JP4806218B2 - Progressive power lens - Google Patents

Progressive power lens Download PDF

Info

Publication number
JP4806218B2
JP4806218B2 JP2005181834A JP2005181834A JP4806218B2 JP 4806218 B2 JP4806218 B2 JP 4806218B2 JP 2005181834 A JP2005181834 A JP 2005181834A JP 2005181834 A JP2005181834 A JP 2005181834A JP 4806218 B2 JP4806218 B2 JP 4806218B2
Authority
JP
Japan
Prior art keywords
lens
progressive
power
axis
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005181834A
Other languages
Japanese (ja)
Other versions
JP2006039526A (en
Inventor
守康 白柳
Original Assignee
セイコーオプティカルプロダクツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーオプティカルプロダクツ株式会社 filed Critical セイコーオプティカルプロダクツ株式会社
Priority to JP2005181834A priority Critical patent/JP4806218B2/en
Publication of JP2006039526A publication Critical patent/JP2006039526A/en
Application granted granted Critical
Publication of JP4806218B2 publication Critical patent/JP4806218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、遠用部頂点屈折力が正であって、かつ少なくとも内面が累進面である累進屈折力レンズに関する。 The present invention relates to a progressive power lens in which the distance portion vertex power is positive and at least the inner surface is a progressive surface.

従来、累進屈折力レンズは、老眼視矯正を目的として利用されている。該累進屈折力レンズは、加工自由度の高さや広い明視域の確保という観点から、特に内面、つまり眼鏡装用時において装用者の眼に近い側の面を累進面にするのが好適とされている。このような内面を累進面とした累進屈折力レンズは、例えば以下に示す特許文献1に開示される。 Conventionally, progressive-power lenses have been used for the purpose of correcting presbyopia. The progressive power lens preferably has a progressive surface on the inner surface, that is, the surface closer to the eye of the wearer when wearing spectacles, from the viewpoint of ensuring a high degree of freedom in processing and a wide clear vision region. ing. A progressive power lens having such an inner surface as a progressive surface is disclosed in, for example, Patent Document 1 shown below.

国際公開第97/19382号パンフレットInternational Publication No. 97/19382 Pamphlet

ここで一般的に、眼鏡レンズは、メニスカス形状である方がよいとされる。これは、内面を凸面に構成した眼鏡レンズの場合、以下の問題点が発生することに起因する。例えば、凸状の内面を下にして該レンズを平面台(例えばテーブル)上に載置した場合、レンズ中央付近が該平面台に当接してしまう。これにより、該レンズ中央付近が簡単に傷ついてしまう問題点がある。また、凸状の内面には装用者の皮膚や体毛(例えば睫等)が付着しやすくなる。これにより、該内面が安易に汚れてしまうという問題点もある。 Here, it is generally considered that the spectacle lens should have a meniscus shape. This is because the following problems occur in the case of a spectacle lens having a convex inner surface. For example, when the lens is placed on a flat table (for example, a table) with the convex inner surface down, the vicinity of the center of the lens comes into contact with the flat table. As a result, there is a problem that the vicinity of the center of the lens is easily damaged. In addition, the skin and body hair (for example, wrinkles) of the wearer are likely to adhere to the convex inner surface. Thereby, there also exists a problem that this inner surface will be easily soiled.

そこで、特許文献1の累進屈折力レンズでは、外面、つまり眼鏡装用時において物体側の面の面屈折力が遠用部頂点屈折力と加入屈折力の和よりも大きくなるように設計することにより、メニスカス形状を実現している。 Therefore, the progressive-power lens of Patent Document 1 is designed so that the surface refractive power of the outer surface, that is, the object-side surface when wearing spectacles, is larger than the sum of the distance portion vertex refractive power and the addition refractive power. The meniscus shape is realized.

しかし、上記設計を、正の遠用部頂点屈折力を有する累進屈折力レンズに適用した場合、中心厚が厚くなってしまい全体としての薄型化が達成されないという新たな問題が発生してしまう。 However, when the above design is applied to a progressive addition lens having a positive distance vertex refractive power, a new problem arises that the center thickness is increased and the overall thickness cannot be reduced.

以上の事情に鑑みて、本発明は、正の遠用部頂点屈折力を持つ累進屈折力レンズであって、メニスカス形状を保ちつつも中心厚が薄い累進屈折力レンズを提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a progressive-power lens having a positive distance-distance apex power, and having a thin center thickness while maintaining a meniscus shape. To do.

本発明に係る累進屈折力レンズは、正の遠用部頂点屈折力を有し、少なくとも内面が累進面である累進屈折力レンズであって、プリズム測定基準点における外面の法線に沿う軸をZ軸(但し、外面から内面に向かう方向を正とする)、前記内面と前記Z軸との交点を通りつつ前記Z軸に直交する軸をY軸(但し、装用時においてレンズ下端からレンズ上端に向かう方向を正とする)とし、Y−Z平面と前記内面とが交わることによりできる曲線の、前記Z軸からの任意の高さyにおけるサグ量と曲率を、それぞれz2(y)、C2(y)とし、Z軸から遠用部測定基準点までの高さをyf、Z軸から近用部測定基準点までの高さをyn、Z軸からレンズ上端までの高さをyt、Z軸からレンズ下端までの高さをyuとすると、以下の3つの条件、
を同時に満たし、
さらに、前記内面形状をトーリック面で近似した場合の二つの主曲率のうち、最小曲率C2minが以下の条件、
を満たすことを特徴とする。
The progressive-power lens according to the present invention is a progressive-power lens having a positive distance vertex refractive power and at least an inner surface being a progressive surface, and an axis along the normal line of the outer surface at the prism measurement reference point. Z-axis (however, the direction from the outer surface to the inner surface is positive), the axis perpendicular to the Z-axis passing through the intersection of the inner surface and the Z-axis is Y-axis (however, when wearing, from the lower end of the lens to the upper end of the lens The sag amount and the curvature at an arbitrary height y from the Z-axis of the curve formed by the intersection of the YZ plane and the inner surface are z2 (y) and C2 respectively. (Y), yf is the height from the Z axis to the distance measurement reference point, yn is the height from the Z axis to the near measurement reference point, yt is the height from the Z axis to the upper end of the lens, and Z If the height from the shaft to the lower end of the lens is yu, the following three conditions ,
It meets at the same time,
Furthermore, among the two main curvatures when the inner surface shape is approximated by a toric surface, the minimum curvature C2min is as follows:
It is characterized by satisfying .

条件(2)は、正の遠用部頂点屈折力を持つ累進屈折力レンズが少なくとも遠用部でメニスカス形状であるための条件である。遠用部測定基準点での曲率C2(yf)が条件(2)を満たさない、つまり、曲率C2(yf)が負の値を採ると、内面の形状が完全に凸面になってしまうため不適である。また、条件(3)は、該累進屈折力レンズの中心厚を薄くするための条件である。近用部測定基準点での曲率C2(yn)が条件(3)を満たさない、つまり、曲率C2(yn)が正の値を採ると、ベースカーブが大きくなり、レンズ中心厚を薄くすることができない。 Condition (2) is a condition for the progressive power lens having positive distance portion vertex refractive power to have a meniscus shape at least in the distance portion. If the curvature C2 (yf) at the distance measurement reference point does not satisfy the condition (2), that is, if the curvature C2 (yf) takes a negative value, the shape of the inner surface becomes completely convex, which is inappropriate. It is. Condition (3) is a condition for reducing the center thickness of the progressive-power lens. If the curvature C2 (yn) at the near-point measurement reference point does not satisfy the condition (3), that is, if the curvature C2 (yn) takes a positive value, the base curve increases and the lens center thickness decreases. I can't.

さらに、条件(4)は、レンズの上下端における各サグ量とZ軸上でのサグ量との関係を示している。条件(4)を満たすレンズは、例えば、内面を下にして平面台上に載置した場合に、レンズ周辺部のみが該平面台と当接するような形状に設計される。つまり、条件(4)を満たすことにより、内面、特に内面中央部におけるキズや汚れ等の発生を有効に防止するのに好適なメニスカス形状の累進屈折力レンズが提供される。 Furthermore, the condition (4) indicates the relationship between the sag amounts at the upper and lower ends of the lens and the sag amount on the Z axis. For example, the lens satisfying the condition (4) is designed to have a shape in which only the peripheral portion of the lens comes into contact with the flat table when the lens is placed on the flat table with the inner surface facing down. That is, by satisfying the condition (4), a meniscus progressive power lens suitable for effectively preventing the occurrence of scratches and dirt on the inner surface, particularly the central portion of the inner surface, is provided.

また、一般に、乱視矯正を目的としない内面または両面累進屈折力レンズでは、内面の垂直断面、つまりY−Z平面での断面が、近似的に最も緩いカーブを描く断面(以下、最小曲率断面という)であることがほとんどである。従って、上記の累進屈折力レンズも、内面の垂直断面を最小曲率断面であるとして各条件を規定している。しかし、乱視矯正も目的とした、換言すれば乱視屈折力を含む累進屈折力レンズの場合、内面は累進特性と乱視補正特性の二つの特性を併せ持つ面として設計される。つまり、このような累進屈折力レンズにおける内面は、乱視軸AXの方向によって最小曲率断面の方向が変化する。そのため、必ずしも垂直断面が最小曲率断面とは限らない。また、外面と内面に、加入の垂直成分と水平成分をそれぞれ配分したような累進屈折力レンズでも、同様に、垂直断面が最小曲率断面とは限らない。 In general, in an inner surface or double-sided progressive addition lens that is not intended for astigmatism correction, a vertical cross section of the inner surface, that is, a cross section in the YZ plane is an approximately gentle curve (hereinafter referred to as a minimum curvature cross section). ). Therefore, the above-mentioned progressive-power lens also defines each condition on the assumption that the vertical cross section of the inner surface is the minimum curvature cross section. However, in the case of a progressive-power lens that also has astigmatism correction, in other words, a progressive-power lens including astigmatism refractive power, the inner surface is designed as a surface having both a progressive characteristic and an astigmatism correction characteristic. That is, the direction of the minimum curvature cross section of the inner surface of such a progressive-power lens changes depending on the direction of the astigmatic axis AX. Therefore, the vertical section is not necessarily the minimum curvature section. Similarly, in a progressive-power lens in which the added vertical component and horizontal component are respectively distributed on the outer surface and the inner surface, the vertical section is not always the minimum curvature section.

そこで、条件(5)は、内面形状をトーリック面で近似した場合の二つの主曲率のうち、最小曲率が満たすべき条件を定めたものである。この最小曲率C2minが条件(5)の下限を下回ると、レンズがメニスカス形状を保つことができなくなる、つまり内面が凸面になるおそれがあるため好ましくない。また、曲率C2minが条件(5)の上限を超えると、レンズを十分に薄くすることができないため好ましくない。 Therefore, the condition (5) defines a condition that the minimum curvature should satisfy among the two main curvatures when the inner surface shape is approximated by a toric surface. If the minimum curvature C2min is lower than the lower limit of the condition (5), the lens cannot maintain the meniscus shape, that is, the inner surface may become a convex surface, which is not preferable. Further, if the curvature C2min exceeds the upper limit of the condition (5), it is not preferable because the lens cannot be made sufficiently thin.

これにより、内面に乱視補正特性を付与したり(請求項2)、外面と内面のそれぞれに、加入屈折力の垂直成分および水平成分のいずれか一方を配分したり(請求項3)しても、メニスカス形状を保ちつつ薄型化された累進屈折力レンズが提供される。 Thereby, astigmatism correction characteristics are imparted to the inner surface (Claim 2), or either the vertical component or the horizontal component of the addition power is distributed to the outer surface and the inner surface (Claim 3). A progressive-power lens that is thin while maintaining a meniscus shape is provided.

なお、トーリック面で近似する手法はいくつか考えられるが、例えば以下の方法が提案できる。まず、X軸とY軸に一致する方向に主断面を持ち、該主断面の主曲率半径をrx、ryとするトーリック面のサグ量を表す式を、
f(x,y;rx,ry)
とする。また、座標変換を表す6つのパラメータを(α,β,γ,Δx,Δy,Δz)とする。但し、前3つのパラメータは面の傾き(回転)量を、後3つのパラメータは原点からのシフト量を、それぞれ表す。上記各パラメータを用いて座標(x,y)に対する座標変換された結果のトーリック面のサグを表す式は、以下のようにして表される。
F(x,y;rx,ry,α,β,γ,Δx,Δy,Δz)
Several methods for approximating the toric surface are conceivable. For example, the following method can be proposed. First, an equation representing a sag amount of a toric surface having a main cross section in a direction coinciding with the X axis and the Y axis and having the main curvature radius of the main cross section as rx and ry,
f (x, y; rx, ry)
And Also, six parameters representing coordinate transformation are (α, β, γ, Δx, Δy, Δz). However, the first three parameters represent the surface tilt (rotation) amount, and the last three parameters represent the shift amount from the origin. An expression representing the sag of the toric surface as a result of coordinate transformation with respect to the coordinates (x, y) using the above parameters is expressed as follows.
F (x, y; rx, ry, α, β, γ, Δx, Δy, Δz)

ここで、近似したい面を空間的に任意の間隔でサンプリングしたものを(xi,yi,zi)とすると、近似誤差の二乗和は、以下のように示される。
Σ{zi−F(xi,yi;rx,ry,α,β,γ,Δx,Δy,Δz)}2
上記の近似誤差の二乗和を減衰最小二乗法等の周知の最適化アルゴリズムを用いて、最小化するパラメータの組み合わせを算出する。以上によりトーリック面での近似が行われる。
Here, assuming that the surface to be approximated is spatially sampled at an arbitrary interval (xi, yi, zi), the square sum of the approximation error is expressed as follows.
Σ {zi-F (xi, yi; rx, ry, α, β, γ, Δx, Δy, Δz)} 2
A combination of parameters for minimizing the sum of squares of the approximation errors is calculated by using a known optimization algorithm such as an attenuation least square method. Thus, approximation on the toric surface is performed.

本発明による累進屈折力レンズは、さらに、垂直断面における遠用部頂点屈折力をPf、加入屈折力をADD、外面の面屈折力をD1とすると、以下の条件、
を満たすことが好ましい。
The progressive-power lens according to the present invention further has the following conditions, where Pf is the distance vertex power in the vertical section, ADD is the add power, and D1 is the surface power of the outer surface.
It is preferable to satisfy.

条件(1)は、眼鏡レンズにおいて好適とされるメニスカス形状を保ちつつも中心厚が薄く構成された累進屈折力レンズを提供するための条件である。ベースカーブ、つまり外面の面屈折力D1が条件(1)の下限を下回ると、メニスカス形状を保つことができなくなるおそれがある。従って、内面にキズや汚れが付きやすくなり好ましくない。また、ベースカーブD1が条件(1)の上限を超えると、中心厚が厚くなり、レンズの薄型化が実現されないため好ましくない。 Condition (1) is a condition for providing a progressive-power lens having a thin center thickness while maintaining a meniscus shape suitable for a spectacle lens. If the base curve, that is, the surface refractive power D1 of the outer surface is below the lower limit of the condition (1), the meniscus shape may not be maintained. Therefore, scratches and dirt are easily attached to the inner surface, which is not preferable. On the other hand, if the base curve D1 exceeds the upper limit of the condition (1), the center thickness is increased, and it is not preferable because the lens cannot be thinned.

以上のように、本発明によれば、正の遠用部頂点屈折力を持つ累進屈折力レンズにおいて、該レンズの諸元を適切な値に設定することにより、メニスカス形状を保ちつつも中心厚が薄い累進屈折力レンズを提供することができる。 As described above, according to the present invention, in the progressive addition lens having positive distance portion vertex refractive power, the center thickness is maintained while maintaining the meniscus shape by setting the specifications of the lens to appropriate values. Can provide a thin progressive addition lens.

参考例1の累進屈折力レンズの垂直断面図である。6 is a vertical sectional view of a progressive-power lens according to Reference Example 1. FIG. 参考例1の累進屈折力レンズの透過屈折力である。 This is the transmission refractive power of the progressive addition lens of Reference Example 1 . 参考例1の累進屈折力レンズの内面のサグ量である。 This is the sag amount on the inner surface of the progressive-power lens of Reference Example 1 . 参考例1の累進屈折力レンズの内面の垂直断面曲率である。It is a vertical cross-sectional curvature of the inner surface of the progressive-power lens of Reference Example 1 . 比較例1の累進屈折力レンズの垂直断面図である。6 is a vertical sectional view of a progressive-power lens of Comparative Example 1. FIG. 比較例1の累進屈折力レンズの透過屈折力である。It is the transmission refractive power of the progressive-power lens of Comparative Example 1. 比較例1の累進屈折力レンズの内面のサグ量である。It is a sag amount of the inner surface of the progressive-power lens of Comparative Example 1. 比較例1の累進屈折力レンズの内面の垂直断面曲率である。3 is a vertical cross-sectional curvature of the inner surface of the progressive-power lens of Comparative Example 1. 参考例2の累進屈折力レンズの垂直断面図である。6 is a vertical sectional view of a progressive-power lens according to Reference Example 2. FIG. 参考例2の累進屈折力レンズの透過屈折力である。 This is the transmission refractive power of the progressive-power lens of Reference Example 2 . 参考例2の累進屈折力レンズの内面のサグ量である。 This is the sag amount on the inner surface of the progressive addition lens of Reference Example 2 . 参考例2の累進屈折力レンズの内面の垂直断面曲率である。It is a vertical cross-sectional curvature of the inner surface of the progressive-power lens of Reference Example 2 . 比較例2の累進屈折力レンズの垂直断面図である。6 is a vertical sectional view of a progressive-power lens in Comparative Example 2. FIG. 比較例2の累進屈折力レンズの透過屈折力である。This is the transmission refractive power of the progressive addition lens of Comparative Example 2. 比較例2の累進屈折力レンズの内面のサグ量である。It is a sag amount of the inner surface of the progressive-power lens of Comparative Example 2. 比較例2の累進屈折力レンズの内面の垂直断面曲率である。4 is a vertical cross-sectional curvature of the inner surface of the progressive-power lens of Comparative Example 2. 実施例1の累進屈折力レンズの垂直断面図である。 1 is a vertical sectional view of a progressive-power lens according to Example 1. FIG. 実施例1の累進屈折力レンズの内面の形状の等高線である。 3 is a contour line of the shape of the inner surface of the progressive-power lens of Example 1. FIG. 実施例1の累進屈折力レンズの透過屈折力である。FIG. 3 shows the transmission refractive power of the progressive-power lens of Example 1. FIG. 実施例1の累進屈折力レンズの内面のサグ量である。It is the amount of sag on the inner surface of the progressive-power lens of Example 1 . 実施例1の累進屈折力レンズの内面の垂直断面曲率である。 2 is a vertical sectional curvature of the inner surface of the progressive-power lens of Example 1. FIG. 比較例3の累進屈折力レンズの垂直断面図である。6 is a vertical sectional view of a progressive-power lens according to Comparative Example 3. FIG. 比較例3の累進屈折力レンズの内面の形状の等高線である。10 is a contour line of the shape of the inner surface of the progressive-power lens of Comparative Example 3; 比較例3の累進屈折力レンズの透過屈折力である。This is the transmission refractive power of the progressive addition lens of Comparative Example 3. 比較例3の累進屈折力レンズの内面のサグ量である。It is a sag amount of the inner surface of the progressive addition lens of Comparative Example 3. 比較例3の累進屈折力レンズの内面の垂直断面曲率である。10 is a vertical cross-sectional curvature of the inner surface of the progressive-power lens of Comparative Example 3. 参考例3の累進屈折力レンズの垂直断面図である。 10 is a vertical sectional view of a progressive-power lens according to Reference Example 3. FIG. 参考例3の累進屈折力レンズの透過屈折力である。 This is the transmission refractive power of the progressive-power lens of Reference Example 3 . 参考例3の累進屈折力レンズの内面のサグ量である。 This is the sag amount on the inner surface of the progressive addition lens of Reference Example 3 . 参考例3の累進屈折力レンズの外面の垂直断面曲率である。 5 is a vertical sectional curvature of the outer surface of the progressive-power lens of Reference Example 3 . 参考例3の累進屈折力レンズの内面の垂直断面曲率である。It is a vertical cross-sectional curvature of the inner surface of the progressive-power lens of Reference Example 3 . 比較例4の累進屈折力レンズの垂直断面図である。6 is a vertical sectional view of a progressive-power lens in Comparative Example 4. FIG. 比較例4の累進屈折力レンズの透過屈折力である。This is the transmission refractive power of the progressive addition lens of Comparative Example 4. 比較例4の累進屈折力レンズの内面のサグ量である。It is a sag amount of the inner surface of the progressive addition lens of Comparative Example 4. 比較例4の累進屈折力レンズの外面の垂直断面曲率である。10 is a vertical cross-sectional curvature of the outer surface of the progressive-power lens of Comparative Example 4. 比較例4の累進屈折力レンズの内面の垂直断面曲率である。10 is a vertical sectional curvature of the inner surface of the progressive-power lens of Comparative Example 4. 実施例2の累進屈折力レンズの垂直断面図である。6 is a vertical sectional view of a progressive-power lens according to Embodiment 2. FIG. 実施例2の累進屈折力レンズの内面の形状の等高線である。 7 is a contour line of the shape of the inner surface of the progressive-power lens of Example 2. FIG. 実施例2の累進屈折力レンズの透過屈折力である。FIG. 6 shows the transmission refractive power of the progressive-power lens of Example 2. FIG. 実施例2の累進屈折力レンズの内面のサグ量である。It is the amount of sag on the inner surface of the progressive-power lens of Example 2 . 実施例2の累進屈折力レンズの外面の垂直断面曲率およびサジタル曲率である。FIG. 4 shows the vertical cross-sectional curvature and sagittal curvature of the outer surface of the progressive-power lens of Example 2. FIG. 実施例2の累進屈折力レンズの内面の垂直断面曲率およびサジタル曲率である。FIG. 3 shows the vertical cross-sectional curvature and sagittal curvature of the inner surface of the progressive-power lens of Example 2. FIG. 比較例5の累進屈折力レンズの垂直断面図である。10 is a vertical sectional view of a progressive-power lens according to Comparative Example 5. FIG. 比較例5の累進屈折力レンズの内面の形状の等高線である。10 is a contour line of the shape of the inner surface of the progressive-power lens of Comparative Example 5; 比較例5の累進屈折力レンズの透過屈折力である。It is the transmission refractive power of the progressive-power lens of Comparative Example 5. 比較例5の累進屈折力レンズの内面のサグ量である。It is a sag amount of the inner surface of the progressive-power lens of Comparative Example 5. 比較例5の累進屈折力レンズの外面の垂直断面曲率およびサジタル曲率である。7 is a vertical sectional curvature and a sagittal curvature of the outer surface of the progressive-power lens of Comparative Example 5. FIG. 比較例5の累進屈折力レンズの内面の垂直断面曲率およびサジタル曲率である。7 is a vertical sectional curvature and a sagittal curvature of an inner surface of a progressive-power lens of Comparative Example 5.

以下、本発明の実施形態の累進屈折力レンズについて説明する。図1は、本発明の実施形態の累進屈折力レンズ10の断面図である。図1に示すように、累進屈折力レンズ10は、外面1と内面2を備える。累進屈折力レンズ10は、遠用部頂点屈折力が正であり、外面1が球面または累進面、内面2が累進面として構成されている。図1において、プリズム測定基準点3における外面2の法線に沿う軸をZ軸とする。また、内面2とZ軸との交点を通り、Z軸と直交し、眼鏡装用時における垂直方向に沿う軸をY軸とする。つまり、図1は、累進屈折力レンズ10のY−Z平面での断面図である。なお、以下の説明では、便宜上、Z軸は、外面1から内面2へ向かう方向を正とする。また、Y軸は、眼鏡装用時において、レンズ下端からレンズ上端へ向かう方向を正とする。なお、符号4は遠用部測定基準点を示し、符号5は近用部測定基準点を示す。 Hereinafter, a progressive-power lens according to an embodiment of the present invention will be described. FIG. 1 is a cross-sectional view of a progressive-power lens 10 according to an embodiment of the present invention. As shown in FIG. 1, the progressive addition lens 10 includes an outer surface 1 and an inner surface 2. The progressive addition lens 10 has a positive distance vertex power, and the outer surface 1 is a spherical surface or a progressive surface, and the inner surface 2 is a progressive surface. In FIG. 1, the axis along the normal line of the outer surface 2 at the prism measurement reference point 3 is taken as the Z axis. In addition, an axis that passes through the intersection of the inner surface 2 and the Z axis, is orthogonal to the Z axis, and extends along the vertical direction when wearing spectacles is defined as a Y axis. That is, FIG. 1 is a cross-sectional view of the progressive-power lens 10 on the YZ plane. In the following description, for the sake of convenience, the Z-axis is positive in the direction from the outer surface 1 to the inner surface 2. The Y axis is positive in the direction from the lower end of the lens toward the upper end of the lens when wearing glasses. Reference numeral 4 represents a distance measurement reference point, and reference numeral 5 represents a near measurement reference point.

累進屈折力レンズ10は、以下の条件(1)を満たすように構成される。

但し、Pfは、垂直断面(Y−Z平面での断面)における遠用部頂点屈折力を、
ADDは加入屈折力を、
D1は、外面の面屈折力を、それぞれ表す。
The progressive-power lens 10 is configured to satisfy the following condition (1).

However, Pf is the distance portion vertex refractive power in the vertical section (cross section in the YZ plane),
ADD gives the addition power,
D1 represents the surface refractive power of the outer surface.

条件(1)を満たすように構成された累進屈折力レンズ10は、全体としてメニスカス形状になっており、かつ中心厚が薄く設計されている。 The progressive-power lens 10 configured to satisfy the condition (1) has a meniscus shape as a whole and is designed to have a thin center thickness.

なお、全体としてメニスカス形状であって、かつ中心厚が薄く設計された累進屈折力レンズ10は、以下の条件(2)〜(4)も同時に満たしている。



但し、z2(y)は、Y−Z平面と内面とが交わることによりできる曲線において、Z軸からの任意の高さyにおけるサグ量を、
C2(y)は、該曲線において、任意の高さyにおける曲率を、
yfは、Z軸から遠用部測定基準点までの高さを、
ynは、Z軸から近用部測定基準点までの高さを、
ytは、Z軸からレンズ上端までの高さを、
yuは、Z軸からレンズ下端までの高さを、それぞれ表すものとする。
In addition, the progressive-power lens 10 having a meniscus shape as a whole and designed to have a thin center thickness satisfies the following conditions (2) to (4) at the same time.



However, z2 (y) is a curve formed by the intersection of the YZ plane and the inner surface, and is a sag amount at an arbitrary height y from the Z axis.
C2 (y) is the curvature at an arbitrary height y in the curve,
yf is the height from the Z axis to the distance measurement reference point,
yn is the height from the Z-axis to the near-site measurement reference point,
yt is the height from the Z axis to the top of the lens,
yu represents the height from the Z-axis to the lower end of the lens.

また、累進屈折力レンズ10が乱視屈折力を持つ場合や、外面と内面に加入の垂直成分と水平成分を配分した場合、必ずしも垂直断面が最小曲率断面になるとは限らない。そのため、この場合、累進屈折力レンズ10の内面2をトーリック面で近似することにより得られる二つの主曲率のうち、最小曲率C2minが、以下の条件(5)を満たすように構成される。
Further, when the progressive addition lens 10 has astigmatism refractive power or when the additional vertical and horizontal components are distributed to the outer surface and the inner surface, the vertical section is not necessarily the minimum curvature section. Therefore, in this case, the minimum curvature C2min among the two main curvatures obtained by approximating the inner surface 2 of the progressive addition lens 10 with a toric surface is configured to satisfy the following condition (5).

条件(5)を満たすことにより、垂直断面が最小曲率断面になるとは限らない累進屈折力レンズであっても、メニスカス形状を保ちつつ薄型化が達成される。 By satisfying the condition (5), thinning can be achieved while maintaining a meniscus shape even in a progressive-power lens in which the vertical section does not necessarily have the minimum curvature section.

以下、上記実施形態の具体的実施例を2例、参考例3例、比較例5例と共に示す。なお、どの実施例、参考例および比較例の累進屈折力レンズも、以下の表1に示す諸元に関しては共通である。詳しくは、参考例1、参考例2、実施例1およびこれらに対する比較例1〜3は、外面が球面で内面が累進面であるレンズの例である。参考例3およびこれに対する比較例4は、両面が累進面であるレンズの例である。実施例2およびこれに対する比較例5は、外面が加入の垂直成分を配分した累進面、内面が加入の水平成分を配分した累進面であるレンズの例である。

Hereinafter, two specific examples of the above embodiment will be described together with three reference examples and five comparative examples . In addition, the progressive power lenses of all Examples , Reference Examples, and Comparative Examples are common with respect to the specifications shown in Table 1 below. Specifically, Reference Example 1, Reference Example 2, Example 1, and Comparative Examples 1 to 3 are examples of lenses whose outer surface is a spherical surface and whose inner surface is a progressive surface. Reference example 3 and comparative example 4 are examples of lenses in which both surfaces are progressive surfaces. Example 2 and comparative example 5 are examples of lenses in which the outer surface is a progressive surface that distributes the added vertical component, and the inner surface is a progressive surface that distributes the added horizontal component.

(参考例1)
図1は、参考例1の累進屈折力レンズ10(以下、単にレンズ10という)の垂直断面図である。図2は、参考例1のレンズ10の透過屈折力を示すグラフである。図3は、参考例1のレンズ10の内面2のサグ量を示すグラフである。図4は、参考例1のレンズ10の内面2の垂直断面曲率を示すグラフである。図2〜図4に示すグラフに基づき算出した参考例1のレンズ10の具体的数値構成は、表2に示される。
(Reference Example 1)
FIG. 1 is a vertical sectional view of a progressive-power lens 10 (hereinafter simply referred to as a lens 10) of Reference Example 1 . FIG. 2 is a graph showing the transmission refractive power of the lens 10 of Reference Example 1 . FIG. 3 is a graph showing the sag amount of the inner surface 2 of the lens 10 of Reference Example 1 . FIG. 4 is a graph showing the vertical sectional curvature of the inner surface 2 of the lens 10 of Reference Example 1 . Table 2 shows specific numerical configurations of the lens 10 of Reference Example 1 calculated based on the graphs shown in FIGS.


図3、図4に示すように、参考例1のレンズ10の内面2は、近用部測定基準点近傍が目側に凸となる形状をしている。しかし、表2に示すように、参考例1のレンズ10の外面1は、面屈折力D1が4.88Dである。従って、参考例1のレンズ10は、条件(1)を満たす。同様に、表2に示すように、参考例1のレンズ10は、条件(2)〜(4)を全て満たす。 As shown in FIGS. 3 and 4, the inner surface 2 of the lens 10 of Reference Example 1 has a shape in which the vicinity of the near-field measurement reference point is convex toward the eye side. However, as shown in Table 2, the outer surface 1 of the lens 10 of Reference Example 1 has a surface refractive power D1 of 4.88D. Therefore, the lens 10 of Reference Example 1 satisfies the condition (1). Similarly, as shown in Table 2, the lens 10 of Reference Example 1 satisfies all the conditions (2) to (4).

結果として、参考例1のレンズ10は、内面2の一部領域が凸形状になっていたとしても、レンズ10全体としては、メニスカス形状になっていることがわかる。また、参考例1のレンズ10の外面1の突出量(つまり、外面頂点と外面最周辺におけるサグ量の差)は5.07mm、中心厚は5.53mmとなるため、参考例1のレンズ10は、非常に薄型化されていることも導出される。 As a result, it can be seen that the lens 10 of Reference Example 1 has a meniscus shape as a whole even if a partial region of the inner surface 2 has a convex shape. Further, the amount of projection of the outer surface 1 of the lens 10 of Reference Example 1 (i.e., the difference between the sag on the outer surface vertex and the outer surface uppermost) near 5.07Mm, since the center thickness becomes 5.53Mm, Reference Example 1 Lens 10 It is also derived that it is very thin.

(比較例1)
図5〜図8は、順に、比較例1の累進屈折力レンズに関する、垂直断面図、透過屈折力のグラフ、内面のサグ量のグラフ、内面の垂直断面曲率のグラフである。図6〜図8に示すグラフに基づき算出した比較例1の累進屈折力レンズの具体的数値構成は、表3に示される。
(Comparative Example 1)
5 to 8 are, in order, a vertical sectional view, a transmission refractive power graph, an inner surface sag amount graph, and an inner surface vertical sectional curvature graph regarding the progressive addition lens of Comparative Example 1. FIG. Table 3 shows specific numerical configurations of the progressive-power lens of Comparative Example 1 calculated based on the graphs shown in FIGS.

表3に示すように、比較例1の累進屈折力レンズは、遠用部頂点屈折力Pf、加入屈折力ADD、そして素材の屈折率を参考例1のレンズ10と同一に設定している。しかし、上述した特許文献1に倣い、外面の面屈折力D1を6.79Dに設定した。 As shown in Table 3, in the progressive addition lens of Comparative Example 1, the distance portion vertex power Pf, the addition power ADD, and the refractive index of the material are set to be the same as those of the lens 10 of Reference Example 1 . However, following Patent Document 1 described above, the surface refractive power D1 of the outer surface was set to 6.79D.

比較例1の累進屈折力レンズは、表3に示すように、近用部測定基準点での曲率C2(yn)が条件(3)を満足しない。その結果、外面の突出量は7.20mm、中心厚は5.77mmになる。つまり、比較例1の累進屈折力レンズは、メニスカス形状にはなっているものの、参考例1のレンズ10に比べてかなりの肉厚になっている。 As shown in Table 3, in the progressive-power lens of Comparative Example 1, the curvature C2 (yn) at the near-point measurement reference point does not satisfy the condition (3). As a result, the protruding amount of the outer surface is 7.20 mm and the center thickness is 5.77 mm. That is, although the progressive addition lens of Comparative Example 1 has a meniscus shape, it is considerably thicker than the lens 10 of Reference Example 1 .

(参考例2)
図9〜図12は、順に、参考例2のレンズ10に関する、垂直断面図、透過屈折力のグラフ、内面のサグ量のグラフ、内面の垂直断面曲率のグラフである。図10〜図12に示すグラフに基づき算出した参考例2のレンズ10の具体的数値構成は、表4に示される。
(Reference Example 2)
9 to 12 are a vertical sectional view, a transmission refractive power graph, an inner surface sag amount graph, and an inner surface vertical sectional curvature graph regarding the lens 10 of Reference Example 2 in order. Table 4 shows specific numerical configurations of the lens 10 of Reference Example 2 calculated based on the graphs shown in FIGS.


図11、図12に示すように、参考例2のレンズ10の内面2も、参考例1と同様、近用部測定基準点近傍が目側に凸となる形状をしている。しかし、表4に示すように、参考例2のレンズ10の外面1は、面屈折力D1が7.14Dであり、条件(1)を満たす。同様に、表4に示すように、参考例2のレンズ10は、条件(2)〜(4)も全て満たす。 As shown in FIGS. 11 and 12, the inner surface 2 of the lens 10 of Reference Example 2 has a shape in which the vicinity of the near-field measurement reference point is convex to the eye side, as in Reference Example 1 . However, as shown in Table 4, the outer surface 1 of the lens 10 of Reference Example 2 has a surface refractive power D1 of 7.14D, which satisfies the condition (1). Similarly, as shown in Table 4, the lens 10 of Reference Example 2 also satisfies all the conditions (2) to (4).

結果として、参考例2のレンズ10は、内面2の一部領域が凸形状になっていたとしても、レンズ10全体としては、メニスカス形状になっている。また、参考例2のレンズ10の外面1の突出量は7.61mm、中心厚は7.86mmとなる。つまり、参考例2のレンズ10も、参考例1のレンズ10と同様に、非常に薄型化されている。 As a result, the lens 10 of Reference Example 2 has a meniscus shape as a whole of the lens 10 even if a part of the inner surface 2 has a convex shape. Further, the protrusion amount of the outer surface 1 of the lens 10 of Reference Example 2 is 7.61 mm, and the center thickness is 7.86 mm. That is, the lens 10 of the reference example 2 is also very thin like the lens 10 of the reference example 1 .

(比較例2)
図13〜図16は、順に、比較例2の累進屈折力レンズに関する、垂直断面図、透過屈折力のグラフ、内面のサグ量のグラフ、内面の垂直断面曲率のグラフである。図14〜図16に示すグラフに基づき算出した比較例2の累進屈折力レンズの具体的数値構成は、表5に示される。
(Comparative Example 2)
FIGS. 13 to 16 are a vertical sectional view, a transmission refractive power graph, an inner surface sag amount graph, and an inner surface vertical sectional curvature graph, respectively, regarding the progressive addition lens of Comparative Example 2. FIGS. Specific numerical configurations of the progressive addition lens of Comparative Example 2 calculated based on the graphs shown in FIGS. 14 to 16 are shown in Table 5.


表5に示すように、比較例2の累進屈折力レンズは、遠用部頂点屈折力Pf、加入屈折力ADD、そして素材の屈折率を参考例2のレンズ10と同一に設定している。しかし、上述した特許文献1に倣い、外面の面屈折力D1を9.39Dに設定した。 As shown in Table 5, in the progressive addition lens of Comparative Example 2, the distance portion vertex refractive power Pf, the addition refractive power ADD, and the refractive index of the material are set to be the same as those of the lens 10 of Reference Example 2 . However, following Patent Document 1 described above, the surface refractive power D1 of the outer surface was set to 9.39D.

上記のように数値設定された比較例2の累進屈折力レンズは、表5に示すように、近用部測定基準点での曲率C2(yn)が条件(3)を満足しない。その結果、外面の突出量は10.40mm、中心厚は8.31mmになる。つまり、比較例2の累進屈折力レンズは、メニスカス形状にはなっているものの、参考例2のレンズ10に比べてかなりの肉厚になっている。 As shown in Table 5, in the progressive-power lens of Comparative Example 2 that is numerically set as described above, the curvature C2 (yn) at the near portion measurement reference point does not satisfy the condition (3). As a result, the protrusion amount of the outer surface is 10.40 mm, and the center thickness is 8.31 mm. That is, the progressive addition lens of Comparative Example 2 has a meniscus shape, but is considerably thicker than the lens 10 of Reference Example 2 .

(実施例1)
実施例1の累進屈折力レンズ10は、内面2に乱視補正特性を有するレンズである。図17は、実施例1のレンズ10に関する垂直断面図である。また、図18は、内面2の形状を0.5mm間隔で敷かれた等高線によって表す等高線図である。図18において、X軸は、内面2とZ軸との交点を通り、Y、Zの各軸と直交する軸、つまり眼鏡装用時における水平方向に沿う軸である。後述の図22、図37、図43においても同様である。図18に示す内面2をトーリック面で近似した場合に得られる、最小曲率C2min、最大曲率C2max、最小曲率断面の方向γを表6に示す。表6に示すように実施例1のレンズ10は、条件(5)を満たす。
(Example 1)
The progressive-power lens 10 of Example 1 is a lens having astigmatism correction characteristics on the inner surface 2. FIG. 17 is a vertical sectional view of the lens 10 according to the first embodiment . FIG. 18 is a contour map showing the shape of the inner surface 2 by contour lines spread at intervals of 0.5 mm. In FIG. 18 , the X axis passes through the intersection of the inner surface 2 and the Z axis, and is an axis orthogonal to the Y and Z axes, that is, an axis along the horizontal direction when wearing glasses. The same applies to FIGS. 22, 37, and 43 described later. Table 6 shows the minimum curvature C2min, the maximum curvature C2max, and the direction γ of the minimum curvature section obtained when the inner surface 2 shown in FIG. 18 is approximated by a toric surface. As shown in Table 6, the lens 10 of Example 1 satisfies the condition (5).


なお、図19〜図21に、実施例1のレンズ10に関する、透過屈折力のグラフ、内面のサグ量のグラフ、内面の垂直断面曲率のグラフを順に示す。図19〜図21に示すグラフに基づき算出した実施例1のレンズ10の具体的数値構成は、表7に示される。表7において、SPHは球面屈折力、CYLは円柱屈折力、AXは乱視軸を表す。 FIGS. 19 to 21 sequentially show a graph of transmission refractive power, a graph of the sag amount on the inner surface, and a graph of the vertical cross-sectional curvature of the inner surface regarding the lens 10 of Example 1 . Specific numerical configurations of the lens 10 of Example 1 calculated based on the graphs shown in FIGS. 19 to 21 are shown in Table 7. In Table 7, SPH represents spherical power, CYL represents cylindrical power, and AX represents an astigmatic axis.

図20、図21に示すように、実施例1のレンズ10の内面2も、参考例1、2と同様、近用部測定基準点近傍が目側に凸となる形状をしている。なお、表7に示すように、実施例1のレンズ10は、条件(1)〜(4)も全て満たしている。 20, as shown in FIG. 21, the inner surface 2 of the lens 10 of the first embodiment, similarly as in Reference Example 1, 2, has a shape in which the vicinity of the near reference point is convex to the eye side. As shown in Table 7, the lens 10 of Example 1 also satisfies all the conditions (1) to (4).

このように実施例1のレンズ10は、全体としてメニスカス形状が得られる。また、実施例1のレンズ10の外面1の突出量は5.18mm、中心厚は6.16mmとなる。つまり、実施例1のレンズ10も、参考例1や参考例2のレンズ10と同様に、非常に薄型化されている。 Thus, the lens 10 of Example 1 has a meniscus shape as a whole. Further, the protruding amount of the outer surface 1 of the lens 10 of Example 1 is 5.18 mm, and the center thickness is 6.16 mm. That is, the lens 10 of Example 1 is also very thin like the lens 10 of Reference Example 1 and Reference Example 2 .

(比較例3)
図22は、比較例3の累進屈折力レンズに関する垂直断面図である。また、図23は、比較例3の累進屈折力レンズの内面形状を0.5mm間隔で敷かれた等高線によって表す等高線図である。図23に示す内面2をトーリック面で近似した場合に得られる、最小曲率C2min、最大曲率C2max、最小曲率断面の方向γを表8に示す。
(Comparative Example 3)
FIG. 22 is a vertical sectional view of the progressive addition lens of Comparative Example 3. FIG. 23 is a contour map showing the inner shape of the progressive addition lens of Comparative Example 3 by contour lines laid out at intervals of 0.5 mm. Table 8 shows the minimum curvature C2min, the maximum curvature C2max, and the direction γ of the minimum curvature section obtained when the inner surface 2 shown in FIG.

表8に示すように比較例3の累進屈折力レンズは、最小曲率C2minが条件(5)の上限を超えてしまっている。以上の結果、比較例3の累進屈折力レンズは、外面の突出量が8.27mm、中心厚が6.52mmになる。つまり、比較例3の累進屈折力レンズは、メニスカス形状にはなっているものの、実施例1のレンズ10に比べてかなりの肉厚になっている。 As shown in Table 8, in the progressive-power lens of Comparative Example 3, the minimum curvature C2min exceeds the upper limit of the condition (5). As a result, the progressive addition lens of Comparative Example 3 has an outer surface protrusion amount of 8.27 mm and a center thickness of 6.52 mm. That is, the progressive addition lens of Comparative Example 3 has a meniscus shape, but is considerably thicker than the lens 10 of Example 1 .

なお、図24〜図26に、比較例3の累進屈折力レンズに関する、透過屈折力のグラフ、内面のサグ量のグラフ、内面の垂直断面曲率のグラフを順に示す。図24〜図26に示すグラフに基づき算出した比較例3の累進屈折力レンズの具体的数値構成は、表9に示される。 FIGS. 24 to 26 show, in order, a transmission refractive power graph, an inner surface sag amount graph, and an inner surface vertical sectional curvature graph regarding the progressive addition lens of Comparative Example 3. FIG. Specific numerical configurations of the progressive addition lens of Comparative Example 3 calculated based on the graphs shown in FIGS. 24 to 26 are shown in Table 9.

表9に示すように、比較例3の累進屈折力レンズは、球面屈折力SPH、円柱屈折力CYL、乱視軸AX、遠用部頂点屈折力Pf、加入屈折力ADD、そして素材の屈折率を実施例1のレンズ10と同一に設定している。しかし、上述した特許文献1に倣い、外面の面屈折力D1を8.50Dに設定した。上記のように数値設定された比較例3の累進屈折力レンズは、表5に示すように、近用部測定基準点での曲率C2(yn)が条件(3)を満足していない。 As shown in Table 9, the progressive addition lens of Comparative Example 3 has spherical refractive power SPH, cylindrical refractive power CYL, astigmatism axis AX, distance portion vertex refractive power Pf, addition refractive power ADD, and material refractive index. It is set to be the same as the lens 10 of the first embodiment . However, following Patent Document 1 described above, the surface refractive power D1 of the outer surface was set to 8.50D. As shown in Table 5, in the progressive-power lens of Comparative Example 3 set numerically as described above, the curvature C2 (yn) at the near portion measurement reference point does not satisfy the condition (3).

(参考例3)
参考例3の累進屈折力レンズ10は、外面1と内面2の両方を累進面としている。参考例3では、外面1の面屈折力で加入の半分を与え、残りの加入と収差補正を内面2の累進面で行っている。図27〜図31は、順に、参考例3のレンズ10に関する、垂直断面図、透過屈折力のグラフ、内面2のサグ量のグラフ、外面1の垂直断面曲率のグラフ、内面2の垂直断面曲率のグラフである。図28〜図31に示すグラフに基づき算出した参考例3のレンズ10の具体的数値構成は、表10に示される。
(Reference Example 3)
In the progressive-power lens 10 of Reference Example 3 , both the outer surface 1 and the inner surface 2 are progressive surfaces. In Reference Example 3 , half of the addition is given by the surface refractive power of the outer surface 1, and the remaining addition and aberration correction are performed on the progressive surface of the inner surface 2. 27 to 31 are, in order, a vertical sectional view, a transmission refractive power graph, a sag amount graph of the inner surface 2, a vertical sectional curvature graph of the outer surface 1, and a vertical sectional curvature of the inner surface 2 regarding the lens 10 of Reference Example 3 . It is a graph of. Table 10 shows specific numerical configurations of the lens 10 of Reference Example 3 calculated based on the graphs shown in FIGS. 28 to 31.

図29、図31に示すように、参考例3のレンズ10の内面2も、参考例1、参考例2、実施例1と同様、近用部測定基準点近傍が目側に凸となる形状をしている。しかし、表10に示すように、参考例3のレンズ10の内面2は、条件(2)〜(4)の全てを満たす。 As shown in FIGS. 29 and 31, the inner surface 2 of the lens 10 of Reference Example 3 also has a shape in which the vicinity of the near-field measurement reference point is convex to the eye side, as in Reference Example 1, Reference Example 2, and Example 1. I am doing. However, as shown in Table 10, the inner surface 2 of the lens 10 of Reference Example 3 satisfies all of the conditions (2) to (4).

結果として、参考例3のレンズ10は、内面2の一部領域が凸になっていたとしても、レンズ10全体としては、メニスカス形状になっている。また、参考例3のレンズ10の外面1の突出量は4.88mm、中心厚は5.22mmとなる。つまり、参考例3のレンズも、参考例1、参考例2、実施例1のレンズ10と同様に、非常に薄型化されている。 As a result, the lens 10 of Reference Example 3 has a meniscus shape as a whole of the lens 10 even if a partial region of the inner surface 2 is convex. Further, the protrusion amount of the outer surface 1 of the lens 10 of Reference Example 3 is 4.88 mm, and the center thickness is 5.22 mm. That is, the lens of the reference example 3 is also very thin like the reference example 1, the reference example 2, and the lens 10 of the example 1 .

(比較例4)
図32〜図36は、順に、比較例4の累進屈折力レンズに関する、垂直断面図、透過屈折力のグラフ、内面のサグ量のグラフ、外面の垂直断面曲率のグラフ、内面の垂直断面曲率のグラフである。図33〜図36に示すグラフに基づき算出した比較例4の累進屈折力レンズの具体的数値構成は、表11に示される。
(Comparative Example 4)
32 to 36 are, in order, a vertical sectional view, a transmission refractive power graph, an inner surface sag amount graph, an outer surface vertical sectional curvature graph, and an inner surface vertical sectional curvature regarding the progressive addition lens of Comparative Example 4. It is a graph. Table 11 shows specific numerical configurations of the progressive-power lens of Comparative Example 4 calculated based on the graphs shown in FIGS. 33 to 36.

表11に示すように、比較例4の累進屈折力レンズは、遠用部頂点屈折力Pf、加入屈折力ADD、そして素材の屈折率を参考例3のレンズ10と同一に設定している。しかし、上述した特許文献1に倣い、外面の遠用部面屈折力D1を7.00Dに設定した。 As shown in Table 11, in the progressive addition lens of Comparative Example 4, the distance portion vertex power Pf, the addition power ADD, and the refractive index of the material are set to be the same as those of the lens 10 of Reference Example 3 . However, following Patent Document 1 described above, the distance-part surface refractive power D1 of the outer surface was set to 7.00D.

上記のように数値設定された比較例4の累進屈折力レンズは、表11に示すように、近用部測定基準点での曲率C2(yn)が条件(3)を満足しない。その結果、外面の突出量は7.30mm、中心厚は5.65mmになる。つまり、比較例4の累進屈折力レンズは、メニスカス形状になってはいるものの、参考例3のレンズ10に比べてかなりの肉厚になっている。
As shown in Table 11, in the progressive-power lens of Comparative Example 4 set numerically as described above, the curvature C2 (yn) at the near portion measurement reference point does not satisfy the condition (3). As a result, the protrusion amount of the outer surface is 7.30 mm and the center thickness is 5.65 mm. That is, the progressive-power lens of Comparative Example 4 has a meniscus shape, but is considerably thicker than the lens 10 of Reference Example 3 .

(実施例2)
実施例2の累進屈折力レンズ10は、外面に加入の垂直成分を、内面に加入の水平成分を配分した累進面としている。図37は、実施例2のレンズ10に関する垂直断面図である。また、図38は、内面2の形状を0.5mm間隔で敷かれた等高線によって表す等高線図である。図38に示す内面をトーリック面で近似した場合に得られる、最小曲率C2min、最大曲率C2max、最小曲率断面の方向γを表12に示す。表12に示すように実施例2のレンズ10は、条件(5)を満たす。
(Example 2)
The progressive-power lens 10 of Example 2 has a progressive surface in which the additional vertical component is distributed on the outer surface and the additional horizontal component is distributed on the inner surface. FIG. 37 is a vertical sectional view of the lens 10 according to the second embodiment . FIG. 38 is a contour map that represents the shape of the inner surface 2 by contour lines spread at intervals of 0.5 mm. Table 12 shows the minimum curvature C2min, the maximum curvature C2max, and the direction γ of the minimum curvature section obtained when the inner surface shown in FIG. 38 is approximated by a toric surface. As shown in Table 12, the lens 10 of Example 2 satisfies the condition (5).

なお、図39〜図42に、実施例2のレンズ10に関する、透過屈折力のグラフ、内面のサグ量のグラフ、外面の垂直断面曲率(実線)および該断面近傍で該断面と直交する断面の曲率(以後サジタル曲率と言う)(破線)のグラフ、内面の垂直断面曲率(実線)およびサジタル曲率(破線)のグラフを順に示す。図39〜図42に示すグラフに基づき算出した実施例2のレンズ10の具体的数値構成は、表13に示される。ここでC2mは垂直断面曲率、C2sはサジタル曲率である。 39 to 42, the transmission refractive power graph, the inner surface sag amount graph, the outer surface vertical cross section curvature (solid line), and the cross section orthogonal to the cross section in the vicinity of the cross section of the lens 10 of Example 2 are shown in FIGS. A graph of curvature (hereinafter referred to as sagittal curvature) (broken line), a vertical sectional curvature of the inner surface (solid line), and a sagittal curvature (broken line) graph are shown in this order. Specific numerical configurations of the lens 10 of Example 2 calculated based on the graphs shown in FIGS. 39 to 42 are shown in Table 13. Here, C2m is a vertical section curvature, and C2s is a sagittal curvature.

本実施例のように垂直方向と水平方向に加入が配分されたレンズでは乱視屈折力が無くても、垂直断面が最小曲率断面とは限らない。図40、図42、および表13に示すように、内面の垂直断面は至るところ目側に凹となる形状をしているが、サジタル断面曲率の方が小さくなって、近用部では負の値になっている。しかし、表12に示したように、本実施例ではC2minが条件式(5)を満たすようにして、全体としてメニスカス形状が得られるようにしている。そのため、実施例2のレンズの外面1の突出量は6.37mm、中心厚は5.48mmとなる。つまり、実施例2のレンズ10も、参考例1、参考例2、実施例1、参考例3のレンズ10と同様に、非常に薄型化されている。 In the lens in which the addition is distributed in the vertical direction and the horizontal direction as in this embodiment, even if there is no astigmatic refractive power, the vertical section is not necessarily the minimum curvature section. As shown in FIG. 40, FIG. 42, and Table 13, the vertical cross section of the inner surface has a shape that is concave on the eye side everywhere, but the sagittal cross section curvature becomes smaller and negative in the near portion. It is a value. However, as shown in Table 12, in this embodiment, C2min satisfies the conditional expression (5) so that a meniscus shape can be obtained as a whole. Therefore, the protrusion amount of the outer surface 1 of the lens of Example 2 is 6.37 mm, and the center thickness is 5.48 mm. That is, the lens 10 of Example 2 is also very thin like the lenses 10 of Reference Example 1, Reference Example 2, Example 1, and Reference Example 3 .

(比較例5)
図43は、比較例5の累進屈折力レンズに関する垂直断面図である。また、図44は、比較例5の累進屈折力レンズの内面形状を0.5mm間隔で敷かれた等高線によって表す等高線図である。図44に示す内面2をトーリック面で近似した場合に得られる、最小曲率C2min、最大曲率C2max、最小曲率断面の方向γを表14に示す。
(Comparative Example 5)
FIG. 43 is a vertical sectional view relating to the progressive-power lens of Comparative Example 5. FIG. 44 is a contour map representing the inner surface shape of the progressive addition lens of Comparative Example 5 by contour lines spread at intervals of 0.5 mm. Table 14 shows the minimum curvature C2min, the maximum curvature C2max, and the direction γ of the minimum curvature section obtained when the inner surface 2 shown in FIG. 44 is approximated by a toric surface.

表14に示すように比較例5の累進屈折力レンズは、最小曲率C2minが条件(5)の上限を超えてしまっている。以上の結果、比較例5の累進屈折力レンズは、外面の突出量が8.49mm、中心厚が5.89mmになる。つまり、比較例5の累進屈折力レンズは、メニスカス形状にはなっているものの、実施例2のレンズ10に比べてかなりの肉厚になっている。 As shown in Table 14, in the progressive-power lens of Comparative Example 5, the minimum curvature C2min exceeds the upper limit of the condition (5). As a result, the progressive-power lens of Comparative Example 5 has an outer surface protrusion amount of 8.49 mm and a center thickness of 5.89 mm. That is, the progressive addition lens of Comparative Example 5 has a meniscus shape, but is considerably thicker than the lens 10 of Example 2 .

なお、図45〜図48に、比較例5の累進屈折力レンズに関する、透過屈折力のグラフ、内面のサグ量のグラフ、外面の垂直断面曲率(実線)およびサジタル曲率(破線)のグラフ、内面の垂直断面曲率(実線)およびサジタル曲率(破線)のグラフを順に示す。図46〜図48に示すグラフに基づき算出した比較例5の累進屈折力レンズの具体的数値構成は、表15に示される。 45 to 48, the graph of the transmission refractive power, the graph of the sag amount on the inner surface, the vertical sectional curvature (solid line) and the sagittal curvature (dashed line) of the outer surface, the inner surface, regarding the progressive-power lens of Comparative Example 5. The vertical section curvature (solid line) and sagittal curvature (broken line) graphs are sequentially shown. Specific numerical configurations of the progressive-power lens of Comparative Example 5 calculated based on the graphs shown in FIGS. 46 to 48 are shown in Table 15.

表15に示すように、比較例5の累進屈折力レンズは、遠用部頂点屈折力Pf、加入屈折力ADD、そして素材の屈折率を実施例2のレンズ10と同一に設定している。しかし、上述した特許文献1に倣い、外面の遠用部面屈折力D1を7.50Dに設定した。上記のように数値設定された比較例5の累進屈折力レンズは、表15に示すように、近用部測定基準点での曲率C2m(yn)およびC2s(yn)とも条件(3)を満足しない。 As shown in Table 15, in the progressive addition lens of Comparative Example 5, the distance portion vertex refractive power Pf, the addition refractive power ADD, and the refractive index of the material are set to be the same as those of the lens 10 of Example 2 . However, following Patent Document 1 described above, the distance-part surface refractive power D1 of the outer surface was set to 7.50D. As shown in Table 15, the progressive-power lens of Comparative Example 5 set numerically as described above satisfies the condition (3) for both the curvature C2m (yn) and C2s (yn) at the near reference measurement reference point. do not do.

1 外面
2 内面
3 プリズム測定基準点
4 遠用部測定基準点
5 近用部測定基準点
10 累進屈折力レンズ

DESCRIPTION OF SYMBOLS 1 Outer surface 2 Inner surface 3 Prism measurement reference point 4 Distance part measurement reference point 5 Near part measurement reference point 10 Progressive refractive power lens

Claims (4)

正の遠用部頂点屈折力を有し、少なくとも内面が累進面である累進屈折力レンズであって、
プリズム測定基準点における外面の法線に沿う軸をZ軸(但し、外面から内面に向かう方向を正とする)、前記内面と前記Z軸との交点を通りつつ前記Z軸に直交する軸をY軸(但し、装用時においてレンズ下端からレンズ上端に向かう方向を正とする)とし、Y−Z平面と前記内面とが交わることによりできる曲線の、前記Z軸からの任意の高さyにおけるサグ量と曲率を、それぞれz2(y)、C2(y)とし、Z軸から遠用部測定基準点までの高さをyf、Z軸から近用部測定基準点までの高さをyn、Z軸からレンズ上端までの高さをyt、Z軸からレンズ下端までの高さをyuとすると、以下の3つの条件、
を同時に満たし、
さらに、前記内面形状をトーリック面で近似した場合の二つの主曲率のうち、最小曲率C2minが以下の条件、
を満たすことを特徴とする累進屈折力レンズ。
A progressive power lens having a positive distance vertex refractive power and at least an inner surface being a progressive surface;
The axis along the normal of the outer surface at the prism measurement reference point is the Z axis (where the direction from the outer surface toward the inner surface is positive), and the axis orthogonal to the Z axis passing through the intersection of the inner surface and the Z axis. The Y axis (however, the direction from the lower end of the lens toward the upper end of the lens is positive when worn), and a curve formed by the intersection of the YZ plane and the inner surface at an arbitrary height y from the Z axis. The amount of sag and the curvature are z2 (y) and C2 (y), respectively, the height from the Z axis to the distance measurement reference point is yf, the height from the Z axis to the near measurement point is yn, If the height from the Z axis to the upper end of the lens is yt and the height from the Z axis to the lower end of the lens is yu, the following three conditions are satisfied:
It meets at the same time,
Furthermore, among the two main curvatures when the inner surface shape is approximated by a toric surface, the minimum curvature C2min is as follows:
A progressive-power lens characterized by satisfying
前記内面は、乱視補正特性を備えることを特徴とする請求項1に記載の累進屈折力レンズ。   The progressive power lens according to claim 1, wherein the inner surface has an astigmatism correction characteristic. 加入屈折力を垂直成分および水平成分に分解して、前記外面と前記内面のそれぞれに配分したことを特徴とする請求項1に記載の累進屈折力レンズ。   The progressive addition lens according to claim 1, wherein the addition refractive power is divided into a vertical component and a horizontal component and distributed to each of the outer surface and the inner surface. 垂直断面における遠用部頂点屈折力をPf、加入屈折力をADD、外面の面屈折力をD1とすると、以下の条件、
を満たすことを特徴とする請求項1から請求項3の何れかに記載の累進屈折力レンズ。
Assuming that the distance vertex power in the vertical cross section is Pf, the addition power is ADD, and the surface power of the outer surface is D1, the following conditions:
The progressive-power lens according to any one of claims 1 to 3, wherein:
JP2005181834A 2004-06-25 2005-06-22 Progressive power lens Active JP4806218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181834A JP4806218B2 (en) 2004-06-25 2005-06-22 Progressive power lens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004188851 2004-06-25
JP2004188851 2004-06-25
JP2005181834A JP4806218B2 (en) 2004-06-25 2005-06-22 Progressive power lens

Publications (2)

Publication Number Publication Date
JP2006039526A JP2006039526A (en) 2006-02-09
JP4806218B2 true JP4806218B2 (en) 2011-11-02

Family

ID=35904541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181834A Active JP4806218B2 (en) 2004-06-25 2005-06-22 Progressive power lens

Country Status (1)

Country Link
JP (1) JP4806218B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4973027B2 (en) 2005-08-22 2012-07-11 セイコーエプソン株式会社 Progressive power lens
JP2010097205A (en) * 2008-09-17 2010-04-30 Tokai Kogaku Kk Method of designing and manufacturing progressive refractive power lens
JP2012083481A (en) * 2010-10-08 2012-04-26 Nikon-Essilor Co Ltd Progressive refractive power lens
JP6312538B2 (en) 2014-06-18 2018-04-18 株式会社ニコン・エシロール Lens design method, lens manufacturing method, lens design program, and lens design system
JP2015158688A (en) * 2015-05-01 2015-09-03 株式会社ニコン・エシロール Inner face progressive refractive power lens, method for designing inner face progressive refractive power lens, and method for manufacturing inner face progressive refractive power lens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019382A1 (en) * 1995-11-24 1997-05-29 Seiko Epson Corporation Gradient index multifocal lens, spectacle lens, and manufacture of gradient index multifocal lens
JP3617004B2 (en) * 2002-05-28 2005-02-02 Hoya株式会社 Double-sided aspherical progressive-power lens
DE10253130A1 (en) * 2002-11-14 2004-06-03 Rodenstock Gmbh Double progressive glasses

Also Published As

Publication number Publication date
JP2006039526A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP3800629B2 (en) Multifocal lens for spectacles and spectacle lens
JP4973027B2 (en) Progressive power lens
JP3852116B2 (en) Progressive multifocal lens and spectacle lens
WO2004074907A1 (en) Progressive refractive power lens
JP2008518255A (en) Multifocal lens for pre-presbyopia
JP2003121801A (en) Progressive refractive power spectacle lens
JP2010009071A (en) Progressive spectacle lens comprising two aspherical surfaces, particularly progressive surfaces, and method of calculating the same
JP4806218B2 (en) Progressive power lens
EP2574975A1 (en) Optical lens, method for designing optical lens, and apparatus for manufacturing optical lens
JP4758143B2 (en) Eyeglass lenses and eyeglasses
EP2591395A2 (en) Progressive addition lens
JP5989317B2 (en) Progressive power lens, manufacturing method thereof, and designing method thereof
WO2004090615A1 (en) Progressive multifocal lens and method of designing the same
JP4219546B2 (en) Eyeglass lenses
JP4931669B2 (en) Eyeglass lens ordering system
JP5040889B2 (en) Eyeglass lens design method
JP5135158B2 (en) Progressive power lens, progressive power lens series, and manufacturing method of progressive power lens
US7341344B2 (en) Progressive power lens
ES2337970B1 (en) MONOFOCAL OPHTHALMIC LENSES WITH SPHERICAL AND / OR ASPHERIC SURFACES COMBINED.
JP6952321B2 (en) Lens for spectacles, calculation method of horizontal prism value and manufacturing method of lens for spectacles
US6851806B2 (en) Progressive multifocal lens and method of designing the same
JP2011070234A (en) Progressive-power lens
JP2023110750A (en) Powerful short-sighted lens and method of designing powerful short-sighted lens
JP2004309589A (en) Progressive power lens and its design method
JP2004309588A (en) Progressive power lens and its design method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080611

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110812

R150 Certificate of patent or registration of utility model

Ref document number: 4806218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250