7419734B2 (en) * | 2003-05-16 | 2008-09-02 | Ballard Power Systems, Inc. | Method and apparatus for fuel cell systems |
US6838923B2 (en) * | 2003-05-16 | 2005-01-04 | Ballard Power Systems Inc. | Power supply and ultracapacitor based battery simulator |
US20050004716A1 (en) * | 2003-05-22 | 2005-01-06 | Mark Lillis | Method and apparatus for providing modular communications in a modular power system |
DE10323883A1 (en) * | 2003-05-26 | 2004-12-30 | Siemens Ag | Electrochemical battery |
US7556660B2 (en) | 2003-06-11 | 2009-07-07 | James Kevin Shurtleff | Apparatus and system for promoting a substantially complete reaction of an anhydrous hydride reactant |
US20040265662A1 (en) * | 2003-06-30 | 2004-12-30 | Cyril Brignone | System and method for heat exchange using fuel cell fluids |
US7670707B2 (en) * | 2003-07-30 | 2010-03-02 | Altergy Systems, Inc. | Electrical contacts for fuel cells |
US7358005B2 (en) | 2003-09-18 | 2008-04-15 | General Electric Company | Methods and apparatus for isolating solid oxide fuel cells |
DE10356012A1 (en) * | 2003-11-27 | 2005-06-30 | Airbus Deutschland Gmbh | Arrangement and method for producing water on board an aircraft |
US7521138B2 (en) * | 2004-05-07 | 2009-04-21 | Ballard Power Systems Inc. | Apparatus and method for hybrid power module systems |
EP1624512A2 (en) * | 2004-08-05 | 2006-02-08 | Pemeas GmbH | Long-life membrane electrode assemblies |
FR2875340B1 (en) * | 2004-09-14 | 2006-11-17 | Renault Sas | DEVICE AND METHOD FOR MANAGING POWER SUPPLIES OF A FUEL CELL |
EP1814653B1 (en) | 2004-11-12 | 2012-07-18 | Trulite, Inc. | Hydrogen generator cartridge |
TWI237920B (en) * | 2004-12-08 | 2005-08-11 | Delta Electronics Inc | Stacked fuel cell assembly |
US7691502B2 (en) * | 2005-03-15 | 2010-04-06 | Jadoo Power Systems, Inc. | Modular fuel cell power system, and technique for controlling and/or operating same |
US20060228610A1 (en) * | 2005-04-11 | 2006-10-12 | Hsi-Ming Shu | Card-insertion type of fuel cell apparatus |
US20060228614A1 (en) * | 2005-04-11 | 2006-10-12 | Hsi-Ming Shu | Assembly structure of clustering fuel cell |
CA2606264A1 (en) * | 2005-04-27 | 2006-11-02 | Hydrogenics Corporation | Systems and methods for adaptive energy management in a fuel cell system |
US7565535B2 (en) * | 2005-05-06 | 2009-07-21 | Microsoft Corporation | Systems and methods for demonstrating authenticity of a virtual machine using a security image |
EP1727156B1 (en) * | 2005-05-18 | 2015-01-07 | STMicroelectronics Pvt. Ltd. | An improved area efficient memory architecture with decoder self test and debug capability |
US7776485B1 (en) | 2005-08-03 | 2010-08-17 | Hydro Fuel Cell Corporation | Fuel cell stack with a plurality of connected single unit fuel cells |
US7722972B2 (en) * | 2005-08-17 | 2010-05-25 | Relion, Inc. | Apparatus and method for controlling a fuel cell using the rate of voltage recovery |
US7798892B2 (en) * | 2005-08-31 | 2010-09-21 | Siemens Industry, Inc. | Packaging method for modular power cells |
US20070114850A1 (en) * | 2005-11-18 | 2007-05-24 | Relion, Inc. | Power system and method for supplying electrical power to a load |
US20080032174A1 (en) * | 2005-11-21 | 2008-02-07 | Relion, Inc. | Proton exchange membrane fuel cells and electrodes |
US7833645B2 (en) | 2005-11-21 | 2010-11-16 | Relion, Inc. | Proton exchange membrane fuel cell and method of forming a fuel cell |
US8962200B2 (en) * | 2006-02-15 | 2015-02-24 | Ford Motor Company | Humidity measuring device and method |
WO2007127195A2 (en) * | 2006-04-24 | 2007-11-08 | Jadoo Power Systems, Inc. | Fuel cell power system having dock-type device, and technique for controlling and/or operating same |
US7648786B2 (en) | 2006-07-27 | 2010-01-19 | Trulite, Inc | System for generating electricity from a chemical hydride |
US7651542B2 (en) | 2006-07-27 | 2010-01-26 | Thulite, Inc | System for generating hydrogen from a chemical hydride |
US7726177B2 (en) * | 2007-03-06 | 2010-06-01 | Detector Electronics Corporation | Environmental hazard sensor |
EP2133946A4 (en) * | 2007-03-27 | 2013-05-01 | Daihatsu Motor Co Ltd | Fuel cell |
US7764186B2 (en) * | 2007-04-23 | 2010-07-27 | J And N Enterprises Inc. | Gas sensing method and instrument therefor |
US8357214B2 (en) | 2007-04-26 | 2013-01-22 | Trulite, Inc. | Apparatus, system, and method for generating a gas from solid reactant pouches |
US8026020B2 (en) | 2007-05-08 | 2011-09-27 | Relion, Inc. | Proton exchange membrane fuel cell stack and fuel cell stack module |
US9293778B2 (en) | 2007-06-11 | 2016-03-22 | Emergent Power Inc. | Proton exchange membrane fuel cell |
TWI344716B (en) * | 2007-06-22 | 2011-07-01 | Young Green Energy Co | Fuel cell module |
CN101855769A (en) | 2007-07-25 | 2010-10-06 | 特鲁丽特公司 | Apparatus, system, and method to manage the generation and use of hybrid electric power |
US20090080126A1 (en) * | 2007-09-25 | 2009-03-26 | Ise Corporation | Energy Storage Device Coupler and Method |
US8003274B2 (en) | 2007-10-25 | 2011-08-23 | Relion, Inc. | Direct liquid fuel cell |
DE102008019979B3 (en) | 2008-04-21 | 2009-10-01 | Futuree Fuel Cell Solutions Gmbh | Power supply module and power cabinet |
DE102008047399A1 (en) * | 2008-09-16 | 2010-04-15 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Electrode device, generator device and method for generating electricity by membrane potential dissipation |
US8409760B2 (en) * | 2009-01-20 | 2013-04-02 | Adaptive Materials, Inc. | Method for controlling a water based fuel reformer |
US8177884B2 (en) | 2009-05-20 | 2012-05-15 | United Technologies Corporation | Fuel deoxygenator with porous support plate |
GB0913836D0 (en) * | 2009-08-07 | 2009-09-16 | Afc Energy Plc | Fuel cell |
US20110215752A1 (en) * | 2009-09-11 | 2011-09-08 | Adaptive Materials, Inc. | Fuel Cell Battery Charger |
DE102009057494A1 (en) * | 2009-12-10 | 2011-06-16 | Fachhochschule Gelsenkirchen | Device for energy conversion, in particular fuel cell stack or Elektrolyseurstack |
US20110189578A1 (en) * | 2010-02-01 | 2011-08-04 | Adaptive Materials, Inc. | Fuel cell system including a resilient manifold interconnecting member |
US8796888B2 (en) | 2010-07-07 | 2014-08-05 | Adaptive Materials, Inc. | Wearable power management system |
JP5666396B2 (en) * | 2011-07-14 | 2015-02-12 | 本田技研工業株式会社 | Manufacturing method of metal separator for fuel cell |
EP2736107A4 (en) * | 2011-07-19 | 2014-12-03 | Panasonic Corp | Method for producing membrane electrode assembly and method for producing gas diffusion layer |
GB2499417A (en) * | 2012-02-15 | 2013-08-21 | Intelligent Energy Ltd | A fuel cell assembly |
WO2014126595A1 (en) | 2013-02-18 | 2014-08-21 | Parker-Hannifin Corporation | Modular fuel cell system |
WO2018067506A1 (en) | 2016-10-06 | 2018-04-12 | Black & Decker Inc. | Battery and motor system for replacing internal combustion engine |
JP6804941B2 (en) * | 2016-11-09 | 2020-12-23 | 日本碍子株式会社 | Method of suppressing output deterioration of hybrid potential type gas sensor |
KR20180055294A (en) | 2016-11-16 | 2018-05-25 | 삼성전자주식회사 | FBAR Oscillator and Gas Sensing System using the FBAR Oscillator |
US11355807B2 (en) * | 2020-01-17 | 2022-06-07 | Bloom Energy Corporation | Shippable battery module and method |
CN111769312B (en) * | 2020-07-20 | 2022-04-12 | 吉林大学 | Fuel cell supply path decoupling control method based on pressure compensation |
Family Cites Families (262)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2852554A (en) | 1956-07-12 | 1958-09-16 | Du Pont | Alpha-sulfopolyfluoromonocarboxylic acids and derivatives hydrolyzable thereto |
US3507702A (en) | 1967-02-15 | 1970-04-21 | United Aircraft Corp | Fuel cell system including cooling and humidifying means |
US3498844A (en) | 1967-08-21 | 1970-03-03 | United Aircraft Corp | Fuel cell waste heat and water removal system |
US3554803A (en) | 1967-08-24 | 1971-01-12 | Studebaker Corp | Fuel cell designed for efficient stacking |
US3528858A (en) | 1968-12-04 | 1970-09-15 | Gen Electric | Sulfonated aryl-substituted polyphenylene ether ion exchange membranes |
US3623913A (en) | 1969-09-18 | 1971-11-30 | Engelhard Min & Chem | Fuel cell system |
US3808534A (en) | 1972-11-15 | 1974-04-30 | United Aircraft Corp | Intrinsically powered electronic monitor for fuel cells |
US3823358A (en) | 1973-06-18 | 1974-07-09 | United Aircraft Corp | Battery peaking unit for fuel cell power plants |
US3975913A (en) | 1973-12-20 | 1976-08-24 | Erickson Donald C | Gas generator and enhanced energy conversion systems |
CH594292A5 (en) | 1974-11-19 | 1978-01-13 | Raffinage Cie Francaise | |
US4024036A (en) | 1975-02-03 | 1977-05-17 | Agency Of Industrial Science & Technology | Proton permselective solid-state member and apparatus utilizing said permselective member |
US3964930A (en) | 1975-07-21 | 1976-06-22 | United Technologies Corporation | Fuel cell cooling system |
US3969145A (en) | 1975-07-21 | 1976-07-13 | United Technologies Corporation | Fuel cell cooling system using a non-dielectric coolant |
US4000003A (en) * | 1976-01-02 | 1976-12-28 | The United States Of America As Represented By The Secretary Of The Army | Fuel cell-secondary cell combination |
CH608310A5 (en) | 1976-05-28 | 1978-12-29 | Raffinage Cie Francaise | |
CH608309A5 (en) | 1976-05-28 | 1978-12-29 | Raffinage Cie Francaise | |
US4035551A (en) | 1976-09-01 | 1977-07-12 | United Technologies Corporation | Electrolyte reservoir for a fuel cell |
FR2390021B1 (en) | 1977-05-04 | 1980-11-28 | Thomson Csf | |
US4287232A (en) | 1978-06-28 | 1981-09-01 | United Technologies Corporation | Dry floc method for making an electrochemical cell electrode |
US4185131A (en) | 1978-06-28 | 1980-01-22 | United Technologies Corporation | Screen printing method for making an electrochemical cell electrode |
US4192906A (en) | 1978-07-10 | 1980-03-11 | Energy Research Corporation | Electrochemical cell operation and system |
US4313338A (en) | 1978-08-18 | 1982-02-02 | Matsushita Electric Industrial Co., Ltd. | Gas sensing device |
US4219443A (en) | 1978-12-20 | 1980-08-26 | Gte Laboratories Incorporated | Method of preparing a cathode current collector for use in an electrochemical cell |
US4435252A (en) | 1980-04-25 | 1984-03-06 | Olin Corporation | Method for producing a reticulate electrode for electrolytic cells |
US4276355A (en) | 1980-04-28 | 1981-06-30 | Westinghouse Electric Corp. | Fuel cell system configurations |
US4469579A (en) | 1981-06-26 | 1984-09-04 | Diamond Shamrock Corporation | Solid polymer electrolytes and electrode bonded with hydrophylic fluorocopolymers |
US4624137A (en) | 1981-10-09 | 1986-11-25 | Honeywell Inc. | Semiconductor device |
US4463065A (en) | 1982-02-02 | 1984-07-31 | W. R. Grace & Co. | Fuel cell and method for conducting gas-phase oxidation |
JPS58165266A (en) | 1982-03-26 | 1983-09-30 | Hitachi Ltd | Fuel cell |
JPS58180936A (en) | 1982-04-17 | 1983-10-22 | Fuigaro Giken Kk | Element for detecting combustion state and preparation thereof |
US4500612A (en) | 1982-04-21 | 1985-02-19 | Mitsubishi Denki Kabushiki Kaisha | Temperature control device for a fuel cell |
GB2129237B (en) | 1982-10-21 | 1986-06-25 | Westinghouse Electric Corp | Fuel cell protection circuits |
US4510211A (en) | 1983-06-17 | 1985-04-09 | Struthers Ralph C | Fuel cell electrolyte supply system and apparatus |
US4476198A (en) | 1983-10-12 | 1984-10-09 | The United States Of America As Represented By The United States Department Of Energy | Solid oxide fuel cell having monolithic core |
US4598028A (en) | 1985-02-13 | 1986-07-01 | Westinghouse Electric Corp. | High strength porous support tubes for high temperature solid electrolyte electrochemical cells |
US4701739A (en) | 1984-03-30 | 1987-10-20 | Figaro Engineering Inc. | Exhaust gas sensor and process for producing same |
DE3576248D1 (en) | 1984-10-17 | 1990-04-05 | Hitachi Ltd | METHOD FOR PRODUCING A FLEXIBLE FUEL CELL ELECTRODE FROM CARBON PAPER. |
CA1263694A (en) | 1984-10-23 | 1989-12-05 | Toshiro Nishi | Solid electrolyte fuel cell and method for preparing it |
JPS61147146A (en) | 1984-12-20 | 1986-07-04 | Fuigaro Giken Kk | Lambda sensor |
US4562124A (en) | 1985-01-22 | 1985-12-31 | Westinghouse Electric Corp. | Air electrode material for high temperature electrochemical cells |
US4648955A (en) | 1985-04-19 | 1987-03-10 | Ivac Corporation | Planar multi-junction electrochemical cell |
US4629537A (en) | 1985-05-17 | 1986-12-16 | Hsu Michael S | Compact, light-weight, solid-oxide electrochemical converter |
JPH0650293B2 (en) | 1985-06-24 | 1994-06-29 | フイガロ技研株式会社 | Gas sensor |
CA1262041A (en) | 1985-06-28 | 1989-10-03 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Canada | Bonded hydrogen conducting solid electrolytes |
US4795536A (en) | 1985-07-10 | 1989-01-03 | Allied-Signal Inc. | Hydrogen separation and electricity generation using novel three-component membrane |
US4816800A (en) | 1985-07-11 | 1989-03-28 | Figaro Engineering Inc. | Exhaust gas sensor |
JPS6217958A (en) | 1985-07-16 | 1987-01-26 | Sanyo Electric Co Ltd | Control device for fuel cell power generation system |
US4797185A (en) | 1985-07-19 | 1989-01-10 | Allied-Signal Inc. | Hydrogen separation and electricity generation using novel electrolyte membrane |
US4801211A (en) | 1985-10-12 | 1989-01-31 | Ngk Spark Plug Co., Ltd. | Humidity and dew point detector |
US4647359A (en) | 1985-10-16 | 1987-03-03 | Prototech Company | Electrocatalytic gas diffusion electrode employing thin carbon cloth layer |
US5037525A (en) | 1985-10-29 | 1991-08-06 | Commonwealth Scientific And Industrial Research Organisation | Composite electrodes for use in solid electrolyte devices |
JPS62172257A (en) | 1986-01-27 | 1987-07-29 | Figaro Eng Inc | Proton conductor gas sensor |
US4818735A (en) | 1986-02-14 | 1989-04-04 | National Institute For Research In Inorganic Materials | Tetragonal system tunnel-structured compound AX(GA8MYGA(8+X)-YTI16-X0 56), and cation conductor and heat insulating material composed thereof |
US4661411A (en) | 1986-02-25 | 1987-04-28 | The Dow Chemical Company | Method for depositing a fluorocarbonsulfonic acid polymer on a support from a solution |
US4702971A (en) | 1986-05-28 | 1987-10-27 | Westinghouse Electric Corp. | Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells |
US4767518A (en) | 1986-06-11 | 1988-08-30 | Westinghouse Electric Corp. | Cermet electrode |
US4755376A (en) | 1986-08-25 | 1988-07-05 | Institute Of Gas Technology | Process for operating a dual compartment anode structure |
US4797190A (en) | 1986-10-06 | 1989-01-10 | T And G. Corporation | Ionic semiconductor materials and applications thereof |
JPH067897B2 (en) | 1986-10-20 | 1994-02-02 | 三洋電機株式会社 | Air purifier controller |
US4728584A (en) | 1986-10-21 | 1988-03-01 | Westinghouse Electric Corp. | Fuel cell generator containing self-supporting high gas flow solid oxide electrolyte fuel cells |
US4749632A (en) | 1986-10-23 | 1988-06-07 | The United States Of America As Represented By The United States Department Of Energy | Sintering aid for lanthanum chromite refractories |
EP0265834B1 (en) | 1986-10-28 | 1992-07-22 | Figaro Engineering Inc. | Sensor and method of producing same |
DE3640206A1 (en) | 1986-11-25 | 1988-06-01 | Basf Ag | METHANOL / AIR FUEL CELL BATTERIES WITH HIGH ENERGY AND PERFORMANCE DENSITY |
US4851303A (en) | 1986-11-26 | 1989-07-25 | Sri-International | Solid compositions for fuel cells, sensors and catalysts |
US4816036A (en) | 1986-12-15 | 1989-03-28 | Allied-Signal Inc. | Fabrication of ceramic trilayers for a monolithic solid oxide fuel cell |
US4876115A (en) | 1987-01-30 | 1989-10-24 | United States Department Of Energy | Electrode assembly for use in a solid polymer electrolyte fuel cell |
US4770955A (en) | 1987-04-28 | 1988-09-13 | The Standard Oil Company | Solid electrolyte fuel cell and assembly |
US4849253A (en) | 1987-05-29 | 1989-07-18 | International Fuel Cell Corporation | Method of making an electrochemical cell electrode |
US4826741A (en) | 1987-06-02 | 1989-05-02 | Ergenics Power Systems, Inc. | Ion exchange fuel cell assembly with improved water and thermal management |
US4795683A (en) | 1987-07-23 | 1989-01-03 | United Technologies Corporation | High power density evaporatively cooled ion exchange membrane fuel cell |
JPS6451331A (en) | 1987-08-20 | 1989-02-27 | Kureha Chemical Ind Co Ltd | Proton-conductive substance and its production |
US4804592A (en) | 1987-10-16 | 1989-02-14 | The United States Of America As Represented By The United States Department Of Energy | Composite electrode for use in electrochemical cells |
US4769297A (en) | 1987-11-16 | 1988-09-06 | International Fuel Cells Corporation | Solid polymer electrolyte fuel cell stack water management system |
US4826742A (en) | 1988-01-21 | 1989-05-02 | International Fuel Cells Corporation | Water and heat management in solid polymer fuel cell stack |
JP2741381B2 (en) | 1988-02-04 | 1998-04-15 | フィガロ技研株式会社 | Gas detector |
US4824741A (en) | 1988-02-12 | 1989-04-25 | International Fuel Cells Corporation | Solid polymer electrolyte fuel cell system with porous plate evaporative cooling |
US4973531A (en) | 1988-02-19 | 1990-11-27 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Arrangement for tightening stack of fuel cell elements |
US4847172A (en) | 1988-02-22 | 1989-07-11 | Westinghouse Electric Corp. | Low resistance fuel electrodes |
US4883497A (en) | 1988-03-28 | 1989-11-28 | Arch Development Corporation | Formation of thin walled ceramic solid oxide fuel cells |
US4943494A (en) | 1988-04-22 | 1990-07-24 | The United States Of America As Represented By The United States Department Of Energy | Solid oxide fuel cell matrix and modules |
US4818637A (en) | 1988-05-20 | 1989-04-04 | United Technologies Corporation | Hydrogen/halogen fuel cell with improved water management system |
JPH02193053A (en) | 1988-07-14 | 1990-07-30 | Figaro Eng Inc | Exhaust gas sensor and manufacture thereof |
US4863813A (en) | 1988-09-15 | 1989-09-05 | Bell Communications Research, Inc. | Primary source of electrical energy using a mixture of fuel and oxidizer |
DE3837814C1 (en) | 1988-11-08 | 1989-11-23 | Mtu Friedrichshafen Gmbh | |
US5035961A (en) | 1989-07-05 | 1991-07-30 | Combustion Engineering, Inc. | Internal cross-anchoring and reinforcing of multi-layer conductive oxides |
EP0406523A1 (en) | 1989-07-07 | 1991-01-09 | Osaka Gas Co., Ltd. | Fuel cell |
US5130210A (en) | 1989-08-25 | 1992-07-14 | Tonen Corporation | Stabilized zirconia solid electrolyte and process for preparation thereof |
US4994331A (en) | 1989-08-28 | 1991-02-19 | International Fuel Cells Corporation | Fuel cell evaporative cooling using fuel as a carrier gas |
US4973530A (en) | 1989-12-21 | 1990-11-27 | The United States Of America As Represented By The United States Department Of Energy | Fuel cell water transport |
US5045414A (en) | 1989-12-29 | 1991-09-03 | International Fuel Cells Corporation | Reactant gas composition for fuel cell potential control |
US5069985A (en) | 1990-02-15 | 1991-12-03 | International Fuel Cells Corporation | Plaque fuel cell stack |
JP2528988B2 (en) | 1990-02-15 | 1996-08-28 | 日本碍子株式会社 | Solid oxide fuel cell |
WO1991014294A1 (en) | 1990-03-16 | 1991-09-19 | Ricoh Co., Ltd. | Solid electrolyte, electrochemical element comprising the same, and process for forming said electrolyte |
US5035962A (en) | 1990-03-21 | 1991-07-30 | Westinghouse Electric Corp. | Layered method of electrode for solid oxide electrochemical cells |
JPH03274672A (en) | 1990-03-26 | 1991-12-05 | Ngk Insulators Ltd | Solid electrolyte type fuel cell |
US5059497A (en) | 1990-04-20 | 1991-10-22 | Hughes Aircraft Company | Composite ion-conductive electrolyte member |
US5169731A (en) | 1990-04-24 | 1992-12-08 | Yoshida Kogyo K.K. | Solid oxide fuel cell and method for manufacturing the same |
US4988582A (en) | 1990-05-04 | 1991-01-29 | Bell Communications Research, Inc. | Compact fuel cell and continuous process for making the cell |
US5244753A (en) | 1990-05-29 | 1993-09-14 | Matsushita Electric Industrial Co., Ltd. | Solid electrolyte fuel cell and method for manufacture of same |
JPH0443566A (en) | 1990-06-06 | 1992-02-13 | Murata Mfg Co Ltd | Solid electrolyte type fuel cell |
US5164060A (en) | 1990-06-11 | 1992-11-17 | The Dow Chemical Company | Ion exchange membrane having increased efficiency in proton exchange processes |
US5302269A (en) | 1990-06-11 | 1994-04-12 | The Dow Chemical Company | Ion exchange membrane/electrode assembly having increased efficiency in proton exchange processes |
US5069987A (en) | 1990-07-06 | 1991-12-03 | Igr Enterprises, Inc. | Solid oxide fuel cell assembly |
JPH07118327B2 (en) | 1990-07-07 | 1995-12-18 | 日本碍子株式会社 | Solid oxide fuel cell and porous electrode body used therefor |
JPH0697613B2 (en) | 1990-07-12 | 1994-11-30 | 日本碍子株式会社 | Method for producing air electrode material for solid oxide fuel cell |
US5154987A (en) | 1990-07-17 | 1992-10-13 | The United States Of America As Represented By The United States Department Of Energy | Highly conductive electrolyte composites containing glass and ceramic, and method of manufacture |
US5084144A (en) | 1990-07-31 | 1992-01-28 | Physical Sciences Inc. | High utilization supported catalytic metal-containing gas-diffusion electrode, process for making it, and cells utilizing it |
US5132193A (en) | 1990-08-08 | 1992-07-21 | Physical Sciences, Inc. | Generation of electricity with fuel cell using alcohol fuel |
US5395705A (en) | 1990-08-31 | 1995-03-07 | The Dow Chemical Company | Electrochemical cell having an electrode containing a carbon fiber paper coated with catalytic metal particles |
JP2572883B2 (en) | 1990-09-04 | 1997-01-16 | 日本碍子株式会社 | Solid electrolyte membrane, solid electrolyte fuel cell having the same, and methods of manufacturing these |
JPH04118861A (en) | 1990-09-10 | 1992-04-20 | Fuji Electric Co Ltd | Solid electrolyte type fuel cell and its manufacture |
US5290642A (en) | 1990-09-11 | 1994-03-01 | Alliedsignal Aerospace | Method of fabricating a monolithic solid oxide fuel cell |
US5162167A (en) | 1990-09-11 | 1992-11-10 | Allied-Signal Inc. | Apparatus and method of fabricating a monolithic solid oxide fuel cell |
JPH053037A (en) | 1990-10-03 | 1993-01-08 | Fuji Electric Co Ltd | Solid electrolyte type fuel cell |
US5106706A (en) | 1990-10-18 | 1992-04-21 | Westinghouse Electric Corp. | Oxide modified air electrode surface for high temperature electrochemical cells |
US5143801A (en) | 1990-10-22 | 1992-09-01 | Battelle Memorial Institute | Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor |
GB9023091D0 (en) | 1990-10-24 | 1990-12-05 | Ici Plc | Composite membranes and electrochemical cells containing them |
US5047298A (en) | 1990-11-13 | 1991-09-10 | Perry Oceanographics, Inc. | Closed loop reactant/product management system for electrochemical galvanic energy devices |
US5192627A (en) | 1990-11-13 | 1993-03-09 | Energy Partners, Inc. | Closed loop reactant/product management system for electrochemical galvanic energy device |
US5256499A (en) | 1990-11-13 | 1993-10-26 | Allied Signal Aerospace | Monolithic solid oxide fuel cells with integral manifolds |
EP0559816B1 (en) | 1990-11-23 | 1997-05-28 | Vickers Shipbuilding & Engineering Limited | Application of fuel cells to power generation systems |
WO1992010862A1 (en) | 1990-12-10 | 1992-06-25 | Yuasa Battery Co., Ltd. | Method for manufacturing solid-state electrolytic fuel cell |
CH679620A5 (en) | 1990-12-11 | 1992-03-13 | Sulzer Ag | |
US5186806A (en) | 1990-12-31 | 1993-02-16 | California Institute Of Technology | Ceramic distribution members for solid state electrolyte cells and method of producing |
US5366818A (en) | 1991-01-15 | 1994-11-22 | Ballard Power Systems Inc. | Solid polymer fuel cell systems incorporating water removal at the anode |
DK167163B1 (en) | 1991-02-13 | 1993-09-06 | Risoe Forskningscenter | FAST OXIDE FUEL CELLS FOR OXIDATION OF CH4 |
US5234777A (en) | 1991-02-19 | 1993-08-10 | The Regents Of The University Of California | Membrane catalyst layer for fuel cells |
JP3295945B2 (en) | 1991-02-22 | 2002-06-24 | 株式会社村田製作所 | Distributor of solid oxide fuel cell and method of manufacturing the same |
US5200278A (en) | 1991-03-15 | 1993-04-06 | Ballard Power Systems, Inc. | Integrated fuel cell power generation system |
US5154986A (en) | 1991-03-22 | 1992-10-13 | Yamaha Hatsudoki Kabushiki Kaisha | Shut-off device for fuel cell system |
JP2945157B2 (en) | 1991-03-27 | 1999-09-06 | 日本碍子株式会社 | Solid oxide fuel cell and method of manufacturing the same |
JPH0748378B2 (en) | 1991-03-28 | 1995-05-24 | 日本碍子株式会社 | Air electrode for solid electrolyte fuel cell and solid electrolyte fuel cell having the same |
JPH05135787A (en) | 1991-03-28 | 1993-06-01 | Ngk Insulators Ltd | Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell |
EP0524326B1 (en) | 1991-07-20 | 1995-03-15 | Osaka Gas Co., Ltd. | Fuel cell |
US5219673A (en) | 1991-08-23 | 1993-06-15 | Kaun Thomas D | Cell structure for electrochemical devices and method of making same |
US5252410A (en) | 1991-09-13 | 1993-10-12 | Ballard Power Systems Inc. | Lightweight fuel cell membrane electrode assembly with integral reactant flow passages |
JPH06176771A (en) | 1991-09-13 | 1994-06-24 | Tanaka Kikinzoku Kogyo Kk | Structure of ion-exchange membrane for fuel cell |
US5292599A (en) | 1991-09-27 | 1994-03-08 | Ngk Insulators, Ltd. | Cell units for solid oxide fuel cells and power generators using such cell units |
US5200279A (en) | 1991-10-11 | 1993-04-06 | Westinghouse Electric Corp. | Solid oxide fuel cell generator |
US5232794A (en) | 1991-10-17 | 1993-08-03 | The United States Of America As Represented By The United States Department Of Energy | Ionic conductors for solid oxide fuel cells |
US5213911A (en) | 1991-10-17 | 1993-05-25 | The United States Of America As Represented By The United States Department Of Energy | Solid-oxide fuel cell electrolyte |
US5248566A (en) | 1991-11-25 | 1993-09-28 | The United States Of America As Represented By The United States Department Of Energy | Fuel cell system for transportation applications |
JPH05144444A (en) | 1991-11-25 | 1993-06-11 | Toshiba Corp | Fuel cell and electrode manufacturing method |
JP2989353B2 (en) * | 1991-11-29 | 1999-12-13 | 三洋電機株式会社 | Hybrid fuel cell system |
US5372895A (en) | 1991-12-12 | 1994-12-13 | Yoshida Kogyo K.K. | Solid oxide fuel cell and method for manufacturing the same |
US5298235A (en) | 1991-12-16 | 1994-03-29 | The Trustees Of The University Of Pennsylvania | Electrochemical devices based on single-component solid oxide bodies |
US5242764A (en) | 1991-12-17 | 1993-09-07 | Bcs Technology, Inc. | Near ambient, unhumidified solid polymer fuel cell |
US5318863A (en) | 1991-12-17 | 1994-06-07 | Bcs Technology, Inc. | Near ambient, unhumidified solid polymer fuel cell |
JPH05174852A (en) | 1991-12-17 | 1993-07-13 | Yoshida Kogyo Kk <Ykk> | Conductive connecting material for solid electrolyte fuel cell |
US5262249A (en) | 1991-12-26 | 1993-11-16 | International Fuel Cells Corporation | Internally cooled proton exchange membrane fuel cell device |
WO1993013566A1 (en) | 1991-12-26 | 1993-07-08 | International Fuel Cells, Inc. | Plate-shaped fuel cell component and a method of making the same |
US5264299A (en) | 1991-12-26 | 1993-11-23 | International Fuel Cells Corporation | Proton exchange membrane fuel cell support plate and an assembly including the same |
JP2527876B2 (en) | 1992-01-17 | 1996-08-28 | 日本碍子株式会社 | Method for manufacturing solid oxide fuel cell |
US5187025A (en) | 1992-02-03 | 1993-02-16 | Analytic Power Corp. | Unitized fuel cell structure |
JP3245929B2 (en) | 1992-03-09 | 2002-01-15 | 株式会社日立製作所 | Fuel cell and its application device |
JP3352716B2 (en) | 1992-03-31 | 2002-12-03 | 株式会社東芝 | Solid polymer electrolyte fuel cell device |
US5364711A (en) | 1992-04-01 | 1994-11-15 | Kabushiki Kaisha Toshiba | Fuel cell |
US5272017A (en) | 1992-04-03 | 1993-12-21 | General Motors Corporation | Membrane-electrode assemblies for electrochemical cells |
TW269058B (en) | 1992-04-29 | 1996-01-21 | Westinghouse Electric Corp | |
US5399184A (en) * | 1992-05-01 | 1995-03-21 | Chlorine Engineers Corp., Ltd. | Method for fabricating gas diffusion electrode assembly for fuel cells |
US5266421A (en) | 1992-05-12 | 1993-11-30 | Hughes Aircraft Company | Enhanced membrane-electrode interface |
JP3448876B2 (en) | 1992-05-28 | 2003-09-22 | 株式会社村田製作所 | Solid oxide fuel cell |
JP3151933B2 (en) | 1992-05-28 | 2001-04-03 | 株式会社村田製作所 | Solid oxide fuel cell |
US5350643A (en) | 1992-06-02 | 1994-09-27 | Hitachi, Ltd. | Solid polymer electrolyte type fuel cell |
EP0574791B1 (en) | 1992-06-13 | 1999-12-22 | Aventis Research & Technologies GmbH & Co. KG | Polymer electrolyte membrane and process for its manufacture |
JP3135991B2 (en) * | 1992-06-18 | 2001-02-19 | 本田技研工業株式会社 | Fuel cell and fuel cell stack tightening method |
GB2268619B (en) | 1992-07-01 | 1995-06-28 | Rolls Royce & Ass | A fuel cell |
ES2087357T3 (en) | 1992-07-16 | 1996-07-16 | Siemens Ag | MATERIAL FOR METALLIC COMPONENTS OF FUEL CELL FACILITIES AT HIGH TEMPERATURE. |
US5292600A (en) | 1992-08-13 | 1994-03-08 | H-Power Corp. | Hydrogen power cell |
US5336570A (en) | 1992-08-21 | 1994-08-09 | Dodge Jr Cleveland E | Hydrogen powered electricity generating planar member |
US5330859A (en) | 1992-08-24 | 1994-07-19 | University Of Chicago | Solid oxide fuel cell with single material for electrodes and interconnect |
US5273838A (en) | 1992-10-07 | 1993-12-28 | Westinghouse Electric Corp. | Double interconnection fuel cell array |
US5306574A (en) | 1992-10-07 | 1994-04-26 | Westinghouse Electric Corp. | Method of low temperature operation of an electrochemical cell array |
US5382478A (en) | 1992-11-03 | 1995-01-17 | Ballard Power Systems Inc. | Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section |
US5395704A (en) | 1992-11-19 | 1995-03-07 | North Western Univ. Technology Transfer Prog. | Solid-oxide fuel cells |
US5304430A (en) | 1993-02-22 | 1994-04-19 | Hughes Aircraft Company | Acid-base concentration cell for electric power generation |
US5449697A (en) | 1993-02-26 | 1995-09-12 | Asahi Kasei Kogyo Kabushiki Kaisha | Ion exchange membrane used for a fuel cell |
US5403461A (en) | 1993-03-10 | 1995-04-04 | Massachusetts Institute Of Technology | Solid electrolyte-electrode system for an electrochemical cell |
US5356730A (en) | 1993-03-26 | 1994-10-18 | Alliedsignal Inc. | Monolithic fuel cell having improved interconnect layer |
US5403675A (en) | 1993-04-09 | 1995-04-04 | Maxdem, Incorporated | Sulfonated polymers for solid polymer electrolytes |
US5338622A (en) | 1993-04-12 | 1994-08-16 | Ztek Corporation | Thermal control apparatus |
US5356728A (en) | 1993-04-16 | 1994-10-18 | Amoco Corporation | Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions |
US5330860A (en) | 1993-04-26 | 1994-07-19 | E. I. Du Pont De Nemours And Company | Membrane and electrode structure |
US5342705A (en) | 1993-06-04 | 1994-08-30 | Allied-Signal, Inc. | Monolithic fuel cell having a multilayer interconnect |
DE4324907A1 (en) | 1993-07-24 | 1995-01-26 | Dornier Gmbh | Interconnection of fuel cells |
US5372896A (en) | 1993-09-20 | 1994-12-13 | The United States Of America As Represented By The Secretary Of The Army | Treated solid polymer electrolyte membrane for use in a fuel cell and fuel cell including the treated solid polymer electrolyte membrane |
US5599638A (en) | 1993-10-12 | 1997-02-04 | California Institute Of Technology | Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane |
US5358620A (en) | 1993-10-13 | 1994-10-25 | Valence Technology, Inc. | Allyl polyelectrolytes |
US5470671A (en) | 1993-12-22 | 1995-11-28 | Ballard Power Systems Inc. | Electrochemical fuel cell employing ambient air as the oxidant and coolant |
GB9402887D0 (en) | 1994-02-15 | 1994-04-06 | Univ Napier | Modular fuel cell stack design with particular reference to planar solid oxide fuel cell technology |
US5547777A (en) | 1994-02-23 | 1996-08-20 | Richards Engineering | Fuel cell having uniform compressive stress distribution over active area |
BE1008456A3 (en) | 1994-06-07 | 1996-05-07 | Vito | METHOD FOR MANUFACTURING AN ELECTRODE GAS DIFFUSION. |
US5773160A (en) | 1994-06-24 | 1998-06-30 | Ballard Power Systems Inc. | Electrochemical fuel cell stack with concurrent flow of coolant and oxidant streams and countercurrent flow of fuel and oxidant streams |
DE4422409C2 (en) | 1994-06-29 | 1996-07-11 | Fraunhofer Ges Forschung | Device for the exchange of charges between a plurality of energy stores or converters connected in series |
JPH0817451A (en) | 1994-06-29 | 1996-01-19 | Aisin Seiki Co Ltd | Fuel cell |
DE4427077C1 (en) | 1994-07-30 | 1996-03-21 | Fraunhofer Ges Forschung | Device for the exchange of charges between a plurality of energy stores or converters connected in pure |
JP3487009B2 (en) * | 1994-08-05 | 2004-01-13 | 株式会社デンソー | Oxygen sensor heater control device |
DE4433102A1 (en) | 1994-09-16 | 1996-03-21 | Fraunhofer Ges Forschung | Electrode arrangement for signal detection of gas sensitive layers |
US5783324A (en) | 1994-10-06 | 1998-07-21 | The United States Of America As Represented By The Secretary Of The Army | Fuel cell including a single sheet of a polymer electrolyte membrane (PEM), the PEM being divided into regions of varying electrical and ionic conductivity |
RU2174728C2 (en) | 1994-10-12 | 2001-10-10 | Х Пауэр Корпорейшн | Fuel cell using integrated plate technology for liquid-distribution |
US5863671A (en) | 1994-10-12 | 1999-01-26 | H Power Corporation | Plastic platelet fuel cells employing integrated fluid management |
US5523177A (en) | 1994-10-12 | 1996-06-04 | Giner, Inc. | Membrane-electrode assembly for a direct methanol fuel cell |
US5521020A (en) | 1994-10-14 | 1996-05-28 | Bcs Technology, Inc. | Method for catalyzing a gas diffusion electrode |
US5507175A (en) | 1994-10-21 | 1996-04-16 | Protimeter, Inc. | Cycling chilled mirror dewpoint hygrometer including a sapphire optical mirror |
US5525436A (en) | 1994-11-01 | 1996-06-11 | Case Western Reserve University | Proton conducting polymers used as membranes |
DE4443945C1 (en) | 1994-12-09 | 1996-05-23 | Fraunhofer Ges Forschung | PEM fuel cell |
US5514487A (en) | 1994-12-27 | 1996-05-07 | Ballard Power Systems Inc. | Edge manifold assembly for an electrochemical fuel cell stack |
DE19513292C1 (en) | 1995-04-07 | 1996-08-22 | Siemens Ag | Polymer electrolyte membrane fuel cell |
JP3939347B2 (en) | 1995-04-12 | 2007-07-04 | ユーティーシー フューエル セルズ, エルエルシー | Furnace for fuel cell power plant |
US5726105A (en) | 1995-04-20 | 1998-03-10 | International Fuel Cells | Composite article |
US5654109A (en) | 1995-06-30 | 1997-08-05 | The Dow Chemical Company | Composite fuel cell membranes |
US5599639A (en) | 1995-08-31 | 1997-02-04 | Hoechst Celanese Corporation | Acid-modified polybenzimidazole fuel cell elements |
US5716506A (en) | 1995-10-06 | 1998-02-10 | Board Of Trustees Of The University Of Illinois | Electrochemical sensors for gas detection |
US5607785A (en) | 1995-10-11 | 1997-03-04 | Tanaka Kikinzoku Kogyo K.K. | Polymer electrolyte electrochemical cell and process of preparing same |
US5925322A (en) | 1995-10-26 | 1999-07-20 | H Power Corporation | Fuel cell or a partial oxidation reactor or a heat engine and an oxygen-enriching device and method therefor |
JP3570644B2 (en) | 1995-11-14 | 2004-09-29 | フィガロ技研株式会社 | Gas sensor |
US5863673A (en) | 1995-12-18 | 1999-01-26 | Ballard Power Systems Inc. | Porous electrode substrate for an electrochemical fuel cell |
US5672439A (en) | 1995-12-18 | 1997-09-30 | Ballard Power Systems, Inc. | Method and apparatus for reducing reactant crossover in an electrochemical fuel cell |
US5716664A (en) | 1995-12-22 | 1998-02-10 | Marchetti; George A. | Method of making a hydrophilic, graphite electrode membrane assembly |
GB9526393D0 (en) | 1995-12-22 | 1996-02-21 | Capteur Sensors & Analysers | Gas sensing |
US5624769A (en) | 1995-12-22 | 1997-04-29 | General Motors Corporation | Corrosion resistant PEM fuel cell |
US6106965A (en) * | 1996-03-29 | 2000-08-22 | Mazda Motor Corporation | Polymer electrolyte fuel cell |
JP3215650B2 (en) | 1996-05-23 | 2001-10-09 | 日本碍子株式会社 | Electrochemical cell, method for producing the same, and electrochemical device |
US5798186A (en) | 1996-06-07 | 1998-08-25 | Ballard Power Systems Inc. | Method and apparatus for commencing operation of a fuel cell electric power generation system below the freezing temperature of water |
US5677074A (en) | 1996-06-25 | 1997-10-14 | The Dais Corporation | Gas diffusion electrode |
US5763113A (en) | 1996-08-26 | 1998-06-09 | General Motors Corporation | PEM fuel cell monitoring system |
US5783325A (en) | 1996-08-27 | 1998-07-21 | The Research Foundation Of State Of New York | Gas diffusion electrodes based on poly(vinylidene fluoride) carbon blends |
US5739416A (en) | 1996-09-18 | 1998-04-14 | California Instiute Of Technology | Fast, high sensitivity dewpoint hygrometer |
US6007932A (en) | 1996-10-16 | 1999-12-28 | Gore Enterprise Holdings, Inc. | Tubular fuel cell assembly and method of manufacture |
US5789091C1 (en) | 1996-11-19 | 2001-02-27 | Ballard Power Systems | Electrochemical fuel cell stack with compression bands |
US5707755A (en) | 1996-12-09 | 1998-01-13 | General Motors Corporation | PEM/SPE fuel cell |
US5804326A (en) | 1996-12-20 | 1998-09-08 | Ballard Power Systems Inc. | Integrated reactant and coolant fluid flow field layer for an electrochemical fuel cell |
US5759712A (en) | 1997-01-06 | 1998-06-02 | Hockaday; Robert G. | Surface replica fuel cell for micro fuel cell electrical power pack |
US6028414A (en) | 1997-01-29 | 2000-02-22 | H Power Enterprises Of Canada Inc. | Fuel cell stand-by energy supply system |
JP3077618B2 (en) | 1997-03-05 | 2000-08-14 | 富士電機株式会社 | Solid polymer electrolyte fuel cell |
US6051192A (en) | 1997-04-15 | 2000-04-18 | International Fuel Cells Corporation | Control system and method for controlling a gas generating system |
US5916699A (en) | 1997-05-13 | 1999-06-29 | Motorola, Inc. | Hybrid energy storage system |
EP0992075A1 (en) * | 1997-06-06 | 2000-04-12 | Volkswagen Aktiengesellschaft | Fuel cell methanol reformer with an energy storage unit and method for controlling the energy flow of the system |
US5989741A (en) | 1997-06-10 | 1999-11-23 | E.I. Du Pont De Nemours And Company | Electrochemical cell system with side-by-side arrangement of cells |
US5776625A (en) | 1997-06-18 | 1998-07-07 | H Power Corporation | Hydrogen-air fuel cell |
US6001499A (en) | 1997-10-24 | 1999-12-14 | General Motors Corporation | Fuel cell CO sensor |
US6030718A (en) | 1997-11-20 | 2000-02-29 | Avista Corporation | Proton exchange membrane fuel cell power system |
US6096449A (en) | 1997-11-20 | 2000-08-01 | Avista Labs | Fuel cell and method for controlling same |
US5935726A (en) | 1997-12-01 | 1999-08-10 | Ballard Power Systems Inc. | Method and apparatus for distributing water to an ion-exchange membrane in a fuel cell |
US6051329A (en) | 1998-01-15 | 2000-04-18 | International Business Machines Corporation | Solid oxide fuel cell having a catalytic anode |
US6051330A (en) | 1998-01-15 | 2000-04-18 | International Business Machines Corporation | Solid oxide fuel cell having vias and a composite interconnect |
JPH11224679A (en) * | 1998-02-06 | 1999-08-17 | Matsushita Electric Ind Co Ltd | Solid high polymer fuel cell and its manufacture |
US5945232A (en) * | 1998-04-03 | 1999-08-31 | Plug Power, L.L.C. | PEM-type fuel cell assembly having multiple parallel fuel cell sub-stacks employing shared fluid plate assemblies and shared membrane electrode assemblies |
US6024848A (en) | 1998-04-15 | 2000-02-15 | International Fuel Cells, Corporation | Electrochemical cell with a porous support plate |
US6007933A (en) | 1998-04-27 | 1999-12-28 | Plug Power, L.L.C. | Fuel cell assembly unit for promoting fluid service and electrical conductivity |
DE69930347T2 (en) * | 1998-05-04 | 2006-11-30 | Samsung SDI Co., Ltd., Suwon | A process for producing a suspension for forming a catalyst layer for a proton exchange membrane fuel cell |
US6015634A (en) | 1998-05-19 | 2000-01-18 | International Fuel Cells | System and method of water management in the operation of a fuel cell |
US6007931A (en) | 1998-06-24 | 1999-12-28 | International Fuel Cells Corporation | Mass and heat recovery system for a fuel cell power plant |
US6080501A (en) | 1998-06-29 | 2000-06-27 | Motorola, Inc. | Fuel cell with integral fuel storage |
JP2000036308A (en) * | 1998-07-16 | 2000-02-02 | Toyota Motor Corp | Fuel cell system |
US6210823B1 (en) | 1998-08-19 | 2001-04-03 | Matsushita Electric Industrial Co. Ltd. | Polymer electrolyte fuel cell |
US6127058A (en) * | 1998-10-30 | 2000-10-03 | Motorola, Inc. | Planar fuel cell |
US6126311A (en) | 1998-11-02 | 2000-10-03 | Claud S. Gordon Company | Dew point sensor using mems |
US6073479A (en) | 1998-11-13 | 2000-06-13 | General Electric Company | Dewpoint sensor |
US6326763B1 (en) * | 1999-12-20 | 2001-12-04 | General Electric Company | System for controlling power flow in a power bus generally powered from reformer-based fuel cells |
US6852434B2 (en) | 1999-12-23 | 2005-02-08 | Ballard Power Systems Inc. | Fuel cell assembly with an improved gas sensor |
US6468682B1 (en) | 2000-05-17 | 2002-10-22 | Avista Laboratories, Inc. | Ion exchange membrane fuel cell |
-
2000
- 2000-05-17 US US09/577,407 patent/US6468682B1/en not_active Expired - Lifetime
-
2001
- 2001-02-23 US US09/792,085 patent/US6383556B2/en not_active Expired - Lifetime
- 2001-05-08 EP EP01935183A patent/EP1287575A4/en not_active Withdrawn
- 2001-05-08 JP JP2001585339A patent/JP2004515881A/en active Pending
- 2001-05-08 AU AU6129601A patent/AU6129601A/en active Pending
- 2001-05-08 BR BR0109656-7A patent/BR0109656A/en not_active Application Discontinuation
- 2001-05-08 CA CA002401562A patent/CA2401562A1/en not_active Abandoned
- 2001-05-08 MX MXPA02009467A patent/MXPA02009467A/en active IP Right Grant
- 2001-05-08 WO PCT/US2001/014915 patent/WO2001089016A1/en active IP Right Grant
- 2001-05-08 AU AU2001261296A patent/AU2001261296B2/en not_active Ceased
- 2001-05-11 US US09/854,056 patent/US6467334B2/en not_active Expired - Lifetime
- 2001-07-26 US US09/916,791 patent/US6743536B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020090543A1 (en) * | 2000-11-22 | 2002-07-11 | Aisin Seiki Kabushiki Kaisha | Solid polymer electrolyte fuel cell and method for producing electrode thereof |
US6896991B2 (en) * | 2000-11-22 | 2005-05-24 | Aisin Seiki Kabushiki Kaisha | Solid polymer electrolyte fuel cell and method for producing electrode thereof |
US6884745B2 (en) | 2002-06-28 | 2005-04-26 | Advanced Energy Technology Inc. | Perforated cylindrical fuel cells |
US20040033403A1 (en) * | 2002-08-14 | 2004-02-19 | Peter Mardilovich | MEMS-based fuel cell and methods |
US7033691B2 (en) | 2002-08-14 | 2006-04-25 | Hewlett-Packard Development Company, L.P. | MEMS-based fuel cell and methods |
US20070178367A1 (en) * | 2006-02-01 | 2007-08-02 | Matsushita Electric Industrial Co., Ltd. | Direct oxidation fuel cell and method for operating direct oxidation fuel cell system |
US20120308913A1 (en) * | 2010-03-02 | 2012-12-06 | Toyota Jidosha Kabushiki Kaisha | Controlling fuel cell |
US9660275B2 (en) * | 2010-03-02 | 2017-05-23 | Toyota Jidosha Kabushiki Kaisha | Fuel cell including gas flow path layer |
Also Published As
Publication number | Publication date |
---|---|
EP1287575A4 (en) | 2008-04-02 |
EP1287575A1 (en) | 2003-03-05 |
AU2001261296B2 (en) | 2004-09-30 |
AU6129601A (en) | 2001-11-26 |
US20010045118A1 (en) | 2001-11-29 |
CA2401562A1 (en) | 2001-11-22 |
JP2004515881A (en) | 2004-05-27 |
US6468682B1 (en) | 2002-10-22 |
US20010053465A1 (en) | 2001-12-20 |
MXPA02009467A (en) | 2004-05-14 |
BR0109656A (en) | 2004-07-06 |
US6467334B2 (en) | 2002-10-22 |
US6383556B2 (en) | 2002-05-07 |
WO2001089016A1 (en) | 2001-11-22 |
US6743536B2 (en) | 2004-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6383556B2 (en) | Method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell | |
JP4522502B2 (en) | Gas diffusion electrodes for polymer membrane fuel cells | |
US6106965A (en) | Polymer electrolyte fuel cell | |
US5885729A (en) | Hydrophilic, graphite fuel cell electrode for use with an ionomer membrane and method of making a fuel cell. | |
US20020058172A1 (en) | Method of producing a membrane electrode assembly, and membrane electrode assembly produced using this method, as well as associated fuel cell battery | |
JP4738350B2 (en) | Method of manufacturing a durable membrane electrode assembly in which the catalyst-coated diffusion medium is not bonded to the membrane | |
JP4833860B2 (en) | Membrane electrode assembly prepared by spraying catalyst directly onto membrane | |
JP2003109606A (en) | High molecular electrolyte fuel cell and method of manufacturing the same | |
JP4766014B2 (en) | Manufacturing method of membrane electrode assembly | |
JP3356465B2 (en) | Method for manufacturing electrode for solid polymer electrolyte fuel cell | |
JP2000299119A (en) | Manufacture of catalyst layer | |
JP2000003718A (en) | Method for activating high molecular electrolyte fuel cell | |
JP2011520237A (en) | Method for activating membrane electrode assembly, membrane electrode assembly and polymer electrolyte fuel cell using the same | |
JPH08106915A (en) | Electrode of solid polymer fuel cell and manufacture of fuel cell | |
WO2002069423A1 (en) | Method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell | |
JPH08138715A (en) | Solid polymer fuel cell and manufacture thereof | |
JP2004185900A (en) | Electrode for fuel cell, film/catalyst layer junction, fuel cell, and manufacturing method of them | |
JPH06150944A (en) | Fuel cell electrode | |
GB2362500A (en) | Method for activating a solid polymer electrolyte fuel cell. | |
US20230282859A1 (en) | Method for manufacturing membrane electrode assembly | |
JP3199182B2 (en) | Polymer solid oxide fuel cell | |
JP3100673B2 (en) | Method for impregnating phosphoric acid in phosphoric acid type fuel cell electrode | |
KR100393283B1 (en) | Polymer electrolyte membrane/electrode assembly with metal wire end in it, and its manufacturing method for polymer electrolyte membrane fuel cell | |
KR100508890B1 (en) | Monolithic collector-electrode for direct methanol fuel cell using carbon cloth with built-in metal lines and method for manufacturing the same | |
CN115911474A (en) | Full-spray membrane electrode assembly for fuel cell and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AVISTA LABORATORIES, INC., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOTT, DAVID R.;DEVRIES, DAVID P.;REEL/FRAME:011565/0399 Effective date: 20010223 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: RELION, INC. (DOING BUSINESS AS AVISTA LABS), WASH Free format text: CHANGE OF NAME;ASSIGNOR:AVLB, INC. DOING BUSINESS AS AVISTA LABS (FORMERLY AVISTA LABORATORIES, INC.;REEL/FRAME:015177/0100 Effective date: 20040225 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: COMERICA BANK, A TEXAS BANKING ASSOCIATION, MICHIG Free format text: SECURITY AGREEMENT;ASSIGNOR:RELION, INC.;REEL/FRAME:024850/0718 Effective date: 20100802 |
|
AS | Assignment |
Owner name: AVLB, INC., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AVISTA LABORATORIES, INC.;REEL/FRAME:031168/0110 Effective date: 20030710 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: CUMMINS, INC., INDIANA Free format text: SECURITY AGREEMENT;ASSIGNOR:RELION, INC.;REEL/FRAME:031814/0900 Effective date: 20130110 |
|
AS | Assignment |
Owner name: RELION,INC., WASHINGTON Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CUMMINS INC.;REEL/FRAME:032602/0854 Effective date: 20140402 |
|
AS | Assignment |
Owner name: EMERGENT POWER INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RELION, INC.;REEL/FRAME:032642/0143 Effective date: 20140402 |
|
AS | Assignment |
Owner name: RELION INC., WASHINGTON Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK;REEL/FRAME:038152/0091 Effective date: 20160330 |
|
AS | Assignment |
Owner name: GENERATE LENDING, LLC, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:EMERGENT POWER INC.;REEL/FRAME:038312/0046 Effective date: 20160321 |
|
AS | Assignment |
Owner name: EMERGENT POWER INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GENERATE LENDING, LLC;REEL/FRAME:039019/0783 Effective date: 20160627 |
|
AS | Assignment |
Owner name: HERCULES CAPITAL, INC., CALIFORNIA Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:EMERGENT POWER INC.;REEL/FRAME:039646/0026 Effective date: 20160627 |
|
AS | Assignment |
Owner name: EMERGING POWER INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HERCULES CAPITAL, INC., AS AGENT;REEL/FRAME:041180/0709 Effective date: 20161222 Owner name: EMERGENT POWER INC., WASHINGTON Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HERCULES CAPITAL, INC., AS AGENT;REEL/FRAME:041180/0709 Effective date: 20161222 Owner name: PLUG POWER INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HERCULES CAPITAL, INC., AS AGENT;REEL/FRAME:041180/0709 Effective date: 20161222 |
|
AS | Assignment |
Owner name: NY GREEN BANK, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:EMERGENT POWER INC.;REEL/FRAME:040780/0903 Effective date: 20161223 |
|
AS | Assignment |
Owner name: GENERATE LENDING, LLC, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNORS:PLUG POWER INC.;EMERGING POWER INC.;EMERGENT POWER INC.;REEL/FRAME:048751/0396 Effective date: 20190329 Owner name: PLUG POWER INC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:NY GREEN BANK, A DIVISION OF THE NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY;REEL/FRAME:048751/0844 Effective date: 20190329 Owner name: EMERGING POWER INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:NY GREEN BANK, A DIVISION OF THE NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY;REEL/FRAME:048751/0844 Effective date: 20190329 Owner name: EMERGENT POWER INC., WASHINGTON Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:NY GREEN BANK, A DIVISION OF THE NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY;REEL/FRAME:048751/0844 Effective date: 20190329 |