US20010014852A1 - Document semantic analysis/selection with knowledge creativity capability - Google Patents

Document semantic analysis/selection with knowledge creativity capability Download PDF

Info

Publication number
US20010014852A1
US20010014852A1 US09745261 US74526101A US2001014852A1 US 20010014852 A1 US20010014852 A1 US 20010014852A1 US 09745261 US09745261 US 09745261 US 74526101 A US74526101 A US 74526101A US 2001014852 A1 US2001014852 A1 US 2001014852A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
sao
request
candidate document
structures
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09745261
Inventor
Valery Tsourikov
Leonid Batchilo
Igor Sovpel
Original Assignee
Tsourikov Valery M.
Batchilo Leonid S.
Sovpel Igor V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/27Automatic analysis, e.g. parsing
    • G06F17/2765Recognition
    • G06F17/277Lexical analysis, e.g. tokenisation, collocates
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/27Automatic analysis, e.g. parsing
    • G06F17/2705Parsing
    • G06F17/272Parsing markup language streams
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/27Automatic analysis, e.g. parsing
    • G06F17/2785Semantic analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/27Automatic analysis, e.g. parsing
    • G06F17/2785Semantic analysis
    • G06F17/279Discourse representation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor ; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor ; File system structures therefor of unstructured textual data
    • G06F17/30634Querying
    • G06F17/30657Query processing
    • G06F17/30675Query execution
    • G06F17/30684Query execution using natural language analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99933Query processing, i.e. searching
    • Y10S707/99934Query formulation, input preparation, or translation

Abstract

A computer based software system and method for semantically processing a user entered natural language request to identify and store linguistic subject-action-object (SAO) structures, using such structures as key words/phrases to search local and web-based databases for downloading candidate natural language documents, semantically processing candidate document texts into candidate document SAO structures, and selecting and storing only relevant documents whose SAO structures include a match with a stored request SAO structure. Further features include analyzing relationships among relevant document SAO structures and creating new SAO structures based on such relationships that may yield new knowledge concepts and ideas for display to the user and generating and displaying natural language summaries based on the relevant document SAO structures.

Description

    REFERENCE TO PRIORITY APPLICATION
  • This application claims the benefit of U.S. Provisional Application No. 60/099,641, filed Sep. 9, 1998. [0001]
  • BACKGROUND
  • The present invention relates to computer based natural language processing systems and more particularly to computer based systems and methods of processing natural language text to identify Subject, Action, Object triplets and relationships between such triplets, storing this data and processing this data to semantically analyze, select, summarize, store, and display candidate documents containing specific content or subject matter. [0002]
  • Computer based document search processors are known to perform key word searches for publications on the Internet and World Wide Web. Today, information owners and service providers are adapting their databases to individual tastes and requirements. For example, Boston based Agents, Inc. offers over the Web personalized newsletters for music fans such that classical music lovers are blocked from receiving Rap music advertisements and vice-versa. KD, Inc. of Hong Kong has developed a system that takes into consideration words similar by sense while searching the Web. Today, the user can download 10,000 papers from the Web by typing the word “Screen”. The search system designed by KD, Inc. asks the user whether he/she is seeking papers related to Computer Screen, TV Screen or Window Screen. In this case, the number of unrelated papers will be drastically reduced. [0003]
  • Software based search processors are able to remember requests of a single user and to conduct personalized non-stop searches on the Web. So, when a user wakes up in the morning, he/she finds references and abstracts of several new Web papers related to his/her area of interest. In 1997, practically all fundamental technical publications, journals, magazines, as well as patents of all industrial countries became available on the Web, i.e., available in electronic format. [0004]
  • Although key word searching the Web affords the user great value, it also has created and will continue to create substantial problems adversely affecting this value. Specifically, because of the enormous amount of information available on the Web, key word search processors produce too much downloaded information, the vast majority of which is irrelevant or immaterial to the information the user wants. Many users simply give up in frustration when presented with several hundred articles in response to what the user considered a request for only those few articles related to a specific request. [0005]
  • This problem is also experienced in the technical fields of science and engineering, particularly since there is a growing number of libraries, government patent offices, universities, government research centers, and others adding vast amounts of technical and scientific information for Web access. Engineers, scientists, and doctors are overwhelmed with too many articles, papers. patents and general information on the topic of interest to them. In addition, the user presently has only two choices when examining a downloaded article to determine its relevance to the users project. He/she can either read the authors abstract and/or scan various sections of the full article to determine whether or not to save or print-out that specific document. Since the author's abstract is not comprehensive, it often omits the reference to the specific subject matter of interest to he user or treats this subject matter in an incomprehensive manner. Thus, scanning the abstract and scanning the full article may have little value and require an inordinate amount of user time. [0006]
  • Various attempts purport to increase the recall and precision of the selection such as U.S. Pat. Nos. 5,774,833 and 5,794,050 incorporated herein by reference, however, these methods simply rely on key word or phrase searching with various techniques of selection based on variations of the key words, or purported understanding of textual phrases. These prior methods may improve recall but tend to require too much physical and mental effort and time to determine why the document was selected and what is the pertinent part. This results from the entire document or abstract being presented without summary or concept generation. [0007]
  • SUMMARY OF EXEMPLARY EMBODIMENT OF PRESENT INVENTION
  • A computer based software system and method according to the principles of the present invention solves the foregoing problems and has the ability to perform a non-stop search of all databases on the Web or other network for key words and to semantically process candidate documents for specific knowledge concepts, such as technological functions or specific physical effects, so that only the very few prioritized or a single document meeting the search criteria is presented or identified to the user. [0008]
  • Further, the computer based software system in accordance with the principles of the present invention captures these highly relevant documents and creates a compressed, short summary of the precise technical physical aspects designated by the search criteria. [0009]
  • Another aspect of the present invention includes using the semantic analysis results of the selected documents to create new ideas of knowledge concepts. The system does this by analyzing the subject, action, and object triplets mentioned in the documents, identifying cause and effect triplet relationships, and re-organizing these triplet representations into new and/or different profiles of such elements. As further described below, some of these reorganized sets of relationships among these elements may comprise new concepts never before thought of by anyone. [0010]
  • According to an aspect of the present invention, the method and apparatus begins with the user entering natural language text related to the task, concept, or subject matter for which the user desires to acquire publications or documents. The system analyzes this request text and automatically tags each word with a code that indicates the type of word it is. Once all words in the request are tagged, the system performs a semantic analysis that, in one example, includes determining and storing the verb groups within the first sentence of the request, then determining and storing the noun groups within that sentence of the request. This process is repeated for all sentences in the request. [0011]
  • Next, the system parses each request sentence with an hierarchical algorithm into a coded framework (tree) which is substantially indicative of the sense of the sentence. The system includes databases of various types to aid in generating the coded framework, such as grammar rules, parsing rules, dictionary synonyms, and the like. Once parsed, sentence codes are stored, the system identifies Subject-Action-Object (SAO) extractions within each sentence and stores them. A sentence can have one, two, or a plurality of SAO extractions as seen in the detailed description below. Each extraction is normalized into a SAO structure by processing extractions according to certain rules described below. Accordingly, the result of the semantic analysis routine performed on the request test is a series of SAO structures (triplets) indicative of the content of the request. These request SAO structures are applied to (1) a comparative module for comparing the SAO structures of candidate documents as described below and (2) a search request and key word generator that identifies key words and key combinations of words, and synonyms thereof, for searching the Web internet, intranet, and/or local databases for candidate documents. Any suitable search engine, e.g. Alta Vista™, can be used to identify, select, and download candidate documents based on the generated key words. [0012]
  • It should be understood that, as mentioned above, key word searching produces an over-abundance of candidate documents. However, according to the principles of the present invention, the system performs substantially the same semantic analysis on each candidate document as performed on the user input search request. That is, the system generates an SAO structure(s) for each sentence of each candidate document and forward them to the comparative Unit where the request SAO structures are compared to the candidate document SAP structures. Those few candidate documents having SAO structures that substantially match the request SAO structure profile are placed into a retrieved document Unit where they are ranked in order of relevance. The system then summarizes the essence of each retrieved document by synthesizing those SAO structures of the document that match the request SAO structures and stores this summary for user display or printout. Users can later read the summary and decide to display or print out or delete the entire retrieved document and its SAO's. [0013]
  • As stated above, the SAO structures for each sentence for each retrieved document are stored in the system according to the present invention. According to the knowledge creativity aspect of the present invention, the system analyzes all these stored structures, identifies where common or equivalent subjects and objects exist and reorganizes, generates, synthesizes, new SAO structures or new strings (relationships) or SAO structures for user's consideration. Some of these new structures or strings may by unique and comprise new solutions to problems related to the user's requested subject matter. For example, if two structures S1-A1-O1 and S2-A2-O2 are stored, and the present system recognizes that S2 is equivalent to or the synonym for or has some other stored relation to O1 then it will generate and store for the user's access a summary of S1-A1-S2-A2-O2. Of if the system stores an association between S1 and A2 it can generated S1-A1/A2-O1 to suggest improvement of O1 toward desired results. [0014]
  • Other and further advantages and benefits shall become apparent with the following detailed description when taken in view of the appended drawings, in which: [0015]
  • DRAWING DESCRIPTION
  • FIG. 1 is a pictorial representation of one exemplary embodiment of the system according to the principles of the present invention. [0016]
  • FIG. 2 is a schematic representation of the main architectural elements of the system according to the present invention. [0017]
  • FIG. 3 is a schematic representation of the method according to the principles of the present invention. [0018]
  • FIG. 4 is a schematic representation of Unit [0019] 16 of FIG. 2.
  • FIG. 5 is a schematic representation of Unit [0020] 20 of FIG. 2.
  • FIG. 6 is a schematic representation of Unite [0021] 22 of FIG. 2.
  • FIG. 7 is a typical example of the user request text entered by use. [0022]
  • FIG. 8 is a tagged and coded representation version of text of FIG. 7. [0023]
  • FIG. 9 is an identification of verb groups of the text of FIG. 8. [0024]
  • FIG. 10 is an identification of noun groups of the coded text of FIG. 8. [0025]
  • FIG. 11 is a representation of parsed hierarchy coded text of FIG. 8. [0026]
  • FIG. 12 is a representation of SAO extraction of the text of FIG. 7. [0027]
  • FIG. 13 is a representation of SAO structures of the extraction of FIG. 12. [0028]
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • One exemplary embodiment of a semantic processing system according to the principles of the present invention includes: [0029]
  • A CPU [0030] 12 that could comprise a general purpose personal computer or networked server or minicomputer with standard user input and output driver such as keyboard 14, mouse 16, scanner 19, CD reader 17, and printer 18. System 10 also includes standard communication ports 21 to LANs, WANs, and/or public or private switched networks to the Web.
  • With reference to FIGS. [0031] 1-6, the semantic procession system 10 includes a temporary storage or database 12 for receiving and storing documents downloaded from the Web or local area network generated as a user request text with use of keyboard 14 or one of the other input devices. User can type the request, examples disclosed below, or enter full documents into DB 12 and designate the document as user's request. System 10 further includes semantic processor 14 for receiving the entire text of each document and includes a Subject-Action-Object (SAO) analyzer Unit 16 that tags each word of each sentence with a code type (such as Markov chain theory code). Unit 16 then identifies each verb group and noun group, (described below) within each sentence and parses and normalizes each sentence into SAO structures that represent the sense of the sentence. Unit 16 applies its output to DB of SAO structures 18. SAO processor Unit 20 stores the request SAO structures and receives the SAO structures of each sentence of each document stored in Unit 18. Unit 20 compares the document SAO's to the request SAO's and deletes out those documents with no matches. The SAO structures of matched documents are stored back in Unit 18 or some other storage facility. In addition, Unit 20 analyzes SAO structures within a single document or with those of one or more other relevant documents, searches for relationships among S-A-O's and generates new SAO structures for user consideration. These new structures are stored in Unit 18 or some other storage facility in the system.
  • Unit [0032] 14 further includes natural language Unit 22 that receives SAO structures in table form and synthesizes structures in to natural language form, i.e. sentences.
  • Unite [0033] 14 also includes keyword Unit 24 for receiving SAO structures and extracts key words and phrases from them and acquires their synonyms for use as additional key words/phrases.
  • Database Units [0034] 26, 28, and 30 receive the outputs from Unit 14, generally as shown, for storing the natural language summaries of selected SAO structures as described below and the key words/phrases that form user request sent to search engines through port 21.
  • Unit [0035] 16 includes document pre-formatter 32 that receives full text of documents from Unit 12 and converts the text and other contents to a standard plain text format. Text coder 34 analyzes each word of each sentence of text and tags a code to every word which code designates the word type, see FIG. 8. Various databases designated 44 in FIG. 4 are available to aid the Units of Unit 16. Following tagging, recognizer Unit 36 identifies the verb groups (FIG. 9) and the noun groups of each sentence (FIG. 10). Sentence parser 38 then parses each sentence into a hierarchical coded form that represents the sense of the sentence. FIG. 11 S-A-O extractor 40 organizes the SAO's of each sentence into extracted table format (FIG. 12). Then normalizer 42 normalizes the extractions into SAO structures as described above (FIG. 13).
  • SAO processor [0036] 20 includes three main Units. Comparative Unit 46 receives SAO structures from database 18. One set of these structures originates from the user request text described above and other sets originate from the candidate documents. Unit 46 then compares these two sets looking for matches between SAO structures of these two sets. If no match results then the candidate document and associated SAO's are deleted. If a match is identified then the document is marked relevant and ranked and stored in Unit 12 and its SAO structures stored in Unit 18. Unit 46 then compares all candidate documents in sequence and in the same way as described.
  • Unit [0037] 20 also includes the SAO structure reorganizing Unit 48 to synthesize new SAO structures from different documents on the same matter and combines them into the new structure, as described above, and applies them to Unit 18.
  • Filtering Unit [0038] 50 analyzes every SAO structure of each document and blocks or deletes those not relevant to the SAO structures of the request.
  • Reference [0039] 52 designates some of the databases available to aid sub-units of Unit 20.
  • SAO synthesizer Unit [0040] 22 (FIG. 6) includes a Subject detector 54 for detecting the content of the subject for each received SAO structure. If S is detected then the SAO is fed to Unit 56 in which the tree structure of the verb group(s) is restored to natural language using grammar, semantic, speech patterns, and synonyms rules database 66. Synthesizer 58 does the same for subject noun groups and synthesizer 60 does the same for object noun groups. Combiner 68 then organizes and combines these groups into a natural language sentence.
  • If S was not detected by Unit [0041] 54, the SAO structures are processed by synthesizer 62 to restore the verb group in passive form. Synthesizer 64 processes the object noun group for a passive sentence and combiner 70 to organize and combine the groups into a natural language sentence.
  • If SAO structures received by Unit [0042] 54 bear new structure markings, then combiners 68 and 70 apply their output to Unit 28 and if they were marked existing SAO structure, then units 68, 70 apply output to Unit 26. See FIG. 3.
  • The salient steps to the method according to the principles of the present invention are shown in FIG. 3, where the number in the parenthesis refer to the Units of FIG. 2 where the process steps take place. A session begins with the user inputting a natural language request which could be customized with the use of the keyboard or would be a natural language document entered via one of the input devices shown in FIG. 1. A typical user generates customized request as shown in FIG. 7, System [0043] 10 Unit 14, then by first tagging each word with a type code (See FIG. 8) then identifying the verb groups of each sentence (FIG. 9) and noun groups of each sentence (FIG. 10) then processing each sentence into an hierarchical tree (FIG. 11) and then extracting the SAO extractions where all extracted words are the originals of the request (FIG. 12).
  • Then the method normalizes these words (modifies) each as each action is changed to its infinitive form. Thus, “is isolated” FIG. 12 is changed to “ISOLATE”, the word “to” being understood (FIG. 13). It should be understood that not all attributes of the subject, action and objects appearing in FIG. 11 are shown in FIGS. 12 and 13, but the system know the full attributes associated with the SAO elements and these attributes are part of the SAO structure. Also, note in FIG. 13, no subject is listed for the last action because is indicated pursuant to the planning rules. This absence does not affect the reliability of the overall method because all sentences of the candidate documents the include an A-O of Isolate-slides will be considered a matter regardless of the subject. The normalized SAO's are called herein as SAO structures. These users request SAO structures are stored and applied in tow following steps (i) synthesis of key word/phrases of user request; (ii) a comparative analysis of SAP structure of each sentence of each candidate documents as described below. [0044]
  • The request SAO structure key words/phrases are stored and sent to a standard search engine to search for candidate documents in local databases, LANs and/or the Web. Alta Vista™, Yahoo™, or other typical search engines could be used. The engine, using the request SAO structure key words/phrases identifies candidate documents and stores them (full text) for system [0045] 10 analysis. Next the SAO analysis as described above for the search request is repeated for each sentence of each candidate document so that SAO structures are generated and stored as indicated in FIG. 3. In addition, the SAO structures of each document are used in the comparative steps where the request SAO structures are compared with the candidate document SAO structures. If no match is found then the documents and related SAO structures are deleted from the system. If one or more matches are found then the document and related structures are marked relevant and its relevancy marked for example on a scale of 1.0 to 100. The full relevant document text is permanently stored (although it can later be deleted by user if desired) for display or print-out as user desires. Relevant SAO structures are also marked relevant and permanently stored.
  • Next System [0046] 10 filters out the least relevant SAO structures and uses the matched SAO structures of each relevant document to synthesize into natural language summary sentence(s) the matched SAO structures and the page number where the complete sentence associated with the matched SAO structures and the page number where the complete sentence associated with the matched SAO structure appears. This summary is stored and available for user's display or print-out as desired.
  • Filtered relevant SAO structures of relevant document(s) are analyzed to identify relationships among the subjects, actions, and objects among all relevant structures. Then SAO structures are processed to reorganize them into new SAO structures for storage and synthesis into natural language new sentence(s). The new sentences may and probably some of them will express or summarize new ideas, concepts and thoughts for users to consider. The new sentences are stored for user display or pint-out. [0047]
  • For example, if [0048]
  • S[0049] 1-A1-O1
  • S[0050] 2-A2-O2
  • S[0051] 3-A3-O3
  • and S[0052] 1 is the same as or a synonym of O3, then S3-A3-S1-A1-O1 is synthesized into a new sentence and stored.
  • Accordingly, the method and apparatus according to the present invention provides use automatically with a set of new ideas directly relating to user's requested area of interest some of which ideas are probably new and suggest possible new solutions to user's problems under consideration and/or the specific documents and summaries of pertinent parts of specific documents related directly to user's request. [0053]
  • Although mention has been made herein of application of the present system and method to the engineering, scientific and medical fields, the application thereof is not limited thereto. The present invention has utility for historians, philosophers, theology, poetry, the arts or any field where written language is used. [0054]
  • It will be understood that various enhancements and changes can be made to the example embodiments herein disclosed without departing from the spirit and scope of the present invention. [0055]

Claims (21)

    We claim:
  1. 1. A natural language document analysis and selection system comprising,
    a general purpose computer having a monitor, a central processing unit (CPU), a user input device for generating request data representing a natural language request, and a communications device for communication with local and remote natural language document databases,
    said CPU comprising
    (i) first storage means for storing the request data,
    (ii) a semantic processor for generating request subject-action-object (SAO) extractions in response to receiving request data, and
    (iii) SAO storage means for storing representations of the request SAO extractions.
  2. 2. A system as set forth in
    claim 1
    , wherein said communication device conveys candidate document data to said CPU for storage in said first storage means, the candidate document data representing natural language document text,
    said semantic processor generating candidate document SAO extractions in response to receiving candidate document data, and
    said SAO storage means also storing representations of candidate document SAO extractions.
  3. 3. A system as set forth in
    claim 2
    , wherein said semantic processor identifies matches between said representations of said request SAO extractions and said candidate document SAO extractions.
  4. 4. A system as set forth in
    claim 3
    , wherein said semantic processor comprises means for marking as relevant candidate document data that includes at least one representation of candidate document SAO extraction that matches at least one representation of request SAO extraction.
  5. 5. A system as set forth in
    claim 4
    , wherein said semantic processor comprises means for deleting stored candidate document data and stored representations of candidate document SAO extractions for those documents that have no representation of candidate document SAO extraction that matches a representation of request SAO extraction.
  6. 6. A system as set forth in
    claim 3
    , wherein said semantic processor includes an SAO text analyzer having a plurality of stored text formatting rules, coding rules, word tagging rules, SAO recognizing rules, parsing rules, SAO extraction rules, and normalizing rules for applying such rules to the request data and candidate document data such that said representations of candidate document SAO extractions and of request SAO extractions comprise candidate document and request SAO structures, respectively.
  7. 7. A system as set forth in
    claim 6
    further comprising second storage means for storing request SAO structures and for applying SAO structures as key words/phrases to said communication device for application to document search engines on the WEB or local databases to cause downloading of candidate document data to the system.
  8. 8. A system as set forth in
    claim 6
    further comprising an SAO synthesizer for generating and storing for display on said monitor natural language summaries of marked documents in response to receipt of document SAO structures.
  9. 9. A system as set forth in
    claim 6
    further comprising an SAO synthesizer for analyzing relationships among subjects, actions, and objects among relevant and stored SAO structures and processing those SAO structures that have a relationship with at least one other SAO structure to generate a different SAO structure and storing the different SAO structure for display to the user.
  10. 10. A system as set forth in
    claim 9
    wherein said relationship comprises:
    S1-A1-O1 S2-A2-O2
    where S1 synonym O2
    Then S2-A2-S1-A1-O1.
  11. 11. In a digital data processing system including the World Wide Web and a general purpose computer having a monitor, a central processing unit (CPU), a user input device, and a communications device for communication with local and remote natural language document databases, the method of analyzing and selecting natural language documents comprising,
    generating request data representing a natural language request,
    storing the request data,
    semantically processing the request data to generate request subject-action-object (SAO) extractions, and
    storing representations of the request SAO extractions.
  12. 12. The method as set forth in
    claim 11
    , wherein said communication device conveys candidate document data to said CPU, the candidate document data representing natural language document text,
    storing the candidate document data,
    said semantically processing including generating candidate document SAO extractions in relation to the candidate document data, and
    storing representations of candidate document SAO extractions.
  13. 13. A method as set forth in
    claim 12
    , wherein said semantically processing includes identifying matches between said representations of said request SAO extractions and said candidate document SAO extractions.
  14. 14. A method as set forth in
    claim 13
    , wherein said semantically processing comprises marking as relevant candidate document data that includes at least one representation of candidate document SAO extraction that matches at least one representation of request SAO extraction.
  15. 15. A method as set forth in
    claim 14
    , wherein said semantically processing comprises deleting access to stored candidate document data and stored representations of candidate document SAO extractions for those documents that have no representation of candidate document SAO extraction that matches a representation of request SAO extraction.
  16. 16. A method as set forth in
    claim 13
    , wherein said semantically processing includes applying a plurality of stored text formatting rules, noun and verb recognition rules, coding rules, word tagging rules, SAO recognizing rules, parsing rules, SAO extraction rules, and normalizing rules to the request data and candidate document data such that said representations of candidate document SAO extractions and representations of request SAO extractions comprise candidate document and request SAO structures, respectively.
  17. 17. A method as set forth in
    claim 16
    further comprising storing request SAO structures and applying SAO structures as key words/phrases to document search engines on the WEB or local databases to cause downloading of candidate document data to the CPU.
  18. 18. A method as set forth in
    claim 16
    further comprising generating and storing and displaying on said monitor natural language summaries of marked relevant documents in relation to relevant document SAO structures.
  19. 19. A method as set forth in
    claim 16
    further comprising analyzing relationships among subjects, actions, and objects among relevant and stored SAO structures, further processing those SAO structures that have a relationship with at least one other relevant and stored SAO structure, and generating a different SAO structure based on the said relationship, and
    storing the different SAO structure and displaying the different SAO structure to the user.
  20. 20. A method as set forth in
    claim 19
    wherein said relationship comprises:
    S1-A1-O1 comprises one relevant and stored SAO structure
    S2-A2-O2 comprises a second relevant and stored SAO structure
    where said relationship comprises S1 synonym O2 and the different SAO structure is
    S2-A2-S1-A1-O1.
  21. 21. A method as set forth in
    claim 19
    wherein said relationship comprises:
    S1-A1-O1 comprises one relevant and stored SAO structure
    S2-A2-O2 comprises a second relevant and stored SAO structure
    where said relationship exists between S1 and A2 and the different SAO structure is
    S1-A1/A2-O1
    where / means alternate.
US09745261 1998-09-09 2001-02-07 Document semantic analysis/selection with knowledge creativity capability Abandoned US20010014852A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US9964198 true 1998-09-09 1998-09-09
US09321804 US6167370A (en) 1998-09-09 1999-05-27 Document semantic analysis/selection with knowledge creativity capability utilizing subject-action-object (SAO) structures
US09745261 US20010014852A1 (en) 1998-09-09 2001-02-07 Document semantic analysis/selection with knowledge creativity capability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09745261 US20010014852A1 (en) 1998-09-09 2001-02-07 Document semantic analysis/selection with knowledge creativity capability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09321804 Continuation US6167370A (en) 1998-09-09 1999-05-27 Document semantic analysis/selection with knowledge creativity capability utilizing subject-action-object (SAO) structures

Publications (1)

Publication Number Publication Date
US20010014852A1 true true US20010014852A1 (en) 2001-08-16

Family

ID=26796312

Family Applications (2)

Application Number Title Priority Date Filing Date
US09321804 Active US6167370A (en) 1998-09-09 1999-05-27 Document semantic analysis/selection with knowledge creativity capability utilizing subject-action-object (SAO) structures
US09745261 Abandoned US20010014852A1 (en) 1998-09-09 2001-02-07 Document semantic analysis/selection with knowledge creativity capability

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09321804 Active US6167370A (en) 1998-09-09 1999-05-27 Document semantic analysis/selection with knowledge creativity capability utilizing subject-action-object (SAO) structures

Country Status (6)

Country Link
US (2) US6167370A (en)
EP (1) EP1112541A1 (en)
JP (1) JP4467184B2 (en)
CN (1) CN1325513A (en)
CA (1) CA2341583A1 (en)
WO (1) WO2000014651A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020103836A1 (en) * 1999-04-08 2002-08-01 Fein Ronald A. Document summarizer for word processors
US20030079024A1 (en) * 2001-10-19 2003-04-24 Hough Paul James Querying applications using online messenger service
US20030154071A1 (en) * 2002-02-11 2003-08-14 Shreve Gregory M. Process for the document management and computer-assisted translation of documents utilizing document corpora constructed by intelligent agents
US20040215586A1 (en) * 2001-05-28 2004-10-28 Zenya Koono Automatic knowledge creating method, program therefor, automatic designing method and its system
US20040243568A1 (en) * 2000-08-24 2004-12-02 Hai-Feng Wang Search engine with natural language-based robust parsing of user query and relevance feedback learning
US20050169453A1 (en) * 2004-01-29 2005-08-04 Sbc Knowledge Ventures, L.P. Method, software and system for developing interactive call center agent personas
US20050254632A1 (en) * 2004-05-12 2005-11-17 Sbc Knowledge Ventures, L.P. System, method and software for transitioning between speech-enabled applications using action-object matrices
US20060041424A1 (en) * 2001-07-31 2006-02-23 James Todhunter Semantic processor for recognition of cause-effect relations in natural language documents
US20060045241A1 (en) * 2004-08-26 2006-03-02 Sbc Knowledge Ventures, L.P. Method, system and software for implementing an automated call routing application in a speech enabled call center environment
US20060074856A1 (en) * 2004-10-01 2006-04-06 Chia-Hsin Liao Patent summarization systems and methods
US20080162147A1 (en) * 2006-12-29 2008-07-03 Harman International Industries, Inc. Command interface
US7415101B2 (en) 2003-12-15 2008-08-19 At&T Knowledge Ventures, L.P. System, method and software for a speech-enabled call routing application using an action-object matrix
US20100235164A1 (en) * 2009-03-13 2010-09-16 Invention Machine Corporation Question-answering system and method based on semantic labeling of text documents and user questions
US20100287177A1 (en) * 2009-05-06 2010-11-11 Foundationip, Llc Method, System, and Apparatus for Searching an Electronic Document Collection
US20100287148A1 (en) * 2009-05-08 2010-11-11 Cpa Global Patent Research Limited Method, System, and Apparatus for Targeted Searching of Multi-Sectional Documents within an Electronic Document Collection
US20110066612A1 (en) * 2009-09-17 2011-03-17 Foundationip, Llc Method, System, and Apparatus for Delivering Query Results from an Electronic Document Collection
US20110082839A1 (en) * 2009-10-02 2011-04-07 Foundationip, Llc Generating intellectual property intelligence using a patent search engine
US20110119250A1 (en) * 2009-11-16 2011-05-19 Cpa Global Patent Research Limited Forward Progress Search Platform
US20120191740A1 (en) * 2009-09-09 2012-07-26 University Bremen Document Comparison
US20130018649A1 (en) * 2011-07-13 2013-01-17 Nuance Communications, Inc. System and a Method for Generating Semantically Similar Sentences for Building a Robust SLM
US20130198123A1 (en) * 2012-01-27 2013-08-01 Jan Stadermann Hierarchical information extraction using document segmentation and optical character recognition correction
US20140280050A1 (en) * 2013-03-14 2014-09-18 Fujitsu Limited Term searching based on context
US20170075935A1 (en) * 2015-09-10 2017-03-16 Xerox Corporation Enriching how-to guides by linking actionable phrases

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0990209A4 (en) * 1997-06-04 2004-09-15 Gary L Sharp Database structure and management
GB9821969D0 (en) * 1998-10-08 1998-12-02 Canon Kk Apparatus and method for processing natural language
US6711585B1 (en) * 1999-06-15 2004-03-23 Kanisa Inc. System and method for implementing a knowledge management system
US7509572B1 (en) 1999-07-16 2009-03-24 Oracle International Corporation Automatic generation of document summaries through use of structured text
EP1228461A4 (en) * 1999-09-22 2005-07-27 Oleg Kharisovich Zommers Interactive personal information system and method
US7644057B2 (en) 2001-01-03 2010-01-05 International Business Machines Corporation System and method for electronic communication management
WO2001067225A3 (en) * 2000-03-06 2002-01-17 Kanisa Inc A system and method for providing an intelligent multi-step dialog with a user
US6311194B1 (en) * 2000-03-15 2001-10-30 Taalee, Inc. System and method for creating a semantic web and its applications in browsing, searching, profiling, personalization and advertising
US7120574B2 (en) * 2000-04-03 2006-10-10 Invention Machine Corporation Synonym extension of search queries with validation
US7962326B2 (en) * 2000-04-20 2011-06-14 Invention Machine Corporation Semantic answering system and method
US8478732B1 (en) * 2000-05-02 2013-07-02 International Business Machines Corporation Database aliasing in information access system
US6704728B1 (en) 2000-05-02 2004-03-09 Iphase.Com, Inc. Accessing information from a collection of data
US6711561B1 (en) 2000-05-02 2004-03-23 Iphrase.Com, Inc. Prose feedback in information access system
EP1290578B1 (en) * 2000-05-23 2008-01-02 Vigilint (Software) Holdings Limited Automatic and secure data search method using a data transmission network
JP2001344243A (en) * 2000-05-31 2001-12-14 Fuji Xerox Co Ltd Document data transmitter, document data transmitting/ receiving system, and method for transmitting document data
US6941513B2 (en) * 2000-06-15 2005-09-06 Cognisphere, Inc. System and method for text structuring and text generation
US9699129B1 (en) 2000-06-21 2017-07-04 International Business Machines Corporation System and method for increasing email productivity
US8290768B1 (en) 2000-06-21 2012-10-16 International Business Machines Corporation System and method for determining a set of attributes based on content of communications
US6408277B1 (en) 2000-06-21 2002-06-18 Banter Limited System and method for automatic task prioritization
US6732098B1 (en) 2000-08-11 2004-05-04 Attensity Corporation Relational text index creation and searching
US6741988B1 (en) 2000-08-11 2004-05-25 Attensity Corporation Relational text index creation and searching
US6732097B1 (en) 2000-08-11 2004-05-04 Attensity Corporation Relational text index creation and searching
US7171349B1 (en) 2000-08-11 2007-01-30 Attensity Corporation Relational text index creation and searching
US6738765B1 (en) 2000-08-11 2004-05-18 Attensity Corporation Relational text index creation and searching
US6728707B1 (en) 2000-08-11 2004-04-27 Attensity Corporation Relational text index creation and searching
EP1225517B1 (en) * 2001-01-17 2006-05-17 International Business Machines Corporation System and methods for computer based searching for relevant texts
US7136846B2 (en) 2001-04-06 2006-11-14 2005 Keel Company, Inc. Wireless information retrieval
US6904428B2 (en) * 2001-04-18 2005-06-07 Illinois Institute Of Technology Intranet mediator
US20020184196A1 (en) * 2001-06-04 2002-12-05 Lehmeier Michelle R. System and method for combining voice annotation and recognition search criteria with traditional search criteria into metadata
GB2412988B (en) * 2001-06-04 2005-12-07 Hewlett Packard Co System for storing documents in an electronic storage media
US7376620B2 (en) * 2001-07-23 2008-05-20 Consona Crm Inc. System and method for measuring the quality of information retrieval
WO2003012661A1 (en) * 2001-07-31 2003-02-13 Invention Machine Corporation Computer based summarization of natural language documents
US8799776B2 (en) * 2001-07-31 2014-08-05 Invention Machine Corporation Semantic processor for recognition of whole-part relations in natural language documents
US6609124B2 (en) 2001-08-13 2003-08-19 International Business Machines Corporation Hub for strategic intelligence
US7398201B2 (en) * 2001-08-14 2008-07-08 Evri Inc. Method and system for enhanced data searching
US7526425B2 (en) 2001-08-14 2009-04-28 Evri Inc. Method and system for extending keyword searching to syntactically and semantically annotated data
US7283951B2 (en) 2001-08-14 2007-10-16 Insightful Corporation Method and system for enhanced data searching
US7403938B2 (en) * 2001-09-24 2008-07-22 Iac Search & Media, Inc. Natural language query processing
US20030084066A1 (en) * 2001-10-31 2003-05-01 Waterman Scott A. Device and method for assisting knowledge engineer in associating intelligence with content
US7343372B2 (en) * 2002-02-22 2008-03-11 International Business Machines Corporation Direct navigation for information retrieval
EP1351156A1 (en) * 2002-03-14 2003-10-08 Universita' Degli Studi di Firenze System and method for automatically performing functional analyses of technical texts
US20030187632A1 (en) * 2002-04-02 2003-10-02 Menich Barry J. Multimedia conferencing system
US7107261B2 (en) * 2002-05-22 2006-09-12 International Business Machines Corporation Search engine providing match and alternative answer
US20040015481A1 (en) * 2002-05-23 2004-01-22 Kenneth Zinda Patent data mining
US20030229470A1 (en) * 2002-06-10 2003-12-11 Nenad Pejic System and method for analyzing patent-related information
US20040039562A1 (en) * 2002-06-17 2004-02-26 Kenneth Haase Para-linguistic expansion
US7966311B2 (en) * 2002-06-17 2011-06-21 Kenneth Haase Systems and methods for processing queries
US7567902B2 (en) * 2002-09-18 2009-07-28 Nuance Communications, Inc. Generating speech recognition grammars from a large corpus of data
US20040064447A1 (en) * 2002-09-27 2004-04-01 Simske Steven J. System and method for management of synonymic searching
CA2791776A1 (en) * 2002-10-30 2004-05-13 Portauthority Technologies, Inc. A method and system for managing confidential information
US8495002B2 (en) 2003-05-06 2013-07-23 International Business Machines Corporation Software tool for training and testing a knowledge base
US20050187913A1 (en) 2003-05-06 2005-08-25 Yoram Nelken Web-based customer service interface
US7401072B2 (en) 2003-06-10 2008-07-15 Google Inc. Named URL entry
US20050010559A1 (en) * 2003-07-10 2005-01-13 Joseph Du Methods for information search and citation search
US7813916B2 (en) 2003-11-18 2010-10-12 University Of Utah Acquisition and application of contextual role knowledge for coreference resolution
US20050144177A1 (en) * 2003-11-26 2005-06-30 Hodes Alan S. Patent analysis and formulation using ontologies
US20050234738A1 (en) * 2003-11-26 2005-10-20 Hodes Alan S Competitive product intelligence system and method, including patent analysis and formulation using one or more ontologies
US7536368B2 (en) * 2003-11-26 2009-05-19 Invention Machine Corporation Method for problem formulation and for obtaining solutions from a database
US20050138556A1 (en) * 2003-12-18 2005-06-23 Xerox Corporation Creation of normalized summaries using common domain models for input text analysis and output text generation
US7689543B2 (en) * 2004-03-11 2010-03-30 International Business Machines Corporation Search engine providing match and alternative answers using cumulative probability values
US20050216828A1 (en) * 2004-03-26 2005-09-29 Brindisi Thomas J Patent annotator
US7685118B2 (en) * 2004-08-12 2010-03-23 Iwint International Holdings Inc. Method using ontology and user query processing to solve inventor problems and user problems
US7672831B2 (en) * 2005-10-24 2010-03-02 Invention Machine Corporation System and method for cross-language knowledge searching
US7464078B2 (en) 2005-10-25 2008-12-09 International Business Machines Corporation Method for automatically extracting by-line information
US7805455B2 (en) * 2005-11-14 2010-09-28 Invention Machine Corporation System and method for problem analysis
WO2007059287A1 (en) 2005-11-16 2007-05-24 Evri Inc. Extending keyword searching to syntactically and semantically annotated data
US20070260450A1 (en) * 2006-05-05 2007-11-08 Yudong Sun Indexing parsed natural language texts for advanced search
KR100785927B1 (en) 2006-06-02 2007-12-17 삼성전자주식회사 Method and apparatus for providing data summarization
US8843475B2 (en) * 2006-07-12 2014-09-23 Philip Marshall System and method for collaborative knowledge structure creation and management
US7668791B2 (en) * 2006-07-31 2010-02-23 Microsoft Corporation Distinguishing facts from opinions using a multi-stage approach
CN101075308B (en) 2006-11-08 2010-12-15 腾讯科技(深圳)有限公司 Method for editing e-mail
CA2717462C (en) 2007-03-14 2016-09-27 Evri Inc. Query templates and labeled search tip system, methods, and techniques
US9031947B2 (en) * 2007-03-27 2015-05-12 Invention Machine Corporation System and method for model element identification
US8301633B2 (en) 2007-10-01 2012-10-30 Palo Alto Research Center Incorporated System and method for semantic search
US8594996B2 (en) 2007-10-17 2013-11-26 Evri Inc. NLP-based entity recognition and disambiguation
EP2212772A4 (en) 2007-10-17 2017-04-05 VCVC lll LLC Nlp-based content recommender
US8412516B2 (en) * 2007-11-27 2013-04-02 Accenture Global Services Limited Document analysis, commenting, and reporting system
US8271870B2 (en) * 2007-11-27 2012-09-18 Accenture Global Services Limited Document analysis, commenting, and reporting system
US8266519B2 (en) * 2007-11-27 2012-09-11 Accenture Global Services Limited Document analysis, commenting, and reporting system
US8417513B2 (en) * 2008-06-06 2013-04-09 Radiant Logic Inc. Representation of objects and relationships in databases, directories, web services, and applications as sentences as a method to represent context in structured data
US9953651B2 (en) * 2008-07-28 2018-04-24 International Business Machines Corporation Speed podcasting
CN101404031B (en) 2008-11-12 2012-05-30 北京搜狗科技发展有限公司 Method and system for recognizing concept type web pages
EP2406739A2 (en) * 2009-03-13 2012-01-18 Invention Machine Corporation System and method for knowledge research
US8281238B2 (en) * 2009-11-10 2012-10-02 Primal Fusion Inc. System, method and computer program for creating and manipulating data structures using an interactive graphical interface
US8793208B2 (en) * 2009-12-17 2014-07-29 International Business Machines Corporation Identifying common data objects representing solutions to a problem in different disciplines
CN102117283A (en) * 2009-12-30 2011-07-06 安世亚太科技(北京)有限公司 Semantic indexing-based data retrieval method
CN102117285B (en) * 2009-12-30 2015-01-07 安世亚太科技股份有限公司 Search method based on semantic indexing
EP2362333A1 (en) 2010-02-19 2011-08-31 Accenture Global Services Limited System for requirement identification and analysis based on capability model structure
US9710556B2 (en) 2010-03-01 2017-07-18 Vcvc Iii Llc Content recommendation based on collections of entities
US8645125B2 (en) 2010-03-30 2014-02-04 Evri, Inc. NLP-based systems and methods for providing quotations
WO2011160140A8 (en) 2010-06-18 2012-10-11 Susan Bennett System and method of semantic based searching
US8566731B2 (en) 2010-07-06 2013-10-22 Accenture Global Services Limited Requirement statement manipulation system
US8838633B2 (en) 2010-08-11 2014-09-16 Vcvc Iii Llc NLP-based sentiment analysis
CN102385596A (en) * 2010-09-03 2012-03-21 腾讯科技(深圳)有限公司 Verse searching method and device
US9405848B2 (en) 2010-09-15 2016-08-02 Vcvc Iii Llc Recommending mobile device activities
CN102455997A (en) * 2010-10-27 2012-05-16 鸿富锦精密工业(深圳)有限公司 Component name extraction system and method
US8725739B2 (en) 2010-11-01 2014-05-13 Evri, Inc. Category-based content recommendation
US9317595B2 (en) 2010-12-06 2016-04-19 Yahoo! Inc. Fast title/summary extraction from long descriptions
US9400778B2 (en) 2011-02-01 2016-07-26 Accenture Global Services Limited System for identifying textual relationships
US9116995B2 (en) 2011-03-30 2015-08-25 Vcvc Iii Llc Cluster-based identification of news stories
US8935654B2 (en) 2011-04-21 2015-01-13 Accenture Global Services Limited Analysis system for test artifact generation
US9223769B2 (en) 2011-09-21 2015-12-29 Roman Tsibulevskiy Data processing systems, devices, and methods for content analysis
US9799040B2 (en) 2012-03-27 2017-10-24 Iprova Sarl Method and apparatus for computer assisted innovation
US8747115B2 (en) 2012-03-28 2014-06-10 International Business Machines Corporation Building an ontology by transforming complex triples
US8539001B1 (en) 2012-08-20 2013-09-17 International Business Machines Corporation Determining the value of an association between ontologies
US9501469B2 (en) 2012-11-21 2016-11-22 University Of Massachusetts Analogy finder
US9646260B1 (en) * 2013-06-24 2017-05-09 Amazon Technologies, Inc. Using existing relationships in a knowledge base to identify types of knowledge for addition to the knowledge base
US9235653B2 (en) 2013-06-26 2016-01-12 Google Inc. Discovering entity actions for an entity graph
US9817823B2 (en) * 2013-09-17 2017-11-14 International Business Machines Corporation Active knowledge guidance based on deep document analysis
CN105706078A (en) 2013-10-09 2016-06-22 谷歌公司 Automatic definition of entity collections
US9916284B2 (en) * 2013-12-10 2018-03-13 International Business Machines Corporation Analyzing document content and generating an appendix
US9659056B1 (en) 2013-12-30 2017-05-23 Google Inc. Providing an explanation of a missing fact estimate
CN103761264B (en) * 2013-12-31 2017-01-18 浙江大学 Reviews documentation set based on the concept of hierarchy creation method
RU2564641C1 (en) * 2014-05-27 2015-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технический университет" (ФГБОУ ВПО "КубГТУ") Intelligent information selection system "optimel"
US9818307B2 (en) * 2014-07-28 2017-11-14 Sparkting Llc Communication device interface for a semantic-based creativity assessment
US9916375B2 (en) * 2014-08-15 2018-03-13 International Business Machines Corporation Extraction of concept-based summaries from documents
CN104391969B (en) * 2014-12-04 2018-01-30 百度在线网络技术(北京)有限公司 Method and apparatus for determining user query statement syntax structure
CN106227714A (en) * 2016-07-14 2016-12-14 北京百度网讯科技有限公司 Poem forming keyword obtaining method and device based on artificial intelligence

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829423A (en) * 1983-01-28 1989-05-09 Texas Instruments Incorporated Menu-based natural language understanding system
US5696916A (en) * 1985-03-27 1997-12-09 Hitachi, Ltd. Information storage and retrieval system and display method therefor
US4887212A (en) * 1986-10-29 1989-12-12 International Business Machines Corporation Parser for natural language text
US4868750A (en) * 1987-10-07 1989-09-19 Houghton Mifflin Company Collocational grammar system
US4864502A (en) * 1987-10-07 1989-09-05 Houghton Mifflin Company Sentence analyzer
US5146405A (en) * 1988-02-05 1992-09-08 At&T Bell Laboratories Methods for part-of-speech determination and usage
NL8900247A (en) * 1989-02-01 1990-09-03 Bso Buro Voor Systeemontwikkel A method and system for displaying of multiple analyzes in a dependency grammar, as well as decompose apparatus for generating such a display.
JP3266246B2 (en) * 1990-06-15 2002-03-18 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Knowledge base construction method for natural language analysis apparatus and method, as well as natural language analysis
US5559940A (en) * 1990-12-14 1996-09-24 Hutson; William H. Method and system for real-time information analysis of textual material
US5369575A (en) * 1992-05-15 1994-11-29 International Business Machines Corporation Constrained natural language interface for a computer system
US5377103A (en) * 1992-05-15 1994-12-27 International Business Machines Corporation Constrained natural language interface for a computer that employs a browse function
JP2821840B2 (en) * 1993-04-28 1998-11-05 日本アイ・ビー・エム株式会社 Machine translation apparatus
US5331556A (en) * 1993-06-28 1994-07-19 General Electric Company Method for natural language data processing using morphological and part-of-speech information
US5873056A (en) * 1993-10-12 1999-02-16 The Syracuse University Natural language processing system for semantic vector representation which accounts for lexical ambiguity
US5692176A (en) * 1993-11-22 1997-11-25 Reed Elsevier Inc. Associative text search and retrieval system
JPH07160684A (en) * 1993-12-03 1995-06-23 Matsushita Electric Ind Co Ltd Method and device for compressing document
EP0692765B1 (en) * 1994-06-21 2003-05-21 Canon Kabushiki Kaisha Text preparing system using knowledge base and method therefor
US5799268A (en) * 1994-09-28 1998-08-25 Apple Computer, Inc. Method for extracting knowledge from online documentation and creating a glossary, index, help database or the like
US5873076A (en) * 1995-09-15 1999-02-16 Infonautics Corporation Architecture for processing search queries, retrieving documents identified thereby, and method for using same
US5878385A (en) * 1996-09-16 1999-03-02 Ergo Linguistic Technologies Method and apparatus for universal parsing of language
US6076051A (en) * 1997-03-07 2000-06-13 Microsoft Corporation Information retrieval utilizing semantic representation of text
US5933822A (en) * 1997-07-22 1999-08-03 Microsoft Corporation Apparatus and methods for an information retrieval system that employs natural language processing of search results to improve overall precision

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7051024B2 (en) * 1999-04-08 2006-05-23 Microsoft Corporation Document summarizer for word processors
US20020103836A1 (en) * 1999-04-08 2002-08-01 Fein Ronald A. Document summarizer for word processors
US20040243568A1 (en) * 2000-08-24 2004-12-02 Hai-Feng Wang Search engine with natural language-based robust parsing of user query and relevance feedback learning
US20040215586A1 (en) * 2001-05-28 2004-10-28 Zenya Koono Automatic knowledge creating method, program therefor, automatic designing method and its system
US7480642B2 (en) * 2001-05-28 2009-01-20 Zenya Koono Automatic knowledge creating system
US20060041424A1 (en) * 2001-07-31 2006-02-23 James Todhunter Semantic processor for recognition of cause-effect relations in natural language documents
US9009590B2 (en) 2001-07-31 2015-04-14 Invention Machines Corporation Semantic processor for recognition of cause-effect relations in natural language documents
US20030079024A1 (en) * 2001-10-19 2003-04-24 Hough Paul James Querying applications using online messenger service
US7353247B2 (en) * 2001-10-19 2008-04-01 Microsoft Corporation Querying applications using online messenger service
US20030154071A1 (en) * 2002-02-11 2003-08-14 Shreve Gregory M. Process for the document management and computer-assisted translation of documents utilizing document corpora constructed by intelligent agents
US20080267365A1 (en) * 2003-12-15 2008-10-30 At&T Intellectual Property I, L.P. System, method and software for a speech-enabled call routing application using an action-object matrix
US8498384B2 (en) 2003-12-15 2013-07-30 At&T Intellectual Property I, L.P. System, method and software for a speech-enabled call routing application using an action-object matrix
US8280013B2 (en) 2003-12-15 2012-10-02 At&T Intellectual Property I, L.P. System, method and software for a speech-enabled call routing application using an action-object matrix
US7415101B2 (en) 2003-12-15 2008-08-19 At&T Knowledge Ventures, L.P. System, method and software for a speech-enabled call routing application using an action-object matrix
US8737576B2 (en) 2003-12-15 2014-05-27 At&T Intellectual Property I, L.P. System, method and software for a speech-enabled call routing application using an action-object matrix
US7512545B2 (en) 2004-01-29 2009-03-31 At&T Intellectual Property I, L.P. Method, software and system for developing interactive call center agent personas
US20050169453A1 (en) * 2004-01-29 2005-08-04 Sbc Knowledge Ventures, L.P. Method, software and system for developing interactive call center agent personas
US20050254632A1 (en) * 2004-05-12 2005-11-17 Sbc Knowledge Ventures, L.P. System, method and software for transitioning between speech-enabled applications using action-object matrices
US7620159B2 (en) 2004-05-12 2009-11-17 AT&T Intellectual I, L.P. System, method and software for transitioning between speech-enabled applications using action-object matrices
US7623632B2 (en) 2004-08-26 2009-11-24 At&T Intellectual Property I, L.P. Method, system and software for implementing an automated call routing application in a speech enabled call center environment
US8976942B2 (en) 2004-08-26 2015-03-10 At&T Intellectual Property I, L.P. Method, system and software for implementing an automated call routing application in a speech enabled call center environment
US20060045241A1 (en) * 2004-08-26 2006-03-02 Sbc Knowledge Ventures, L.P. Method, system and software for implementing an automated call routing application in a speech enabled call center environment
US7921126B2 (en) * 2004-10-01 2011-04-05 Institute Of Information Industry Patent summarization systems and methods
US20060074856A1 (en) * 2004-10-01 2006-04-06 Chia-Hsin Liao Patent summarization systems and methods
US20080162147A1 (en) * 2006-12-29 2008-07-03 Harman International Industries, Inc. Command interface
US9865240B2 (en) * 2006-12-29 2018-01-09 Harman International Industries, Incorporated Command interface for generating personalized audio content
US8583422B2 (en) 2009-03-13 2013-11-12 Invention Machine Corporation System and method for automatic semantic labeling of natural language texts
US20100235164A1 (en) * 2009-03-13 2010-09-16 Invention Machine Corporation Question-answering system and method based on semantic labeling of text documents and user questions
US20100235165A1 (en) * 2009-03-13 2010-09-16 Invention Machine Corporation System and method for automatic semantic labeling of natural language texts
US8666730B2 (en) 2009-03-13 2014-03-04 Invention Machine Corporation Question-answering system and method based on semantic labeling of text documents and user questions
US20100287177A1 (en) * 2009-05-06 2010-11-11 Foundationip, Llc Method, System, and Apparatus for Searching an Electronic Document Collection
US20100287148A1 (en) * 2009-05-08 2010-11-11 Cpa Global Patent Research Limited Method, System, and Apparatus for Targeted Searching of Multi-Sectional Documents within an Electronic Document Collection
US20120191740A1 (en) * 2009-09-09 2012-07-26 University Bremen Document Comparison
US20110066612A1 (en) * 2009-09-17 2011-03-17 Foundationip, Llc Method, System, and Apparatus for Delivering Query Results from an Electronic Document Collection
US8364679B2 (en) 2009-09-17 2013-01-29 Cpa Global Patent Research Limited Method, system, and apparatus for delivering query results from an electronic document collection
US20110082839A1 (en) * 2009-10-02 2011-04-07 Foundationip, Llc Generating intellectual property intelligence using a patent search engine
US20110119250A1 (en) * 2009-11-16 2011-05-19 Cpa Global Patent Research Limited Forward Progress Search Platform
US20130018649A1 (en) * 2011-07-13 2013-01-17 Nuance Communications, Inc. System and a Method for Generating Semantically Similar Sentences for Building a Robust SLM
US9135237B2 (en) * 2011-07-13 2015-09-15 Nuance Communications, Inc. System and a method for generating semantically similar sentences for building a robust SLM
US20130198123A1 (en) * 2012-01-27 2013-08-01 Jan Stadermann Hierarchical information extraction using document segmentation and optical character recognition correction
US9715625B2 (en) * 2012-01-27 2017-07-25 Recommind, Inc. Hierarchical information extraction using document segmentation and optical character recognition correction
US20140280050A1 (en) * 2013-03-14 2014-09-18 Fujitsu Limited Term searching based on context
US20170075935A1 (en) * 2015-09-10 2017-03-16 Xerox Corporation Enriching how-to guides by linking actionable phrases

Also Published As

Publication number Publication date Type
EP1112541A1 (en) 2001-07-04 application
CN1325513A (en) 2001-12-05 application
CA2341583A1 (en) 2000-03-16 application
WO2000014651A1 (en) 2000-03-16 application
US6167370A (en) 2000-12-26 grant
JP2002524799A (en) 2002-08-06 application
JP4467184B2 (en) 2010-05-26 grant

Similar Documents

Publication Publication Date Title
US6363374B1 (en) Text proximity filtering in search systems using same sentence restrictions
US8265925B2 (en) Method and apparatus for textual exploration discovery
US6446035B1 (en) Finding groups of people based on linguistically analyzable content of resources accessed
US6615209B1 (en) Detecting query-specific duplicate documents
US5541838A (en) Translation machine having capability of registering idioms
US7707206B2 (en) Document processing
US7389224B1 (en) Natural language search method and apparatus, including linguistically-matching context data
US7065483B2 (en) Computer method and apparatus for extracting data from web pages
US8131540B2 (en) Method and system for extending keyword searching to syntactically and semantically annotated data
US6199067B1 (en) System and method for generating personalized user profiles and for utilizing the generated user profiles to perform adaptive internet searches
US7266553B1 (en) Content data indexing
US6859800B1 (en) System for fulfilling an information need
US6366908B1 (en) Keyfact-based text retrieval system, keyfact-based text index method, and retrieval method
US8977953B1 (en) Customizing information by combining pair of annotations from at least two different documents
US5062074A (en) Information retrieval system and method
US6286000B1 (en) Light weight document matcher
Kowalski Information retrieval systems: theory and implementation
US6584470B2 (en) Multi-layered semiotic mechanism for answering natural language questions using document retrieval combined with information extraction
US20040122846A1 (en) Fact verification system
US20020123994A1 (en) System for fulfilling an information need using extended matching techniques
US6269189B1 (en) Finding selected character strings in text and providing information relating to the selected character strings
US7272558B1 (en) Speech recognition training method for audio and video file indexing on a search engine
US20060161543A1 (en) Systems and methods for providing search results based on linguistic analysis
US5523945A (en) Related information presentation method in document processing system
US4972349A (en) Information retrieval system and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: DASSAULT SYSTEMES CORP., FRANCE

Free format text: SECURITY AGREEMENT;ASSIGNOR:INVENTION MACHINE CORPORATION;REEL/FRAME:012002/0025

Effective date: 20010718