JP3495437B2 - Progressive multifocal lens - Google Patents

Progressive multifocal lens

Info

Publication number
JP3495437B2
JP3495437B2 JP28662994A JP28662994A JP3495437B2 JP 3495437 B2 JP3495437 B2 JP 3495437B2 JP 28662994 A JP28662994 A JP 28662994A JP 28662994 A JP28662994 A JP 28662994A JP 3495437 B2 JP3495437 B2 JP 3495437B2
Authority
JP
Japan
Prior art keywords
power
multifocal lens
point
cross
progressive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28662994A
Other languages
Japanese (ja)
Other versions
JPH08136868A (en
Inventor
康哲 井澤
守康 白柳
Original Assignee
ペンタックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペンタックス株式会社 filed Critical ペンタックス株式会社
Priority to JP28662994A priority Critical patent/JP3495437B2/en
Publication of JPH08136868A publication Critical patent/JPH08136868A/en
Application granted granted Critical
Publication of JP3495437B2 publication Critical patent/JP3495437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、眼鏡用の累進多焦点レンズに関
し、特に遠用度数がマイナスの累進多焦点レンズに関す
る。
TECHNICAL FIELD The present invention relates to a progressive multifocal lens for spectacles, and more particularly to a progressive multifocal lens having a negative distance dioptric power.

【0002】[0002]

【従来技術及びその問題点】累進多焦点レンズは、レン
ズ上方に遠用領域を有し、レンズ下方に近用領域を有
し、両者の中間に、上方から下方に向かって表面屈折力
が累進的に変化する中間領域を有するレンズとして知ら
れている。この累進多焦点レンズでは、遠用領域と近用
領域との面屈折力が当然異なるが、古くは、主に加工上
の理由により、主注視線方向の断面のある点の面屈折力
(メリディオナル方向の面屈折力)と、その点における
主注視線方向と直交する方向の断面の面屈折力(サジタ
ル方向の面屈折力)とが同一であった。しかし、最近
は、ある点におけるサジタル方向の面屈折力と、メリデ
ィオナル方向の面屈折力とを異ならせることが比較的自
由にできることとなり、その面屈折力の付与形態におい
て各種の提案がなされている。
2. Description of the Related Art Progressive multifocal lenses have a distance area above the lens and a near area below the lens, and the surface refractive power is progressively increased from the upper part to the lower part in the middle of the two. It is known as a lens having an intermediate region that changes dynamically. In this progressive power multifocal lens, the surface refractive powers of the distance region and the near region are naturally different, but in the old days, mainly due to processing reasons, the surface refractive power (meridional lens) of a point at the cross section in the main gaze direction was mainly used. The surface refracting power in the direction) and the surface refracting power of the cross section in the direction orthogonal to the main gaze direction at that point (surface refracting power in the sagittal direction) were the same. However, recently, it has become relatively possible to make the surface power in the sagittal direction and the surface power in the meridional direction at a certain point relatively different, and various proposals have been made in the form of imparting the surface power. .

【0003】一方、累進多焦点レンズに限らず、眼鏡レ
ンズは、できるだけ薄くしたいという要求がある。同じ
度数のレンズでも、薄型化自体は、緩いベースカーブを
用いれば実現できるが、累進多焦点レンズにおいて緩い
ベースカーブを用いると、収差、特に非点収差を補正す
ることが困難になる。そこで、従来は、ベースカーブを
収差補正との兼ね合いで選択しているが、従来の技術思
想では、薄型化に限界があった。
On the other hand, not only progressive multifocal lenses, but also spectacle lenses are required to be as thin as possible. Even if the lens has the same power, thinning itself can be realized by using a gentle base curve, but if a progressive base lens has a gentle base curve, it becomes difficult to correct aberrations, particularly astigmatism. Therefore, conventionally, the base curve is selected in consideration of the aberration correction, but the conventional technical idea has a limit in reducing the thickness.

【0004】[0004]

【発明の目的】本発明は、薄型化と収差補正とをバラン
スよく実現できる、新しい構想の累進多焦点レンズを得
ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to obtain a progressive multifocal lens of a new concept, which can achieve a good balance between thinning and aberration correction.

【0005】[0005]

【発明の概要】本発明は、遠用領域においてはサジタル
方向の面屈折力よりメリディオナル方向の面屈折力を大
きくし、一方、近用領域においては、この面屈折力の大
小関係を逆転させると、特に遠用度数がマイナスの累進
多焦点レンズの薄型化と収差補正とをバランスよく図る
ことができることを見出して完成されたものである。
SUMMARY OF THE INVENTION According to the present invention, in the distance region, the surface refractive power in the meridional direction is made larger than the surface refractive power in the sagittal direction. On the other hand, in the near region, the magnitude relationship of the surface refractive powers is reversed. In particular, the present invention has been completed by finding that it is possible to achieve a good balance between thinning of a progressive multifocal lens having a negative distance dioptric power and aberration correction.

【0006】すなわち、本発明は、遠用度数がマイナス
の累進多焦点レンズにおいて、遠用領域における主注視
線方向の断面の面屈折力をPfm、主注視線と直交する方
向の断面の面屈折力をPf s したとき、Pfm>Pf s
定し、近用領域における主注視線方向の断面の面屈折力
をPnm、主注視線と直交する方向の断面の面屈折力をP
n s したとき、Pnm<Pn s 設定したことを特徴として
いる。
That is, according to the present invention, in a progressive power multifocal lens having a negative distance dioptric power, the surface refractive power of the cross section in the main gazing direction in the distance area is Pf m , and the surface of the cross section in the direction orthogonal to the main gazing line. when the refractive power and the P f s, then set <br/> constant to Pf m> P f s, perpendicular to surface power on the main fixation line direction of the cross section of the near region Pn m, the main gazing line direction The surface refractive power of the cross section of P
When set to n s, it is characterized in that set to Pn m <P n s.

【0007】主注視線方向の断面の面屈折力Pm の値
と、主注視線と直交する方向の断面の面屈折力 s
は、主注視線上におけるプリズム作用が0となる点の近
傍の一点において、互いに等しくなるようにする。
The value of the surface refractive power P m of the cross section in the main gaze direction and the value of the surface refractive power P s of the cross section in the direction orthogonal to the main gaze line are the points at which the prism action on the main gaze line becomes zero. Make one point in the vicinity equal to each other.

【0008】本発明はさらに、以上の累進多焦点レンズ
の近用部面屈折力について、好ましい態様を提案する。
の近用部面屈折力についての第一の態様は、近用度数
をSN としたとき、SN <0であり、かつ、近用領域の
ある一点において、 Pnm(−20)−Pns(−20)<−0.1 を満足するものである。但し、 Pnm(−20);プリズム測定点を原点とし、該原点か
ら下方に20mmの主注視線上の地点における主注視線方
向の断面面屈折力、 Pns(−20):プリズム測定点を原点とし、該原点か
ら下方に20mmの主注視線上の地点における主注視線と
直交する方向の断面面屈折力、である。このように近用
部面屈折力を設定することにより近用部全体にわたり良
好な視野が得られる。
The present invention further provides the progressive multifocal lens described above.
About near portion surface power of the propose preferred embodiments.
A first aspect about the near portion surface power of that, when the near power was S N, a S N <0, and, at one point with a near region, Pn m (-20) -Pn s (-20) <-0.1 is satisfied. However, Pn m (−20); the prism measurement point as the origin, and the cross-sectional surface refractive power in the main gaze direction at a point on the main gaze line of 20 mm downward from the origin, Pn s (−20): the prism measurement point It is the cross-sectional surface refractive power in a direction orthogonal to the main gaze line at a point on the main gaze line of 20 mm below the origin, which is the origin. For this so near
By setting the refractive power of the partial surface, a good visual field can be obtained over the entire near portion.

【0009】近用部面屈折力についての第二の態様は、
近用度数をSN (D)としたとき、SN ≧0であり、か
つ近用領域のある一点において、 Pnm(−20)−Pns(−20)<−0.2 を満足するものである。プリズム測定点から下方に20
mmの地点において、SN ≧0に対して、Pnm−Pns<0
であれば一定の非点収差補正効果が得られるが、十分な
補正効果を得るためには、Pnm−Pns<−0.2である
ことが望ましい。
A second aspect about the near portion surface refractive power,
When the near power is S N (D), S N ≧ 0, and at one point in the near region, Pn m (−20) −Pn s (−20) <− 0.2 is satisfied. It is a thing. 20 below the prism measurement point
At the point of mm, for S N ≧ 0, Pn m −Pn s <0
If so, a certain astigmatism correction effect can be obtained, but in order to obtain a sufficient correction effect, it is desirable that Pn m −Pn s <−0.2.

【0010】さらに、本発明は、以上の累進多焦点レン
の遠用部面屈折力について、好ましい態様を提案す
る。その遠用部面屈折力についての第一の態様は、遠用
度数をSF としたとき、−2≦SF ≦0であり、遠用領
域のある一点において、 Pfm(15)−Pfs(15)>0.1 を満足するものである。但し、 Pfm(15);プリズム測定点を原点とし、該原点から
上方に15mmの主注視線上の地点における主注視線方向
の断面面屈折力、 Pfs(15):プリズム測定点を原点とし、該原点から
上方に15mmの主注視線上の地点における主注視線と直
交する方向の断面面屈折力、である。特にSF が、−2
≦SF ≦−1の範囲にあるとき、この条件式を満足する
ことが好ましい。SF がマイナスの場合、一般的に補正
量はSF が小さいほど大きくする必要がある。−2≦S
F ≦0の場合、プリズム測定点から上方に15mmの地点
におけるPfm−Pfsの値が0.1以下では十分な補正効
果が得られない。特に、−2≦SF ≦−1の範囲では、
0.1より大きい補正量を与えることが好ましい。
Furthermore, the present invention is, with the distance portion surface power than the progressive multifocal lens, propose preferred embodiments. A first aspect of with the distance portion surface power of that, when the distance power and the S F, a -2 ≦ S F ≦ 0, in one point in the distance portion, Pf m (15) -Pf s (15)> 0.1 is satisfied. However, Pf m (15); the prism measurement point is the origin, and the cross-sectional surface refractive power in the direction of the main gaze direction at a point 15 mm above the origin on the main gaze line is Pf s (15): The prism measurement point is the origin. , A cross-sectional surface refractive power in a direction orthogonal to the main line of sight at a point on the main line of sight of 15 mm upward from the origin. Especially S F is -2
It is preferable that this conditional expression is satisfied when ≦ S F ≦ −1. When S F is negative, it is generally necessary to increase the correction amount as S F is smaller. -2≤S
For F ≦ 0, the value of Pf m -Pf s at the point of 15mm upwardly from the prism measurement point is not obtained a sufficient correction effect at 0.1 or less. In particular, in the range of −2 ≦ S F ≦ −1,
It is preferable to provide a correction amount greater than 0.1.

【0011】遠用部面屈折力についての第二の態様は、
遠用度数をSF としたとき、−6<SF <−2であり、
遠用領域のある一点において、 Pfm(15)−Pfs(15)>0.2 を満足するものである。プリズム測定点から上方に15
mmの地点において、SF がこの範囲の値をとるときに
は、Pfm−Pfs>0.2でないと十分な非点収差の補正
効果が得られない。
[0011] The second aspect about the distance portion surface refractive power,
When the distance dioptric power is S F , −6 <S F <−2,
Pf m (15) −Pf s (15)> 0.2 is satisfied at a certain point in the distance area. 15 above the prism measurement point
In point of mm, when the S F takes a value in this range, Pf m -Pf s> 0.2 not equal no sufficient effect of correcting astigmatism is obtained.

【0012】さらに本発明は、遠用度数がマイナスの累
進多焦点レンズにおいては、遠用領域におけるメリディ
オナル方向とサジタル方向の面屈折力の差と、近用領域
における同面屈折力の差との差をある程度大きくする
と、薄型化と収差補正をバランスよく図ることができる
ことを見出した。その条件は、 ΔP(15)−ΔP(−20)>0.3 を満足することである。但し、 ΔP(x);プリズム測定点を原点とし、該原点から上
方(+)または下方(−)にxmmの主注視線上の地点に
おける断面面屈折力Pm s 差(ΔP=Pm
s )、である。この条件式を満足しないと、すなわちプ
リズム測定点から上方に15mmの地点と下方に20mmの
地点におけるPm s の差の差、すなわちΔPの差
、少なくとも0.3より大きくないと、遠用部あるい
は近用部に収差補正不足がおこる。
Further, according to the present invention, the distance dioptric power is negative.
In a progressive multifocal lens, the meridian in the distance region
Onal and sagittal surface refractionPower differenceAnd near area
Of the same-surface refractive power atDifference from the differenceTo some extent
And, it is possible to achieve a good balance between thinning and aberration correction.
I found that. The condition is ΔP (15) −ΔP (−20)> 0.3 Is to be satisfied. However, ΔP (x); the prism measurement point is the origin, and above the origin
To the point on the main gaze line of xmm toward (+) or downward (-)
Cross-sectional surface refractive power P inm WhenP s ofDifference (ΔP = Pm −P
s  ), If this conditional expression is not satisfied,
15mm above the rhythm measurement point and 20mm below
P at the pointm WhenP s Difference of ΔP, ie difference of ΔP
But, At least larger than 0.3, there is a distance part
Insufficient aberration correction occurs in the near portion.

【0013】本発明の累進多焦点レンズは、特に、加入
度数が0.5〜4の累進多焦点レンズに適用することが
望ましい。加入度数が0.5未満のレンズでは、もとも
と収差が少ない。逆に加入度数が4を超えるレンズで
は、遠用部と近用部の度数差が大きく、また、収差補正
量も大きくなり、製造上問題がおこる。理想的にはAD
D≦3が望ましい。さらに、SN <−1が望ましい。な
ぜなら、SN =0付近では近用部の収差はもともと少な
いので、本発明の収差補正効果は相対的に小さくなるか
らである。結局、本発明の効果が最も顕著に表れるの
は、0.5≦ADD≦3.0、SN<−1の範囲であ
る。
The progressive multifocal lens of the present invention is particularly preferably applied to a progressive multifocal lens having an addition power of 0.5 to 4. A lens having an addition power of less than 0.5 originally has little aberration. On the other hand, in the case of a lens having an addition power of more than 4, the power difference between the distance portion and the near portion is large, and the aberration correction amount is large, which causes a manufacturing problem. Ideally AD
D ≦ 3 is desirable. Furthermore, S N <-1 is desirable. This is because the aberration in the near portion is originally small near S N = 0, and the aberration correction effect of the present invention is relatively small. After all, the effect of the present invention is most prominent in the range of 0.5 ≦ ADD ≦ 3.0 and S N <−1.

【0014】[0014]

【発明の実施例】次に、実施例について本発明を説明す
る。図1及び図2は、本発明の第一の態様に基づく第一
の実施例を示し、図3及び図4は比較例を示す。この実
施例は、遠用度数SPH(=SF )=−4.0、加入度
数ADD(=SN −SF )=2.0、ベースカーブD1
=2.0の累進多焦点眼鏡レンズ、つまり、遠用領域に
おける度数が−4D、近用領域における度数が−2Dで
ある累進多焦点レンズに本発明を適用したものである。
The present invention will be described below with reference to examples. 1 and 2 show a first embodiment based on the first aspect of the present invention, and FIGS. 3 and 4 show a comparative example. In this embodiment, the distance dioptric power SPH (= S F ) = − 4.0, the addition diopter ADD (= S N −S F ) = 2.0, and the base curve D 1
The present invention is applied to a progressive multifocal spectacle lens of = 2.0, that is, a progressive multifocal lens having a power of -4D in the distance region and a power of -2D in the near region.

【0015】図1は眼鏡レンズの中心部の上下(垂直)
方向の主注視線に沿う本発明のサジタル方向とメリディ
オナル方向の面屈折力変化を示す図である。この図に明
らかなように、本発明は、遠用領域(縦軸の+領域)に
おいては、破線で示すメリディオナル方向の面屈折力P
m の方が、実線で示すサジタル方向の面屈折力 s
大きい。これに対し、近用領域(縦軸の+領域)におい
ては、実線で示すサジタル方向の面屈折力の方が、破線
で示すメリディオナル方向の面屈折力より大きい。そし
て、このメリディオナル方向の面屈折力変化曲線Pm
、サジタル方向の面屈折力変化曲 s は、プリズ
ム作用が0となる点(つまり入射光線が屈折することな
く通過する点)の近傍の一点において交わり、互いの値
が等しくなっている。本発明は、このように、遠用領域
と近用領域とで、サジタル方向の面屈折力とメリディオ
ナル方向の面屈折力の大小関係が逆転しており、かつ、
プリズム作用のない点の近傍の一点において、Pm
s の値を等しくした点に特徴がある。なお図1及び図3
は、遠用領域(のPm s 値が等しい点)における
面屈折力を基準(0)として示したものである。
FIG. 1 shows the top and bottom (vertical) of the center of the spectacle lens.
It is a figure which shows the surface refractive power change of the sagittal direction and meridional direction of this invention along the main gaze line of a direction. As is apparent from this figure, in the present invention, in the distance region (+ region of the vertical axis), the surface refractive power P in the meridional direction indicated by the broken line is shown.
who m is Ri greater by sagittal surface power P s shown by the solid line. In contrast, in the near region (+ region of the vertical axis), towards the sagittal surface power indicated by the solid line, has a size Ri by surface power meridional direction indicated by the broken line. The surface power of the meridional Direction This change curve P m
When, the sagittal Direction surface power change curve P s, equal intersection, the value of each other at a point near the point where the prism effect becomes 0 (that is a point to pass without incident light is refracted) ing. In the present invention, as described above, the distance relationship between the surface refractive power in the sagittal direction and the surface refractive power in the meridional direction is reversed between the distance area and the near area, and,
At a point near the point without prism action, P m and P
It is characterized in that equally properly the value of s. 1 and 3
Is Ru der shows the surface power as a reference (0) in the distance area (point values of P m and P s are equal).

【0016】図2は、図1のように面屈折力を設定した
累進多焦点レンズの非点収差を示している。一方、図3
は、図1と同じ仕様であって、サジタル方向とメリディ
オナル方向の面屈折力を等しくする設計の場合の面屈折
力変化図である。このレンズの非点収差を図4に示して
いる。
FIG. 2 shows astigmatism of the progressive multifocal lens in which the surface refracting power is set as in FIG. On the other hand, FIG.
Is the same specification as in Fig. 1 and is the surface refraction in the case of a design in which the surface refracting powers in the sagittal direction and the meridional direction are equal.
It is a force change diagram . The astigmatism of this lens is shown in FIG.

【0017】図2と図4においては、非点収差を0.5
Dステップで示している。この両図を比較すると明らか
なように、本発明による累進多焦点レンズは、比較例に
示す、サジタル方向とメリディオナル方向の面屈折力が
同一の同レンズに比して、非点収差が非常に良好に補正
されていることが分かる。
2 and 4, the astigmatism is 0.5.
It is shown in the D step. As is clear from a comparison between these two figures, the progressive multifocal lens according to the present invention has a significantly higher astigmatism than the same lens having the same surface refractive power in the sagittal direction and the meridional direction, which is shown in the comparative example. It can be seen that the correction is good.

【0018】同様に、図5及び図6は、本発明の第二の
態様に基づく第二の実施例を示し、図7及び図8は比較
例を示す。この実施例は、遠用度数SF =−2.0、加
入度数ADD=2.0、ベースカーブD1 =4.0の累
進多焦点眼鏡レンズ、つまり、遠用領域における度数が
−2D、近用領域における度数が0Dである累進多焦点
レンズに本発明を適用したものである。
Similarly, FIGS. 5 and 6 show a second embodiment according to the second aspect of the present invention, and FIGS. 7 and 8 show a comparative example. This embodiment is a progressive multifocal spectacle lens having a distance dioptric power S F = −2.0, an addition diopter ADD = 2.0, and a base curve D 1 = 4.0, that is, a dioptric power in the distance region is −2D, The present invention is applied to a progressive power multifocal lens having a power of 0D in the near range.

【0019】図5は眼鏡レンズの中心部の上下(垂直)
方向の主注視線に沿う本発明のサジタル方向とメリディ
オナル方向の面屈折力変化を示す図である。第一の実施
例と同様に、本発明は、遠用領域(縦軸の+領域)にお
いては、破線で示すメリディオナル方向の面屈折力Pm
の方が、実線で示すサジタル方向の面屈折力 s り大
きい。これに対し、近用領域(縦軸の+領域)において
は、実線で示すサジタル方向の面屈折力の方が、破線で
示すメリディオナル方向の面屈折力より大きい。そし
て、このメリディオナル方向の面屈折力変化曲線Pm
、サジタル方向の面屈折力変化曲 s は、第一の
実施例と同様に、プリズム作用が0となる点の近傍の一
点において交わり、互いの値が等しくなっている。
FIG. 5 shows the top and bottom (vertical) of the center of the spectacle lens.
It is a figure which shows the surface refractive power change of the sagittal direction and meridional direction of this invention along the main gaze line of a direction. Similar to the first embodiment, in the present invention, in the distance area (+ area on the vertical axis), the surface refractive power P m in the meridional direction indicated by the broken line is shown.
It is, Ri greater by sagittal surface power P s indicated by a solid line in. In contrast, in the near region (+ region of the vertical axis), towards the sagittal surface power indicated by a solid line, has a size Ri by surface power meridional direction indicated by the broken line. The surface power of the meridional Direction This change curve P m
When, the sagittal Direction surface power change curve P s, as in the first embodiment, the intersection, the value of each other are equal at one point near the point where the prism action is zero.

【0020】図6は、図5のように面屈折力を設定した
累進多焦点レンズの非点収差を示している。一方、図7
は、図5と同じ仕様であって、サジタル方向とメリディ
オナル方向の面屈折力を等しくする設計の場合の面屈折
力変化図である。このレンズの非点収差を図8に示して
いる。
FIG. 6 shows the astigmatism of the progressive multifocal lens in which the surface refracting power is set as shown in FIG. On the other hand, FIG.
Is a surface refraction in the case of a design having the same specifications as in FIG. 5 and having the same surface refracting power in the sagittal direction and the meridional direction.
It is a force change diagram . The astigmatism of this lens is shown in FIG.

【0021】図6と図8を比較すると明らかなように、
本発明による累進多焦点レンズは、比較例に示す、サジ
タル方向とメリディオナル方向の面屈折力が同一の同レ
ンズに比して、非点収差が非常に良好に補正されている
ことが分かる。
As is clear from comparison between FIG. 6 and FIG.
It can be seen that the progressive multifocal lens according to the present invention has astigmatism corrected very favorably as compared with the same lens having the same surface refractive power in the sagittal direction and the meridional direction, which is shown in the comparative example.

【0022】表1は、第一の実施例および第二の実施例
の具体的値を条件式に代入した場合の数値である。いず
れの場合も、対応する第一の態様、第二の態様の条件式
を満足している。 表1 Pnm(-20)-Pns(-20) Pfm(15)-Pfm(15) ΔP(15)-ΔP(-20) 第一の実施例 −0.18 0.35 0.53 第二の実施例 −0.28 0.19 0.47
Table 1 shows numerical values when the concrete values of the first and second embodiments are substituted into the conditional expression. In any case, the conditional expressions of the corresponding first and second aspects are satisfied. Table 1 Pn m (-20) -Pn s (-20) Pf m (15) -Pf m (15) ΔP (15) -ΔP (-20) First Example -0.18 0.35 0. 53 Second Example -0.28 0.19 0.47

【0023】[0023]

【発明の効果】本発明によれば、特に遠用領域がマイナ
スの度数をもつ累進多焦点レンズにおいて、薄型化と収
差補正の両者をバランスよく達成することができる。
According to the present invention, particularly in a progressive multifocal lens in which the distance region has a negative power, both thinning and aberration correction can be achieved in a well-balanced manner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による累進多焦点レンズの第一の実施例
を示す、主注視線上におけるサジタル方向とメリディオ
ナル方向の面屈折力変化を示す図である。
FIG. 1 is a diagram showing a first example of a progressive-power multifocal lens according to the present invention , showing changes in surface refractive power in the sagittal direction and the meridional direction on the main gaze line.

【図2】図1のレンズの非点収差の分布を示す図であ
る。
FIG. 2 is a diagram showing a distribution of astigmatism of the lens of FIG.

【図3】比較のために、第一の実施例と同じ仕様で主注
視線上におけるサジタル方向とメリディオナル方向の面
屈折力を同一とした場合の面屈折力変化を示す図であ
る。
[3] For comparison, a diagram illustrating a surface power change in case of the same surface power in the sagittal direction and the meridional direction on the principal sight line on the same specifications as the first embodiment.

【図4】図3のレンズの非点収差の分布を示す図であ
る。
FIG. 4 is a diagram showing a distribution of astigmatism of the lens of FIG.

【図5】本発明による累進多焦点レンズの第二の実施例
を示す、主注視線上におけるサジタル方向とメリディオ
ナル方向の面屈折力変化を示す図である。
FIG. 5 is a diagram showing a second example of the progressive-power multifocal lens according to the present invention , showing changes in surface refractive power in the sagittal direction and the meridional direction on the main gaze line.

【図6】図5のレンズの非点収差の分布を示す図であ
る。
6 is a diagram showing a distribution of astigmatism of the lens of FIG.

【図7】比較のために、第二の実施例と同じ仕様で主注
視線上におけるサジタル方向とメリディオナル方向の面
屈折力を同一とした場合の面屈折力変化を示す図であ
る。
In [7] For comparison, a diagram illustrating a surface power change in case of the same surface power in the sagittal direction and the meridional direction in the principal sight line on the same specifications as the second embodiment.

【図8】図7のレンズの非点収差の分布を示す図であ
る。
8 is a diagram showing a distribution of astigmatism of the lens in FIG.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−338920(JP,A) 特開 昭59−58415(JP,A) 特開 平1−221722(JP,A) 特表 平4−500870(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02C 7/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-338920 (JP, A) JP-A-59-58415 (JP, A) JP-A-1-221722 (JP, A) Tokuhei HEI 4- 500870 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G02C 7/06

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 遠用度数がマイナスの累進多焦点レンズ
において、 遠用領域における主注視線方向の断面の面屈折力をP
fm、主注視線と直交する方向の断面の面屈折力をPf s
したとき、Pfm>Pf s 設定し、 近用領域における主注視線方向の断面の面屈折力をP
nm、主注視線と直交する方向の断面の面屈折力をPn s
したとき、Pnm<Pn s 設定したことを特徴とする累進
多焦点レンズ。
1. In a progressive power multifocal lens with a negative distance dioptric power, the surface refractive power of a cross section in the direction of the main gaze in the distance region is P.
f m, when the surface power of the cross section in a direction orthogonal to the main fixation line and <br/> and P f s, Pf m> P set to f s, the surface of the main fixation line direction of the cross section of the near region Refractive power is P
n m, mainly when the fixation line and surface power in the direction of a cross section perpendicular to <br/> and P n s, progressive multifocal lens, wherein the set to Pn m <P n s.
【請求項2】 請求項1記載の累進多焦点レンズにおい
て、主注視線方向の断面の面屈折力Pm の値と、主注視
線と直交する方向の断面の面屈折力 s 値は、主注視
線上におけるプリズム作用が0となる点の近傍の一点に
おいて、互いに等しくなる累進多焦点レンズ。
2. The progressive power multifocal lens according to claim 1, wherein the value of the surface refractive power P m of the cross section in the main gaze direction and the value of the surface refractive power P s of the cross section in the direction orthogonal to the main gaze line are , A progressive multifocal lens in which points at the points near the point where the prism action is zero on the main gaze line are equal to each other.
【請求項3】 請求項1または2記載の累進多焦点レン
ズにおいて、 近用度数をSN (D:ディオプター)としたとき、SN
<0であり、 かつ近用領域のある一点において、 Pnm(−20)−Pns(−20)<−0.1 を満足する累進多焦点レンズ。 但し、 Pnm(−20);プリズム測定点を原点とし、該原点か
ら下方に20mmの主注視線上の地点における主注視線方
向の断面面屈折力、 Pns(−20):プリズム測定点を原点とし、該原点か
ら下方に20mmの主注視線上の地点における主注視線と
直交する方向の断面面屈折力。
3. An apparatus according to claim 1 or 2 progressive multifocal lens according, the near power S N: when a (D diopter), S N
A progressive multifocal lens satisfying Pn m (−20) −Pn s (−20) <− 0.1 at one point where <0 and a near vision region. However, Pn m (−20); the prism measurement point as the origin, and the cross-sectional surface refractive power in the main gaze direction at a point on the main gaze line of 20 mm downward from the origin, Pn s (−20): the prism measurement point The cross-sectional surface refracting power in the direction orthogonal to the main line of sight at a point on the main line of sight of 20 mm below the original point.
【請求項4】 請求項1または2記載の累進多焦点レン
ズにおいて、 近用度数をSN (D)としたとき、SN ≧0であり、 かつ近用領域のある一点において、 Pnm(−20)−Pns(−20)<−0.2 を満足する累進多焦点レンズ。
4. The progressive-power multifocal lens according to claim 1, wherein S N ≧ 0 when the near dioptric power is S N (D), and Pn m (at a point where there is a near diopter region). -20) -Pn s (-20) <-0.2 progressive multifocal lens.
【請求項5】 請求項1または2記載の累進多焦点レン
ズにおいて、 遠用度数をSF としたとき、−2≦SF ≦0であり、 遠用領域のある一点において、 Pfm(15)−Pfs(15)>0.1 を満足する累進多焦点レンズ。 但し、 Pfm(15);プリズム測定点を原点とし、該原点から
上方に15mmの主注視線上の地点における主注視線方向
の断面面屈折力、 Pfs(15):プリズム測定点を原点とし、該原点から
上方に15mmの主注視線上の地点における主注視線と直
交する方向の断面面屈折力。
5. The progressive power multifocal lens according to claim 1 or 2, wherein, when the distance dioptric power is S F , −2 ≦ S F ≦ 0, and Pf m (15 ) -Pf s (15)> 0.1, a progressive multifocal lens. However, Pf m (15); the prism measurement point is the origin, and the cross-sectional surface refractive power in the direction of the main gaze direction at a point 15 mm above the origin on the main gaze line is Pf s (15): The prism measurement point is the origin. , A cross-sectional surface refractive power in a direction orthogonal to the main gaze line at a point on the main gaze line of 15 mm upward from the origin.
【請求項6】 請求項1または2記載の累進多焦点レン
ズにおいて、 遠用度数をSF としたとき、−6<SF <−2であり、 遠用領域のある一点において、 Pfm(15)−Pfs(15)>0.2 を満足する累進多焦点レンズ。
6. The progressive-power multifocal lens according to claim 1, wherein -6 <S F <-2 when the distance dioptric power is S F , and Pf m ( 15) -Pf s A progressive multifocal lens satisfying (15)> 0.2.
【請求項7】 遠用度数がマイナスの累進多焦点レンズ
において、 主注視線方向の断面の面屈折力をPm 、主注視線と直交
する方向の断面の面屈折力を s したとき、 ΔP(15)−ΔP(−20)>0.3 を満足することを特徴とする累進多焦点レンズ。 但し、 ΔP(x);プリズム測定点を原点とし、該原点から上
方(+)または下方(−)にxmmの主注視線上の地点に
おける断面面屈折力Pm s 差(ΔP=Pm
s
7. A progressive multifocal lens having a negative distance dioptric power.
At The surface refractive power of the cross section in the main gaze direction is Pm , Orthogonal to the main gaze
The surface power of the cross section in the directionP s WhenWhen I did ΔP (15) −ΔP (−20)> 0.3 A progressive multifocal lens characterized by satisfying. However, ΔP (x); the prism measurement point is the origin, and above the origin
To the point on the main gaze line of xmm toward (+) or downward (-)
Cross-sectional surface refractive power P inm WhenP s ofDifference (ΔP = Pm −P
s ).
JP28662994A 1993-11-19 1994-11-21 Progressive multifocal lens Expired - Lifetime JP3495437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28662994A JP3495437B2 (en) 1993-11-19 1994-11-21 Progressive multifocal lens

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP29093093 1993-11-19
JP5-290930 1993-11-19
JP6-219887 1994-09-14
JP21988794 1994-09-14
JP28662994A JP3495437B2 (en) 1993-11-19 1994-11-21 Progressive multifocal lens

Publications (2)

Publication Number Publication Date
JPH08136868A JPH08136868A (en) 1996-05-31
JP3495437B2 true JP3495437B2 (en) 2004-02-09

Family

ID=27330370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28662994A Expired - Lifetime JP3495437B2 (en) 1993-11-19 1994-11-21 Progressive multifocal lens

Country Status (1)

Country Link
JP (1) JP3495437B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3605281B2 (en) 1998-03-18 2004-12-22 ペンタックス株式会社 Progressive multifocal lens
ATE452349T1 (en) 1999-04-13 2010-01-15 Hoya Corp GLASS LENS WITH PROGRESSIVE REFRACTIVE POWER AND DESIGN METHOD THEREOF
JP4380887B2 (en) 2000-05-10 2009-12-09 株式会社ニコン・エシロール Progressive multifocal lens
KR20030060783A (en) * 2002-01-07 2003-07-16 펜탁스 가부시키가이샤 Progressive power spectacle lens
EP2045649A4 (en) * 2006-07-20 2010-11-10 Nikon Essilor Co Ltd Method for designing progressive refraction lens, method for manufacturing the same, and eyeglasses lens supplying system
JP5989317B2 (en) * 2011-09-29 2016-09-07 イーエイチエス レンズ フィリピン インク Progressive power lens, manufacturing method thereof, and designing method thereof
JP2014106385A (en) * 2012-11-28 2014-06-09 Hoya Lense Manufacturing Philippine Inc Progressive power lens and method of designing progressive power lens

Also Published As

Publication number Publication date
JPH08136868A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
JP4625554B2 (en) Progressive addition lens having a progressive surface and method for manufacturing the same
US6709105B2 (en) Progressive addition lenses
JP3170785B2 (en) Eyeglass lens with variable refractive index
US6652096B1 (en) Progressive lens
JP2859055B2 (en) Multifocal lens for glasses
JP2859054B2 (en) Multifocal lens for glasses
JP4674346B2 (en) Progressive Addition Lens
US7070274B2 (en) Spectacle lens
US20060066808A1 (en) Ophthalmic lenses incorporating a diffractive element
JP4434182B2 (en) Eyeglass lens design method
US6305800B1 (en) Ophthalmic lens
US20060092375A1 (en) Multifocal lenses for pre-presbyopic individuals
JPH11242193A (en) Multi-focal ophthalmologic lens with spherical aberration changed by addition and refraction abnormality
US5864380A (en) Progressive power lens
JP3495437B2 (en) Progressive multifocal lens
JP4361254B2 (en) Spectacle lens design method, spectacle lens manufacturing method, and computer program
JP3222528B2 (en) Aspherical spectacle lens
JPH0812339B2 (en) Eyeglass lens
US5719657A (en) Progressive power lens
US5610670A (en) Opthalmic lens having a positive refractive power
JP2000227579A (en) Inner progressive refractive lens
US8092012B2 (en) Single vision spectacle lens
JP3038745B2 (en) Eyeglass lens
JPH0239769B2 (en) RUISHINTASHOTENRENZU
JP2003262837A (en) Progressive refracting power lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

EXPY Cancellation because of completion of term