US20010027216A1 - Method for preventing hormone induced adverse effects - Google Patents
Method for preventing hormone induced adverse effects Download PDFInfo
- Publication number
- US20010027216A1 US20010027216A1 US09/799,140 US79914001A US2001027216A1 US 20010027216 A1 US20010027216 A1 US 20010027216A1 US 79914001 A US79914001 A US 79914001A US 2001027216 A1 US2001027216 A1 US 2001027216A1
- Authority
- US
- United States
- Prior art keywords
- hormone
- carotenoid
- lycopene
- subject
- adverse effects
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229940088597 hormone Drugs 0.000 title claims abstract description 69
- 239000005556 hormone Substances 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 58
- 230000000694 effects Effects 0.000 title claims abstract description 57
- 230000002411 adverse Effects 0.000 title claims abstract description 41
- 235000021466 carotenoid Nutrition 0.000 claims abstract description 65
- 150000001747 carotenoids Chemical class 0.000 claims abstract description 65
- 239000003075 phytoestrogen Substances 0.000 claims abstract description 46
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 37
- 239000000262 estrogen Substances 0.000 claims abstract description 37
- 229940011871 estrogen Drugs 0.000 claims abstract description 36
- 201000011510 cancer Diseases 0.000 claims abstract description 30
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical class C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 claims abstract description 26
- 239000000583 progesterone congener Substances 0.000 claims abstract description 25
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 21
- 230000009286 beneficial effect Effects 0.000 claims abstract description 17
- 229960004999 lycopene Drugs 0.000 claims description 51
- OAIJSZIZWZSQBC-GYZMGTAESA-N lycopene Chemical compound CC(C)=CCC\C(C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C(/C)CCC=C(C)C OAIJSZIZWZSQBC-GYZMGTAESA-N 0.000 claims description 51
- UPYKUZBSLRQECL-UKMVMLAPSA-N Lycopene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1C(=C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=C)CCCC2(C)C UPYKUZBSLRQECL-UKMVMLAPSA-N 0.000 claims description 50
- JEVVKJMRZMXFBT-XWDZUXABSA-N Lycophyll Natural products OC/C(=C/CC/C(=C\C=C\C(=C/C=C/C(=C\C=C\C=C(/C=C/C=C(\C=C\C=C(/CC/C=C(/CO)\C)\C)/C)\C)/C)\C)/C)/C JEVVKJMRZMXFBT-XWDZUXABSA-N 0.000 claims description 50
- 239000001751 lycopene Substances 0.000 claims description 50
- 235000012661 lycopene Nutrition 0.000 claims description 50
- ZCIHMQAPACOQHT-ZGMPDRQDSA-N trans-isorenieratene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/c1c(C)ccc(C)c1C)C=CC=C(/C)C=Cc2c(C)ccc(C)c2C ZCIHMQAPACOQHT-ZGMPDRQDSA-N 0.000 claims description 50
- YVLPJIGOMTXXLP-UHFFFAOYSA-N 15-cis-phytoene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CC=CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C YVLPJIGOMTXXLP-UHFFFAOYSA-N 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 35
- YVLPJIGOMTXXLP-UUKUAVTLSA-N 15,15'-cis-Phytoene Natural products C(=C\C=C/C=C(\CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)/C)(\CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)/C YVLPJIGOMTXXLP-UUKUAVTLSA-N 0.000 claims description 21
- YVLPJIGOMTXXLP-BAHRDPFUSA-N 15Z-phytoene Natural products CC(=CCCC(=CCCC(=CCCC(=CC=C/C=C(C)/CCC=C(/C)CCC=C(/C)CCC=C(C)C)C)C)C)C YVLPJIGOMTXXLP-BAHRDPFUSA-N 0.000 claims description 21
- 235000011765 phytoene Nutrition 0.000 claims description 21
- 235000013734 beta-carotene Nutrition 0.000 claims description 20
- 239000011648 beta-carotene Substances 0.000 claims description 20
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 claims description 20
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 claims description 15
- 229930182833 estradiol Natural products 0.000 claims description 15
- 229960005309 estradiol Drugs 0.000 claims description 15
- OVSVTCFNLSGAMM-KGBODLQUSA-N cis-phytofluene Natural products CC(=CCCC(=CCCC(=CCCC(=CC=C/C=C(C)/C=C/C=C(C)/CCC=C(/C)CCC=C(C)C)C)C)C)C OVSVTCFNLSGAMM-KGBODLQUSA-N 0.000 claims description 14
- 235000002677 phytofluene Nutrition 0.000 claims description 14
- OVSVTCFNLSGAMM-UZFNGAIXSA-N phytofluene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CC=C\C=C(/C)\C=C\C=C(C)CCC=C(C)CCC=C(C)C OVSVTCFNLSGAMM-UZFNGAIXSA-N 0.000 claims description 14
- ZYSFBWMZMDHGOJ-SGKBLAECSA-N phytofluene Natural products CC(=CCCC(=CCCC(=CCCC(=CC=C/C=C(C)/CCC=C(/C)C=CC=C(/C)CCC=C(C)C)C)C)C)C ZYSFBWMZMDHGOJ-SGKBLAECSA-N 0.000 claims description 14
- ZIUDAKDLOLDEGU-UHFFFAOYSA-N trans-Phytofluen Natural products CC(C)=CCCC(C)CCCC(C)CC=CC(C)=CC=CC=C(C)C=CCC(C)CCCC(C)CCC=C(C)C ZIUDAKDLOLDEGU-UHFFFAOYSA-N 0.000 claims description 14
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 claims description 13
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 claims description 13
- 229960002747 betacarotene Drugs 0.000 claims description 13
- ANVAOWXLWRTKGA-XHGAXZNDSA-N all-trans-alpha-carotene Chemical compound CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1C(C)=CCCC1(C)C ANVAOWXLWRTKGA-XHGAXZNDSA-N 0.000 claims description 12
- 229940053934 norethindrone Drugs 0.000 claims description 10
- VIKNJXKGJWUCNN-XGXHKTLJSA-N norethisterone Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 VIKNJXKGJWUCNN-XGXHKTLJSA-N 0.000 claims description 10
- KBPHJBAIARWVSC-XQIHNALSSA-N trans-lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C KBPHJBAIARWVSC-XQIHNALSSA-N 0.000 claims description 10
- BIWLELKAFXRPDE-UHFFFAOYSA-N zeta-Carotene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)CCC=C(C)CCC=C(C)C BIWLELKAFXRPDE-UHFFFAOYSA-N 0.000 claims description 8
- DMASLKHVQRHNES-UPOGUZCLSA-N (3R)-beta,beta-caroten-3-ol Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C DMASLKHVQRHNES-UPOGUZCLSA-N 0.000 claims description 6
- 239000011795 alpha-carotene Substances 0.000 claims description 6
- 235000003903 alpha-carotene Nutrition 0.000 claims description 6
- ANVAOWXLWRTKGA-HLLMEWEMSA-N alpha-carotene Natural products C(=C\C=C\C=C(/C=C/C=C(\C=C\C=1C(C)(C)CCCC=1C)/C)\C)(\C=C\C=C(/C=C/[C@H]1C(C)=CCCC1(C)C)\C)/C ANVAOWXLWRTKGA-HLLMEWEMSA-N 0.000 claims description 6
- 229960005375 lutein Drugs 0.000 claims description 6
- 235000012680 lutein Nutrition 0.000 claims description 6
- 239000001656 lutein Substances 0.000 claims description 6
- KBPHJBAIARWVSC-RGZFRNHPSA-N lutein Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)=C[C@H](O)CC1(C)C KBPHJBAIARWVSC-RGZFRNHPSA-N 0.000 claims description 6
- ORAKUVXRZWMARG-WZLJTJAWSA-N lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C ORAKUVXRZWMARG-WZLJTJAWSA-N 0.000 claims description 6
- 230000003637 steroidlike Effects 0.000 claims description 6
- FJHBOVDFOQMZRV-XQIHNALSSA-N xanthophyll Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C=C(C)C(O)CC2(C)C FJHBOVDFOQMZRV-XQIHNALSSA-N 0.000 claims description 6
- WWYNJERNGUHSAO-XUDSTZEESA-N (+)-Norgestrel Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 WWYNJERNGUHSAO-XUDSTZEESA-N 0.000 claims description 5
- DNXHEGUUPJUMQT-UHFFFAOYSA-N (+)-estrone Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 DNXHEGUUPJUMQT-UHFFFAOYSA-N 0.000 claims description 5
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Estrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 claims description 5
- NBZANZVJRKXVBH-ITUXNECMSA-N all-trans-alpha-cryptoxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C(=CCCC2(C)C)C NBZANZVJRKXVBH-ITUXNECMSA-N 0.000 claims description 5
- 229960003399 estrone Drugs 0.000 claims description 5
- 229960004400 levonorgestrel Drugs 0.000 claims description 5
- 229960004616 medroxyprogesterone Drugs 0.000 claims description 5
- FRQMUZJSZHZSGN-HBNHAYAOSA-N medroxyprogesterone Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](O)(C(C)=O)CC[C@H]21 FRQMUZJSZHZSGN-HBNHAYAOSA-N 0.000 claims description 5
- 239000000186 progesterone Substances 0.000 claims description 5
- 229960003387 progesterone Drugs 0.000 claims description 5
- JKQXZKUSFCKOGQ-JLGXGRJMSA-N (3R,3'R)-beta,beta-carotene-3,3'-diol Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C[C@@H](O)CC1(C)C JKQXZKUSFCKOGQ-JLGXGRJMSA-N 0.000 claims description 4
- 239000004212 Cryptoxanthin Substances 0.000 claims description 4
- YTZIWAULTIDEEY-UHFFFAOYSA-N Isomeres zeta-Carotin Natural products CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CC=CC=C(C)C=CC=C(C)C=CC=C(C)CCC=C(C)C YTZIWAULTIDEEY-UHFFFAOYSA-N 0.000 claims description 4
- JKQXZKUSFCKOGQ-LQFQNGICSA-N Z-zeaxanthin Natural products C([C@H](O)CC=1C)C(C)(C)C=1C=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC1=C(C)C[C@@H](O)CC1(C)C JKQXZKUSFCKOGQ-LQFQNGICSA-N 0.000 claims description 4
- QOPRSMDTRDMBNK-RNUUUQFGSA-N Zeaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCC(O)C1(C)C)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C QOPRSMDTRDMBNK-RNUUUQFGSA-N 0.000 claims description 4
- JKQXZKUSFCKOGQ-LOFNIBRQSA-N all-trans-Zeaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C JKQXZKUSFCKOGQ-LOFNIBRQSA-N 0.000 claims description 4
- BIWLELKAFXRPDE-PCYOLSTGSA-N di-cis-zeta-carotene Natural products CC(C)=CCCC(C)=CCCC(C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(\C)CCC=C(C)CCC=C(C)C BIWLELKAFXRPDE-PCYOLSTGSA-N 0.000 claims description 4
- 210000002966 serum Anatomy 0.000 claims description 4
- 235000010930 zeaxanthin Nutrition 0.000 claims description 4
- 239000001775 zeaxanthin Substances 0.000 claims description 4
- 229940043269 zeaxanthin Drugs 0.000 claims description 4
- BIWLELKAFXRPDE-XXKNMTJFSA-N zeta-Carotene Natural products C(=C\C=C\C=C(/C=C/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)\C)(\C=C\C=C(/CC/C=C(\CC/C=C(\C)/C)/C)\C)/C BIWLELKAFXRPDE-XXKNMTJFSA-N 0.000 claims description 4
- NBZANZVJRKXVBH-GYDPHNCVSA-N alpha-Cryptoxanthin Natural products O[C@H]1CC(C)(C)C(/C=C/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(/C=C/[C@H]2C(C)=CCCC2(C)C)\C)/C)\C)/C)=C(C)C1 NBZANZVJRKXVBH-GYDPHNCVSA-N 0.000 claims description 3
- 235000005861 alpha-cryptoxanthin Nutrition 0.000 claims description 3
- 235000002360 beta-cryptoxanthin Nutrition 0.000 claims description 3
- DMASLKHVQRHNES-ITUXNECMSA-N beta-cryptoxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)CCCC2(C)C DMASLKHVQRHNES-ITUXNECMSA-N 0.000 claims description 3
- 239000011774 beta-cryptoxanthin Substances 0.000 claims description 2
- 239000002661 non steroidal estrogen Substances 0.000 claims description 2
- 238000002657 hormone replacement therapy Methods 0.000 abstract description 13
- 210000004027 cell Anatomy 0.000 description 45
- TZBJGXHYKVUXJN-UHFFFAOYSA-N genistein Natural products C1=CC(O)=CC=C1C1=COC2=CC(O)=CC(O)=C2C1=O TZBJGXHYKVUXJN-UHFFFAOYSA-N 0.000 description 39
- ZCOLJUOHXJRHDI-CMWLGVBASA-N genistein 7-O-beta-D-glucoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=C2C(=O)C(C=3C=CC(O)=CC=3)=COC2=C1 ZCOLJUOHXJRHDI-CMWLGVBASA-N 0.000 description 39
- 235000006539 genistein Nutrition 0.000 description 38
- 229940045109 genistein Drugs 0.000 description 38
- ZQSIJRDFPHDXIC-UHFFFAOYSA-N daidzein Chemical compound C1=CC(O)=CC=C1C1=COC2=CC(O)=CC=C2C1=O ZQSIJRDFPHDXIC-UHFFFAOYSA-N 0.000 description 26
- 206010006187 Breast cancer Diseases 0.000 description 24
- 208000026310 Breast neoplasm Diseases 0.000 description 24
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 20
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 20
- 230000004663 cell proliferation Effects 0.000 description 20
- 230000001419 dependent effect Effects 0.000 description 17
- 206010014759 Endometrial neoplasm Diseases 0.000 description 16
- 206010014733 Endometrial cancer Diseases 0.000 description 15
- 235000007240 daidzein Nutrition 0.000 description 13
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 239000000284 extract Substances 0.000 description 9
- 235000015872 dietary supplement Nutrition 0.000 description 7
- CJWQYWQDLBZGPD-UHFFFAOYSA-N isoflavone Natural products C1=C(OC)C(OC)=CC(OC)=C1C1=COC2=C(C=CC(C)(C)O3)C3=C(OC)C=C2C1=O CJWQYWQDLBZGPD-UHFFFAOYSA-N 0.000 description 7
- 235000008696 isoflavones Nutrition 0.000 description 7
- 230000035755 proliferation Effects 0.000 description 7
- JEBFVOLFMLUKLF-IFPLVEIFSA-N Astaxanthin Natural products CC(=C/C=C/C(=C/C=C/C1=C(C)C(=O)C(O)CC1(C)C)/C)C=CC=C(/C)C=CC=C(/C)C=CC2=C(C)C(=O)C(O)CC2(C)C JEBFVOLFMLUKLF-IFPLVEIFSA-N 0.000 description 6
- 239000001168 astaxanthin Substances 0.000 description 6
- 235000013793 astaxanthin Nutrition 0.000 description 6
- 229940022405 astaxanthin Drugs 0.000 description 6
- MQZIGYBFDRPAKN-ZWAPEEGVSA-N astaxanthin Chemical compound C([C@H](O)C(=O)C=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)[C@@H](O)CC1(C)C MQZIGYBFDRPAKN-ZWAPEEGVSA-N 0.000 description 6
- 230000010261 cell growth Effects 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 239000012894 fetal calf serum Substances 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 150000002515 isoflavone derivatives Chemical class 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 230000004936 stimulating effect Effects 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 230000001028 anti-proliverative effect Effects 0.000 description 4
- 210000000481 breast Anatomy 0.000 description 4
- 230000009702 cancer cell proliferation Effects 0.000 description 4
- FDSDTBUPSURDBL-LOFNIBRQSA-N canthaxanthin Chemical compound CC=1C(=O)CCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)CCC1(C)C FDSDTBUPSURDBL-LOFNIBRQSA-N 0.000 description 4
- 235000005911 diet Nutrition 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 241000227653 Lycopersicon Species 0.000 description 3
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 3
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 3
- 230000001093 anti-cancer Effects 0.000 description 3
- -1 counestrol Chemical compound 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000001076 estrogenic effect Effects 0.000 description 3
- 235000008466 glycitein Nutrition 0.000 description 3
- NNUVCMKMNCKPKN-UHFFFAOYSA-N glycitein Natural products COc1c(O)ccc2OC=C(C(=O)c12)c3ccc(O)cc3 NNUVCMKMNCKPKN-UHFFFAOYSA-N 0.000 description 3
- DXYUAIFZCFRPTH-UHFFFAOYSA-N glycitein Chemical compound C1=C(O)C(OC)=CC(C2=O)=C1OC=C2C1=CC=C(O)C=C1 DXYUAIFZCFRPTH-UHFFFAOYSA-N 0.000 description 3
- 239000003102 growth factor Substances 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000009245 menopause Effects 0.000 description 3
- 239000002417 nutraceutical Substances 0.000 description 3
- 235000021436 nutraceutical agent Nutrition 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 235000003687 soy isoflavones Nutrition 0.000 description 3
- 230000009469 supplementation Effects 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 235000019155 vitamin A Nutrition 0.000 description 3
- 239000011719 vitamin A Substances 0.000 description 3
- 229940045997 vitamin a Drugs 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 102000038455 IGF Type 1 Receptor Human genes 0.000 description 2
- 108010031794 IGF Type 1 Receptor Proteins 0.000 description 2
- 206010064912 Malignant transformation Diseases 0.000 description 2
- 208000001132 Osteoporosis Diseases 0.000 description 2
- OOUTWVMJGMVRQF-DOYZGLONSA-N Phoenicoxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)C(=O)C(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)C(=O)CCC2(C)C OOUTWVMJGMVRQF-DOYZGLONSA-N 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- RXRFEELZASHOLV-JAJWTYFOSA-N [(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] acetate Chemical class CC(=O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O RXRFEELZASHOLV-JAJWTYFOSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- WUADCCWRTIWANL-UHFFFAOYSA-N biochanin A Chemical compound C1=CC(OC)=CC=C1C1=COC2=CC(O)=CC(O)=C2C1=O WUADCCWRTIWANL-UHFFFAOYSA-N 0.000 description 2
- 230000002051 biphasic effect Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000036952 cancer formation Effects 0.000 description 2
- 235000012682 canthaxanthin Nutrition 0.000 description 2
- 239000001659 canthaxanthin Substances 0.000 description 2
- 229940008033 canthaxanthin Drugs 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 230000006369 cell cycle progression Effects 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 230000000378 dietary effect Effects 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 230000002357 endometrial effect Effects 0.000 description 2
- 102000015694 estrogen receptors Human genes 0.000 description 2
- 108010038795 estrogen receptors Proteins 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 229930182478 glucoside Natural products 0.000 description 2
- 150000008131 glucosides Chemical class 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- GOMNOOKGLZYEJT-UHFFFAOYSA-N isoflavone Chemical compound C=1OC2=CC=CC=C2C(=O)C=1C1=CC=CC=C1 GOMNOOKGLZYEJT-UHFFFAOYSA-N 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 230000036212 malign transformation Effects 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 235000008210 xanthophylls Nutrition 0.000 description 2
- 150000003735 xanthophylls Chemical class 0.000 description 2
- PROQIPRRNZUXQM-UHFFFAOYSA-N (16alpha,17betaOH)-Estra-1,3,5(10)-triene-3,16,17-triol Natural products OC1=CC=C2C3CCC(C)(C(C(O)C4)O)C4C3CCC2=C1 PROQIPRRNZUXQM-UHFFFAOYSA-N 0.000 description 1
- DGAKHGXRMXWHBX-ONEGZZNKSA-N Azoxymethane Chemical compound C\N=[N+](/C)[O-] DGAKHGXRMXWHBX-ONEGZZNKSA-N 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- HVDGDHBAMCBBLR-UHFFFAOYSA-N Enterolactone Natural products OC1=CC=CC(CC2C(C(=O)OC2)CC=2C=C(O)C=CC=2)=C1 HVDGDHBAMCBBLR-UHFFFAOYSA-N 0.000 description 1
- ZCOLJUOHXJRHDI-FZHKGVQDSA-N Genistein 7-O-glucoside Natural products O([C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](CO)O1)c1cc(O)c2C(=O)C(c3ccc(O)cc3)=COc2c1 ZCOLJUOHXJRHDI-FZHKGVQDSA-N 0.000 description 1
- CJPNHKPXZYYCME-UHFFFAOYSA-N Genistin Natural products OCC1OC(Oc2ccc(O)c3OC(=CC(=O)c23)c4ccc(O)cc4)C(O)C(O)C1O CJPNHKPXZYYCME-UHFFFAOYSA-N 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- 102000007330 LDL Lipoproteins Human genes 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- BKAYIFDRRZZKNF-VIFPVBQESA-N N-acetylcarnosine Chemical compound CC(=O)NCCC(=O)N[C@H](C(O)=O)CC1=CN=CN1 BKAYIFDRRZZKNF-VIFPVBQESA-N 0.000 description 1
- 206010067572 Oestrogenic effect Diseases 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- YCUNGEJJOMKCGZ-UHFFFAOYSA-N Pallidiflorin Natural products C1=CC(OC)=CC=C1C1=COC2=CC=CC(O)=C2C1=O YCUNGEJJOMKCGZ-UHFFFAOYSA-N 0.000 description 1
- 206010033557 Palpitations Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 1
- 101710173432 Phytoene synthase Proteins 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 230000003217 anti-cancerogenic effect Effects 0.000 description 1
- 230000002622 anti-tumorigenesis Effects 0.000 description 1
- XADJWCRESPGUTB-UHFFFAOYSA-N apigenin Natural products C1=CC(O)=CC=C1C1=CC(=O)C2=CC(O)=C(O)C=C2O1 XADJWCRESPGUTB-UHFFFAOYSA-N 0.000 description 1
- 235000008714 apigenin Nutrition 0.000 description 1
- KZNIFHPLKGYRTM-UHFFFAOYSA-N apigenin Chemical compound C1=CC(O)=CC=C1C1=CC(=O)C2=C(O)C=C(O)C=C2O1 KZNIFHPLKGYRTM-UHFFFAOYSA-N 0.000 description 1
- 229940117893 apigenin Drugs 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 108091092356 cellular DNA Proteins 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002113 chemopreventative effect Effects 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000004736 colon carcinogenesis Effects 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000003433 contraceptive agent Substances 0.000 description 1
- 230000002254 contraceptive effect Effects 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 235000019244 cryptoxanthin Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000018823 dietary intake Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000235 effect on cancer Effects 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 210000005168 endometrial cell Anatomy 0.000 description 1
- HVDGDHBAMCBBLR-WMLDXEAASA-N enterolactone Chemical compound OC1=CC=CC(C[C@@H]2[C@H](C(=O)OC2)CC=2C=C(O)C=CC=2)=C1 HVDGDHBAMCBBLR-WMLDXEAASA-N 0.000 description 1
- 230000003149 estradiol stimulation Effects 0.000 description 1
- PROQIPRRNZUXQM-ZXXIGWHRSA-N estriol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H]([C@H](O)C4)O)[C@@H]4[C@@H]3CCC2=C1 PROQIPRRNZUXQM-ZXXIGWHRSA-N 0.000 description 1
- 229960001348 estriol Drugs 0.000 description 1
- 238000009164 estrogen replacement therapy Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229930003944 flavone Natural products 0.000 description 1
- 235000011949 flavones Nutrition 0.000 description 1
- 150000002213 flavones Chemical class 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000003869 genetically modified organism Nutrition 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000007407 health benefit Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 229930013032 isoflavonoid Natural products 0.000 description 1
- 150000003817 isoflavonoid derivatives Chemical class 0.000 description 1
- 235000012891 isoflavonoids Nutrition 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 230000004748 mammary carcinogenesis Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- 239000008601 oleoresin Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 235000020944 retinol Nutrition 0.000 description 1
- 239000011607 retinol Substances 0.000 description 1
- 229960003471 retinol Drugs 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000011808 rodent model Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229940001941 soy protein Drugs 0.000 description 1
- 229940071440 soy protein isolate Drugs 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/565—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/01—Hydrocarbons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/01—Hydrocarbons
- A61K31/015—Hydrocarbons carbocyclic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/045—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
- A61K31/07—Retinol compounds, e.g. vitamin A
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/12—Drugs for genital or sexual disorders; Contraceptives for climacteric disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/18—Feminine contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/24—Drugs for disorders of the endocrine system of the sex hormones
- A61P5/30—Oestrogens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Definitions
- the present invention provides a method for preventing adverse effects associated with the administration of hormones such as phytoestrogens and steroidal estrogens.
- Hormone intake by humans can occur through, inter alia, consumption of pharmaceutical compositions, foodstuffs, nutritional supplements, and nutraceuticals.
- hormones include phytoestrogens, or nonsteroidal estrogens, steroidal estrogens and progestins.
- Phytoestrogens comprise, for example, genistein, daidzein and glycitein, and their respective glucoside, malonylglucoside and acetylglucoside derivatives.
- Estrogens and progestins are known to be used for hormone replacement therapy (HRT) and in contraceptive medications.
- HRT with estrogens or with estrogen/progestin combinations has been the standard method for treating symptoms associated with menopause (Emster V L et al.
- HRT formulations which include phytoestrogens such as the soy-derived isoflavones genistein and daidzein.
- phytoestrogens such as the soy-derived isoflavones genistein and daidzein.
- the health benefits of these plant products was first suggested by epidemiologic data indicating that Asian populations in which soy is a dietary staple suffer relatively low incidences of breast, uterine and other hormone-dependent cancers, ostensibly due to a high intake of soy and soy-derived products.
- soy isoflavones have been shown to exert anti-proliferative effects in human adenocarcinoma and breast cancer cell lines in vitro, these effects occur only at relatively high, i.e. 15 molar (“M”) concentrations (Constantinou, A. I. et al. 1998. Genistin Induces Maturation of Cultured Human Breast Cancer Cells and Prevents Tumor Growth in Nude Mice, Am. J. Clin. Nutr. 68:1426s-1430s; Le Bail, J. C. et al 1998. Estrogenic and Antiproliferative Activities on MCF-7 Human Breast Cancer Cells by Flavenoids, Cancer Lett. 130:209-216).
- M molar
- the anti-proliferative effects on cancer cells in vitro caused by phytoestrogens at such high concentrations may not have clinical relevance because the IC50 values are at least one order of magnitude greater than the blood concentrations achievable from soy-based diets.
- a phytoestrogen concentration range of approximately 0.1 to 2-3 ⁇ M is representative of that found in healthy humans, both Asian and European, with soy-based diets. (Adlercreutz, H. et al. 1993. Plasma Concentrations of Phyto-oestrogens in Japanese Men, Lancet 342:1209-1210; Gooderham et al., 1996.
- phytoestrogens have been disclosed as beneficial components for HRT formulations, it has been found that the presence of phytoestrogens at levels normally found in healthy humans increases the risk for development of hormone-dependent cancers.
- the carotenoid astaxanthin has been demonstrated to have anti-tumorigenic effects in vivo in rodent models (Tanaka, T. et al. 1995. Suppression of azoxymethane-induced rat colon carcinogenesis by dietary administration of naturally occurring xanthophylls astaxanthin and canthaxanthin during the postinitiation phase. Carcinogenesis 16: 2957-2963; Tanaka, T. et al. 1995. Chemoprevention of rat oral carcinogenesis by naturally occurring xanthophylls, astaxanthin and canthaxanthin. Canc. Res. 55:4059-4064).
- the carotenoid phytoene has also demonstrated anti-cancer activity.
- the cancer preventive activity of phytoene was demonstrated following introduction of the gene encoding phytoene synthase into mammalian cells normally lacking this gene. These cells acquired resistance against malignant transformation imposed by transfection of activated oncogenes (Nishino, H. 1998. Cancer prevention by carotenoids. Mutat. Res. 402:159-163).
- ⁇ -carotene was the first carotenoid suggested to have anti-cancer properties (Peto et al. 1981. Carotenoids and cancer: an update with emphasis on human intervention studies, Nature 290:201-208). Epidemiological studies of ⁇ -carotene's effect on cancer, however, have produced conflicting results. Although some studies have showed that ⁇ -carotene increases the risk for developing cancer (Omenn et al., 1996. Effects of a combination of beta-carotene and vitamin A on lung cancer and cardiovascular disease, N. Engl. J. Med 334:1150-1155), other cell culture and animal studies have indicated quite consistently that ⁇ -carotene has an anti-carcinogenic effect.
- Lycopene a carotenoid found in tomatoes, is strongly associated with anti-oxidant and anti-cancer activities.
- the anti-proliferative effects of lycopene on breast cancer cells in vitro has been shown to be mediated through interference with the IGF-1 receptor signaling pathway and cell cycle progression (Karas et al. 2000. Lycopene interferes with cell cycle progression and insulin-like growth factor I signaling in mammary cancer cells. Nutr. Cancer, 36:101-11).
- IGF-I is a growth factor obligatory for malignant transformation of breast tissue, and its concentration in plasma determines risk factor for cancers of both the breast (LeRoith, D., Werner, H., Beitner-Johnson, D.
- U.S. Pat. No. 5,827,900 discloses the use of lycopene for inhibiting the growth of cancers in vitro and in vivo, including hormone-dependent endometrial and breast cancers.
- U.S. Pat. No. 5,827,900 requires very high carotenoid dosage levels.
- the '900 patent discloses 7 mg/Kg to 20 mg/Kg per day as illustrative lycopene dosages. The method of the '900 patent would thus require 490 mg-1400 mg of lycopene per day for a person weighing 70 kg (154 lbs.).
- the combination of lycopene and soy isoflavones in dietary supplements has been disclosed in U.S. Pat. No. 5,904,924.
- the '924 patent discloses a nutritional powder composition comprising soy isoflavones (phytoestrogens) and lycopene.
- the '924 patent only refers to the ability of phytoestrogens to decrease the risk of estrogen dependent cancers. Nowhere does the '924 patent disclose that dietary intake of phytoestrogens incurs a risk for adverse health affects, and that such risk can be reduced by the concomitant consumption of carotenoids.
- the dosage range disclosed in the '586 patent is thus approximately equivalent to about 2.4-12 mg of beta-carotene and about 4.8-24 mg of alpha-carotene or cryptoxanthin. Since lycopene and lutein do not exhibit substantial provitamin A activity, the RE for these carotenoids cannot be calculated. The dosage levels disclosed in the '586 patent, however, are expressed only in RE units. The disclosure of the '586 patent thus does not limit dosage levels of carotenoids which do not exhibit substantial provitamin A activity, such as lycopene and lutein.
- the instant invention is directed to a method for preventing adverse effects which may be associated with the intake of pharmaceutical compositions, foodstuffs, nutritional supplements, or nutraceuticals comprising hormones such as estrogens, phytoestrogens and progestins.
- adverse effects include, but are not limited to, the induction of various types of cancer.
- the administration of phytoestrogens has been previously disclosed as beneficial in decreasing the risks for developing cancer. It has been found, however, that intake of phytoestrogens can incur an increased risk for developing hornone-dependent cancers.
- the present invention provides a method for preventing the adverse effects which may be associated with the administration of at least one hormone to a subject without detectable cancer comprising administering to such subject at least one carotenoid.
- the method of the instant invention can be utilized to prevent a variety of adverse effects associated with the administration of hormones, including, for example, an increased risk for developing cancer.
- an object of the instant method is to prevent the adverse effects associated with administration of estrogen and/or progestin in hormone replacement therapy without inhibiting the beneficial activity of such hormone.
- Another object of the present invention is to provide a method for preventing the adverse effects associated with the administration of phytoestrogens. It is yet another object of the presently claimed method to prevent adverse effects associated with the administration of phytoestrogens without inhibiting the beneficial activity of such hormone.
- FIG. 1 illustrates stimulation of ECC-1 endometrial cancer cell proliferation by isoflavenoids and soy extract.
- FIG. 2 demonstrates that lycopene inhibits both genistein- and estradiol-induced stimulation of hormone dependent malignant cells.
- FIG. 3 shows that lycopene inhibits the combined induced growth stimulation of genestein and IGF-1 on mammary cancer cells cultured in the presence of genesteine and IGF-1.
- FIG. 4 demonstrates that various carotenoids inhibit estradiol- and genistein-induced proliferation of ECC-1 endometrial cancer cells.
- FIG. 5 illustrates that lycopene inhibits in a dose dependent manner estradiol- and genistein-induced proliferation of ECC-1 endometrial cancer cells.
- FIG. 6 demonstrates that combinations of lycopene and phytoene at physiological concentrations synergistically inhibit genistein-induced proliferation of MCF-7 mammary cancer cells.
- hormone refers to steroidal estrogens, progestins, and nonsteroid estrogens (phytoestrogens) derived from higher plants, as well as chemically modified derivatives, synthetic equivalents, and mixtures thereof.
- steroidal estrogen or “estrogen” refers to estradiol, estrone, estriol, synthetic equivalents, chemically modified derivatives, and mixtures thereof.
- progestin refers to agents that cause progesterone effects, such as, for example, progerstone, medroxyprogesterone, norethindrone, norethisterone, norgestrel, synthetic equivalents, chemically modified derivatives, and mixtures thereof.
- phytoestrogen refers to soy protein isoflavones, flavones, as well as the glucoside, malonylglucoside and acetylglucoside derivatives, synthetic equivalents, chemically modified derivatives, and mixtures thereof.
- Illustrative phytoestrogens include, for example, daidzein, genistein, and glycitein.
- administering refers to the introduction to a subject by one or more of various routes, including oral ingestion, dermal, vaginal, intrauterine, intramuscular or intravenous injection.
- Carotenoids useful for the instant invention comprise, but are not limited to, lycopene, alpha-carotene, beta-carotene, zeta-carotene, phytoene, phytofluene, lutein, zeaxanthin, cryptoxanthin astaxantine, and mixtures thereof.
- the carotenoids can be obtained from natural or synthetic sources or from genetically modified organisms.
- the present invention provides a method for preventing the adverse effects which may be associated with the administration of at least one hormone to a subject without detectable cancer comprising administering to such subject at least one carotenoid in an amount effective to prevent such adverse effects.
- the carotenoid can be administered in a composition separate from the hormone or in a composition further comprising the hormone.
- a single carotenoid as well as combinations and mixtures thereof can be administered in the method of the present invention. It has surprisingly been found that the various combinations of lycopene, phytoene and phytofluene demonstrate a beneficially synergistic effect in preventing the adverse effects associated with the administration of hormones. Accordingly, carotenoid mixtures of lycopene and phytoene; lycopene and phytofluene; and lycopene, phytoene, and phytofluene can be administered in the presently claimed method. When administering such a mixture, a mixture of lycopene and phytoene is preferred.
- FIG. 1 panel A demonstrates that incubation of ECC-1 endometrial cancer cells in the presence of the phytoestrogens genistein or daidzein, or a mixture of the two as occurs in soy extract, at such a concentration range, induces a significant increase in cell proliferation rate (indicated by cpm, counts per minute).
- cpm centimeter of proliferation
- FIG. 2 panel A demonstrates this effect by comparing the cell proliferation rate of cancer cells incubated in the presence of increasing concentrations of the phytoestrogen genistein both in the presence and absence of lycopene. It is clearly shown that the increased rate of cell proliferation induced by genistein is substantially inhibited by the presence of lycopene. The same effect is seen in both endometrial cancer cells (FIG. 2, upper graphs) and mammary cancer cells (FIG. 2, lower graphs). This inhibiting effect is further demonstrated in FIG. 4 where it can be clearly seen that not only lycopene, but also carotenoids such as astaxanthin, phytoene and beta-carotene are effective inhibitors of the cell proliferation induced by the phytoestrogen genistein.
- carotenoids such as astaxanthin, phytoene and beta-carotene are effective inhibitors of the cell proliferation induced by the phytoestrogen genistein.
- Physiological concentrations of phytoestrogens to levels greater than about 10 ⁇ M can occur immediately following consumption of foodstuffs or dietary supplements comprising phytoestrogens. Such levels are greater than 0.4 to 4 ⁇ M, which is the steady state physiological concentration range of phytoestrogens in humans who have consumed phytoestrogens.
- FIG. 1, panel B demonstrates that such transiently high concentrations of phytoestrogens can induce cell proliferation and thus increase the risk for cancer.
- FIG. 1, panel B demonstrates that incubation of ECC-1 endometrial cancer cells with 40 ⁇ M daidzein or genistein, or a mixture of the two as occurs in soy extract, significantly increases cell proliferation within the first day in culture. The inhibitory effect of the phytoestrogens was significant only from the second day of incubation.
- the methods of the present invention operate to prevent the adverse effects of such elevated phytoestrogen levels which can occur immediately subsequent to consumption of phytoestrogen-containing products or compositions.
- the adverse effects associated with the administration of at least one phytoestrogen to a subject without detectable cancer are prevented by co-administering at least one carotenoid in an amount effective to prevent such adverse effects.
- the method of the present invention encompasses preventing such adverse effects without inhibiting the beneficial activity of said phytoestrogens.
- the carotenoid is administered in an amount from about 2 mg to about 10 mg per day, preferably from about 2 mg to about 6 mg per day, most preferably about 2 mg per day.
- Carotenoids that not exhibit substantial provitamin A activity such as, for example, zeta-carotene, phytoene, phytofluene, lutein, zeaxanthin, astaxantine, and lycopene, are preferably administered in an amount of about 2 mg per day.
- the method of the instant invention comprises administering to a subject at least one carotenoid selected from the group consisting of alpha-carotene, beta-carotene, and cryptoxanthin
- said carotenoid is preferably administered in an amount of about 2 mg per day.
- the method of the present invention can also be utilized to prevent adverse effects associated with the administration of hormones such as estrogen and progestin to a subject without detectable cancer.
- hormones such as estrogen and progestin
- Such method can be used, for example, in hormone replacement therapy, whereby the hormone is co-administered with at least one carotenoid in an amount sufficient to prevent adverse effects associated with the administration of such hormone.
- the carotenoid can be administered in a composition separate from such hormone or in a composition further comprising such hormone.
- the presently claimed method is particularly helpful for hormone replacement therapy.
- Hormone replacement therapy with estrogen alone, or estrogen replacement therapy can incur a risk for developing endometrial cancer.
- hormone replacement therapy comprising of a combined estrogen/progestin administration is often utilized. This form of therapy, however, can diminish the beneficial effects of estrogen.
- some progestins are associated with an increased risk for developing mammary cancer.
- the method of the instant invention can prevent the adverse effects associated with the administration of estrogen and progestin, and can do so without inhibition of the beneficial activity of such hormones as occurs in conventional hormone replacement therapy.
- the method of the present invention is used to prevent the additive adverse effects caused by elevated levels of IGF-1.
- IGF-1 occurs naturally in the serum of normal, healthy individuals. The occurrence of IGF-1 at elevated levels, however, constitutes a significant risk factor for cancers of the breast, prostate, lung, colon or rectum. The risk for developing cancer associated with the administration of hormones is thus increased in an individual who has elevated IGF-1 levels.
- the additive adverse effects caused by a combination of elevated IGF-1 levels and consumption of hormones are prevented by administering at least one carotenoid in an amount sufficient to prevent such adverse effects.
- the method of the instant invention is utilized to prevent the adverse effects associated with elevated levels of IGF-1 in the absence of hormones.
- the presence of IGF-1 at elevated levels constitutes a significant risk factor for certain cancers even in the absence of hormones.
- These adverse effects, including increasing the risk for developing cancer, which are caused by elevated IGF-1 levels can be prevented by administering at least one carotenoid in an amount sufficient to prevent such adverse effects.
- Lycopene (97%) was extracted from 5% tomato oleoresin as disclosed in U.S. Pat. No. 5,827,900. Synthetic lycopene was purchased from Sigma Chemical Co. (Israel), as was astaxanthin and beta-carotene. Phytoene was extracted from tomato extract at Lycored Natural Products Industries Ltd., Beer Sheva, Israel.
- Tetrahydrofuran (THF) containing 0.25% butylated hydroxytoluene was added to purified carotenoids as an antioxidant.
- Carotenoids were dissolved in THF at a concentration of 2 mM and stored at ⁇ 70 C.
- stock solutions were thawed and added to the cell culture medium under nitrogen, followed by vigorous stirring. Precipitates formed were removed by filtration through Millex-HV filter (Millipore). Final carotenoid concentrations in the medium were determined by spectrophotometry after extraction in 2-propanol and n-hexane:dichloronomethane, as in U.S. Pat. No. 5,827,900.
- Estradiol, genistein and daidzein were purchased from Sigma Chemical Co. (Israel). Soy extract containing 15% genistein, 15% daidzein and 1% glycitein was purchased from Kikkoman (Chiba-ken, Japan). Human recombinant IGF-1 was purchased from GroPep (Adelaide, Australia). Dulbecco's modified Eagle's medium (DMEM), fetal calf serum (FCS) and Ca 2+ /Mg 2+ -free phosphate buffered saline (PBS) were purchased from Biological Industries (Beth Haemek, Israel).
- DMEM modified Eagle's medium
- FCS fetal calf serum
- PBS Ca 2+ /Mg 2+ -free phosphate buffered saline
- the human endometrial cancer (estrogen dependent) cell line ECC-1 was developed by Dr. P. G. Satyaswaroop, Pennslyvania State University, PA., U.S.A, and generously provided to us by Dr. R. Oregan, Indiana University, Chicago, Ill., U.S.A.
- Human mammary cancer cell lines MCF-7 (estrogen dependent) and MDA-231 (hormone independent) were obtained from the American Type Culture Collection (Rockville, Md.).
- ECC-1 cells were incubated with increasing concentrations of the isoflavones genistein and daidzein, the two primary isoflavones in soy products, and with soy extract.
- Cell proliferation after three days was measured by [ 3 H]thymidine incorporation into DNA (FIG. 1, panel A).
- Genistein, daidzein and soy extract all stimulated cell proliferation at 0.4 and 4 ⁇ M concentrations, which are in the ranges found in the plasma of soy supplemented individuals.
- genistein and soy extract but not daidzein, inhibited cell proliferation after three days in culture (FIG. 1, panel A).
- ECC-1 cells were also incubated with a single high concentration (40 ⁇ M) of each of genistein, daidzein and soy extract. Cell proliferation was assayed daily over the course of three days. The results, presented in FIG. 1, panel B, show that after one day of incubation this high isoflavone concentration also stimulated cell proliferation, while inhibitory effects of genistein were seen only by the second day in culture. These results suggests that transiently elevated levels of isoflavones, particularly genistein, to levels normally associated with cell growth inhibition, may in fact stimulate cell growth in soy supplemented individuals.
- FIG. 3 shows that IGF-1 (30 nM) supplementation of both hormone-dependent MCF-7 mammary cancer cells (panel A) and hormone-independent MDA-231 mammary cancer cells (panel B) significantly stimulates cell growth.
- the stimulatory effect of genistein is further augmented in the presence of IGF-I (FIG. 3, panel A).
- MDA-231 is stimulated by IGF-I, but not by genistein.
- genistein not only stimulates hormone-dependent cancer cell proliferation, but IGF-I as well as other growth factors further augment this effect.
- lycopene inhibits IGF stimulation in both hormone-dependent and hormone-independent mammary cancer cell lines.
- cell proliferation was reduced to levels less than that of controls.
- the ECC-1 hormone-dependent cell line was stimulated either by estradiol at 10 nM (FIG. 4, left panel) or by genistein at 1 ⁇ M (FIG. 4, panel B) and test cultures were additionally supplemented with various carotenoids.
- the results demonstrate that all carotenoids tested (lycopene, beta-carotene, astaxanthin and a mixture of phytoene and phytofluene) effectively inhibited both estradiol- and genistein-induced cell proliferation.
- the hormone-dependent endometrial cancer cell line ECC-1 was stimulated either by estradiol at 10 nM (FIG. 5, left panel) orby genistein at 1 ⁇ M (FIG. 5, right panel) and test cultures were additionally supplemented with various concentrations of lycopene.
- MCF-7 mammary cancer cells were stimulated by genistein (4 ⁇ M) and test cultures were additionally supplemented with lycopene or phytoene or a combination of both, at either physiological concentrations (FIG. 6, panel A) or at about one order of magnitude greater than the physiological concentrations (FIG. 6, panel B).
- the results demonstrate that high, non-physiological concentrations of the individual carotenoids were effective in significantly inhibiting phytoestrogen-induced cell proliferation.
- the results also show that low (physiological) concentration of lycopene (0.4 ⁇ M) or of a mixture of phytoene and phytofluene (6 ⁇ M) do not significantly affect phytoestrogen induced cell proliferation.
- the combination of phytoestrogen and phytofluene at low (physicological) concentrations synergistically inhibits genestrein-induced mammary cancer cell proliferation.(FIG. 6).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Endocrinology (AREA)
- Physical Education & Sports Medicine (AREA)
- Microbiology (AREA)
- Alternative & Traditional Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Mycology (AREA)
- Rheumatology (AREA)
- Medical Informatics (AREA)
- Reproductive Health (AREA)
- Botany (AREA)
- Biotechnology (AREA)
- Gynecology & Obstetrics (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Diabetes (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Plant Substances (AREA)
Abstract
The present invention provides a method for preventing the adverse effects which may be associated with the administration of at least one hormone to a subject without detectable cancer comprising administering to such subject at least one carotenoid. The invention further provides a method for preventing a variety of adverse effects associated with the administration of hormones, including, for example, an increased risk for developing cancer. The invention further provides a method for preventing adverse effects without inhibiting the beneficial activity of the hormone. The invention further provides a method for preventing the adverse effects associated with administration of estrogen and/or progestin in hormone replacement therapy without inhibiting the beneficial activity of such hormone. The invention further provides a method for preventing the adverse effects associated with the administration of phytoestrogens. The invention further provides a method for preventing adverse effects associated with the administration of phytoestrogens without inhibiting the beneficial activity of such hormone.
Description
- The present invention provides a method for preventing adverse effects associated with the administration of hormones such as phytoestrogens and steroidal estrogens.
- Hormone intake by humans can occur through, inter alia, consumption of pharmaceutical compositions, foodstuffs, nutritional supplements, and nutraceuticals. Such hormones include phytoestrogens, or nonsteroidal estrogens, steroidal estrogens and progestins. Phytoestrogens comprise, for example, genistein, daidzein and glycitein, and their respective glucoside, malonylglucoside and acetylglucoside derivatives. Estrogens and progestins are known to be used for hormone replacement therapy (HRT) and in contraceptive medications. HRT with estrogens or with estrogen/progestin combinations has been the standard method for treating symptoms associated with menopause (Emster V L et al. (1988) Benefits and Risks of Menopausal Estrogen and/or Progestin Hormone Use, Prev. Med. 17:201-223). The onset of menopause in mature adult women, which is accompanied by reduced estrogen production, is associated with an array of symptoms. These symptoms include hot and cold flashes, palpitations, dizziness, headaches, altered secretions as well as weight loss and gain. Reduced levels of circulating estrogen in post-menopausal women are also associated with increased risks of osteoporosis and coronary heart disease. Treatment protocols using estrogen alone significantly reduce the risks of cardiovascular disease and osteoporosis, if treatment begins at menopause. The protective effect of estrogen against heart disease is related to its ability to raise levels of circulating HDL and lower levels of LDL.
- In contrast with this beneficial effect, long-term use of estrogens is positively correlated with an increased risk for endometrial cancer development. This risk may be reduced by simultaneous administration of a progestin, which prevents overgrowth of endometrial cells. Hence, an estrogen/progestin combined HRT protocol is recommended for a woman with an intact uterus. This form of combination therapy however, apparently diminishes the beneficial effects of estrogen on the plasma lipid profile (Lobo R. 1992. The Role of Progestins in Hormone Replacement Therapy; Am. J Obstet. Gynecol. 166:1997-2004). Furthermore, some progestins are associated with an increased risk of mammary cancer development (Staffa J. A. et al. 1991. Progestins and Breast Cancer: An Epidemiologic Review, 57: 473-491; King R. J. B. 1991. A Discussion of the Roles of Estrogen and Progestin in Human Mammary Carcinogenesis, J. Ster. Biochem. Molec. Bio. 39:8111-8118).
- As disclosed in U.S. Pat. No. 5,516,528, HRT formulations have been developed which include phytoestrogens such as the soy-derived isoflavones genistein and daidzein. The health benefits of these plant products was first suggested by epidemiologic data indicating that Asian populations in which soy is a dietary staple suffer relatively low incidences of breast, uterine and other hormone-dependent cancers, ostensibly due to a high intake of soy and soy-derived products.
- Although soy isoflavones have been shown to exert anti-proliferative effects in human adenocarcinoma and breast cancer cell lines in vitro, these effects occur only at relatively high, i.e. 15 molar (“M”) concentrations (Constantinou, A. I. et al. 1998. Genistin Induces Maturation of Cultured Human Breast Cancer Cells and Prevents Tumor Growth in Nude Mice, Am. J. Clin. Nutr. 68:1426s-1430s; Le Bail, J. C. et al 1998. Estrogenic and Antiproliferative Activities on MCF-7 Human Breast Cancer Cells by Flavenoids, Cancer Lett. 130:209-216). The anti-proliferative effects on cancer cells in vitro caused by phytoestrogens at such high concentrations may not have clinical relevance because the IC50 values are at least one order of magnitude greater than the blood concentrations achievable from soy-based diets. A phytoestrogen concentration range of approximately 0.1 to 2-3 μM is representative of that found in healthy humans, both Asian and European, with soy-based diets. (Adlercreutz, H. et al. 1993. Plasma Concentrations of Phyto-oestrogens in Japanese Men, Lancet 342:1209-1210; Gooderham et al., 1996. A Soy Protein Isolate Rich in Genistein and Daidzein and its Effects on Plasma Isoflavone Concentrations, Platelet Aggregation, Blood Lipids and Fatty Acid Composition of Plasma Phospholipid in Normal Men, J. Nutr. 125:2000-2006). At these lower concentrations, various phytoestrogens, including genistein, counestrol, biochanin A, apigenin, luiolin, kaempferl and enterolactone, were shown to induce cell proliferation in estrogen receptor-positive, but not in estrogen receptor negative human breast cancer cell lines, thus demonstrating the estrogenic effects of these compounds (Wang, C. and Kurtzer, M. S. 1997. Phytoestrogen concentration Determines Effects on DNA synthesis in Human Breast Cancer Cells, Nutr. Cancer 28:236-247).
- Hence, although phytoestrogens have been disclosed as beneficial components for HRT formulations, it has been found that the presence of phytoestrogens at levels normally found in healthy humans increases the risk for development of hormone-dependent cancers.
- The carotenoid astaxanthin has been demonstrated to have anti-tumorigenic effects in vivo in rodent models (Tanaka, T. et al. 1995. Suppression of azoxymethane-induced rat colon carcinogenesis by dietary administration of naturally occurring xanthophylls astaxanthin and canthaxanthin during the postinitiation phase. Carcinogenesis 16: 2957-2963; Tanaka, T. et al. 1995. Chemoprevention of rat oral carcinogenesis by naturally occurring xanthophylls, astaxanthin and canthaxanthin. Canc. Res. 55:4059-4064).
- The carotenoid phytoene has also demonstrated anti-cancer activity. The cancer preventive activity of phytoene was demonstrated following introduction of the gene encoding phytoene synthase into mammalian cells normally lacking this gene. These cells acquired resistance against malignant transformation imposed by transfection of activated oncogenes (Nishino, H. 1998. Cancer prevention by carotenoids. Mutat. Res. 402:159-163).
- β-carotene was the first carotenoid suggested to have anti-cancer properties (Peto et al. 1981. Carotenoids and cancer: an update with emphasis on human intervention studies, Nature 290:201-208). Epidemiological studies of β-carotene's effect on cancer, however, have produced conflicting results. Although some studies have showed that β-carotene increases the risk for developing cancer (Omenn et al., 1996. Effects of a combination of beta-carotene and vitamin A on lung cancer and cardiovascular disease, N. Engl. J. Med 334:1150-1155), other cell culture and animal studies have indicated quite consistently that β-carotene has an anti-carcinogenic effect.
- Lycopene, a carotenoid found in tomatoes, is strongly associated with anti-oxidant and anti-cancer activities. The anti-proliferative effects of lycopene on breast cancer cells in vitro has been shown to be mediated through interference with the IGF-1 receptor signaling pathway and cell cycle progression (Karas et al. 2000. Lycopene interferes with cell cycle progression and insulin-like growth factor I signaling in mammary cancer cells. Nutr. Cancer, 36:101-11). IGF-I is a growth factor obligatory for malignant transformation of breast tissue, and its concentration in plasma determines risk factor for cancers of both the breast (LeRoith, D., Werner, H., Beitner-Johnson, D. and Roberts, C.T., Jr. 1995. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr. Rev. 16:143-59; Hankinson S. E. et al. 1998. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351:1393-6) and prostate (Chan, J. M., Stampfer, M. J. Giovannucci, E., Gann, P. H., Ma, J. 1998 Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279:563-66).
- U.S. Pat. No. 5,827,900 discloses the use of lycopene for inhibiting the growth of cancers in vitro and in vivo, including hormone-dependent endometrial and breast cancers. U.S. Pat. No. 5,827,900 requires very high carotenoid dosage levels. The '900 patent discloses 7 mg/Kg to 20 mg/Kg per day as illustrative lycopene dosages. The method of the '900 patent would thus require 490 mg-1400 mg of lycopene per day for a person weighing 70 kg (154 lbs.).
- The combination of lycopene and soy isoflavones in dietary supplements has been disclosed in U.S. Pat. No. 5,904,924. The '924 patent discloses a nutritional powder composition comprising soy isoflavones (phytoestrogens) and lycopene. The '924 patent only refers to the ability of phytoestrogens to decrease the risk of estrogen dependent cancers. Nowhere does the '924 patent disclose that dietary intake of phytoestrogens incurs a risk for adverse health affects, and that such risk can be reduced by the concomitant consumption of carotenoids.
- The use of phytoestrogens in dietary supplements has been disclosed in U.S. Pat. Nos. 5,830,887 and 5,807,586. The combination of carotenoid mixtures, vitamin A and phytoestrogens in dietary supplements for women was disclosed in U.S. Pat. No. 5,807,586. The dosage amounts of vitamin A and mixed carotenoids disclosed in the '586 patent range from about 400 to about 2000 μg retinol equivalents (“RE”). 1 RE is equivalent to about 6 μg beta-carotene and about 12 μg alpha-carotene or cryptoxanthin. The dosage range disclosed in the '586 patent is thus approximately equivalent to about 2.4-12 mg of beta-carotene and about 4.8-24 mg of alpha-carotene or cryptoxanthin. Since lycopene and lutein do not exhibit substantial provitamin A activity, the RE for these carotenoids cannot be calculated. The dosage levels disclosed in the '586 patent, however, are expressed only in RE units. The disclosure of the '586 patent thus does not limit dosage levels of carotenoids which do not exhibit substantial provitamin A activity, such as lycopene and lutein.
- The instant invention is directed to a method for preventing adverse effects which may be associated with the intake of pharmaceutical compositions, foodstuffs, nutritional supplements, or nutraceuticals comprising hormones such as estrogens, phytoestrogens and progestins. Such adverse effects include, but are not limited to, the induction of various types of cancer. The administration of phytoestrogens has been previously disclosed as beneficial in decreasing the risks for developing cancer. It has been found, however, that intake of phytoestrogens can incur an increased risk for developing hornone-dependent cancers.
- There is thus a long felt need for a method to prevent the adverse effects which may be associated with the intake offoodstuffs, pharmaceutical compositions, nutritional supplements, and nutraceuticals comprising phytoestrogens, steroidal estrogens, and/or progestins.
- The present invention provides a method for preventing the adverse effects which may be associated with the administration of at least one hormone to a subject without detectable cancer comprising administering to such subject at least one carotenoid. The method of the instant invention can be utilized to prevent a variety of adverse effects associated with the administration of hormones, including, for example, an increased risk for developing cancer.
- The instantly claimed method prevents such adverse effects without inhibiting the beneficial activity of the hormone. Accordingly, an object of the instant method is to prevent the adverse effects associated with administration of estrogen and/or progestin in hormone replacement therapy without inhibiting the beneficial activity of such hormone.
- Another object of the present invention is to provide a method for preventing the adverse effects associated with the administration of phytoestrogens. It is yet another object of the presently claimed method to prevent adverse effects associated with the administration of phytoestrogens without inhibiting the beneficial activity of such hormone.
- FIG. 1 illustrates stimulation of ECC-1 endometrial cancer cell proliferation by isoflavenoids and soy extract.
- FIG. 2 demonstrates that lycopene inhibits both genistein- and estradiol-induced stimulation of hormone dependent malignant cells.
- FIG. 3 shows that lycopene inhibits the combined induced growth stimulation of genestein and IGF-1 on mammary cancer cells cultured in the presence of genesteine and IGF-1.
- FIG. 4 demonstrates that various carotenoids inhibit estradiol- and genistein-induced proliferation of ECC-1 endometrial cancer cells.
- FIG. 5 illustrates that lycopene inhibits in a dose dependent manner estradiol- and genistein-induced proliferation of ECC-1 endometrial cancer cells.
- FIG. 6 demonstrates that combinations of lycopene and phytoene at physiological concentrations synergistically inhibit genistein-induced proliferation of MCF-7 mammary cancer cells.
- As used throughout this specification, “hormone” refers to steroidal estrogens, progestins, and nonsteroid estrogens (phytoestrogens) derived from higher plants, as well as chemically modified derivatives, synthetic equivalents, and mixtures thereof.
- As used throughout this specification, “steroidal estrogen” or “estrogen” refers to estradiol, estrone, estriol, synthetic equivalents, chemically modified derivatives, and mixtures thereof.
- As used throughout this specification, “progestin” refers to agents that cause progesterone effects, such as, for example, progerstone, medroxyprogesterone, norethindrone, norethisterone, norgestrel, synthetic equivalents, chemically modified derivatives, and mixtures thereof.
- As used throughout this specification, “phystoestrogen” refers to soy protein isoflavones, flavones, as well as the glucoside, malonylglucoside and acetylglucoside derivatives, synthetic equivalents, chemically modified derivatives, and mixtures thereof. Illustrative phytoestrogens include, for example, daidzein, genistein, and glycitein.
- As used throughout this specification, “administration” or “administering” refers to the introduction to a subject by one or more of various routes, including oral ingestion, dermal, vaginal, intrauterine, intramuscular or intravenous injection.
- Carotenoids useful for the instant invention comprise, but are not limited to, lycopene, alpha-carotene, beta-carotene, zeta-carotene, phytoene, phytofluene, lutein, zeaxanthin, cryptoxanthin astaxantine, and mixtures thereof. The carotenoids can be obtained from natural or synthetic sources or from genetically modified organisms.
- The present invention provides a method for preventing the adverse effects which may be associated with the administration of at least one hormone to a subject without detectable cancer comprising administering to such subject at least one carotenoid in an amount effective to prevent such adverse effects. The carotenoid can be administered in a composition separate from the hormone or in a composition further comprising the hormone.
- A single carotenoid as well as combinations and mixtures thereof can be administered in the method of the present invention. It has surprisingly been found that the various combinations of lycopene, phytoene and phytofluene demonstrate a beneficially synergistic effect in preventing the adverse effects associated with the administration of hormones. Accordingly, carotenoid mixtures of lycopene and phytoene; lycopene and phytofluene; and lycopene, phytoene, and phytofluene can be administered in the presently claimed method. When administering such a mixture, a mixture of lycopene and phytoene is preferred.
- Upon consuming phytoestrogen-containing products, the physiological concentration of these phytoestrogens in the subject's blood serum can reach levels of 0.01 to 4 μM. FIG. 1 panel A demonstrates that incubation of ECC-1 endometrial cancer cells in the presence of the phytoestrogens genistein or daidzein, or a mixture of the two as occurs in soy extract, at such a concentration range, induces a significant increase in cell proliferation rate (indicated by cpm, counts per minute). Hence, subjects who reach these phytoestrogen concentrations increase their risk of certain types of cancer, inter alia, endometrial and mammary cancer.
- FIG. 2 panel A demonstrates this effect by comparing the cell proliferation rate of cancer cells incubated in the presence of increasing concentrations of the phytoestrogen genistein both in the presence and absence of lycopene. It is clearly shown that the increased rate of cell proliferation induced by genistein is substantially inhibited by the presence of lycopene. The same effect is seen in both endometrial cancer cells (FIG. 2, upper graphs) and mammary cancer cells (FIG. 2, lower graphs). This inhibiting effect is further demonstrated in FIG. 4 where it can be clearly seen that not only lycopene, but also carotenoids such as astaxanthin, phytoene and beta-carotene are effective inhibitors of the cell proliferation induced by the phytoestrogen genistein.
- Physiological concentrations of phytoestrogens to levels greater than about 10 μM can occur immediately following consumption of foodstuffs or dietary supplements comprising phytoestrogens. Such levels are greater than 0.4 to 4 μM, which is the steady state physiological concentration range of phytoestrogens in humans who have consumed phytoestrogens. FIG. 1, panel B demonstrates that such transiently high concentrations of phytoestrogens can induce cell proliferation and thus increase the risk for cancer. FIG. 1, panel B demonstrates that incubation of ECC-1 endometrial cancer cells with 40 μM daidzein or genistein, or a mixture of the two as occurs in soy extract, significantly increases cell proliferation within the first day in culture. The inhibitory effect of the phytoestrogens was significant only from the second day of incubation. The methods of the present invention operate to prevent the adverse effects of such elevated phytoestrogen levels which can occur immediately subsequent to consumption of phytoestrogen-containing products or compositions.
- According to an embodiment of the invention, the adverse effects associated with the administration of at least one phytoestrogen to a subject without detectable cancer are prevented by co-administering at least one carotenoid in an amount effective to prevent such adverse effects. The method of the present invention encompasses preventing such adverse effects without inhibiting the beneficial activity of said phytoestrogens.
- The carotenoid is administered in an amount from about 2 mg to about 10 mg per day, preferably from about 2 mg to about 6 mg per day, most preferably about 2 mg per day. Carotenoids that not exhibit substantial provitamin A activity such as, for example, zeta-carotene, phytoene, phytofluene, lutein, zeaxanthin, astaxantine, and lycopene, are preferably administered in an amount of about 2 mg per day.
- Where the method of the instant invention comprises administering to a subject at least one carotenoid selected from the group consisting of alpha-carotene, beta-carotene, and cryptoxanthin, said carotenoid is preferably administered in an amount of about 2 mg per day.
- The method of the present invention can also be utilized to prevent adverse effects associated with the administration of hormones such as estrogen and progestin to a subject without detectable cancer. Such method can be used, for example, in hormone replacement therapy, whereby the hormone is co-administered with at least one carotenoid in an amount sufficient to prevent adverse effects associated with the administration of such hormone. The carotenoid can be administered in a composition separate from such hormone or in a composition further comprising such hormone.
- The presently claimed method is particularly helpful for hormone replacement therapy. Hormone replacement therapy with estrogen alone, or estrogen replacement therapy, can incur a risk for developing endometrial cancer. In an attempt to reduce this risk, hormone replacement therapy comprising of a combined estrogen/progestin administration is often utilized. This form of therapy, however, can diminish the beneficial effects of estrogen. Furthermore, some progestins are associated with an increased risk for developing mammary cancer. The method of the instant invention can prevent the adverse effects associated with the administration of estrogen and progestin, and can do so without inhibition of the beneficial activity of such hormones as occurs in conventional hormone replacement therapy.
- In another embodiment, the method of the present invention is used to prevent the additive adverse effects caused by elevated levels of IGF-1. IGF-1 occurs naturally in the serum of normal, healthy individuals. The occurrence of IGF-1 at elevated levels, however, constitutes a significant risk factor for cancers of the breast, prostate, lung, colon or rectum. The risk for developing cancer associated with the administration of hormones is thus increased in an individual who has elevated IGF-1 levels. The additive adverse effects caused by a combination of elevated IGF-1 levels and consumption of hormones are prevented by administering at least one carotenoid in an amount sufficient to prevent such adverse effects.
- In yet another embodiment, the method of the instant invention is utilized to prevent the adverse effects associated with elevated levels of IGF-1 in the absence of hormones. The presence of IGF-1 at elevated levels constitutes a significant risk factor for certain cancers even in the absence of hormones. These adverse effects, including increasing the risk for developing cancer, which are caused by elevated IGF-1 levels can be prevented by administering at least one carotenoid in an amount sufficient to prevent such adverse effects.
- The present invention will now be further explained in the following examples, which further describe, but do not limit the scope of the invention.
- Carotenoid Sources and Solutions
- Lycopene (97%) was extracted from 5% tomato oleoresin as disclosed in U.S. Pat. No. 5,827,900. Synthetic lycopene was purchased from Sigma Chemical Co. (Israel), as was astaxanthin and beta-carotene. Phytoene was extracted from tomato extract at Lycored Natural Products Industries Ltd., Beer Sheva, Israel.
- Tetrahydrofuran (THF) containing 0.25% butylated hydroxytoluene was added to purified carotenoids as an antioxidant. Carotenoids were dissolved in THF at a concentration of 2 mM and stored at −70 C. Immediately before use, stock solutions were thawed and added to the cell culture medium under nitrogen, followed by vigorous stirring. Precipitates formed were removed by filtration through Millex-HV filter (Millipore). Final carotenoid concentrations in the medium were determined by spectrophotometry after extraction in 2-propanol and n-hexane:dichloronomethane, as in U.S. Pat. No. 5,827,900.
- The final THF concentration of 0.5% did not have any significant effect on the measured parameters. All procedures were carried out under dim lighting.
- Hormones Growth Factors and Other Cell Culture Materials
- Estradiol, genistein and daidzein were purchased from Sigma Chemical Co. (Israel). Soy extract containing 15% genistein, 15% daidzein and 1% glycitein was purchased from Kikkoman (Chiba-ken, Japan). Human recombinant IGF-1 was purchased from GroPep (Adelaide, Australia). Dulbecco's modified Eagle's medium (DMEM), fetal calf serum (FCS) and Ca2+/Mg2+-free phosphate buffered saline (PBS) were purchased from Biological Industries (Beth Haemek, Israel).
- Cell lines
- The human endometrial cancer (estrogen dependent) cell line ECC-1 was developed by Dr. P. G. Satyaswaroop, Pennslyvania State University, PA., U.S.A, and generously provided to us by Dr. R. Oregan, Northwestern University, Chicago, Ill., U.S.A. Human mammary cancer cell lines MCF-7 (estrogen dependent) and MDA-231 (hormone independent) were obtained from the American Type Culture Collection (Rockville, Md.).
- Cell Culture and Cell Proliferation Assay
- Cells were cultured in DMEM containing penicillin (100 U/ml), streptomycin (0.1 mg/ml)) nystatin (12.5 (g/ml), insulin (0.6 (g/ml), and 10% FCS. Cells were stripped of endogenous steroids according to the procedure of Vignon et al. (1987, Biochem. Biophys. Res. Comm., 146:1502-8) by successive passages in medium without phenol red containing 10% and then 3% of charcoal-stripped FCS. Cells were seeded into 96 multiwell plates (5,000 cells per well) in DMEM containing 3% of charcoal-stripped FCS. After one day the medium was changed to one containing the solubilized carotenoid or THF alone. The medium was changed daily to ensure a continuous supply of carotenoid.
- After incubation, the number of cells and the rate of cell proliferation were estimated by the incorporation of [3H]thymidine incorporation into cellular DNA, as described in U.S. Pat. No. 5,827,900. Cell growth was also measured by direct cell counting with a Coulter counter after trypsinization and dilution in Isotone-II (Coulter Electronics, Luton, England). A good correlation was found between the two methods.
- Stimulation of ECC-1 Endometrial Cancer Cell Proliferation by Isoflavonoids.
- ECC-1 cells were incubated with increasing concentrations of the isoflavones genistein and daidzein, the two primary isoflavones in soy products, and with soy extract. Cell proliferation after three days was measured by [3H]thymidine incorporation into DNA (FIG. 1, panel A). Genistein, daidzein and soy extract all stimulated cell proliferation at 0.4 and 4 μM concentrations, which are in the ranges found in the plasma of soy supplemented individuals. At higher, non-physiological concentrations (10 μM), genistein and soy extract, but not daidzein, inhibited cell proliferation after three days in culture (FIG. 1, panel A). These results demonstrate that genistein has biphasic effects on endometrial cancer cell growth, while daidzein is only stimulatory.
- ECC-1 cells were also incubated with a single high concentration (40 μM) of each of genistein, daidzein and soy extract. Cell proliferation was assayed daily over the course of three days. The results, presented in FIG. 1, panel B, show that after one day of incubation this high isoflavone concentration also stimulated cell proliferation, while inhibitory effects of genistein were seen only by the second day in culture. These results suggests that transiently elevated levels of isoflavones, particularly genistein, to levels normally associated with cell growth inhibition, may in fact stimulate cell growth in soy supplemented individuals.
- Inhibitory Effect of Lycopene on Both Genistein and Estradiol Stimulation of Hormone-dependent Malignant Cells.
- The comparative effects of estradiol and genistein supplementation on the proliferation of the hormone-dependent cell lines MCF-7 mammary cancer and ECC-1 endometrial cancer were examined (FIG. 2). In each of these cell lines, genistein exhibited biphasic effects on proliferation, stimulating at low concentrations and inhibiting at high concentrations (FIG. 2, panel A), as demonstrated in Example 1. Estradiol at each of the concentrations tested (1 and 10 nM) was only stimulatory for cell growth (FIG. 2 , panel B). These results suggest that the stimulatory effect of genistein may be due to its estrogenic action.
- Cell cultures stimulated either by genistein or estradiol, as described above, were further supplemented with lycopene and assayed for cell proliferation after three days in culture. As shown in FIG. 2, lycopene supplementation at 3 to 5 μM significantly inhibited both basal growth and estrogen-induced (either genistein or estradiol) growth in both of the hormone-dependent cancer cell lines tested.
- Inhibitory Effect of Lycopene on IGF-1-stimulated Growth in Hormone-Dependent and Hormone-independent Mammary Cancer Cells.
- FIG. 3 shows that IGF-1 (30 nM) supplementation of both hormone-dependent MCF-7 mammary cancer cells (panel A) and hormone-independent MDA-231 mammary cancer cells (panel B) significantly stimulates cell growth. In MCF-7 cells, the stimulatory effect of genistein is further augmented in the presence of IGF-I (FIG. 3, panel A). MDA-231 is stimulated by IGF-I, but not by genistein. Thus genistein not only stimulates hormone-dependent cancer cell proliferation, but IGF-I as well as other growth factors further augment this effect.
- Cell cultures supplemented as above were further supplemented with lycopene at 3 to 5 μM concentration. As shown in FIG. 3, lycopene inhibits IGF stimulation in both hormone-dependent and hormone-independent mammary cancer cell lines. In the case of MDA-231 cells, cell proliferation was reduced to levels less than that of controls.
- Inhibitory Effects of Carotenoids on Estradiol and Genistein Induced Proliferation of ECC-1 Cells.
- The ECC-1 hormone-dependent cell line was stimulated either by estradiol at 10 nM (FIG. 4, left panel) or by genistein at 1 μM (FIG. 4, panel B) and test cultures were additionally supplemented with various carotenoids. The results demonstrate that all carotenoids tested (lycopene, beta-carotene, astaxanthin and a mixture of phytoene and phytofluene) effectively inhibited both estradiol- and genistein-induced cell proliferation.
- Dose-dependent Effect of Lycopene on Estradiol and Genistein Induced Proliferation of ECC-1 Endometrial Cancer Cells.
- The hormone-dependent endometrial cancer cell line ECC-1 was stimulated either by estradiol at 10 nM (FIG. 5, left panel) orby genistein at 1 μM (FIG. 5, right panel) and test cultures were additionally supplemented with various concentrations of lycopene. The results clearly demonstrate that while increasing lycopene concentration resulted in greater inhibition, all lycopene concentrations tested were effective in inhibiting both estradiol- and genistein-induced cell proliferation. The lowest lycopene concentration tested (0.9 μM) is in the physiological range found in human serum.
- Effect of Lycopene and Phytoene Combination on Phytoestrogen-induced Cell Proliferation
- MCF-7 mammary cancer cells were stimulated by genistein (4 μM) and test cultures were additionally supplemented with lycopene or phytoene or a combination of both, at either physiological concentrations (FIG. 6, panel A) or at about one order of magnitude greater than the physiological concentrations (FIG. 6, panel B). The results demonstrate that high, non-physiological concentrations of the individual carotenoids were effective in significantly inhibiting phytoestrogen-induced cell proliferation. The results also show that low (physiological) concentration of lycopene (0.4 μM) or of a mixture of phytoene and phytofluene (6 μM) do not significantly affect phytoestrogen induced cell proliferation. However, the combination of phytoestrogen and phytofluene at low (physicological) concentrations synergistically inhibits genestrein-induced mammary cancer cell proliferation.(FIG. 6).
Claims (25)
1. A method of preventing adverse effects which may result from the administration of at least one hormone to a subject without detectable cancer comprising administering to said subject at least one carotenoid in an amount from about 2 to about 10 mg per day.
2. The method of in which the carotenoid is administered in an amount from about 2 to about 6 mg per day.
claim 1
3. The method of in which the carotenoid is administered in an amount of about 2 mg per day.
claim 1
4. A method of preventing adverse effects which may result from the administration of at least one hormone to a subject without detectable cancer comprising administering to said subject at least one carotenoid which does not exhibit substantial provitamin A activity in an amount of about 2 mg per day.
5. A method of preventing adverse effects which may result from the administration of at least one hormone to a subject without detectable cancer comprising administering to said subject at least one carotenoid selected from the group consisting of alpha-carotene, beta-carotene and cryptoxanthin in an amount of about 2 mg per day.
6. The method of any of claims 1, 4 or 5 wherein said carotenoid is in an amount sufficient to cause an effective serum concentration of said carotenoid of up to about 1.5 μM.
7. The method of any of claims 1, 4 or 5 wherein said hormone comprises phytoestrogen, nonsteroidal estrogen, or a mixture thereof.
8. The method of any of claims 1, 4 or 5 wherein said hormone comprises steroidal estrogen, progestin, or a mixture thereof.
9. The method of or wherein said carotenoid is lycopene.
claim 1
4
10. The method of or wherein said carotenoid is selected from the group consisting of lycopene, zeta-carotene, phytoene, phytofluene, lutein, zeaxanthin, and astaxantine.
claim 1
4
11. The method of any of claims 1-4 wherein said carotenoid comprises a mixture of lycopene and phytoene.
12. The method of any of claims 1-4 wherein said carotenoid comprises a mixture of lycopene and phytofluene.
13. The method of any of claims 1-4 wherein said carotenoid comprises a mixture of lycopene, phytoene and phytofluene.
14. The method of any of claims 1, 4 or 5 wherein said carotenoid is co-administered with said hormone in a composition separate from said hormone.
15. The method of any of claims 1, 4 or 5 wherein said carotenoid is co-administered with said hormone in a composition further comprising said hormone.
16. A method of preventing adverse effects which may result from the administration of at least one hormone selected from group consisting of estrogen, estradiol, estrone, medroxyprogesterone, norethindrone, norethisterone, norgestrel, progestin, and progesterone to a subject without detectable cancer comprising administering to said subject at least one carotenoid which does not exhibit substantial provitamin A activity in an amount from about 2 to about 10 mg per day without inhibiting the beneficial activity of said hormone.
17. A method of preventing adverse effects which may result from the administration of at least one hormone selected from the group consisting of estrogen, estradiol, estrone, medroxyprogesterone, norethindrone, norethisterone, norgestrel, progestin, and progesterone to a subject without detectable cancer comprising administering to said subject at least one carotenoid which does not exhibit substantial provitamin A activity in an amount from about 2 to about 6 mg per day without inhibiting the beneficial activity of said hormone.
18. A method of preventing adverse effects which may result from the administration of at least one hormone selected from the group consisting of estrogen, estradiol, estrone, medroxyprogesterone, norethindrone, norethisterone, norgestrel, progestin, and progesterone to a subject without detectable cancer comprising administering to said subject at least one carotenoid which does not exhibit substantial provitamin A activity in an amount of about 2 mg per day without inhibiting the beneficial activity of said hormone.
19. A method of preventing adverse effects which may result from the administration of at least one hormone selected from the group consisting of estrogen, estradiol, estrone, medroxyprogesterone, norethindrone, norethisterone, norgestrel, progestin, and progesterone to a subject without detectable cancer comprising administering to said subject at least one carotenoid selected from the group consisting of alpha-carotene and cryptoxanthin in an amount of about 2 mg per day without inhibiting the beneficial activity said hormone.
20. The method of any of claims 16-18 wherein said carotenoid is selected from the group consisting of lycopene, zeta-carotene, phytoene, phytofluene, lutein, zeaxanthin, and astaxantine.
21. The method of any of claims 16-18 wherein said carotenoid comprises a mixture of lycopene and phytoene.
22. The method of any of claims 16-18 wherein said carotenoid comprises a mixture of lycopene and phytofluene.
23. The method of any of claims 16-18 wherein said carotenoid comprises a mixture of lycopene, phytoene and phytofluene.
24. The method of any of claims 16-19 wherein said carotenoid is co-administered with said hormone in a composition separate from said hormone.
25. The method of any of claims 16-19 wherein said carotenoid is co-administered with said hormone in a composition further comprising said hormone.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL135335 | 2000-03-29 | ||
IL135335A IL135335A (en) | 2000-03-29 | 2000-03-29 | Use of carotenoids in the preparation of medicaments for preventing hormone induced adverse effects and pharmaceutical compositions comprising carotenoids |
Publications (1)
Publication Number | Publication Date |
---|---|
US20010027216A1 true US20010027216A1 (en) | 2001-10-04 |
Family
ID=11073993
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/799,140 Abandoned US20010027216A1 (en) | 2000-03-29 | 2001-03-05 | Method for preventing hormone induced adverse effects |
US09/799,251 Expired - Lifetime US7144586B2 (en) | 2000-03-29 | 2001-03-05 | Compositions for preventing hormone induced adverse effects |
US10/240,090 Expired - Fee Related US8669293B2 (en) | 2000-03-29 | 2001-03-28 | Method and compositions for preventing hormone induced adverse effects |
US10/825,434 Abandoned US20040198674A1 (en) | 2000-03-29 | 2004-04-16 | Compositions for preventing hormone induced adverse effects |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/799,251 Expired - Lifetime US7144586B2 (en) | 2000-03-29 | 2001-03-05 | Compositions for preventing hormone induced adverse effects |
US10/240,090 Expired - Fee Related US8669293B2 (en) | 2000-03-29 | 2001-03-28 | Method and compositions for preventing hormone induced adverse effects |
US10/825,434 Abandoned US20040198674A1 (en) | 2000-03-29 | 2004-04-16 | Compositions for preventing hormone induced adverse effects |
Country Status (16)
Country | Link |
---|---|
US (4) | US20010027216A1 (en) |
EP (1) | EP1267851B1 (en) |
JP (1) | JP5020455B2 (en) |
KR (1) | KR100818973B1 (en) |
CN (1) | CN1434707A (en) |
AT (1) | ATE329586T1 (en) |
AU (2) | AU2001244511B2 (en) |
BR (1) | BR0107535A (en) |
CA (1) | CA2404097A1 (en) |
DE (1) | DE60120659T2 (en) |
ES (1) | ES2262635T3 (en) |
IL (1) | IL135335A (en) |
NO (1) | NO20024586L (en) |
RU (1) | RU2002125508A (en) |
SE (1) | SE0202857D0 (en) |
WO (1) | WO2001078701A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003041695A1 (en) * | 2001-11-12 | 2003-05-22 | Lycored Natural Products Industries Ltd. | Method and pharmaceutical preparations for reducing the activity of cells |
KR100739531B1 (en) | 2004-05-07 | 2007-07-13 | 주식회사 이오텍 | Compositions Comprising Lycopene and Phytoestrogen |
US20080249036A1 (en) * | 2004-08-31 | 2008-10-09 | Yoshikazu Sugimoto | Antagonist Against Tolerance to Anticancer Drugs |
US20090203799A1 (en) * | 2003-01-31 | 2009-08-13 | Reinhold Carle | Novel compositions comprising carotenoids |
WO2017019213A1 (en) * | 2015-07-28 | 2017-02-02 | U.S. Nutraceuticals, Llc D/B/A Valensa International | Composition and method to treat and alleviate symptoms of hot flashes in a female subject |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060247693A1 (en) | 2005-04-28 | 2006-11-02 | Yanting Dong | Non-captured intrinsic discrimination in cardiac pacing response classification |
US7774064B2 (en) | 2003-12-12 | 2010-08-10 | Cardiac Pacemakers, Inc. | Cardiac response classification using retriggerable classification windows |
US8521284B2 (en) | 2003-12-12 | 2013-08-27 | Cardiac Pacemakers, Inc. | Cardiac response classification using multisite sensing and pacing |
US7706866B2 (en) | 2004-06-24 | 2010-04-27 | Cardiac Pacemakers, Inc. | Automatic orientation determination for ECG measurements using multiple electrodes |
US7805185B2 (en) | 2005-05-09 | 2010-09-28 | Cardiac Pacemakers, In. | Posture monitoring using cardiac activation sequences |
US7509170B2 (en) | 2005-05-09 | 2009-03-24 | Cardiac Pacemakers, Inc. | Automatic capture verification using electrocardiograms sensed from multiple implanted electrodes |
US7917196B2 (en) | 2005-05-09 | 2011-03-29 | Cardiac Pacemakers, Inc. | Arrhythmia discrimination using electrocardiograms sensed from multiple implanted electrodes |
US7797036B2 (en) | 2004-11-30 | 2010-09-14 | Cardiac Pacemakers, Inc. | Cardiac activation sequence monitoring for ischemia detection |
US7457664B2 (en) * | 2005-05-09 | 2008-11-25 | Cardiac Pacemakers, Inc. | Closed loop cardiac resynchronization therapy using cardiac activation sequence information |
US7890159B2 (en) | 2004-09-30 | 2011-02-15 | Cardiac Pacemakers, Inc. | Cardiac activation sequence monitoring and tracking |
US7392086B2 (en) | 2005-04-26 | 2008-06-24 | Cardiac Pacemakers, Inc. | Implantable cardiac device and method for reduced phrenic nerve stimulation |
US8202546B2 (en) | 2005-08-04 | 2012-06-19 | Vertical Pharmaceuticals, Inc. | Nutritional supplement for use under physiologically stressful conditions |
US7901710B2 (en) | 2005-08-04 | 2011-03-08 | Vertical Pharmaceuticals, Inc. | Nutritional supplement for use under physiologically stressful conditions |
US8263137B2 (en) | 2005-08-04 | 2012-09-11 | Vertical Pharmaceuticals, Inc. | Nutritional supplement for women |
US7998500B2 (en) | 2005-08-04 | 2011-08-16 | Vertical Pharmaceuticals, Inc. | Nutritional supplement for women |
US8527048B2 (en) | 2006-06-29 | 2013-09-03 | Cardiac Pacemakers, Inc. | Local and non-local sensing for cardiac pacing |
US20080004665A1 (en) * | 2006-06-29 | 2008-01-03 | Mccabe Aaron R | Determination of cardiac pacing parameters based on non-localized sensing |
US8209013B2 (en) | 2006-09-14 | 2012-06-26 | Cardiac Pacemakers, Inc. | Therapeutic electrical stimulation that avoids undesirable activation |
US8265736B2 (en) | 2007-08-07 | 2012-09-11 | Cardiac Pacemakers, Inc. | Method and apparatus to perform electrode combination selection |
US9037239B2 (en) | 2007-08-07 | 2015-05-19 | Cardiac Pacemakers, Inc. | Method and apparatus to perform electrode combination selection |
JP5276119B2 (en) | 2008-02-14 | 2013-08-28 | カーディアック ペースメイカーズ, インコーポレイテッド | Method and apparatus for detection of phrenic stimulation |
JP5128707B2 (en) | 2008-10-06 | 2013-01-23 | カーディアック ペースメイカーズ, インコーポレイテッド | Dynamic cardiac resynchronization therapy by tracking intrinsic conduction |
US9301920B2 (en) | 2012-06-18 | 2016-04-05 | Therapeuticsmd, Inc. | Natural combination hormone replacement formulations and therapies |
RS62297B1 (en) | 2011-11-23 | 2021-09-30 | Therapeuticsmd Inc | Natural combination hormone replacement formulations and therapies |
US10806697B2 (en) | 2012-12-21 | 2020-10-20 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US20130338122A1 (en) | 2012-06-18 | 2013-12-19 | Therapeuticsmd, Inc. | Transdermal hormone replacement therapies |
US10806740B2 (en) | 2012-06-18 | 2020-10-20 | Therapeuticsmd, Inc. | Natural combination hormone replacement formulations and therapies |
US20150196640A1 (en) | 2012-06-18 | 2015-07-16 | Therapeuticsmd, Inc. | Progesterone formulations having a desirable pk profile |
US10568891B2 (en) | 2012-12-21 | 2020-02-25 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US11266661B2 (en) | 2012-12-21 | 2022-03-08 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US10537581B2 (en) | 2012-12-21 | 2020-01-21 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US9180091B2 (en) | 2012-12-21 | 2015-11-10 | Therapeuticsmd, Inc. | Soluble estradiol capsule for vaginal insertion |
US11246875B2 (en) | 2012-12-21 | 2022-02-15 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US10471072B2 (en) | 2012-12-21 | 2019-11-12 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
WO2015179782A1 (en) | 2014-05-22 | 2015-11-26 | Therapeuticsmd, Inc. | Natural combination hormone replacement formulations and therapies |
US10328087B2 (en) | 2015-07-23 | 2019-06-25 | Therapeuticsmd, Inc. | Formulations for solubilizing hormones |
WO2017173044A1 (en) | 2016-04-01 | 2017-10-05 | Therapeuticsmd Inc. | Steroid hormone compositions in medium chain oils |
WO2017173071A1 (en) | 2016-04-01 | 2017-10-05 | Therapeuticsmd, Inc. | Steroid hormone pharmaceutical composition |
US11633405B2 (en) | 2020-02-07 | 2023-04-25 | Therapeuticsmd, Inc. | Steroid hormone pharmaceutical formulations |
CN114300088B (en) * | 2021-12-15 | 2023-06-16 | 苏州大学附属第二医院 | Body temperature monitoring device and system for guiding perimenopausal hormone replacement therapy |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3833350A (en) * | 1972-12-14 | 1974-09-03 | Amchem Prod | Method of inducing carotenoid accumulation in plant tissue |
US5422119A (en) * | 1987-09-24 | 1995-06-06 | Jencap Research Ltd. | Transdermal hormone replacement therapy |
US6132790A (en) | 1991-09-06 | 2000-10-17 | Betatene Limited | Carotenoid composition |
ATE275959T1 (en) * | 1992-05-19 | 2004-10-15 | Graham Edmund Kelly | USE OF ISOFLAVONE PHYTO-ESTROGEN EXTRACTS OF SOY OR CLOVER |
IL103920A (en) * | 1992-11-30 | 2000-07-26 | Makhteshim Chem Works Ltd | Pharmaceutical preparations for inhibiting the growth of cancer cells and use of lycopene for the preparation thereof |
AU6635994A (en) * | 1993-04-16 | 1994-11-08 | Tufts University School Of Medicine | Method for treatment of menopausal and premenstrual symptoms |
US6218436B1 (en) | 1993-06-28 | 2001-04-17 | The Howard Foundation | Pharmaceutically active carotenoids |
US5424331A (en) * | 1994-06-10 | 1995-06-13 | Bio-Virus Research Incorporated | Pharmaceutical compositions and dietary soybean food products for the prevention of osteoporosis |
US5475006A (en) | 1994-08-10 | 1995-12-12 | National Research Council Of Canada | Extensively oxidized derivatives of carotenoids, retinoids and related conjugated polyenes useful as non-toxic cell-differentiation inducers, anti-proliferative agents, and anti-tumor agents |
US5516528A (en) | 1995-01-13 | 1996-05-14 | Wake Forest University | Dietary phytoestrogen in estrogen replacement therapy |
US5643623A (en) | 1995-06-07 | 1997-07-01 | Mars Incorporated | Health food product and its uses |
US5807586A (en) * | 1996-07-30 | 1998-09-15 | Energetics, Inc. | Method of dietary supplementation |
US5904924A (en) * | 1997-11-04 | 1999-05-18 | Oncologics, Inc. | Green nutritional powder composition |
US6013665A (en) * | 1997-12-16 | 2000-01-11 | Abbott Laboratories | Method for enhancing the absorption and transport of lipid soluble compounds using structured glycerides |
IL129442A0 (en) | 1999-04-14 | 2000-02-29 | Lycored Natural Prod Ind Ltd | Compounds useful in reducing the level of insulin like growth factor-1 (IGF-1) in blood |
AU1135701A (en) | 1999-10-14 | 2001-04-23 | Schroeder, Fritz H. | Compositions with anti-prostate cancer activity |
-
2000
- 2000-03-29 IL IL135335A patent/IL135335A/en not_active IP Right Cessation
-
2001
- 2001-03-05 US US09/799,140 patent/US20010027216A1/en not_active Abandoned
- 2001-03-05 US US09/799,251 patent/US7144586B2/en not_active Expired - Lifetime
- 2001-03-28 ES ES01917436T patent/ES2262635T3/en not_active Expired - Lifetime
- 2001-03-28 BR BR0107535-7A patent/BR0107535A/en not_active Application Discontinuation
- 2001-03-28 RU RU2002125508/14A patent/RU2002125508A/en unknown
- 2001-03-28 AT AT01917436T patent/ATE329586T1/en not_active IP Right Cessation
- 2001-03-28 AU AU2001244511A patent/AU2001244511B2/en not_active Ceased
- 2001-03-28 AU AU4451101A patent/AU4451101A/en active Pending
- 2001-03-28 CA CA002404097A patent/CA2404097A1/en not_active Abandoned
- 2001-03-28 EP EP01917436A patent/EP1267851B1/en not_active Expired - Lifetime
- 2001-03-28 JP JP2001576002A patent/JP5020455B2/en not_active Expired - Fee Related
- 2001-03-28 WO PCT/IL2001/000291 patent/WO2001078701A2/en active IP Right Grant
- 2001-03-28 US US10/240,090 patent/US8669293B2/en not_active Expired - Fee Related
- 2001-03-28 DE DE60120659T patent/DE60120659T2/en not_active Expired - Lifetime
- 2001-03-28 KR KR1020027012651A patent/KR100818973B1/en not_active Expired - Fee Related
- 2001-03-28 CN CN01810131A patent/CN1434707A/en active Pending
-
2002
- 2002-09-25 NO NO20024586A patent/NO20024586L/en unknown
- 2002-09-27 SE SE0202857A patent/SE0202857D0/en unknown
-
2004
- 2004-04-16 US US10/825,434 patent/US20040198674A1/en not_active Abandoned
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003041695A1 (en) * | 2001-11-12 | 2003-05-22 | Lycored Natural Products Industries Ltd. | Method and pharmaceutical preparations for reducing the activity of cells |
US20040259959A1 (en) * | 2001-11-12 | 2004-12-23 | Yoav Sharoni | Method and pharmaceutical preparation for reducing the activity of cells |
CN100408030C (en) * | 2001-11-12 | 2008-08-06 | 利库德天然产品工业有限公司 | Methods and pharmaceutical formulations for reducing cell viability |
US20090203799A1 (en) * | 2003-01-31 | 2009-08-13 | Reinhold Carle | Novel compositions comprising carotenoids |
US9149430B2 (en) * | 2003-01-31 | 2015-10-06 | Dsm Ip Assets B.V. | Compositions comprising carotenoids |
KR100739531B1 (en) | 2004-05-07 | 2007-07-13 | 주식회사 이오텍 | Compositions Comprising Lycopene and Phytoestrogen |
US20080249036A1 (en) * | 2004-08-31 | 2008-10-09 | Yoshikazu Sugimoto | Antagonist Against Tolerance to Anticancer Drugs |
US20100291242A1 (en) * | 2004-08-31 | 2010-11-18 | Yoshikazu Sugimoto | Antagonist against tolerance to anticancer drugs |
WO2017019213A1 (en) * | 2015-07-28 | 2017-02-02 | U.S. Nutraceuticals, Llc D/B/A Valensa International | Composition and method to treat and alleviate symptoms of hot flashes in a female subject |
US9669006B2 (en) | 2015-07-28 | 2017-06-06 | U.S. Nutraceuticals, LLC | Composition and method to treat and alleviate symptoms of hot flashes in a female subject |
US10172826B2 (en) | 2015-07-28 | 2019-01-08 | U.S. Nutraceuticals, LLC | Composition and method to treat and alleviate symptoms of hot flashes in a female subject |
Also Published As
Publication number | Publication date |
---|---|
AU2001244511B2 (en) | 2006-04-27 |
NO20024586L (en) | 2002-11-25 |
WO2001078701A3 (en) | 2002-07-25 |
ES2262635T3 (en) | 2006-12-01 |
IL135335A (en) | 2013-12-31 |
US8669293B2 (en) | 2014-03-11 |
EP1267851B1 (en) | 2006-06-14 |
ATE329586T1 (en) | 2006-07-15 |
US20040198674A1 (en) | 2004-10-07 |
KR20020093858A (en) | 2002-12-16 |
SE0202857D0 (en) | 2002-09-27 |
WO2001078701A2 (en) | 2001-10-25 |
US20030148946A1 (en) | 2003-08-07 |
JP2003530428A (en) | 2003-10-14 |
CA2404097A1 (en) | 2001-10-25 |
CN1434707A (en) | 2003-08-06 |
BR0107535A (en) | 2005-05-03 |
US7144586B2 (en) | 2006-12-05 |
EP1267851A2 (en) | 2003-01-02 |
DE60120659D1 (en) | 2006-07-27 |
IL135335A0 (en) | 2001-05-20 |
DE60120659T2 (en) | 2007-06-06 |
RU2002125508A (en) | 2004-03-20 |
US20030004146A1 (en) | 2003-01-02 |
NO20024586D0 (en) | 2002-09-25 |
KR100818973B1 (en) | 2008-04-04 |
AU4451101A (en) | 2001-10-30 |
JP5020455B2 (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7144586B2 (en) | Compositions for preventing hormone induced adverse effects | |
AU2001244511A1 (en) | Method and compositions for preventing hormone induced adverse effects | |
Clarkson et al. | The potential of soybean phytoestrogens for postmenopausal hormone replacement therapy | |
Albertazzi et al. | The effect of dietary soy supplementation on hot flushes | |
US20090233881A1 (en) | Compounds having anti-cancer properties | |
Cline et al. | Effects of hormonal therapies and dietary soy phytoestrogens on vaginal cytology in surgically postmenopausal macaques | |
Sitruk-Ware | Estrogen therapy during menopause: practical treatment recommendations | |
Zand et al. | Effects of natural products and nutraceuticals on steroid hormone-regulated gene expression | |
Polan et al. | Estrogen bioassay of ginseng extract and Arginmax®, a nutritional supplement for the enhancement of female sexual function | |
Zabłocka-Słowińska et al. | Interactions between preparations containing female sex hormones and dietary supplements | |
Al-Sayyed et al. | Effect of feeding date palm fruit (Phoenix dactylifera L.) on menstrual health in a convenient sample of females | |
AU2007205284A1 (en) | Herbal compositions for treating or preventing climacteric symptoms and use thereof | |
US6989163B2 (en) | Arrangement to enhance a woman's sexual sensitivity by a combination of phytoestrogens, L-arginine and menthol | |
US20120276225A1 (en) | Phytoestrogenic nutraceutical composition from palm leaf extract | |
AU2006220247B2 (en) | Compounds having anti-cancer properties | |
DE10204634A1 (en) | Composition useful as a food or food supplement, and for treating e.g. tumors or osteoporosis, contains isoflavone, lignan and phytosterol | |
Roddick Jr | Use of estrogens in the climacteric and postmenopausal years | |
Ku et al. | Current Status of Estrogen Therapy | |
Fernández Muñoz et al. | Oral contraceptives and colorectal cancer risk: a meta-analysis | |
Hudson | Alternative Medicine and Women's Health Issues: A Review of Recent Literature | |
Kratzert et al. | The Use of Botanicals for the Treatment of Menopausal Symptoms: Weeds or Wonders? | |
MACICY | WPŁYW ODŻYWIANIA NA ROZWÓJ NOWOTWORÓW | |
Sharrel | Evaluation of estrogenic activity of Alcoholic extract of rhizomes of curculigo orchioides | |
IE20030160A1 (en) | Hormone Preparation and Method | |
DE20221674U1 (en) | Composition useful as a food or food supplement, and for treating e.g. tumors or osteoporosis, contains isoflavone, lignan and phytosterol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LYCORED NATURAL PRODUCTS INDUSTRIES LTD., ISRAEL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEVY, JOSEPH;SHARONI, YOAV;REEL/FRAME:011681/0766 Effective date: 20010219 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |