US20010030735A1 - Progressive power spectacle lens - Google Patents

Progressive power spectacle lens Download PDF

Info

Publication number
US20010030735A1
US20010030735A1 US09/271,454 US27145499A US2001030735A1 US 20010030735 A1 US20010030735 A1 US 20010030735A1 US 27145499 A US27145499 A US 27145499A US 2001030735 A1 US2001030735 A1 US 2001030735A1
Authority
US
United States
Prior art keywords
distance
progressive
surface astigmatism
main meridian
spectacle lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/271,454
Other versions
US6354704B2 (en
Inventor
Chikara Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Hoya Lens Thailand Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to ASAHI KOGAKU KOGYO KABUSHIKI KAISHA reassignment ASAHI KOGAKU KOGYO KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YAMAMOTO, CHIKARA
Publication of US20010030735A1 publication Critical patent/US20010030735A1/en
Application granted granted Critical
Publication of US6354704B2 publication Critical patent/US6354704B2/en
Assigned to SEIKO OPTICAL PRODUCTS KABUSHIKI KAISHA (TRADING AS SEIKO OPTICAL PRODUCTS CO., LTD.) reassignment SEIKO OPTICAL PRODUCTS KABUSHIKI KAISHA (TRADING AS SEIKO OPTICAL PRODUCTS CO., LTD.) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PENTAX CORPORATION
Assigned to HOYA LENS THAILAND LTD. reassignment HOYA LENS THAILAND LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEIKO OPTICAL PRODUCTS CO.,LTD.
Assigned to SEIKO OPTICAL PRODUCTS CO.,LTD. reassignment SEIKO OPTICAL PRODUCTS CO.,LTD. CHANGE OF ADDRESS Assignors: SEIKO OPTICAL PRODUCTS CO.,LTD.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • G02C7/065Properties on the principal line
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power

Definitions

  • the present invention relates to a progressive power spectacle lens with a dioptric power varying progressively between a distance portion and a near portion.
  • FIG. 17 is a front view (viewed from an object side) of a progressive power spectacle lens 1 for a right eye.
  • the lens 1 includes:
  • a near portion 3 having a dioptric power for near vision at a lower area of the lens [0004] a near portion 3 having a dioptric power for near vision at a lower area of the lens
  • a dioptric power in the intermediate portion 4 progressively varies from the upper portion to the lower portion.
  • Such a power is given by the asymmetrical shape formed on the front or rear surface, which is referred to as a progressive side surface.
  • a rectangular coordinate is defined by a fitting point O as an origin, a horizontal X-axis, and a vertical Y-axis.
  • the fitting point O is the point on the progressive side surface of the lens 1 determined by a manufacturer as a reference point for positioning the lens in front of the eye.
  • the power of the progressive side surface varies along a main meridian MM′ that is a virtual centerline extending substantially along the vertical direction.
  • the main meridian MM′ is coincident with the Y-axis in the distance portion 2 , while it is bent toward a nasal side in the intermediate portion 4 , and extends vertically with being shifted toward the nasal side in the near portion 3 by an amount Xm.
  • the progressive power spectacle lens 1 must include surface astigmatism on the progressive side surface since the distance portion and the near portion, which have different dioptric powers, are smoothly connected.
  • a zone along the main meridian MM′ is a center of a view field of a user, and accordingly, it is desirable that the astigmatism along the main meridian MM′ is minimized in order to provide a clear vision zone.
  • the clear vision zone is a zone through which a user obtains a natural and comfortable view.
  • the main meridian MM′ is designed as an umbilical line along which a surface astigmatism has a value of zero.
  • a progressive power lens is designed with a surface performance evaluation of a progressive side surface (referred hereinafter as “a surface evaluating design”) to reduce complicated and expensive calculation work.
  • the lens having the umbilical main meridian results in good performance in terms of the surface performance evaluation.
  • the lens having a good surface performance does not always have a good transmission performance in a transmitting performance evaluation using the ray-tracing method.
  • the transmission performance (which corresponds to a worn condition) is more important than the surface performance for actual products.
  • a surface astigmatism is an absolute value of the difference between the dioptric power of the progressive side surface in a maximum curvature direction where the curvature has the maximum value, and the dioptric power of the surface in a direction where the curvature has the minimum value.
  • the surface astigmatism is only determined by the shape of the progressive side surface.
  • a resultant astigmatism is an astigmatism caused on a fundus of an eye through the lens.
  • the transmission performance is substantially coincident with the surface performance. This means that the good transmission performance lens can be designed by the surface evaluating design. However, the large curvature of the lens results in a heavy and thick lens.
  • Japanese provisional patent publication Nos. SHO 59-58415, HEI 1-221722, HEI 8-136868 and HEI 4-500870 disclose the progressive power spectacle lenses that have non-umbilical main meridians. Although each of the publications teaches the surface astigmatism along the main meridian, none of the publications disclose the variation of the surface astigmatism along the horizontal direction.
  • a progressive power spectacle lens which includes:
  • a predetermined surface astigmatism is provided on a main meridian, and the surface astigmatism decreases and then increases as the distance from the main meridian increases in a horizontal direction within the near portion.
  • the variation of the surface astigmatism is desirable to satisfy the condition (1) on at least one point in the range of ⁇ 30 ⁇ Y ⁇ 15, and further to satisfy the condition (2) on at least one point in the overlapped range of ⁇ 30 ⁇ Y ⁇ 15 and 3 ⁇
  • AS(x, y) is the surface astigmatism at the point (x, y), and
  • the maximum curvature direction ⁇ (x, y) that is defined as an angle (unit: degree) with respect to the X-axis at the point (x, y) is desirable to satisfy the conditions (3) and (4);
  • FIG. 1 is a map showing a surface astigmatism distribution on a progressive side surface of a spectacle lens according to a first embodiment
  • FIG. 4 is a distribution map showing a resultant astigmatism distribution of the lens shown in FIG. 1;
  • FIG. 5 is a distribution map of a surface astigmatism distribution on a progressive side surface of the spectacle lens according to a comparative example 1 that is not an embodiment
  • FIG. 7 is a distribution map showing a resultant astigmatism distribution of the lens shown in FIG. 5;
  • FIG. 8 is a distribution map showing a surface astigmatism distribution on a progressive side surface of the spectacle lens according to a second embodiment
  • FIG. 11 is a distribution map showing a resultant astigmatism distribution of the lens shown in FIG. 8;
  • FIG. 12 is a distribution map showing a surface astigmatism distribution on a progressive side surface of the spectacle lens according to a comparative example 2 that is not an embodiment
  • FIG. 14 is a distribution map of a resultant astigmatism distribution of the lens shown in FIG. 12;
  • FIG. 15 shows rectangular coordinates on a progressive power spectacle lens
  • FIG. 16 is a graph showing the definition of the maximum curvature direction.
  • FIG. 17 shows a general distribution of portions on the progressive side surface of a progressive power spectacle lens.
  • the progressive power spectacle lens according to each of the embodiments includes a distance portion having a dioptric power for distance vision, a near portion having a dioptric power for near vision, and an intermediate portion having a progressive dioptric power for vision at ranges intermediate between distance and near portions.
  • a main meridian is not an umbilical line.
  • a predetermined surface astigmatism is provided on the main meridian as defined by condition (1) on at least one point in the range of ⁇ 30 ⁇ Y ⁇ 15 when a rectangular coordinate (unit: mm) is defined by a fitting point O as an origin, a horizontal X-axis, and a vertical Y-axis;
  • AS(x, y) is the surface astigmatism at the point (x, y), and
  • FIG. 15 shows the rectangular coordinate on the progressive power spectacle lens.
  • the range of ⁇ 30 ⁇ Y ⁇ 15 is indicated by “A”.
  • the surface astigmatism decreases and then increases as the distance from the main meridian MM′ increases in a horizontal direction (i.e., in the X-axis direction) within a clear vision zone.
  • Such a distribution of the surface astigmatism is effective to enlarge the width of the clear vision zone.
  • the variation of the surface astigmatism satisfies condition (2) on at least one point in the overlapped range of ⁇ 30 ⁇ Y ⁇ 15 and 3 ⁇
  • ⁇ 10 is indicated by “B”.
  • Condition (2) is satisfied in the ranges (shown by hatching) where the ranges A and B overlap.
  • the range B may be limited to 5 ⁇
  • the maximum curvature direction ⁇ (x, y) that is defined as an angle (unit: degree) with respect to the X-axis at the point (x, y) satisfies conditions (3) and (4);
  • the dioptric power at a point on the progressive side surface can be described as an ellipse as shown in FIG. 16.
  • the size of the ellipse indicates the dioptric power at the point (x, y).
  • the point having the surface astigmatism is indicated by an ellipse, while an umbilical point is indicated by a circle.
  • a major axis Cmax of the eclipse represents the direction of the maximum curvature thereof, and the angle of the major axis Cmax with respect to the X-axis is the maximum curvature direction ⁇ (x, y).
  • Condition (3) requires that the maximum curvature direction on the main meridian MM′ is substantially parallel to the horizontal direction (X-axis), and condition (4) requires that the maximum curvature direction at the points distant from the main meridian by ⁇ 10 mm is substantially perpendicular to the horizontal direction.
  • FIG. 1 is a map of a surface astigmatism distribution on a progressive side surface of the progressive power spectacle lens according to the first embodiment. Specifications of the lens are as follows:
  • the near portion of the lens includes a zone C (shown by hatching) in which the surface astigmatism is larger than 0.20 [D] along the main meridian MM′.
  • the displacement Xm is equal to 2.5 mm in a range of ⁇ 40 ⁇ Y ⁇ 19.
  • FIGS. 2 and 3 are graphs showing a variation of the surface astigmatism AS(X, ⁇ 25) and a variation of the maximum curvature direction ⁇ (X, ⁇ 25) of the lens shown in FIG. 1 respectively.
  • the surface astigmatism decreases and then increases as the distance from the main meridian MM′ increases within the clear vision zone.
  • the maximum curvature direction varies along the horizontal direction as a monotonic function as shown in FIG. 3.
  • the first embodiment satisfies conditions (1) though (4) as follows.
  • FIG. 4 A distribution of the resultant astigmatism, which is obtained by the transmitting evaluation, according to the first embodiment is shown in FIG. 4.
  • the width of the clear vision zone S, in which the resultant astigmatism is lower than 0.5, is equal to 11 mm.
  • FIG. 5 shows a map of a surface astigmatism distribution on a progressive side surface of the comparative example 1. This example is described for indicating the compared effect of the first embodiment and it is not an embodiment of the invention.
  • the lens of the example 1 has the same specification as the first embodiment in the base curve, SPH and the additional power, while the lens is designed so that the surface performance is optimized. That is, the main meridian is designed as an umbilical line.
  • FIG. 6 is a graph showing a variation of the surface astigmatism AS (X, ⁇ 25) of the lens shown in FIG. 5. As shown in FIG. 6, the surface astigmatism is almost equal to zero on the main meridian MM′ and it monotonically increases as the distance from the main meridian MM′ increases.
  • FIG. 7 A distribution of the resultant astigmatism according to the example 1 is shown in FIG. 7.
  • the width of the clear vision zone s is 4 mm.
  • FIG. 8 is a map of a surface astigmatism distribution on a progressive side surface of the progressive power spectacle lens according to the second embodiment. Specifications of the lens are as follows:
  • the near portion of the lens includes a zone D (shown by hatching) in which the surface astigmatism is larger than 0.20 [D] along the main meridian MM′.
  • the displacement Xm is equal to 2.5 mm in a range of ⁇ 40 ⁇ Y ⁇ 19.
  • FIGS. 9 and 10 are graphs showing a variation of the surface astigmatism AS (X, ⁇ 25) and a variation of the maximum curvature direction ⁇ (X, ⁇ 25) of the lens shown in FIG. 8 respectively.
  • the surface astigmatism decreases and then increases as the distance from the main meridian MM′ increases within the clear vision zone.
  • the maximum curvature direction varies along the horizontal direction as a monotonic function as shown in FIG. 10.
  • the second embodiment satisfies the conditions (1) though (4) as follows.
  • FIG. 11 A distribution of the resultant astigmatism, which is obtained by the transmitting evaluation, according to the second embodiment is shown in FIG. 11.
  • the width of the clear vision zone s is equal to 12 mm.
  • FIG. 12 shows a map of a surface astigmatism distribution on a progressive side surface of the comparative example 2.
  • the lens of the example 2 has the same specification as the second embodiment in the base curve, SPH and the additional power, while the lens is designed so that the surface performance is optimized. That is, the main meridian is designed as an umbilical line.
  • FIG. 13 is a graph showing a variation of the surface astigmatism AS(X, ⁇ 25) of the lens shown in FIG. 12. As shown in FIG. 13, the surface astigmatism is almost equal to zero on the main meridian MM′ and it monotonically increases as the distance from the main meridian MM′ increases.
  • FIG. 14 A distribution of the resultant astigmatism according to the example 2 is shown in FIG. 14.
  • the clear vision zone is limited at only the center portion of the lens.
  • the width of the clear vision zone s is 7 mm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

A progressive power spectacle lens includes a distance portion having a dioptric power for distance vision, a near portion having a dioptric power for near vision; and an intermediate portion having a progressive dioptric power for vision at ranges intermediate between distance and near. A main meridian is not an umbilical line. A predetermined surface astigmatism is provided on the main meridian. In the near portion, the surface astigmatism decreases and then increases as the distance from the main meridian increases in a horizontal direction.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a progressive power spectacle lens with a dioptric power varying progressively between a distance portion and a near portion. [0001]
  • FIG. 17 is a front view (viewed from an object side) of a progressive [0002] power spectacle lens 1 for a right eye. The lens 1 includes:
  • a [0003] distance portion 2 having a dioptric power for distance vision at an upper area of the lens;
  • a [0004] near portion 3 having a dioptric power for near vision at a lower area of the lens; and
  • an intermediate portion [0005] 4 between the near and distance portions.
  • A dioptric power in the intermediate portion [0006] 4 progressively varies from the upper portion to the lower portion. Such a power is given by the asymmetrical shape formed on the front or rear surface, which is referred to as a progressive side surface.
  • A rectangular coordinate is defined by a fitting point O as an origin, a horizontal X-axis, and a vertical Y-axis. The fitting point O is the point on the progressive side surface of the [0007] lens 1 determined by a manufacturer as a reference point for positioning the lens in front of the eye.
  • The power of the progressive side surface varies along a main meridian MM′ that is a virtual centerline extending substantially along the vertical direction. Specifically, the main meridian MM′ is coincident with the Y-axis in the [0008] distance portion 2, while it is bent toward a nasal side in the intermediate portion 4, and extends vertically with being shifted toward the nasal side in the near portion 3 by an amount Xm.
  • The progressive [0009] power spectacle lens 1 must include surface astigmatism on the progressive side surface since the distance portion and the near portion, which have different dioptric powers, are smoothly connected. In particular, a zone along the main meridian MM′ is a center of a view field of a user, and accordingly, it is desirable that the astigmatism along the main meridian MM′ is minimized in order to provide a clear vision zone. The clear vision zone is a zone through which a user obtains a natural and comfortable view.
  • In one type of the conventional progressive power lenses, the main meridian MM′ is designed as an umbilical line along which a surface astigmatism has a value of zero. [0010]
  • Conventionally, a progressive power lens is designed with a surface performance evaluation of a progressive side surface (referred hereinafter as “a surface evaluating design”) to reduce complicated and expensive calculation work. The lens having the umbilical main meridian results in good performance in terms of the surface performance evaluation. However, the lens having a good surface performance does not always have a good transmission performance in a transmitting performance evaluation using the ray-tracing method. The transmission performance (which corresponds to a worn condition) is more important than the surface performance for actual products. [0011]
  • It should be noted that two types of astigmatism are used in the specification. “A surface astigmatism” is an absolute value of the difference between the dioptric power of the progressive side surface in a maximum curvature direction where the curvature has the maximum value, and the dioptric power of the surface in a direction where the curvature has the minimum value. The surface astigmatism is only determined by the shape of the progressive side surface. On the other hand, “a resultant astigmatism” is an astigmatism caused on a fundus of an eye through the lens. [0012]
  • When a progressive power spectacle lens is provided with a large base curve, the transmission performance is substantially coincident with the surface performance. This means that the good transmission performance lens can be designed by the surface evaluating design. However, the large curvature of the lens results in a heavy and thick lens. [0013]
  • Recently, a small base curve is generally required to obtain a light and thin lens even in the field of the progressive power spectacle lens. When the progressive power spectacle lens is designed so as to have a small base curve, the transmission performance is not coincident with the surface performance. That is, the lens having the umbilical main meridian results in insufficient transmission performance. [0014]
  • Japanese provisional patent publication Nos. SHO 59-58415, HEI 1-221722, HEI 8-136868 and HEI 4-500870 (the counterpart of PCT international patent publication W091/01508) disclose the progressive power spectacle lenses that have non-umbilical main meridians. Although each of the publications teaches the surface astigmatism along the main meridian, none of the publications disclose the variation of the surface astigmatism along the horizontal direction. [0015]
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide an improved progressive power spectacle lens, which has an enlarged clear vision zone with employing a small base curve. [0016]
  • For the above object, according to the present invention, there is provided a progressive power spectacle lens, which includes: [0017]
  • a distance portion having a dioptric power for distance vision; [0018]
  • a near portion having a dioptric power for near vision; and [0019]
  • an intermediate portion having a progressive dioptric power for vision at ranges intermediate between the distance and near portions; [0020]
  • wherein a predetermined surface astigmatism is provided on a main meridian, and the surface astigmatism decreases and then increases as the distance from the main meridian increases in a horizontal direction within the near portion. [0021]
  • The variation of the surface astigmatism is desirable to satisfy the condition (1) on at least one point in the range of −30<Y<−15, and further to satisfy the condition (2) on at least one point in the overlapped range of −30<Y<−15 and 3<|X−Xm|<10, when a rectangular coordinate (unit: mm) is defined by a fitting point O as an origin, a horizontal X-axis and a vertical Y-axis; [0022]
  • AS(Xm, Y)>0.2, and  (1)
  • AS(Xm, Y)−AS(X, Y)>0.05,  (2)
  • where [0023]
  • AS(x, y) is the surface astigmatism at the point (x, y), and [0024]
  • Xm is a displacement (i.e., a distance along the X-axis) of the main meridian from the Y-axis defined by Xm=f(Y). [0025]
  • Further, the maximum curvature direction θ(x, y) that is defined as an angle (unit: degree) with respect to the X-axis at the point (x, y) is desirable to satisfy the conditions (3) and (4); [0026]
  • −10° <θ(Xm, Y)<10°, and  (3)
  • 60°<|θ(Xm±10, Y) <90°,  (4)
  • where the surface astigmatism at the points satisfying the conditions (3) and (4) are larger than 0.2.[0027]
  • DESCRIPTION OF THE ACCOMPANYING DRAWINGS
  • FIG. 1 is a map showing a surface astigmatism distribution on a progressive side surface of a spectacle lens according to a first embodiment; [0028]
  • FIG. 2 is a graph showing a variation of the surface astigmatism of the lens shown in FIG. 1 along a horizontal line at Y=−25; [0029]
  • FIG. 3 is a graph showing a variation of a maximum curvature direction of the lens shown in FIG. 1 along a horizontal line at Y=−25; [0030]
  • FIG. 4 is a distribution map showing a resultant astigmatism distribution of the lens shown in FIG. 1; [0031]
  • FIG. 5 is a distribution map of a surface astigmatism distribution on a progressive side surface of the spectacle lens according to a comparative example 1 that is not an embodiment; [0032]
  • FIG. 6 is a graph showing a variation of the surface astigmatism of the lens shown in FIG. 5 along a horizontal line at Y=−25; [0033]
  • FIG. 7 is a distribution map showing a resultant astigmatism distribution of the lens shown in FIG. 5; [0034]
  • FIG. 8 is a distribution map showing a surface astigmatism distribution on a progressive side surface of the spectacle lens according to a second embodiment; [0035]
  • FIG. 9 is a graph showing a variation of the surface astigmatism of the lens shown in FIG. 8 along a horizontal line at Y=−25; [0036]
  • FIG. 10 is a graph showing a variation of the maximum curvature direction of the lens shown in FIG. 8 along a horizontal line at Y=−25; [0037]
  • FIG. 11 is a distribution map showing a resultant astigmatism distribution of the lens shown in FIG. 8; [0038]
  • FIG. 12 is a distribution map showing a surface astigmatism distribution on a progressive side surface of the spectacle lens according to a comparative example 2 that is not an embodiment; [0039]
  • FIG. 13 is a graph showing a variation of the surface astigmatism of the lens shown in FIG. 12 along a horizontal line at Y=−25; [0040]
  • FIG. 14 is a distribution map of a resultant astigmatism distribution of the lens shown in FIG. 12; [0041]
  • FIG. 15 shows rectangular coordinates on a progressive power spectacle lens; [0042]
  • FIG. 16 is a graph showing the definition of the maximum curvature direction; and [0043]
  • FIG. 17 shows a general distribution of portions on the progressive side surface of a progressive power spectacle lens.[0044]
  • DESCRIPTION OF THE EMBODIMENTS
  • First and second embodiments will be described hereinafter in contrast to comparative examples. The progressive power spectacle lens according to each of the embodiments includes a distance portion having a dioptric power for distance vision, a near portion having a dioptric power for near vision, and an intermediate portion having a progressive dioptric power for vision at ranges intermediate between distance and near portions. [0045]
  • A main meridian is not an umbilical line. A predetermined surface astigmatism is provided on the main meridian as defined by condition (1) on at least one point in the range of −30<Y<−15 when a rectangular coordinate (unit: mm) is defined by a fitting point O as an origin, a horizontal X-axis, and a vertical Y-axis; [0046]
  • AS(Xm, Y)>0.2,  (1)
  • where [0047]
  • AS(x, y) is the surface astigmatism at the point (x, y), and [0048]
  • Xm is a displacement (i.e., a distance along the X-axis) of the main meridian from the Y-axis defined by Xm=f(Y). [0049]
  • FIG. 15 shows the rectangular coordinate on the progressive power spectacle lens. The range of −30<Y<−15 is indicated by “A”. [0050]
  • In the near portion, the surface astigmatism decreases and then increases as the distance from the main meridian MM′ increases in a horizontal direction (i.e., in the X-axis direction) within a clear vision zone. Such a distribution of the surface astigmatism is effective to enlarge the width of the clear vision zone. The variation of the surface astigmatism satisfies condition (2) on at least one point in the overlapped range of −30<Y<−15 and 3<|X−Xm|<10; [0051]
  • AS(Xm, Y)−AS(X, Y)>0.05.  (2)
  • In FIG. 15, the range of 3<|X−Xm|<10 is indicated by “B”. Condition (2) is satisfied in the ranges (shown by hatching) where the ranges A and B overlap. Optionally, the range B may be limited to 5<|X−Xm|<10. [0052]
  • Further, the maximum curvature direction θ(x, y) that is defined as an angle (unit: degree) with respect to the X-axis at the point (x, y) satisfies conditions (3) and (4); [0053]
  • −10°<|θ(Xm, Y)<10°, and  (3)
  • 60°<|θ(Xm±10, Y)<90°,  (4)
  • where the surface astigmatism at the points satisfying conditions (3) and (4) are larger than 0.2. [0054]
  • The dioptric power at a point on the progressive side surface can be described as an ellipse as shown in FIG. 16. The size of the ellipse indicates the dioptric power at the point (x, y). The point having the surface astigmatism is indicated by an ellipse, while an umbilical point is indicated by a circle. A major axis Cmax of the eclipse represents the direction of the maximum curvature thereof, and the angle of the major axis Cmax with respect to the X-axis is the maximum curvature direction θ(x, y). [0055]
  • Condition (3) requires that the maximum curvature direction on the main meridian MM′ is substantially parallel to the horizontal direction (X-axis), and condition (4) requires that the maximum curvature direction at the points distant from the main meridian by ±10 mm is substantially perpendicular to the horizontal direction. [0056]
  • Satisfaction of the condition (3) reduces the resultant astigmatism on the main meridian MM′. When the condition (4) is satisfied, a distortion can be effectively corrected. [0057]
  • [First Embodiment][0058]
  • FIG. 1 is a map of a surface astigmatism distribution on a progressive side surface of the progressive power spectacle lens according to the first embodiment. Specifications of the lens are as follows: [0059]
  • Base curve: 5.00 [D][0060]
  • SPH (a dioptric power at a distance design reference point ): +2.00 [D][0061]
  • Addition power: 2.00 [D][0062]
  • As shown in FIG. 1, the near portion of the lens includes a zone C (shown by hatching) in which the surface astigmatism is larger than 0.20 [D] along the main meridian MM′. The displacement Xm is equal to 2.5 mm in a range of −40<Y<−19. [0063]
  • FIGS. 2 and 3 are graphs showing a variation of the surface astigmatism AS(X, −25) and a variation of the maximum curvature direction θ(X, −25) of the lens shown in FIG. 1 respectively. As shown in FIG. 2, the surface astigmatism decreases and then increases as the distance from the main meridian MM′ increases within the clear vision zone. Further, the maximum curvature direction varies along the horizontal direction as a monotonic function as shown in FIG. 3. The first embodiment satisfies conditions (1) though (4) as follows. [0064]
  • (1) AS(Xm, Y)=AS(2.5, −25)=0.33. This value is larger than 0.2 and thus the condition (1) is satisfied. [0065]
  • (2) AS(Xm, Y)−AS(X, Y)=AS(2.5, −25)−AS(0, −25)>0.05 If the range B (shown in FIG. 15) is defined by 3<|X−Xm|<10, condition (2) is satisfied in a range R[0066] 1 (shown in FIG. 2) of −4.5<X<−0.5 and in a range R2 of 5.5<X<7.4 under the condition of Y=−25. If the range B is defined by 5<|X−Xm|<10, condition (2) is satisfied in a range R3 of −4.5<X−2.5 under the condition of Y=−25.
  • (3) θ(Xm, Y)=θ(2.5, −25)=0°. This value falls within the range of condition (3). [0067]
  • (4) θ(Xm−10, Y)=θ(−7.5, −25)=69°, and θ(Xm+10, Y)=θ(12.5, −25)=−69°. These values fall within the range of the condition (4). [0068]
  • Since the surface astigmatism AS(2.5, −25)=0.33, AS(−7.5, −25)=0.75 and AS(12.5, −25)=1.22, the premise of conditions (3) and (4) are satisfied. [0069]
  • A distribution of the resultant astigmatism, which is obtained by the transmitting evaluation, according to the first embodiment is shown in FIG. 4. The width of the clear vision zone S, in which the resultant astigmatism is lower than 0.5, is equal to 11 mm. [0070]
  • COMPARATIVE EXAMPLE 1
  • FIG. 5 shows a map of a surface astigmatism distribution on a progressive side surface of the comparative example 1. This example is described for indicating the compared effect of the first embodiment and it is not an embodiment of the invention. The lens of the example 1 has the same specification as the first embodiment in the base curve, SPH and the additional power, while the lens is designed so that the surface performance is optimized. That is, the main meridian is designed as an umbilical line. [0071]
  • FIG. 6 is a graph showing a variation of the surface astigmatism AS (X, −25) of the lens shown in FIG. 5. As shown in FIG. 6, the surface astigmatism is almost equal to zero on the main meridian MM′ and it monotonically increases as the distance from the main meridian MM′ increases. [0072]
  • A distribution of the resultant astigmatism according to the example 1 is shown in FIG. 7. The width of the clear vision zone s is 4 mm. [0073]
  • It is understood, by comparing the first embodiment with the comparative example 1, that the distribution of the surface astigmatism of the first embodiment is effective to enlarge the clear vision zone S. [0074]
  • [Second Embodiment][0075]
  • FIG. 8 is a map of a surface astigmatism distribution on a progressive side surface of the progressive power spectacle lens according to the second embodiment. Specifications of the lens are as follows: [0076]
  • Base curve: 2.00 [D][0077]
  • SPH: −4.00 [D][0078]
  • Addition power: 2.00 [D][0079]
  • As shown in FIG. 8, the near portion of the lens includes a zone D (shown by hatching) in which the surface astigmatism is larger than 0.20 [D] along the main meridian MM′. The displacement Xm is equal to 2.5 mm in a range of −40<Y<−19. [0080]
  • FIGS. 9 and 10 are graphs showing a variation of the surface astigmatism AS (X, −25) and a variation of the maximum curvature direction θ(X, −25) of the lens shown in FIG. 8 respectively. As shown in FIG. 9, the surface astigmatism decreases and then increases as the distance from the main meridian MM′ increases within the clear vision zone. Further, the maximum curvature direction varies along the horizontal direction as a monotonic function as shown in FIG. 10. The second embodiment satisfies the conditions (1) though (4) as follows. [0081]
  • (1) AS(Xm, Y)=AS(2.5, −25)=0.26. This value is larger than 0.2 and thus the condition (1) is satisfied. [0082]
  • (2) AS(Xm, Y)−AS(X, Y)=AS(2.5, −25)−AS(0, −25)>0.05 If the range B (shown in FIG. 15) is defined by 3<|X−Xm|<10, the condition (2) is satisfied in a range R[0083] 4 (shown in FIG. 9) of −2.7<X<−0.5 and in a range R5 of 5.5<X<8.2 under the condition of Y=−25. If the range B is defined by 5<|X−Xm|<10, the condition (2) is satisfied in a range R6 of −2.7<X<−2.5 under the condition of Y=−25.
  • (3) θ(Xm, Y)=θ(2.5, −25)−0°. This value falls within the range of the condition (3). [0084]
  • (4) θ(Xm−10, Y)=θ(−7.5, −25)=67°, and θ(Xm+10, Y)=θ(12.5, −25)=−70°. These values fall within the range of the condition (4). [0085]
  • Since the surface astigmatism AS(2.5, −25)=0.26, AS(−7.5, −25)=0.78 and AS(12.5, −25)=0.85, the premise of the conditions (3) and (4) are satisfied. [0086]
  • A distribution of the resultant astigmatism, which is obtained by the transmitting evaluation, according to the second embodiment is shown in FIG. 11. The width of the clear vision zone s is equal to 12 mm. [0087]
  • COMPARATIVE EXAMPLE 21
  • FIG. 12 shows a map of a surface astigmatism distribution on a progressive side surface of the comparative example 2. This example is not an embodiment of the invention. The lens of the example 2 has the same specification as the second embodiment in the base curve, SPH and the additional power, while the lens is designed so that the surface performance is optimized. That is, the main meridian is designed as an umbilical line. [0088]
  • FIG. 13 is a graph showing a variation of the surface astigmatism AS(X, −25) of the lens shown in FIG. 12. As shown in FIG. 13, the surface astigmatism is almost equal to zero on the main meridian MM′ and it monotonically increases as the distance from the main meridian MM′ increases. [0089]
  • A distribution of the resultant astigmatism according to the example 2 is shown in FIG. 14. The clear vision zone is limited at only the center portion of the lens. The width of the clear vision zone s is 7 mm. [0090]
  • It is understood, by comparing the second embodiment with the comparative example 2, that the distribution of the surface astigmatism of the second embodiment is effective to enlarge the clear vision zone. [0091]
  • The present disclosure relates to the subject matter contained in Japanese Patent Application No. HEI 10-068223, filed on Mar. 18, 1998, which is expressly incorporated herein by reference in its entirety. [0092]

Claims (6)

What is claimed is:
1. A progressive power spectacle lens, including:
a distance portion having a dioptric power for distance vision;
a near portion having a dioptric power for near vision; and
an intermediate portion having a progressive dioptric power for vision at ranges intermediate between the distance and near portions;
wherein a predetermined surface astigmatism is provided on a main meridian, the surface astigmatism decreasing and then increasing as the distance from the main meridian increases in a horizontal direction within said near portion.
2. The progressive power spectacle lens according to
claim 1
, wherein the variation of said surface astigmatism satisfies the condition (1) on at least one point in the range of −30<−Y<−15, and further satisfies the condition (2) on at least one point in the overlapped range of −30<Y<−15 and 3<|X−Xm|<10, when a rectangular coordinate (unit: mm) is defined by a fitting point O as an origin, a horizontal X-axis and a vertical Y-axis;
AS(Xm, Y)>0.2, and  (1) AS(Xm, Y)−AS(X, Y)>0.05,  (2)
where
AS (x, y) is the surface astigmatism at the point (x, y), and
Xm is a displacement of the main meridian from the Y-axis defined by Xm=f(Y).
3. The progressive power spectacle lens according to
claim 2
, wherein the condition (2) is satisfied on at least one point in the overlapped range of −30<Y<−15 and 5<|X−Xm|<10.
4. The progressive power spectacle lens according to
claim 2
, wherein the maximum curvature direction θ(x, y) that is defined as an angle (unit: degree) with respect to the X-axis at the point (x, y) satisfies the conditions (3) and (4);
−100<|(Xm, Y)<10°, and  (3) 60°<|θ(Xm±10, Y)|<90°,  (4)
where the surface astigmatism at the points satisfying the conditions (3) and (4) are larger than 0.2.
5. A progressive power spectacle lens, including:
a distance portion having a dioptric power for distance vision;
a near portion having a dioptric power for near vision; and
an intermediate portion having a progressive dioptric power for vision at ranges intermediate between the distance and near portions;
wherein a predetermined surface astigmatism is provided on a main meridian, and there are portions having the lower surface astigmatism than that at said main meridian at the right and left sides of said main meridian within said near portion.
6. The progressive power spectacle lens according to
claim 5
, wherein the maximum curvature direction in said near portion varies along the horizontal direction as a monotonic function.
US09/271,454 1998-03-18 1999-03-18 Progressive power spectacle lens Expired - Lifetime US6354704B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP06822398A JP3605281B2 (en) 1998-03-18 1998-03-18 Progressive multifocal lens
JP10-068223 1998-03-18
JP10-68223 1998-03-18

Publications (2)

Publication Number Publication Date
US20010030735A1 true US20010030735A1 (en) 2001-10-18
US6354704B2 US6354704B2 (en) 2002-03-12

Family

ID=13367608

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/271,454 Expired - Lifetime US6354704B2 (en) 1998-03-18 1999-03-18 Progressive power spectacle lens

Country Status (6)

Country Link
US (1) US6354704B2 (en)
JP (1) JP3605281B2 (en)
KR (1) KR100454604B1 (en)
DE (1) DE19912200B4 (en)
FR (1) FR2776397B1 (en)
GB (1) GB2338081B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834568A1 (en) * 2002-01-07 2003-07-11 Pentax Corp GLASSES WITH PROGRESSIVE POWER
US6712467B1 (en) * 1999-04-13 2004-03-30 Hoya Corporation Progressive-power lens and design process for same
WO2005040894A1 (en) * 2003-10-23 2005-05-06 Rodenstock Gmbh Workplace screen lens
EP3457195A1 (en) * 2017-09-19 2019-03-20 Hoya Lens Thailand Ltd. Spectacle lenses and methods for producing the same
EP2678732B1 (en) * 2011-02-23 2020-04-22 EHS Lens Philippines, Inc. Spectacle lens
CN113906332A (en) * 2019-09-25 2022-01-07 豪雅镜片泰国有限公司 Progressive-power lens design method, progressive-power lens design system, and progressive-power lens group

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4164550B2 (en) 2001-10-12 2008-10-15 セイコーオプティカルプロダクツ株式会社 Progressive power spectacle lens
JP3882748B2 (en) * 2002-12-12 2007-02-21 セイコーエプソン株式会社 Progressive power lens
JP4885445B2 (en) * 2004-12-21 2012-02-29 株式会社フジミインコーポレーテッド Thermal spray powder
WO2020067522A1 (en) * 2018-09-28 2020-04-02 Hoya株式会社 Progressive power lens and design method therefor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958415A (en) 1982-09-29 1984-04-04 Seiko Epson Corp Progressive multifocal lens
SE453959B (en) * 1986-06-04 1988-03-21 Gote Palsgard ARRANGEMENT FOR POSSIBILITY FOR DISABLED DISABLED PERSONS WITHOUT NUMBER AND MOVEMENT FORMS IN THE ARMS TO COMMUNICATE WITH THE ENVIRONMENT
JP2756670B2 (en) 1987-11-30 1998-05-25 旭光学工業株式会社 Progressive multifocal spectacle lens
JP2576054B2 (en) 1988-02-29 1997-01-29 株式会社ニコン Progressive multifocal lens
WO1991001508A1 (en) 1989-07-17 1991-02-07 Optische Werke G. Rodenstock Progressive spectacle glass with positive action in the distance portion
US5327181A (en) 1993-01-12 1994-07-05 Gentex Optics, Inc. Progressive lens for specialty and occupational use
JP3381306B2 (en) * 1993-05-31 2003-02-24 株式会社ニコン Progressive focus lens
US5719657A (en) 1993-11-19 1998-02-17 Asahi Kogaku Kogyo Kabushiki Kaisha Progressive power lens
JP3495437B2 (en) * 1993-11-19 2004-02-09 ペンタックス株式会社 Progressive multifocal lens
JP3619264B2 (en) 1994-08-22 2005-02-09 ペンタックス株式会社 Progressive multifocal lens and its mold
JP3196877B2 (en) * 1995-04-18 2001-08-06 ホーヤ株式会社 Progressive multifocal lens
FR2733328B1 (en) 1995-04-21 1997-06-13 Essilor Int PROGRESSIVE MULTIFOCAL OPHTHALMIC LENS
JP3196880B2 (en) * 1995-09-22 2001-08-06 ホーヤ株式会社 Progressive multifocal lens
DE59709693D1 (en) 1996-07-05 2003-05-08 Rodenstock Gmbh PROGRESSIVE EYEWEAR

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712467B1 (en) * 1999-04-13 2004-03-30 Hoya Corporation Progressive-power lens and design process for same
FR2834568A1 (en) * 2002-01-07 2003-07-11 Pentax Corp GLASSES WITH PROGRESSIVE POWER
WO2005040894A1 (en) * 2003-10-23 2005-05-06 Rodenstock Gmbh Workplace screen lens
US7338162B2 (en) 2003-10-23 2008-03-04 Rodenstock Gmbh Workplace screen lens
EP2678732B1 (en) * 2011-02-23 2020-04-22 EHS Lens Philippines, Inc. Spectacle lens
EP3457195A1 (en) * 2017-09-19 2019-03-20 Hoya Lens Thailand Ltd. Spectacle lenses and methods for producing the same
WO2019059410A1 (en) * 2017-09-19 2019-03-28 Hoya Lens Thailand Ltd. Spectacle lenses and methods for producing the same
CN113906332A (en) * 2019-09-25 2022-01-07 豪雅镜片泰国有限公司 Progressive-power lens design method, progressive-power lens design system, and progressive-power lens group

Also Published As

Publication number Publication date
GB2338081B (en) 2002-06-19
KR100454604B1 (en) 2004-11-03
GB2338081A (en) 1999-12-08
DE19912200B4 (en) 2015-02-26
KR19990077991A (en) 1999-10-25
JP3605281B2 (en) 2004-12-22
US6354704B2 (en) 2002-03-12
JPH11264955A (en) 1999-09-28
FR2776397B1 (en) 2000-11-10
GB9906289D0 (en) 1999-05-12
FR2776397A1 (en) 1999-09-24
DE19912200A1 (en) 1999-09-23

Similar Documents

Publication Publication Date Title
US5710615A (en) Progressive power multifocal lens
US7422325B2 (en) Method of designing a spectacle lens
US7874673B2 (en) Progressive power lens and method of designing the same
US6652097B2 (en) Progressive-power spectacle lens
US6354704B2 (en) Progressive power spectacle lens
JP3080295B2 (en) Progressive multifocal spectacle lens
US20100045931A1 (en) Short Channel Progressive Addition Lenses
EP1895351A1 (en) Spectacle lens design method
US6220704B1 (en) Progressive power lens
US7008058B2 (en) Progressive spectacle lens having two aspherical progressive surfaces
US7125118B2 (en) Progressive multifocal lens and method of designing the same
JP4024851B2 (en) A set of progressive ophthalmic lenses
JP4806218B2 (en) Progressive power lens
WO2013046677A1 (en) Progressive refractive power lens
JP2008249828A (en) Eyeglass lens and design method thereof
US7040758B2 (en) Spectacle lens
US6715875B2 (en) Astigmatic-power spectacle lens
JP4401175B2 (en) Progressive power lens
US6736505B2 (en) Progressive power spectacle lens
JP2000227579A (en) Inner progressive refractive lens
US11681163B2 (en) Pair of progressive power lenses and design method for the same
EP0964285A1 (en) Aspheric ophthalmic lens
US20020101565A1 (en) Multifocal lens capable of preventing distortion on edge of the lens with enlarging a nearsighted region
US7341344B2 (en) Progressive power lens
JP2003262837A (en) Progressive refracting power lens

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASAHI KOGAKU KOGYO KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YAMAMOTO, CHIKARA;REEL/FRAME:009991/0963

Effective date: 19990330

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SEIKO OPTICAL PRODUCTS KABUSHIKI KAISHA (TRADING A

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PENTAX CORPORATION;REEL/FRAME:021691/0025

Effective date: 20080328

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: HOYA LENS THAILAND LTD., THAILAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEIKO OPTICAL PRODUCTS CO.,LTD.;REEL/FRAME:040741/0245

Effective date: 20161001

Owner name: SEIKO OPTICAL PRODUCTS CO.,LTD., JAPAN

Free format text: CHANGE OF ADDRESS;ASSIGNOR:SEIKO OPTICAL PRODUCTS CO.,LTD.;REEL/FRAME:041174/0192

Effective date: 20110211