JPH0239769B2 - RUISHINTASHOTENRENZU - Google Patents

RUISHINTASHOTENRENZU

Info

Publication number
JPH0239769B2
JPH0239769B2 JP21800482A JP21800482A JPH0239769B2 JP H0239769 B2 JPH0239769 B2 JP H0239769B2 JP 21800482 A JP21800482 A JP 21800482A JP 21800482 A JP21800482 A JP 21800482A JP H0239769 B2 JPH0239769 B2 JP H0239769B2
Authority
JP
Japan
Prior art keywords
lens
prism
chromatic aberration
region
progressive multifocal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21800482A
Other languages
Japanese (ja)
Other versions
JPS59107322A (en
Inventor
Shunei Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP21800482A priority Critical patent/JPH0239769B2/en
Priority to US06/557,978 priority patent/US4606626A/en
Priority to FR8319578A priority patent/FR2545615B1/en
Priority to DE3345076A priority patent/DE3345076C3/en
Publication of JPS59107322A publication Critical patent/JPS59107322A/en
Publication of JPH0239769B2 publication Critical patent/JPH0239769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Description

【発明の詳細な説明】 本発明は遠用部領域に近視矯正のための処方を
有する累進多焦点レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a progressive multifocal lens having a prescription for myopia correction in the distance region.

本発明の目的は、累進多焦点レンズの近用部領
域での色収差を改善することにある。また他の目
的はレンズの薄形化および軽量化にある。
An object of the present invention is to improve chromatic aberration in the near vision region of a progressive multifocal lens. Another objective is to make the lens thinner and lighter.

現在、眼鏡は私たちの日常生活になくてはなら
ないものとなつている。現在必要がない人でも、
やがて老いた時には老視となるため、老眼鏡のお
世話になることになる。こうして眼鏡は私たちの
生活に深い関わりをもつているわけであるが、こ
の眼鏡のレンズとしてまず要求されることは使つ
たときによく見えることであり、更には薄いこ
と、軽いこと、フアツシヨン性に富むこと、傷つ
き難いこと等が挙げられる。このような観点から
従来様々なレンズ素材の開発がされ商品として市
場に出ている。しかし、現在のところ先に述べた
ような条件の総てを満足させるようなものはな
い。というのは、薄くという条件を満たすために
は素材の屈折率が大きいことが必要であるが、屈
折率が大きいことが必要であるが、屈折率が高い
素材は概してアツベ数が小さく、レンズの周辺を
使つて物を見たとき輪郭がにじんで色付いて見え
る、いわゆる色収差が発生するためである。この
色収差は、一般の近視あるいは遠視を矯正する単
焦点レンズではあまり重要な問題とはならない。
というのは、普通私たちが眼鏡を使うときそのレ
ンズの周辺の部分はほとんど使わずに、中心の近
くを使うからである。しかし、累進多焦点レンズ
の場合は色収差が重要な問題となる。というの
は、累進多焦点レンズには、遠くを見るための領
域(遠用部領域)と近くを見るための領域(近用
部領域)とその中間距離のものを見るための領域
(中間部領域)が有り、その近用部領域はレンズ
中心より下方に15〜25mm離れた位置にあり、その
部分では色収差が著しく現われるからである。こ
のため、従来高屈折率の素材は累進多焦点レンズ
には殆んど使われなかつた。本発明は、このよう
な累進多焦点レンズの近用部の色収差を改善する
ものであり、これにより従来使えなかつた高屈折
率の素材の使用が可能となり、薄く、軽いレンズ
が実現可能となる。
Nowadays, glasses have become an indispensable part of our daily life. Even if you don't need it now,
Eventually, when you get older, you will develop presbyopia and will need reading glasses. In this way, eyeglasses have a deep connection to our lives, and the first requirement for the lenses of these glasses is that they provide good visibility when worn, and they also need to be thin, light, and fashionable. Examples include being rich in things, being hard to get hurt, etc. From this point of view, various lens materials have been developed and are now on the market as products. However, there is currently no product that satisfies all of the above conditions. This is because in order to satisfy the condition of thinness, the material must have a high refractive index, but materials with a high refractive index generally have a small Atbe's number, making it difficult for the lens to be made. This is due to so-called chromatic aberration, which causes the outline of an object to appear blurred and colored when viewed from the periphery. This chromatic aberration is not a very important problem in single-focal lenses that correct general nearsightedness or farsightedness.
This is because when we normally wear glasses, we hardly use the peripheral parts of the lenses, but instead use the parts near the center. However, in the case of progressive multifocal lenses, chromatic aberration becomes an important problem. This is because a progressive multifocal lens has an area for seeing far away (distance area), an area for seeing up close (near area), and an area for seeing intermediate distances (intermediate area). This is because the near vision area is located 15 to 25 mm below the center of the lens, and chromatic aberration appears significantly in that area. For this reason, materials with high refractive index have rarely been used in progressive multifocal lenses. The present invention improves the chromatic aberration in the near vision area of such progressive multifocal lenses, which makes it possible to use materials with high refractive index that could not be used in the past, making it possible to create thinner and lighter lenses. .

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

第1図は遠用部領域に近視矯正処方をもつた従
来の累進多焦点レンズの垂直断面形状を示す。図
中の三角形は各位置でのプリズムを示し、大きさ
によりプリズム量を、向きによつて基底方向を示
している。そのプリズムをより詳しく表わしたも
のが第2図である。図の縦軸はレンズ垂直断面上
の位置で、Oはフイツテイング・ポイント(目の
正面位置)、AおよびBはそれぞれ眼鏡として使
用されるレンズ上端および下端である。記号は第
1図と共通。Oから上方Aまでは遠用部領域内の
部分、下方Cまでが中間部領域内の部分、更にC
より下方Bまでは近用部領域内の部分である。横
軸はプリズムを示し、縦軸を中心に右方向は基底
方向が90゜のプリズム量Pupを、左方向は基底方
向が270゜のプリズム量Pdnを示す。単焦点レンズ
の場合のレンズ上の各位置でのプリズム量Pはつ
ぎの式(1)により近似的に求めることができる。
FIG. 1 shows a vertical cross-sectional shape of a conventional progressive multifocal lens having a myopia correcting prescription in the distance region. Triangles in the figure indicate prisms at each position, the size indicates the amount of prism, and the direction indicates the base direction. FIG. 2 shows the prism in more detail. The vertical axis of the figure is the position on the vertical cross section of the lens, O is the fitting point (position in front of the eye), and A and B are the upper and lower ends of the lens used as eyeglasses, respectively. Symbols are the same as in Figure 1. The part from O to upper A is in the distance region, the part to lower C is in the intermediate region, and then C
The lower part B is within the near vision region. The horizontal axis indicates a prism, and the right direction of the vertical axis indicates the prism amount Pup with a base direction of 90°, and the left direction indicates the prism amount Pdn with a base direction of 270°. In the case of a single focus lens, the amount of prism P at each position on the lens can be approximately determined by the following equation (1).

P=PW×h ……(1) ここでPWはレンズの度数(単位はデイオプト
リー)、hは光学中心(通常、光学中心はフイツ
テイング・ポイントとほぼ一致する)からの距離
(単位はcm)である。累進多焦点レンズの場合は
図のように、遠用部領域においてはその全域がほ
ぼレンズ処方度数PWとなつているため、そのプ
リズムは式(1)による近似することができるが、中
間部領域および近用部領域においては、中間部領
域OからCにかけて度数が漸次増加し近用部領域
では加入度(ADD)だけ増加したほぼ一定の度
数(PW+ADD)となるため、そのプリズムは
PW×hの直線から(PW+ADD)×hの直線に
徐々に近づく形の分布となる。
P=PW×h...(1) Here, PW is the power of the lens (in diopters), and h is the distance (in cm) from the optical center (normally, the optical center almost coincides with the fitting point). be. In the case of a progressive multifocal lens, as shown in the figure, the entire distance region is approximately the lens prescription power PW, so the prism can be approximated by equation (1), but in the intermediate region In the near vision region, the power gradually increases from intermediate region O to C, and in the near vision region, the power increases by the addition power (ADD) and becomes almost constant (PW + ADD), so the prism
The distribution gradually approaches the straight line of (PW + ADD) × h from the straight line of PW × h.

さて、レンズの色収差はレンズ素材のアツベ数
νとプリズム量Pによりその大きさIを表わすこ
とができ、式(2)のようになる。
Now, the magnitude I of the chromatic aberration of a lens can be expressed by the Abbe number ν of the lens material and the prism amount P, as shown in equation (2).

I=P/ν ……(2) 一般に色収差が知覚されるのは、 I=P/ν>0.2 ……(3) であることが知られている。逆に言えば、レンズ
が眼鏡レンズとして色収差の影響なく使用される
ための条件は、レンズの眼鏡としての使用範囲に
おける色収差が I=P/ν<0.2 ……(4) の関係を満たすことである。
I=P/ν...(2) It is known that chromatic aberration is generally perceived when I=P/ν>0.2...(3). Conversely, the condition for a lens to be used as a spectacle lens without the influence of chromatic aberration is that the chromatic aberration in the range of use of the lens as a spectacle lens satisfies the relationship I=P/ν<0.2...(4) be.

累進多焦点レンズにおいては、プリズム量が最
大となるのは遠用部領域ではレンズ使用上端Aで
のプリズムPa、近用部領域ではレンズ使用下端
BでのプリズムPbであるが、第2図から解かる
ように下端Bは上端Aに比べ光学中心よりの距離
が倍近くあるため、Pb>Paの関係がある。従つ
てアツベ数が小さな素材ではまず近用部領域にお
いて色収差が発生する。つまり色収差が知覚され
る限界のプリズム量をPgとすると、Pgは Pg=0.2×ν ……(5) で求められ、高屈率素材のようにνがある程度小
さくなると第2図に示すように近用部領域のD〜
Bの間はプリズム量が限界値Pgを越えてしまい
(遠用部領域ではPg以下に入つている)、近用部
領域のD〜Bの間に色収差が知覚されるようにな
る。
In a progressive multifocal lens, the maximum amount of prism is the prism Pa at the upper end A of the lens in the distance region, and the prism Pb at the lower end B of the lens in the near vision region. As can be seen, the lower end B is nearly twice as far from the optical center as the upper end A, so there is a relationship of Pb>Pa. Therefore, in materials with a small Abbe number, chromatic aberration first occurs in the near vision area. In other words, if the limit amount of prism at which chromatic aberration is perceived is Pg, then Pg is calculated as Pg=0.2×ν...(5), and when ν is small to some extent as in the case of high refractive index materials, as shown in Figure 2. D in the near vision area
During B, the amount of prism exceeds the limit value Pg (in the far vision region, it is below Pg), and chromatic aberration is perceived between D and B in the near vision region.

つぎに、本発明の実施例を示す。第3図は本発
明による近視矯正処方をもつた累進多焦点レンズ
の垂直断面である。図中の表現方法は第1図と同
様であるが、比較のために第1図に示した従来例
を破線により示す。本発明の特徴は、図示の如く
基底方向90゜のプリズム処方がされていることで
あり、このプリズム処方は斜視矯正を目的とする
ものでなく、眼鏡の左右レンズに等しく施すもの
である。第4図は本実施例におけるプリズムをよ
り詳しく表わしたもので、表現の方法は第2図と
同様である。図中の破線は比較のために入れた第
2図に示す従来例のものである。図のように基底
方向90゜のプリズムPtを入れることにより、遠用
部領域ではその分だけプリズムが増加し、近用部
領域ではその分だけプリズムが減少する。このプ
リズムの増減は、そのまま色収差の増減を意味す
るから、遠用部領域では色収差が増加し近用部領
域では色収差が減少する。本実施例においては近
用部領域の使用下端Bにおけるプリズム量Pbと
色収差が知覚される限界のプリズム量Pgが等し
くなるようにPtを決定しているため、近用部領
域の使用範囲内において色収差は知覚されなく良
好な視野が得られる。このときに注目すべきこと
は、遠用部領域の色収差である。遠用部領域にお
いては90゜方向に基底をもつプリズムの付加によ
りプリズムが増加するため色収差的に悪くなるこ
とは先に述べたところであるが、第4図から解か
るように通常遠用部領域の使用上端までの距離
OAはあまり長くない(10〜15mm)であるため、
その上端AにおけるプリズムPaがプリズム増加
により限界値Pgを越えることは殆んどない。従
つて遠用部領域においても色収差は知覚されず良
好な視野が得られる。
Next, examples of the present invention will be shown. FIG. 3 is a vertical cross-section of a progressive multifocal lens with a myopia correcting prescription according to the present invention. The representation method in the figure is the same as that in FIG. 1, but for comparison, the conventional example shown in FIG. 1 is shown by broken lines. A feature of the present invention is that, as shown in the figure, the prism prescription is 90° in the base direction, and this prism prescription is not intended for strabismus correction, but is applied equally to the left and right lenses of eyeglasses. FIG. 4 shows the prism in this embodiment in more detail, and the method of representation is the same as that in FIG. 2. The broken line in the figure is that of the conventional example shown in FIG. 2, which is included for comparison. As shown in the figure, by inserting a prism Pt with a 90° angle toward the base, the number of prisms increases by that amount in the distance vision region, and decreases by that amount in the near vision region. This increase or decrease in the prism directly means an increase or decrease in chromatic aberration, so chromatic aberration increases in the distance vision area and decreases in the near vision area. In this example, Pt is determined so that the prism amount Pb at the lower end B of use in the near vision area is equal to the prism amount Pg at the limit where chromatic aberration is perceived. Chromatic aberration is not perceived and a good field of view is obtained. What should be noted at this time is chromatic aberration in the distance region. As mentioned earlier, in the distance vision region, the addition of a prism with a base in the 90° direction increases the number of prisms, resulting in worsening of chromatic aberration, but as can be seen from Figure 4, the distance vision region normally Distance to top of use
Since OA is not very long (10-15mm),
The prism Pa at the upper end A almost never exceeds the limit value Pg due to an increase in prisms. Therefore, no chromatic aberration is perceived even in the far vision region, and a good visual field can be obtained.

以上に説明した如く本発明は、基底方向90゜の
プリズムを施すことにより、近用部領域での色収
差を改善することであるが、施すプリズムの量は
次のように決定される。
As explained above, the purpose of the present invention is to improve chromatic aberration in the near vision region by applying a prism oriented at 90 degrees in the base direction, and the amount of prism to be applied is determined as follows.

近用部領域下端Bでのプリズムの大きさはPb
は、近似的に次式で与えられる。
The size of the prism at the lower end B of the near vision area is Pb
is approximately given by the following equation.

Pb=−(PW×ADD)× ここではOとBの距離(cm)、これに基底
方向90゜のプリズムPtを付けるとB点でのプリズ
ムは、 Pb−Pt となり、これが色収差が出ないための条件式(4)に
代入し、変形すると Pt>Pb−0.2×ν=−(PW+ADD)×−
0.2×ν 更に変形すると Pt>−K×(PW+ADD)−0.2×ν ……(5) ここで K==1.5〜2.5 係数Kは距離を表わすものであり、レンズ
の設計および使用者のレンズ上の使用範囲の個人
差により上記のような範囲をもつ。
Pb=-(PW×ADD)×Here, the distance between O and B (cm).If we add a prism Pt with a base direction of 90 degrees to this, the prism at point B becomes Pb-Pt, which is because there is no chromatic aberration. Substituting into conditional expression (4) and transforming it, Pt>Pb−0.2×ν=−(PW+ADD)×−
0.2×ν When further transformed, Pt>−K×(PW+ADD)−0.2×ν ……(5) Here, K==1.5~2.5 The coefficient K represents the distance, and it depends on the design of the lens and the user's lens. The range of use is as shown above, depending on individual differences.

式(5)により決定されるPtが大き過ぎて、視覚
上の障害を生じたり、遠用部領域に大きな色収差
を発生する場合には、Ptを式(5)のものより小さ
くとり、レンズに黄係統あるいは茶系統あるいは
青系統の着色をすることにより、色収差的に良好
なレンズを得ることができる。というのは、色収
差として人が知覚するのは、物の輪郭に出る黄色
と青色のにじみ・・・であり、プリズムPtの付加によ
り消しきれないこの色収差を黄系統あるいは茶系
統あるいは青系統のレンズの着色により知覚しに
くくできるからである。
If Pt determined by equation (5) is too large and causes visual impairment or large chromatic aberration in the distance region, set Pt smaller than that of equation (5) and adjust the lens. A lens with good chromatic aberration can be obtained by coloring the lens in yellow, brown, or blue. This is because what humans perceive as chromatic aberration is a blur of yellow and blue that appears on the outline of objects...and this chromatic aberration, which cannot be erased by adding a prism Pt, can be removed by using a yellow, brown, or blue lens. This is because the coloring makes it difficult to perceive.

以上述べた色収差面での効果の他に、本発明に
はレンズの薄形化、軽量化の効果がある。第3図
の従来のものと本発明によるものの断面の比較に
より明らかなように、基底方向90゜のプリズムの
付加により遠用部領域側ではレンズが厚くなり、
近用部領域側ではレンズが薄くなる。従つてレン
ズとしては遠用部領域側での増加と近用部領域側
での減少が相殺されるため、薄形化、軽量化の効
果はない。しかし眼鏡フレームに入れた状態では
遠用部領域と中間部領域および近用部領域との面
積的な比率はほぼ1:2程度であるので、眼鏡と
したときには全体として薄く、軽いレンズとな
る。
In addition to the above-mentioned effects on the chromatic aberration surface, the present invention has the effect of making the lens thinner and lighter. As is clear from the comparison of the cross sections of the conventional lens and the lens according to the present invention in FIG. 3, the addition of the 90° prism in the base direction makes the lens thicker on the distance vision side.
The lens becomes thinner on the near vision side. Therefore, as a lens, the increase in the distance vision region and the decrease in the near vision region cancel each other out, so there is no effect of thinning and weight reduction. However, when placed in a spectacle frame, the area ratio of the distance region, intermediate region, and near vision region is approximately 1:2, so when used as eyeglasses, the lens is thin and light as a whole.

以上述べた如く本発明によれば、累進多焦点レ
ンズ、特にアツベ数の小さい高屈折率素材を使つ
た累進多焦点レンズにおいて、近用部領域での色
収差が改善されるとともに、薄形化、軽量化を図
ることができる。
As described above, according to the present invention, in a progressive multifocal lens, especially a progressive multifocal lens using a high refractive index material with a small Atbe's number, chromatic aberration in the near vision region is improved, and the thickness is reduced. Weight reduction can be achieved.

なおプリズムの基底方向が90゜より若干ずれる
ものについても本発明の効果が得られ、本発明の
範囲を越えるものではない。
Note that the effects of the present invention can be obtained even if the base direction of the prism is slightly deviated from 90 degrees, and this does not go beyond the scope of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の近視矯正処方を有する累進多
焦点レンズの断面図。第2図は、第1図のレンズ
のプリズム分布を示す図。第3図は、本発明によ
る近視矯正処方を有する累進多焦点レンズの断面
図。第4図は、第3図のレンズのプリズム分布を
示す図。 記号の説明、O……フイツテイングポイント、
A……レンズの使用上端位置、B……レンズの使
用下端位置、C……中間部領域と近用部領域の境
界、Pup……基底方向90゜のプリズム、Pdn……基
底方向270゜のプリズム、Pg……色収差の生ずる
限界のプリズム量。
FIG. 1 is a cross-sectional view of a progressive multifocal lens having a conventional myopia correction prescription. FIG. 2 is a diagram showing the prism distribution of the lens in FIG. 1. FIG. 3 is a cross-sectional view of a progressive multifocal lens having a myopia correcting prescription according to the present invention. FIG. 4 is a diagram showing the prism distribution of the lens in FIG. 3. Explanation of symbols, O...Fitting point,
A... Upper end position of the lens, B... Lower end position of the lens, C... Boundary between intermediate region and near vision region, Pup... Prism at 90° in the basal direction, Pdn... 270° in the basal direction Prism, Pg...The limit amount of prism that causes chromatic aberration.

Claims (1)

【特許請求の範囲】 1 遠用部領域に近視矯正用の処方を有する累進
多焦点レンズにおいて、該処方に斜視矯正を目的
としない基底方向90度のプリズムを付加したこと
を特徴とする累進多焦点レンズ。 2 好ましくは前記プリズムの大きさPtが、前
記レンズの素材のアツベ数をν、前記遠用部領域
の近視矯正処方をPW、加入度をADDとしたと
き、 Pt>−K×(PW+ADD)−0.2×ν 1.5≦K≦2.5 なる関係を満たすことを特徴とする特許請求の範
囲第1項に記載の累進多焦点レンズ。 3 黄系統、茶系統または青系統の着色をしたこ
とを特徴とする特許請求の範囲第1項または第2
項に記載の累進多焦点レンズ。
[Scope of Claims] 1. A progressive multifocal lens having a prescription for myopia correction in the distance region, characterized in that a prism of 90 degrees in the basal direction, which is not intended for strabismus correction, is added to the prescription. focal lens. 2 Preferably, the size Pt of the prism is such that, where ν is the Atsube number of the lens material, PW is the myopia correction prescription for the distance region, and ADD is the addition power, Pt>−K×(PW+ADD)− The progressive multifocal lens according to claim 1, which satisfies the following relationship: 0.2×ν 1.5≦K≦2.5. 3. Claims 1 or 2 characterized by being colored yellow, brown, or blue.
The progressive multifocal lens described in section.
JP21800482A 1982-12-13 1982-12-13 RUISHINTASHOTENRENZU Expired - Lifetime JPH0239769B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21800482A JPH0239769B2 (en) 1982-12-13 1982-12-13 RUISHINTASHOTENRENZU
US06/557,978 US4606626A (en) 1982-12-13 1983-12-05 Progressive multifocal ophthalmic lenses with prism for correcting chromatic aberration
FR8319578A FR2545615B1 (en) 1982-12-13 1983-12-07 PROGRESSIVE MULTIFOCAL OPHTHALMIC LENS
DE3345076A DE3345076C3 (en) 1982-12-13 1983-12-13 Spectacle lens with a varifocal surface, the far part being designed to correct myopia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21800482A JPH0239769B2 (en) 1982-12-13 1982-12-13 RUISHINTASHOTENRENZU

Publications (2)

Publication Number Publication Date
JPS59107322A JPS59107322A (en) 1984-06-21
JPH0239769B2 true JPH0239769B2 (en) 1990-09-07

Family

ID=16713113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21800482A Expired - Lifetime JPH0239769B2 (en) 1982-12-13 1982-12-13 RUISHINTASHOTENRENZU

Country Status (1)

Country Link
JP (1) JPH0239769B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992012452A1 (en) * 1990-12-27 1992-07-23 Seiko Epson Corporation Progressive lens
WO1993015432A1 (en) * 1992-02-03 1993-08-05 Seiko Epson Corporation Variable focus visual power correction apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852116B2 (en) * 1995-11-24 2006-11-29 セイコーエプソン株式会社 Progressive multifocal lens and spectacle lens
WO2006018879A1 (en) * 2004-08-19 2006-02-23 Menicon Co., Ltd. Multifocus colored contact lens and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992012452A1 (en) * 1990-12-27 1992-07-23 Seiko Epson Corporation Progressive lens
WO1993015432A1 (en) * 1992-02-03 1993-08-05 Seiko Epson Corporation Variable focus visual power correction apparatus

Also Published As

Publication number Publication date
JPS59107322A (en) 1984-06-21

Similar Documents

Publication Publication Date Title
US4606626A (en) Progressive multifocal ophthalmic lenses with prism for correcting chromatic aberration
US6454408B1 (en) Shaped ophthalmic lenses
EP1216432B1 (en) Progressive lens
US8287124B2 (en) Opthalmic lenses having reduced base out prism
US20060279695A1 (en) Soft multifocal contact lens
KR20070100902A (en) Multi-focal ophthalmic lens with base in prism
US6260967B1 (en) Progressive lens
CA2250616C (en) Ophthalmic lens
JPH0690368B2 (en) Progressive multifocal lens and glasses
WO2000073846A1 (en) Progressive lens
JPS62500122A (en) multifocal lens
US5864380A (en) Progressive power lens
JP2010009071A (en) Progressive spectacle lens comprising two aspherical surfaces, particularly progressive surfaces, and method of calculating the same
JPH0812339B2 (en) Eyeglass lens
JPH0239769B2 (en) RUISHINTASHOTENRENZU
JPS5824112A (en) Glasses lens with large positive refraction value
US8092012B2 (en) Single vision spectacle lens
JP3013396B2 (en) Eyeglass lens
JPH02196211A (en) Lens for spectacles
JPH02289819A (en) Aspherical spectacle lens
US20070035695A1 (en) Improved reading eyeglasses
US4573776A (en) Biconvex aphakic prosthetic lens
JP2006528377A (en) Multi-focal spectacle lens with 4 sections
AU772399B2 (en) Progressive lens
JPS6347849Y2 (en)