US20010040937A1 - Method and an apparatus for radiography and a radiation detector - Google Patents
Method and an apparatus for radiography and a radiation detector Download PDFInfo
- Publication number
- US20010040937A1 US20010040937A1 US09/730,740 US73074000A US2001040937A1 US 20010040937 A1 US20010040937 A1 US 20010040937A1 US 73074000 A US73074000 A US 73074000A US 2001040937 A1 US2001040937 A1 US 2001040937A1
- Authority
- US
- United States
- Prior art keywords
- detector
- gaseous
- avalanche
- radiography
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J47/00—Tubes for determining the presence, intensity, density or energy of radiation or particles
- H01J47/02—Ionisation chambers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/185—Measuring radiation intensity with ionisation chamber arrangements
Definitions
- the present invention relates to a method and apparatus for radiography and to a gaseous avalanche detector.
- X-rays have been used in radiographic imaging for a long time, and have been subject to great developments.
- imaging is conducted by providing a source of X-ray radiation, an object to be imaged, through which the radiation is transmitted, and a detector for the detection and recording of the transmitted radiation.
- X-rays may also be scattered by the object to be imaged and detected by the detector.
- the X-ray detector used today, at hospitals, is normally a screen-film combination.
- a phosphor screen e.g. Gd 2 O 2 S
- X-ray photons are converted and thereby produce secondary light, which is registered on a photographic film.
- the use of a film limits the dynamic range of the image.
- the increased efficiency achieved by using a phosphor screen is provided at the expense of resolution, since the secondary light is emitted isotropically.
- Digital X-ray detectors today are normally made of some type of semiconductor detector, e.g. CCD, TFT, etc. To cover the large image format necessary in most medical X-ray imaging the detectors have to be made large, which in most cases results in a high production cost and low yield.
- One way to solve this problem is to make the detector modular and tiled together to form a large image format.
- U.S. Pat. No. 5,381,014 fabricate a large area X-ray image capture element by juxtaposing a plurality of discrete array modules in an assembly over a base plate so that each module is adjacent to at least one other module to form a two-dimensional mosaic of the modules.
- Each module includes a plurality of thin film transistors (TFT) arrayed adjacent on the top surface of a dielectric substrate and at least one precision ground edge of the substrate forms a precise abutment with a one precision ground edge of another substrate.
- TFT thin film transistors
- a continuous radiation detecting layer is then disposed over the plurality of juxtaposed modules to form the large format element which minimises non-radiation-detecting areas between modules.
- a drawback with this prior art is that each module of the detector has to be in physical and electrical contact with each other in order to produce said large area X-ray image capture element which will result in a relatively high manufacturing and assembling cost.
- detecting the X-rays which have been interfered by an object to be imaged in a gaseous avalanche detector including electrode arrangements between which a voltage is applied for creating an electrical field, and
- detecting electrical signals in at least two detector electrode modules said electrical signals being induced by electron-ion avalanches, in at least one of a plurality of detector electrode elements arranged adjacent to each other, each along a direction essentially parallel to the incident radiation, and where the at least two independent detector electrode modules are arranged, each along a direction essentially parallel to the incident radiation, and an apparatus for use in radiography, comprising
- a gaseous avalanche detector including electrode arrangements between which a voltage is applied for creating an electrical field, for detecting X-ray photons which have been interfered by an object to be imaged,
- At least two independent detector electrode modules including a plurality of detector electrode elements arranged adjacent to each other, each along a direction essentially parallel to the incident radiation, and
- said at least two independent detector electrode modules are arranged along a direction essentially parallel to the incident radiation.
- gaseous avalanche detector for detecting incident radiation, including electrode arrangements between which a voltage is applied for creating an electrical field, wherein
- the gaseous avalanche detector comprises a gaseous avalanche chamber for detecting incident radiation
- At least two independent detector electrode modules including a plurality of detector electrode elements arranged adjacent to each other, each along a direction essentially parallel to the incident radiation, and
- said at least two independent detector electrode modules are arranged along a direction essentially parallel to the incident radiation.
- An advantage of having at least two detector electrode modules is that they provide independent modules and therefore are easy to exchange.
- Yet another advantage of having independent modules according to the present invention is that the mechanical tolerances of each module are less severe compared to modules in a semiconductor detector and hence the manufacturing cost is reduced.
- Still another advantage of having at least two detector electrode modules is that the detector will be less expensive per area unit compared to single large detector area.
- Still another advantage of having at least two detector electrode modules is that the yield of the assembled detector will be higher compared to a single large detector area.
- Still another advantage is that the requirements of the materials of substrate on which the conducting electrodes are arranged is not critical since said substrate is only used as a carrier for said conducting elements and therefore the manufacturing cost is reduced and the production yield is increased.
- Still another advantage with the inventive modular detector is that the detector electrode modules do not need to be deposited by a radiation detecting layer which simplifies manufacturing, assembly and replacement of said modules.
- FIG. 1 illustrates schematically, in an overall view, an apparatus for planar beam radiography in which a detector comprising at least two detector electrode arrangements according to the invention is arranged.
- FIG. 2 is a schematic cross sectional view of a first embodiment of a gaseous parallel plate avalanche chamber comprising at least two detector electrode modules according to the invention.
- FIG. 3 a illustrates schematically, in an overall view, an apparatus for planar beam radiography comprising at least two detector electrode arrangements according to the invention.
- FIG. 3 b is a schematic cross sectional view of a second embodiment of a gaseous parallel plate avalanche chamber comprising at least two detector electrode modules according to the invention.
- FIG. 4 a is a schematic top view of one detector electrode module including processing electronics arranged on a substrate before separation of said arrangements.
- FIG. 4 b is a schematic top view of two independent detector electrode modules including processing electronics arranged adjacent to each other on a carrying element.
- FIG. 1 shows an apparatus for planar beam radiography and a gaseous avalanche chamber according to the state of the art, as set forth, for example, in Swedish patent application SE-9704015-8. The description corresponding to said figures is intended to give the reader a short introduction into the field of gaseous avalanche detectors.
- FIG. 1 is a sectional view in a plane orthogonal to the plane of a planar X-ray beam 9 of an apparatus for planar beam radiography in which a detector comprising a plurality of detector electrode modules according to the invention is arranged.
- the apparatus includes an X-ray source 60 , which optionally together with a first thin collimator window 61 produce the planar fan-shaped X-ray beam 9 , for irradiation of an object 62 to be imaged.
- the first optional thin collimator window 61 can, if desired, be replaced by any other structure for forming an essentially planar X-ray beam, such as an X-ray diffraction mirror or an X-ray lens etc.
- collimator window 61 One function of collimator window 61 is to reduce the dose to the object which is necessary in some cases, e.g. when imaging living humans.
- the beam transmitted through the object 62 enters a detector 64 comprising at least two independent detector electrode modules, optionally through a thin slit or second collimator window 10 , which is aligned with the X-ray beam.
- a major fraction of the incident X-ray photons are detected in the detector 64 , which include a gaseous avalanche chamber, oriented so that the X-ray photons enter sideways between the cathode plate 2 and the anode plate 1 .
- the detector 64 and its operation will be further described below.
- the X-ray source 60 , the first optional thin collimator window 61 , the optional collimator window 10 and the gaseous avalanche chamber 64 can move or be moved in relation to each other by, for example, a frame or support 65 or independent, but commonly controlled, motors.
- the so formed apparatus for radiography can be moved synchronously to scan an object which is to be examined.
- a gaseous avalanche chamber is generally composed of a gas-filled volume subjected to a strong electric field, which is generated by applying a high voltage between electrodes, comprised in each of two plates constituting two limiting walls of the chamber.
- X-rays 9 are incident on the detector substantially sideways.
- the incident X-rays 9 enter the detector through an optional thin slit or collimator window 10 near the detector 64 , and travel through the gas volume in a direction essentially parallel to the cathode plate 2 .
- Each X-ray photon incident into the gas-filled volume produces a primary ionisation electron-ion pair within the gas as a result of interaction with a gas molecule.
- This production is caused by photo-effect or Compton-effect, and possibly accompanied with an electron from Auger-effect.
- Each primary electron 11 produced loses its kinetic energy through interactions with new gas molecules causing further production of electron-ion pairs (secondary ionisation electron-ion pairs).
- secondary ionisation electron-ion pairs typically a few hundred secondary ionisation electron-ion pairs are produced from a 20 keV X-ray photon in this process.
- the secondary ionisation electrons 16 (together with the primary ionisation electron 11 ) are then amplified by electron-ion avalanches in the strong electric field.
- the movements of the avalanche electrons and ions induce electrical signals in the electrodes 4 .
- the signals are typically picked up in one or both of the electrodes 4 , and are further amplified and processed by a readout circuitry to obtain an accurate measurement of the X-ray photon interaction point and, optionally the X-ray photon energy.
- the X-rays to be detected are incident substantially sideways on the detector 64 in a direction essentially parallel to the cathode 2 and anode 1 plates, and may enter the detector 64 through the thin slit or collimator window 10 .
- the detector 64 can easily be made with an interaction path long enough to allow a major fraction of the incident X-ray photons to interact and be detected.
- This gaseous parallel plate avalanche chamber includes an anode plate 1 and a cathode plate 2 , being essentially mutually parallel and separated by a thin gas-filled gap or region 13 .
- the anode plate 1 includes a substrate 3 , made of for example glass, ceramics or silicon having a thickness of preferably 0.1-10 mm, and an anode electrode 4 arranged thereon in the form of a coating of a conductive material, for example metal, having a thickness of preferably 0.01-10 ⁇ m.
- the electrode 4 may include several metal layers, each with a different thickness and material, for example vanadium, copper and nickel.
- the first layer is preferably of chromium, which has good adhesion properties to glass as well as to the following metal layers.
- the electrode 4 may also include a layer of resistive material, for example silicon monoxide, deposited on top of the metal layer(s).
- the substrate may alternatively be made of an electrically conductive material coated with a dielectric material. In a preferred embodiment, the electrode 4 is arranged on top of said dielectric material.
- the cathode plate 2 includes a substrate 6 with a coating 5 , similar to what is described about the anode plate 1 .
- Both the anode electrode 4 and the cathode electrode 5 can be segmented into strips parallel and/or orthogonal to the incoming X-ray beam.
- the gap or region 13 is filled with a gas, which can be a mixture of for example 90% krypton and 10% carbon dioxide or a mixture of for example 90% argon and 10% methane.
- the gas can be under pressure, preferably in a range 1-20 atm.
- the anode electrode 4 and the cathode electrode 5 are connected to a high voltage DC power supply 7 , for producing a uniform electric field 8 , in the gap or region 13 between the parallel plates 1 and 2 .
- the gap or region 13 has a height D (distance between the parallel plates 1 and 2 ) of 500 microns, and the voltage V applied between the electrodes 4 and 5 is 1500 V for an argon/CO 2 (80/20) mixture at 1 atm.
- the distance D and the voltage V are chosen so as to provide an electric field of the order of 10 6 V/m.
- the distance D may be in the range of 10-5000 ⁇ m, and the voltage may be in the range of 10-15000 V.
- X-rays 9 are incident on the detector 64 substantially sideways.
- the incident X-rays 9 enter the detector 64 through an optional thin slit or collimator window 10 close to the cathode plate 2 , and travel through the gas volume in a direction substantially parallel to the cathode plate 2 .
- Each X-ray photon produces a primary ionization electron-ion pair within the gas as a result of interaction with a gas atom.
- Each primary electron 11 produced loses its kinetic energy through interactions with gas molecules causing further production of electron-ion pairs (secondary ionization electron-ion pairs).
- secondary ionization electron-ion pairs typically Typically a few hundred secondary ionization electron-ion pairs are produced from a 20 keV X-ray photon in this process.
- the secondary ionization electrons 16 (together with the primary ionization electron 11 ) are accelerated in the high electric field, in a direction towards the anode plate 1 .
- the accelerated electrons 11 , 16 interact with other gas molecules in the gap 13 causing further electron-ion pairs to be produced.
- Those produced electrons will also be accelerated in the field, and will interact with new gas molecules, causing further electron-ion pairs to be produced. This process continues during the travel of the electrons towards the anode and an avalanche 12 will be formed.
- the movement of charges in the gas filled gap 13 induces electrical charges on the anode electrode 4 as well as on the cathode electrode 5 .
- the induced charges can be detected, for example, by coupling the anode electrode 4 to a charge sensitive amplifier, which converts the charge pulses into a current or voltage pulse that can be further processed in processing electronics 14 , (which may also include a preamplifier).
- processing electronics 14 which may also include a preamplifier.
- the cathode electrode 5 or a separate detector electrode arrangement can be used for the detection in a similar way.
- the fast electron signal in a gaseous parallel plate avalanche chamber constitutes a considerable fraction, F, of the total induced charge, and is about 10% of the total signals at gains around 10 5 .
- the length of the gaseous parallel plate avalanche chamber in the direction of the incident X-ray photons, should be chosen to give a high probability for interaction between the X-ray photons and the gas atoms.
- the probability of interaction per unit path length increases with increasing gas pressure, resulting in that the length of the gaseous parallel plate avalanche chamber can be made shorter with increasing gas pressure.
- FIG. 3 a shows a sectional view in a plane orthogonal to the plane of a planar X-ray beam 9 of a detector for planar beam radiography.
- An optional thin slit or second collimator window 10 which is aligned with the X-ray beam, forms the entrance for the X-ray beam 9 to the detector 64 .
- a major fraction of the incident X-ray photons are detected in the detector 64 , which includes a conversion and drift volume 13 , and an electron avalanche amplification unit 17 , and is oriented so that the X-ray photons enter substantially sideways between two electrode arrangements 1 , 2 , between which an electric field for drift of electrons and ions in the conversion and drift volume 13 is created.
- the detector 64 includes a first drift electrode arrangement being a cathode plate 2 and a second drift electrode arrangement being an anode plate 1 . They are substantially parallel to each other and the space in between includes a thin gas-filled gap or region 13 , being the conversion and drift volume, and an electron avalanche amplification unit 17 . Alternatively the plates can be non-parallel.
- a voltage is applied between the anode plate 1 and the cathode plate 2 , and one or several voltages is (are) applied on the electron avalanche amplification unit 17 . This results in a drift field causing drift of electrons and ions in the gap 13 , and electron avalanche amplification fields in the electron avalanche amplification unit 17 .
- an arrangement 15 of read-out elements for detection of electron avalanches provided.
- the arrangement of read-out elements 15 also constitutes the anode electrode 4 .
- the arrangement of read-out elements 15 can be formed in connection with the cathode plate 2 or the electron avalanche amplification unit 17 . It can also be formed on the anode 1 or cathode 2 plate separated from the anode 4 or cathode 5 electrode by a dielectric layer or substrate. In this case it is necessary that the anode or cathode electrode is semi-transparent to induced pulses, i.e. formed as strips or pads. The separation between the drift volume and the amplification volume e.g.
- Electric potentials are supplied on the surfaces of the mesh 51 to cause a weak electric field in the drift volume between the cathode and the mesh which allows the produced primary and secondary ionisation electrons 11 , 16 to drift towards the mesh 51 without being amplified or moderately amplified in electron-ion avalanche processes in the gas.
- the potentials on the surfaces of the mesh 51 are supplied such that the electric field in the amplification region between the mesh 51 and the anode 1 is strong enough to cause electron-ion avalanche processes in the gas.
- the induced signals from the moving electrons and ions are detected in the electrode arrangement on the anode 1 and/or mesh 51 .
- the X-rays to be detected are incident substantially sideways on the detector 64 and enters the conversion and drift volume 13 between the cathode plate 2 and the anode plate 1 .
- the X-rays enter the detector 64 preferably in a direction substantially parallel to the cathode plate 2 and the anode plate 1 , and may enter the detector through a thin slit or collimator window 10 .
- the detector 64 can easily be made with an interaction path long enough to allow a major fraction of the incident X-ray photons to interact and be detected.
- this should preferably be arranged so that the thin planar beam enters the detector 64 close to the electron avalanche amplification unit 17 and preferably substantially parallel therewith.
- the gap or region 13 is filled with a gas, which can be a mixture of for example 90% krypton and 10% carbon dioxide or a mixture of for example 80% xenon and 10% carbon dioxide.
- the gas can be under pressure, preferably in a range 1-20 atm. Therefore, the detector 64 may include a gas tight housing 91 with a slit entrance window 92 , through which the X-ray beam 9 enters the detector 64 .
- the window 92 is made of a material, which is transparent to the radiation, e.g. Mylar®, or a thin aluminum foil.
- the window 92 can in this way be made thinner, thus reducing the number of X-ray photons absorbed in the window 92 .
- the incident X-rays 9 enter the detector 64 through the optional thin slit or collimator window 10 , if present, close to the electron avalanche amplification unit 17 , and travel through the gas volume in a direction preferably substantially parallel with the electron avalanche amplification unit 17 .
- Each X-ray photon produces a primary ionisation electron-ion pair within the gas as a result of interaction with a gas atom. This production is caused by photo-effect, Compton-effect or Auger-effect.
- Each primary electron 11 produced loses its kinetic energy through interactions with new gas atoms, causing further production of electron-ion pairs (secondary ionisation electron-ion pairs).
- the movements of the avalanche electrons and ions induce electrical signals in the arrangement 15 of read-out elements for detection of electron avalanches. Those signals are picked up in connection with the electron avalanche amplification unit 17 , the cathode plate 2 or the anode plate 1 , or a combination of two or more of said locations. The signals are further amplified and processed by readout circuitry 14 to obtain accurate measurements of the X-ray photon interaction points, and optionally the X-ray photon energies.
- the detector electrode module 4 comprising detector electrode elements formed as strips 20 , acting as anode or cathode electrodes.
- a number of detector electrode elements in the form of strips 20 are placed side by side, and extend in directions substantially parallel to the direction of an incident X-ray photon at each location.
- the strips 20 are formed on a substrate 100 , electrically insulated from each other, by leaving a space 23 between them.
- the strips may be formed by photo-lithographic methods or electroforming, etc.
- Each strip 20 is connected to the processing electronics 14 by means of a separate signal conductor 22 .
- the signal conductors 22 also connects the respective strip to the high voltage DC power supply 7 (not shown in FIG. 4 a ).
- the strips 20 and the spacing 23 may grow broader along the direction of incoming X-ray photons, thereby providing compensation for parallax errors.
- the strips can alternatively be divided perpendicular to the incident X-rays, into sections electrically insulated from each other.
- the detector electrode module shown in FIG. 4 a is preferably the anode 4 , but alternatively or jointly the cathode 5 can have the described construction.
- the substrate 100 can be made of metal on top of which a layer of electrically isolating material is arranged. On said electrically isolating material said detector electrode elements are arranged.
- the substrate 100 can be made of an electrically isolating material, such as glass or ceramics. Said detector electrode elements then can be arranged directly on top of said substrate.
- the substrate 100 is made of a semi-conducting material, such as silicon.
- Said detector electrode elements can either be arranged directly on top of said semi-conducting material or on top of an intermediate layer of a dielectric material, for example an oxide of said semi-conducting material.
- Substrate 100 of e.g. silicon can be cut in arbitrary shapes to form independent detector electrode modules of arbitrary shapes, which are flat and smooth close to atomic level by using standard etching or cutting techniques.
- etching or cutting techniques Especially dry etching is a powerful tool to shape the detector electrode modules since the etching technique chosen, in combination of the crystal direction, can give the electrodes nearly arbitrary shape in three dimensions.
- each independent detector electrode module including said processing electronics are arranged in close proximity (for example, 0.0001-1 mm apart) to each other on top of a carrying element 110 .
- Said carrying element 110 may be made of any material.
- Each detector electrode module can either be in physical contact with the adjacent detector electrode module or separated by a small distance. Said distance between two detector electrode modules may not be bigger than the electrode pitch in order to not introduce any blind non radiation-detection areas at the borders of the individual detector electrode arrangements.
- the processing electronics are arranged on the same substrate as the detector electrode modules. However, said processing electronics may be arranged on a separate substrate. In FIG. 4 b only two detector electrode arrangements are arranged adjacent to each other. However, three or more detector electrode modules may be arranged adjacent to each other, each along a direction being essentially perpendicular to the incident radiation. The detector electrode modules may also be arranged adjacent to each other, each along a direction being substantially parallel to the incident radiation.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
- Electron Tubes For Measurement (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
- The present invention relates to a method and apparatus for radiography and to a gaseous avalanche detector.
- X-rays have been used in radiographic imaging for a long time, and have been subject to great developments. In its simplest form, imaging is conducted by providing a source of X-ray radiation, an object to be imaged, through which the radiation is transmitted, and a detector for the detection and recording of the transmitted radiation. X-rays may also be scattered by the object to be imaged and detected by the detector. The X-ray detector used today, at hospitals, is normally a screen-film combination. In a phosphor screen (e.g. Gd2O2S), X-ray photons are converted and thereby produce secondary light, which is registered on a photographic film. The use of a film limits the dynamic range of the image. The increased efficiency achieved by using a phosphor screen is provided at the expense of resolution, since the secondary light is emitted isotropically.
- Digital X-ray detectors today are normally made of some type of semiconductor detector, e.g. CCD, TFT, etc. To cover the large image format necessary in most medical X-ray imaging the detectors have to be made large, which in most cases results in a high production cost and low yield. One way to solve this problem is to make the detector modular and tiled together to form a large image format.
- However the use of such an assembly of semiconductor X-ray detectors introduces a further problem in that blind, non radiation-detecting areas are introduced at the borders of the individual detectors, since semiconductor detectors needs a so called guard ring around them to limit the leakage current.
- A solution to this problem is disclosed in U.S. Pat. No. 5,381,014 wherein they fabricate a large area X-ray image capture element by juxtaposing a plurality of discrete array modules in an assembly over a base plate so that each module is adjacent to at least one other module to form a two-dimensional mosaic of the modules. Each module includes a plurality of thin film transistors (TFT) arrayed adjacent on the top surface of a dielectric substrate and at least one precision ground edge of the substrate forms a precise abutment with a one precision ground edge of another substrate. A continuous radiation detecting layer is then disposed over the plurality of juxtaposed modules to form the large format element which minimises non-radiation-detecting areas between modules.
- A drawback with this prior art is that each module of the detector has to be in physical and electrical contact with each other in order to produce said large area X-ray image capture element which will result in a relatively high manufacturing and assembling cost.
- Another drawback with this type of modular detector is that the data and address circuits from each module have to be connected to the corresponding circuits in the neighbouring modules which will also result in a relatively high assembling cost.
- Yet another drawback with this type of modular detector is that a broken module cannot be replaced without having to remove and redeposit the radiation detecting layer, if at all possible.
- It is an object of the present invention to provide an X-ray detector and a method and apparatus for radiography that at least reduces the above mentioned drawbacks.
- According to an aspect of the present invention, there is provided a method for obtaining images in radiography, comprising
- emitting X-rays from an X-ray source,
- detecting the X-rays which have been interfered by an object to be imaged in a gaseous avalanche detector including electrode arrangements between which a voltage is applied for creating an electrical field, and
- detecting electrical signals in at least two detector electrode modules, said electrical signals being induced by electron-ion avalanches, in at least one of a plurality of detector electrode elements arranged adjacent to each other, each along a direction essentially parallel to the incident radiation, and where the at least two independent detector electrode modules are arranged, each along a direction essentially parallel to the incident radiation, and an apparatus for use in radiography, comprising
- an X-ray source,
- a gaseous avalanche detector, including electrode arrangements between which a voltage is applied for creating an electrical field, for detecting X-ray photons which have been interfered by an object to be imaged,
- at least two independent detector electrode modules including a plurality of detector electrode elements arranged adjacent to each other, each along a direction essentially parallel to the incident radiation, and
- where said at least two independent detector electrode modules are arranged along a direction essentially parallel to the incident radiation.
- respectively and a gaseous avalanche detector for detecting incident radiation, including electrode arrangements between which a voltage is applied for creating an electrical field, wherein
- the gaseous avalanche detector comprises a gaseous avalanche chamber for detecting incident radiation, and
- at least two independent detector electrode modules including a plurality of detector electrode elements arranged adjacent to each other, each along a direction essentially parallel to the incident radiation, and
- where said at least two independent detector electrode modules are arranged along a direction essentially parallel to the incident radiation.
- Further objects are attained by further features in the appended claims.
- An advantage of having at least two detector electrode modules is that they provide independent modules and therefore are easy to exchange.
- Another advantage of having independent modules is that they neither need to be in physical nor in electrical contact with each other which simplifies the ability to change said arrangements, and reduces the assembly cost.
- Yet another advantage of having independent modules according to the present invention is that the mechanical tolerances of each module are less severe compared to modules in a semiconductor detector and hence the manufacturing cost is reduced.
- Still another advantage of having at least two detector electrode modules is that the detector will be less expensive per area unit compared to single large detector area.
- Still another advantage of having at least two detector electrode modules is that the yield of the assembled detector will be higher compared to a single large detector area.
- Still another advantage is that the requirements of the materials of substrate on which the conducting electrodes are arranged is not critical since said substrate is only used as a carrier for said conducting elements and therefore the manufacturing cost is reduced and the production yield is increased.
- Still another advantage with the inventive modular detector is that the detector electrode modules do not need to be deposited by a radiation detecting layer which simplifies manufacturing, assembly and replacement of said modules.
- FIG. 1 illustrates schematically, in an overall view, an apparatus for planar beam radiography in which a detector comprising at least two detector electrode arrangements according to the invention is arranged.
- FIG. 2 is a schematic cross sectional view of a first embodiment of a gaseous parallel plate avalanche chamber comprising at least two detector electrode modules according to the invention.
- FIG. 3a illustrates schematically, in an overall view, an apparatus for planar beam radiography comprising at least two detector electrode arrangements according to the invention.
- FIG. 3b is a schematic cross sectional view of a second embodiment of a gaseous parallel plate avalanche chamber comprising at least two detector electrode modules according to the invention.
- FIG. 4a is a schematic top view of one detector electrode module including processing electronics arranged on a substrate before separation of said arrangements.
- FIG. 4b is a schematic top view of two independent detector electrode modules including processing electronics arranged adjacent to each other on a carrying element.
- FIG. 1 shows an apparatus for planar beam radiography and a gaseous avalanche chamber according to the state of the art, as set forth, for example, in Swedish patent application SE-9704015-8. The description corresponding to said figures is intended to give the reader a short introduction into the field of gaseous avalanche detectors.
- FIG. 1 is a sectional view in a plane orthogonal to the plane of a
planar X-ray beam 9 of an apparatus for planar beam radiography in which a detector comprising a plurality of detector electrode modules according to the invention is arranged. - The apparatus includes an
X-ray source 60, which optionally together with a firstthin collimator window 61 produce the planar fan-shaped X-ray beam 9, for irradiation of anobject 62 to be imaged. The first optionalthin collimator window 61 can, if desired, be replaced by any other structure for forming an essentially planar X-ray beam, such as an X-ray diffraction mirror or an X-ray lens etc. - One function of
collimator window 61 is to reduce the dose to the object which is necessary in some cases, e.g. when imaging living humans. - The beam transmitted through the
object 62 enters adetector 64 comprising at least two independent detector electrode modules, optionally through a thin slit orsecond collimator window 10, which is aligned with the X-ray beam. A major fraction of the incident X-ray photons are detected in thedetector 64, which include a gaseous avalanche chamber, oriented so that the X-ray photons enter sideways between thecathode plate 2 and theanode plate 1. - The
detector 64 and its operation will be further described below. TheX-ray source 60, the first optionalthin collimator window 61, theoptional collimator window 10 and thegaseous avalanche chamber 64 can move or be moved in relation to each other by, for example, a frame orsupport 65 or independent, but commonly controlled, motors. The so formed apparatus for radiography can be moved synchronously to scan an object which is to be examined. - A gaseous avalanche chamber is generally composed of a gas-filled volume subjected to a strong electric field, which is generated by applying a high voltage between electrodes, comprised in each of two plates constituting two limiting walls of the chamber. In operation,
X-rays 9 are incident on the detector substantially sideways. Theincident X-rays 9 enter the detector through an optional thin slit orcollimator window 10 near thedetector 64, and travel through the gas volume in a direction essentially parallel to thecathode plate 2. Each X-ray photon incident into the gas-filled volume produces a primary ionisation electron-ion pair within the gas as a result of interaction with a gas molecule. This production is caused by photo-effect or Compton-effect, and possibly accompanied with an electron from Auger-effect. Eachprimary electron 11 produced loses its kinetic energy through interactions with new gas molecules causing further production of electron-ion pairs (secondary ionisation electron-ion pairs). Typically a few hundred secondary ionisation electron-ion pairs are produced from a 20 keV X-ray photon in this process. The secondary ionisation electrons 16 (together with the primary ionisation electron 11) are then amplified by electron-ion avalanches in the strong electric field. The movements of the avalanche electrons and ions induce electrical signals in theelectrodes 4. The signals are typically picked up in one or both of theelectrodes 4, and are further amplified and processed by a readout circuitry to obtain an accurate measurement of the X-ray photon interaction point and, optionally the X-ray photon energy. - In a preferred embodiment of the invention, the X-rays to be detected are incident substantially sideways on the
detector 64 in a direction essentially parallel to thecathode 2 andanode 1 plates, and may enter thedetector 64 through the thin slit orcollimator window 10. In this way thedetector 64 can easily be made with an interaction path long enough to allow a major fraction of the incident X-ray photons to interact and be detected. - Referring to FIG. 2, an embodiment of a detector, comprising the inventive plurality of detector electrode modules, is shown, and designated the
reference number 64. This gaseous parallel plate avalanche chamber includes ananode plate 1 and acathode plate 2, being essentially mutually parallel and separated by a thin gas-filled gap orregion 13. Theanode plate 1 includes asubstrate 3, made of for example glass, ceramics or silicon having a thickness of preferably 0.1-10 mm, and ananode electrode 4 arranged thereon in the form of a coating of a conductive material, for example metal, having a thickness of preferably 0.01-10 μm. - For better adhesion to the substrate and for better layer stability, the
electrode 4 may include several metal layers, each with a different thickness and material, for example vanadium, copper and nickel. When thesubstrate 3 is made of glass, the first layer is preferably of chromium, which has good adhesion properties to glass as well as to the following metal layers. Theelectrode 4 may also include a layer of resistive material, for example silicon monoxide, deposited on top of the metal layer(s). The substrate may alternatively be made of an electrically conductive material coated with a dielectric material. In a preferred embodiment, theelectrode 4 is arranged on top of said dielectric material. - Likewise, the
cathode plate 2 includes asubstrate 6 with acoating 5, similar to what is described about theanode plate 1. Both theanode electrode 4 and thecathode electrode 5 can be segmented into strips parallel and/or orthogonal to the incoming X-ray beam. - The gap or
region 13 is filled with a gas, which can be a mixture of for example 90% krypton and 10% carbon dioxide or a mixture of for example 90% argon and 10% methane. The gas can be under pressure, preferably in a range 1-20 atm. - The
anode electrode 4 and thecathode electrode 5 are connected to a high voltageDC power supply 7, for producing a uniform electric field 8, in the gap orregion 13 between theparallel plates region 13 has a height D (distance between theparallel plates 1 and 2) of 500 microns, and the voltage V applied between theelectrodes electrodes - In operation,
X-rays 9 are incident on thedetector 64 substantially sideways. Theincident X-rays 9 enter thedetector 64 through an optional thin slit orcollimator window 10 close to thecathode plate 2, and travel through the gas volume in a direction substantially parallel to thecathode plate 2. Each X-ray photon produces a primary ionization electron-ion pair within the gas as a result of interaction with a gas atom. Eachprimary electron 11 produced loses its kinetic energy through interactions with gas molecules causing further production of electron-ion pairs (secondary ionization electron-ion pairs). Typically a few hundred secondary ionization electron-ion pairs are produced from a 20 keV X-ray photon in this process. The secondary ionization electrons 16 (together with the primary ionization electron 11) are accelerated in the high electric field, in a direction towards theanode plate 1. The acceleratedelectrons gap 13 causing further electron-ion pairs to be produced. Those produced electrons will also be accelerated in the field, and will interact with new gas molecules, causing further electron-ion pairs to be produced. This process continues during the travel of the electrons towards the anode and anavalanche 12 will be formed. - For primary ionisation electrons emitted at a distance H from the anode, the overall charge gain is given by M=exp(αH), where α is the first Townsend coefficient pertinent to the gas and field conditions. Under proper choices of gas type, pressure and electrical field, gains from 104 to 106 and more can be achieved. Under the influence of the strong electric field, the electrons in the avalanche volume will move towards the
anode electrode 4, while the ions will move towards thecathode electrode 5. Due to the fact that the strong electric field is uniform over the gap and the height D of thegap 13 is small, a very short drift time of the positive ions across the amplification volume is achieved, which drastically reduces space charge effects. - The movement of charges in the gas filled
gap 13 induces electrical charges on theanode electrode 4 as well as on thecathode electrode 5. The induced charges can be detected, for example, by coupling theanode electrode 4 to a charge sensitive amplifier, which converts the charge pulses into a current or voltage pulse that can be further processed inprocessing electronics 14, (which may also include a preamplifier). Thecathode electrode 5 or a separate detector electrode arrangement can be used for the detection in a similar way. The fast electron signal in a gaseous parallel plate avalanche chamber constitutes a considerable fraction, F, of the total induced charge, and is about 10% of the total signals at gains around 105. - It is to be noted that many incident X-ray photons that interact with a gas atom will cause an
avalanche 12, which is to be detected. In order to achieve a high detection efficiency where a major fraction of the X-ray photons causes avalanches, the length of the gaseous parallel plate avalanche chamber, in the direction of the incident X-ray photons, should be chosen to give a high probability for interaction between the X-ray photons and the gas atoms. The probability of interaction per unit path length increases with increasing gas pressure, resulting in that the length of the gaseous parallel plate avalanche chamber can be made shorter with increasing gas pressure. - FIG. 3a shows a sectional view in a plane orthogonal to the plane of a
planar X-ray beam 9 of a detector for planar beam radiography. An optional thin slit orsecond collimator window 10, which is aligned with the X-ray beam, forms the entrance for theX-ray beam 9 to thedetector 64. A major fraction of the incident X-ray photons are detected in thedetector 64, which includes a conversion and driftvolume 13, and an electronavalanche amplification unit 17, and is oriented so that the X-ray photons enter substantially sideways between twoelectrode arrangements volume 13 is created. - The
detector 64 includes a first drift electrode arrangement being acathode plate 2 and a second drift electrode arrangement being ananode plate 1. They are substantially parallel to each other and the space in between includes a thin gas-filled gap orregion 13, being the conversion and drift volume, and an electronavalanche amplification unit 17. Alternatively the plates can be non-parallel. A voltage is applied between theanode plate 1 and thecathode plate 2, and one or several voltages is (are) applied on the electronavalanche amplification unit 17. This results in a drift field causing drift of electrons and ions in thegap 13, and electron avalanche amplification fields in the electronavalanche amplification unit 17. In connection with theanode plate 1 is an arrangement 15 of read-out elements for detection of electron avalanches provided. Preferably the arrangement of read-out elements 15 also constitutes theanode electrode 4. Alternatively the arrangement of read-out elements 15 can be formed in connection with thecathode plate 2 or the electronavalanche amplification unit 17. It can also be formed on theanode 1 orcathode 2 plate separated from theanode 4 orcathode 5 electrode by a dielectric layer or substrate. In this case it is necessary that the anode or cathode electrode is semi-transparent to induced pulses, i.e. formed as strips or pads. The separation between the drift volume and the amplification volume e.g. can be made in the form of athin mesh 51 with conducting surfaces, as shown in FIG. 3b. Electric potentials are supplied on the surfaces of themesh 51 to cause a weak electric field in the drift volume between the cathode and the mesh which allows the produced primary andsecondary ionisation electrons mesh 51 without being amplified or moderately amplified in electron-ion avalanche processes in the gas. The potentials on the surfaces of themesh 51 are supplied such that the electric field in the amplification region between themesh 51 and theanode 1 is strong enough to cause electron-ion avalanche processes in the gas. The induced signals from the moving electrons and ions are detected in the electrode arrangement on theanode 1 and/ormesh 51. - As seen, the X-rays to be detected are incident substantially sideways on the
detector 64 and enters the conversion and driftvolume 13 between thecathode plate 2 and theanode plate 1. The X-rays enter thedetector 64 preferably in a direction substantially parallel to thecathode plate 2 and theanode plate 1, and may enter the detector through a thin slit orcollimator window 10. In this way thedetector 64 can easily be made with an interaction path long enough to allow a major fraction of the incident X-ray photons to interact and be detected. In the case a collimator is used, this should preferably be arranged so that the thin planar beam enters thedetector 64 close to the electronavalanche amplification unit 17 and preferably substantially parallel therewith. - The gap or
region 13 is filled with a gas, which can be a mixture of for example 90% krypton and 10% carbon dioxide or a mixture of for example 80% xenon and 10% carbon dioxide. The gas can be under pressure, preferably in a range 1-20 atm. Therefore, thedetector 64 may include a gastight housing 91 with aslit entrance window 92, through which theX-ray beam 9 enters thedetector 64. Thewindow 92 is made of a material, which is transparent to the radiation, e.g. Mylar®, or a thin aluminum foil. This is a particularly advantageous additional effect of the invention, detecting substantially sideways incident beams in agaseous avalanche chamber 64, compared to previously used gaseous avalanche chambers, which were designed for radiation incident perpendicular to theanode 1 andcathode 2 plates, requiring a window covering a large area. Thewindow 92 can in this way be made thinner, thus reducing the number of X-ray photons absorbed in thewindow 92. - In operation, the
incident X-rays 9 enter thedetector 64 through the optional thin slit orcollimator window 10, if present, close to the electronavalanche amplification unit 17, and travel through the gas volume in a direction preferably substantially parallel with the electronavalanche amplification unit 17. Each X-ray photon produces a primary ionisation electron-ion pair within the gas as a result of interaction with a gas atom. This production is caused by photo-effect, Compton-effect or Auger-effect. Eachprimary electron 11 produced loses its kinetic energy through interactions with new gas atoms, causing further production of electron-ion pairs (secondary ionisation electron-ion pairs). Typically a few hundred secondary ionisation electron-ion pairs are produced from a 20 keV X-ray photon in this process. The secondary ionisation electrons 16 (together with the primary ionisation electron 11) will drift towards the electronavalanche amplification unit 17 due to the electric field in the conversion and driftvolume 13. When the electrons enter regions of focused field lines of the electronavalanche amplification unit 17, they undergo avalanche amplification. - The movements of the avalanche electrons and ions induce electrical signals in the arrangement15 of read-out elements for detection of electron avalanches. Those signals are picked up in connection with the electron
avalanche amplification unit 17, thecathode plate 2 or theanode plate 1, or a combination of two or more of said locations. The signals are further amplified and processed byreadout circuitry 14 to obtain accurate measurements of the X-ray photon interaction points, and optionally the X-ray photon energies. - Referring to FIG. 4a, one
detector electrode module 4 is shown. Thedetector electrode module 4 comprising detector electrode elements formed asstrips 20, acting as anode or cathode electrodes. A number of detector electrode elements in the form ofstrips 20 are placed side by side, and extend in directions substantially parallel to the direction of an incident X-ray photon at each location. Thestrips 20 are formed on asubstrate 100, electrically insulated from each other, by leaving aspace 23 between them. The strips may be formed by photo-lithographic methods or electroforming, etc. - Each
strip 20 is connected to theprocessing electronics 14 by means of aseparate signal conductor 22. Where the anode or cathode electrode constitute the detector electrode module, thesignal conductors 22 also connects the respective strip to the high voltage DC power supply 7 (not shown in FIG. 4a). - The
strips 20 and thespacing 23 may grow broader along the direction of incoming X-ray photons, thereby providing compensation for parallax errors. The strips can alternatively be divided perpendicular to the incident X-rays, into sections electrically insulated from each other. - The detector electrode module shown in FIG. 4a is preferably the
anode 4, but alternatively or jointly thecathode 5 can have the described construction. - The
substrate 100 can be made of metal on top of which a layer of electrically isolating material is arranged. On said electrically isolating material said detector electrode elements are arranged. - Alternatively the
substrate 100 can be made of an electrically isolating material, such as glass or ceramics. Said detector electrode elements then can be arranged directly on top of said substrate. - A further alternative is that the
substrate 100 is made of a semi-conducting material, such as silicon. Said detector electrode elements can either be arranged directly on top of said semi-conducting material or on top of an intermediate layer of a dielectric material, for example an oxide of said semi-conducting material. -
Substrate 100 of e.g. silicon can be cut in arbitrary shapes to form independent detector electrode modules of arbitrary shapes, which are flat and smooth close to atomic level by using standard etching or cutting techniques. Especially dry etching is a powerful tool to shape the detector electrode modules since the etching technique chosen, in combination of the crystal direction, can give the electrodes nearly arbitrary shape in three dimensions. - In FIG. 4b each independent detector electrode module including said processing electronics are arranged in close proximity (for example, 0.0001-1 mm apart) to each other on top of a carrying
element 110. Said carryingelement 110 may be made of any material. Each detector electrode module can either be in physical contact with the adjacent detector electrode module or separated by a small distance. Said distance between two detector electrode modules may not be bigger than the electrode pitch in order to not introduce any blind non radiation-detection areas at the borders of the individual detector electrode arrangements. - In FIG. 4a and 4 b the processing electronics are arranged on the same substrate as the detector electrode modules. However, said processing electronics may be arranged on a separate substrate. In FIG. 4b only two detector electrode arrangements are arranged adjacent to each other. However, three or more detector electrode modules may be arranged adjacent to each other, each along a direction being essentially perpendicular to the incident radiation. The detector electrode modules may also be arranged adjacent to each other, each along a direction being substantially parallel to the incident radiation.
- Although the invention has been described in conjunction with a number of preferred embodiments, it is to be understood that various modifications may still be made without departing from the spirit and scope of the invention, as defined by the appended claims.
Claims (40)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9904834 | 1999-12-29 | ||
SE9904834A SE515884C2 (en) | 1999-12-29 | 1999-12-29 | Method and apparatus for radiography and radiation detector |
SE9904834-0 | 1999-12-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010040937A1 true US20010040937A1 (en) | 2001-11-15 |
US6389103B2 US6389103B2 (en) | 2002-05-14 |
Family
ID=20418350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/730,740 Expired - Fee Related US6389103B2 (en) | 1999-12-29 | 2000-12-07 | Method and an apparatus for radiography and a radiation detector |
Country Status (9)
Country | Link |
---|---|
US (1) | US6389103B2 (en) |
EP (1) | EP1257846A1 (en) |
JP (1) | JP2003519388A (en) |
KR (1) | KR100662038B1 (en) |
CN (1) | CN1223867C (en) |
AU (1) | AU778579B2 (en) |
CA (1) | CA2393534C (en) |
SE (1) | SE515884C2 (en) |
WO (1) | WO2001050155A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6822240B2 (en) * | 2000-12-14 | 2004-11-23 | Xcounter Ab | Detection of radiation and positron emission tomography |
DE10335718B4 (en) * | 2003-08-05 | 2007-05-03 | Johannes-Gutenberg-Universität Mainz | Anode component for delay line detectors and delay line detector |
WO2011143506A1 (en) * | 2010-05-13 | 2011-11-17 | Lacy Jeffrey L | Sealed boron coated straw detectors |
US20160170078A1 (en) * | 2014-12-12 | 2016-06-16 | Lingacom Ltd. | Large Scale Gas Electron Multiplier and Detection Method |
US11125904B2 (en) | 2014-12-12 | 2021-09-21 | Lingacom Ltd. | Large scale gas electron multiplier with sealable opening |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE522428C2 (en) * | 2000-09-20 | 2004-02-10 | Xcounter Ab | Method and apparatus for adaptable energy-resolved detection of ionizing radiation |
SE522484C2 (en) * | 2000-09-28 | 2004-02-10 | Xcounter Ab | Collimation of radiation from linear sources for ionizing radiation and related detection of flat beams |
US20060175785A1 (en) * | 2004-02-25 | 2006-08-10 | Hamm Alton B | Methods of improving stability of a vehicle using a vehicle stability control system |
US20060163825A1 (en) * | 2004-02-25 | 2006-07-27 | Hamm Alton B | Vehicle stability control system |
JP4765506B2 (en) * | 2005-09-16 | 2011-09-07 | 大日本印刷株式会社 | Radiation detection panel manufacturing method, radiation detection panel |
JP4671153B2 (en) * | 2006-03-11 | 2011-04-13 | 横山 義隆 | Open window ionization chamber |
CN102687040B (en) * | 2009-11-18 | 2015-04-29 | 圣戈本陶瓷及塑料股份有限公司 | System and method for ionizing radiation detection |
JP5772258B2 (en) * | 2011-06-08 | 2015-09-02 | 大日本印刷株式会社 | Radiation detector using gas amplification, and radiation detection method using gas amplification |
CN103308937A (en) * | 2013-06-26 | 2013-09-18 | 清华大学 | Two-dimensional-read high-position high-time-resolution detector |
JP7199455B2 (en) * | 2018-06-13 | 2023-01-05 | プリズマティック、センサーズ、アクチボラグ | X-ray detector design |
CN108802796B (en) * | 2018-06-27 | 2020-05-05 | 西北核技术研究所 | Compact type broadband beam position detector for proton synchrotron |
CN117912928B (en) * | 2024-03-15 | 2024-05-24 | 中国科学院上海高等研究院 | Gas ionization chamber |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5826143B2 (en) * | 1978-07-19 | 1983-06-01 | 日本原子力研究所 | Gamma ray compensated ionization chamber |
FR2504277A1 (en) * | 1981-04-15 | 1982-10-22 | Commissariat Energie Atomique | X-RAY DETECTOR |
FR2570908B1 (en) * | 1984-09-24 | 1986-11-14 | Commissariat Energie Atomique | SYSTEM FOR PROCESSING ELECTRIC SIGNALS FROM AN X-RAY DETECTOR |
US4937453A (en) * | 1987-05-06 | 1990-06-26 | Nelson Robert S | X-ray detector for radiographic imaging |
GB9202693D0 (en) * | 1992-02-08 | 1992-03-25 | Philips Electronics Uk Ltd | A method of manufacturing a large area active matrix array |
FR2702571B1 (en) * | 1993-03-11 | 1995-05-24 | Charpak Georges | Device for imaging ionizing particles by means of a proportional multi-wire chamber. |
US5381014B1 (en) * | 1993-12-29 | 1997-06-10 | Du Pont | Large area x-ray imager and method of fabrication |
FR2718633B1 (en) * | 1994-04-19 | 1996-07-12 | Georges Charpak | Medical imaging device in low dose X or gamma ionizing radiation. |
US5629524A (en) * | 1995-02-21 | 1997-05-13 | Advanced Scientific Concepts, Inc. | High speed crystallography detector |
FR2731279B1 (en) * | 1995-03-03 | 1997-05-09 | Charpak Georges | IMPROVEMENTS TO LOW-DOSE X GAMMA OR X-RAY MEDICAL IMAGING DEVICES |
FR2739941B1 (en) * | 1995-10-11 | 1997-11-14 | Commissariat Energie Atomique | HIGH RESOLUTION POSITION DETECTOR FOR HIGH IONIZING PARTICLE FLOWS |
FR2749402B1 (en) * | 1996-05-29 | 1998-08-07 | Charpak Georges | HIGH RESOLUTION RADIOGRAPHIC IMAGING DEVICE |
SE513161C2 (en) * | 1997-11-03 | 2000-07-17 | Digiray Ab | A method and apparatus for radiography with flat beam and a radiation detector |
-
1999
- 1999-12-29 SE SE9904834A patent/SE515884C2/en not_active IP Right Cessation
-
2000
- 2000-10-27 JP JP2001550051A patent/JP2003519388A/en active Pending
- 2000-10-27 WO PCT/SE2000/002113 patent/WO2001050155A1/en active IP Right Grant
- 2000-10-27 CN CNB008179441A patent/CN1223867C/en not_active Expired - Fee Related
- 2000-10-27 EP EP00980152A patent/EP1257846A1/en not_active Withdrawn
- 2000-10-27 AU AU17449/01A patent/AU778579B2/en not_active Ceased
- 2000-10-27 CA CA002393534A patent/CA2393534C/en not_active Expired - Fee Related
- 2000-10-27 KR KR1020027008486A patent/KR100662038B1/en not_active IP Right Cessation
- 2000-12-07 US US09/730,740 patent/US6389103B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6822240B2 (en) * | 2000-12-14 | 2004-11-23 | Xcounter Ab | Detection of radiation and positron emission tomography |
DE10335718B4 (en) * | 2003-08-05 | 2007-05-03 | Johannes-Gutenberg-Universität Mainz | Anode component for delay line detectors and delay line detector |
WO2011143506A1 (en) * | 2010-05-13 | 2011-11-17 | Lacy Jeffrey L | Sealed boron coated straw detectors |
US20160170078A1 (en) * | 2014-12-12 | 2016-06-16 | Lingacom Ltd. | Large Scale Gas Electron Multiplier and Detection Method |
US10191180B2 (en) * | 2014-12-12 | 2019-01-29 | Lingacom Ltd. | Large scale gas electron multiplier and detection method |
US11125904B2 (en) | 2014-12-12 | 2021-09-21 | Lingacom Ltd. | Large scale gas electron multiplier with sealable opening |
Also Published As
Publication number | Publication date |
---|---|
CA2393534C (en) | 2009-02-03 |
US6389103B2 (en) | 2002-05-14 |
JP2003519388A (en) | 2003-06-17 |
AU778579B2 (en) | 2004-12-09 |
KR20020065624A (en) | 2002-08-13 |
SE515884C2 (en) | 2001-10-22 |
CA2393534A1 (en) | 2001-07-12 |
EP1257846A1 (en) | 2002-11-20 |
KR100662038B1 (en) | 2006-12-28 |
CN1415076A (en) | 2003-04-30 |
AU1744901A (en) | 2001-07-16 |
CN1223867C (en) | 2005-10-19 |
WO2001050155A1 (en) | 2001-07-12 |
SE9904834D0 (en) | 1999-12-29 |
SE9904834L (en) | 2001-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6389103B2 (en) | Method and an apparatus for radiography and a radiation detector | |
KR100566109B1 (en) | A method and a device for planar beam radiography and a radiation detector | |
KR100690921B1 (en) | Radiation detector, an apparatus for use in planar beam radiography and a method for detecting ionizing radiation | |
AU773520B2 (en) | Detector and method for detection of ionizing radiation | |
US6546070B1 (en) | Adaptable energy-resolved detection of ionizing radiation | |
EP1474704B1 (en) | Radiation detector arrangement comprising multiple line detector units | |
KR20020011382A (en) | Radiation detect or and an apparatus for use in radiography | |
US6373065B1 (en) | Radiation detector and an apparatus for use in planar beam radiography | |
US6556650B2 (en) | Method and a device for radiography and a radiation detector | |
AU2001242943A1 (en) | A method and a device for radiography and a radiation detector | |
US6365902B1 (en) | Radiation detector, an apparatus for use in radiography and a method for detecting ionizing radiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: XCOUNTER AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRANCKE, TOM;ULLBERG, CHRISTER;RANTANEN, JUHA;REEL/FRAME:011349/0066 Effective date: 20001006 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140514 |