US20010010474A1 - Apparatus and method for an improved master-slave flip-flop with non-overlapping clocks - Google Patents

Apparatus and method for an improved master-slave flip-flop with non-overlapping clocks Download PDF

Info

Publication number
US20010010474A1
US20010010474A1 US09/812,046 US81204601A US2001010474A1 US 20010010474 A1 US20010010474 A1 US 20010010474A1 US 81204601 A US81204601 A US 81204601A US 2001010474 A1 US2001010474 A1 US 2001010474A1
Authority
US
United States
Prior art keywords
clock generator
accordance
current limiter
providing
channel transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/812,046
Inventor
Sam Alexander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/812,046 priority Critical patent/US20010010474A1/en
Publication of US20010010474A1 publication Critical patent/US20010010474A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • H03K3/356113Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit
    • H03K3/356147Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit using pass gates
    • H03K3/356156Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit using pass gates with synchronous operation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/037Bistable circuits
    • H03K3/0372Bistable circuits of the primary-secondary type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/037Bistable circuits
    • H03K3/0375Bistable circuits provided with means for increasing reliability; for protection; for ensuring a predetermined initial state when the supply voltage has been applied; for storing the actual state when the supply voltage fails
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/3562Bistable circuits of the primary-secondary type
    • H03K3/35625Bistable circuits of the primary-secondary type using complementary field-effect transistors

Definitions

  • This invention relates generally to digital computer systems and specifically to digital computer systems which rely on master-slave latches or flip flops.
  • This invention provides an apparatus and method for generating quickly slewing clock signals with non-overlapping duty cycles from a master clock that has relatively slow rise and fall times.
  • the current state of the art describes a master slave latch combination in which data is clocked into the master latch 20 and slave latch 40 through a two sets of gating transistor pairs 10 and 30 , respectively, by a master clock CLK and its complement CLK 1 .
  • the conventional method to indicate a complementary signal is to overline the signal.
  • the symbol for a complementary signal is set for as the signal underlined (e.g. CLK).
  • D indicates the input data and Q represents the static state output of D after proper latching by the master latch 20 and the slave latch 40 .
  • the master clock signal CLK and its complement +E,uns CLK are depicted in FIG. 2.
  • the master clock CLK goes from low to high, the gating transistor pair 10 is conducting and data is permitted to pass into the master latch 20 . Also at this time, because the clock signals are inverted at gating transistor pair 30 , this transistor pair is switched off and data is not permitted to pass into the slave latch 40 .
  • an improved master-slave flip-flop comprises a master gating transistor pair, a master latch coupled to the master gating transistor pair, a slave gating transistor pair coupled to the master latch, a slave latch coupled to the slave gating transistor pair, a clock generator coupled to the master gating transistor pair, a second clock generator coupled to the master gating transistor pair, a third clock generator coupled to the slave gating transistor pair, and a fourth clock generator coupled to the slave gating transistor pair.
  • a clock generator is comprised of a current limiter and an inverter coupled to the current limiter.
  • the current limiter may be implemented as a current mirror.
  • the trip point of the inverter is adjusted by means of the current limiter or by geometrical manipulation of the CMOS devices which comprise the inverter.
  • non-overlapping clocks may be derived from a single master clock signal by the clock generators.
  • non-overlapping clocks may be derived from a single master clock signal and the complement of the master clock signal.
  • FIG. 1 is a simplified diagram of a master-slave latch pair.
  • FIG. 2 illustrates a master clock and complement with relatively slow rise and fall times.
  • FIG. 3 is a block diagram of the present invention.
  • FIGS. 4A, 4B, 4 C and 4 D are various embodiments of the clock generator in the present invention which rely on a master clock signal and its complement.
  • FIGS. 5A and 5B illustrate the clock generator implemented by a current mirror.
  • FIGS. 6A and 6B illustrate how the present invention shifts the trip point of an inverter.
  • FIG. 7 is a timing diagram of the non-overlapping clock signals derived from complementary master clock signals.
  • FIGS. 8A and 8B illustrate an alternative embodiment of the clock generators in the present invention using a single master clock signal without its complement.
  • FIG. 9 is a timing diagram of the non-overlapping clock signals derived from a single master clock signal.
  • FIG. 3 an improved master-slave flip-flop with non-overlapping clocks 100 is shown.
  • the invention is comprised of a master gating transistor pair 10 , a master latch 20 , a slave gating transistor pair 30 , a slave latch 40 and four independent clock generators 101 - 104 .
  • Input data D occurs at the input side of master gating pair 10 and output Q occurs at the output of slave latch 40 .
  • FIGS. 4A, 4B, 4 C and 4 D simplified diagrams of the clock generators 101 - 104 are shown comprising of a current limiter 110 coupled to a two transistor inverter 120 .
  • the current limiter 110 may be positioned either on the power side of the transistor pair as shown in FIGS. 4A and 4B, i.e. in series with the P-channel device as depicted by 101 and 102 ; or on the ground potential side of the transistor pair as shown in FIGS. 4C and 4D, i.e in series with the N-channel device as depicted by 103 and 104 .
  • the input may be either the master clock CLK, as in FIGS.
  • phase shift in the CLK versus +E,uns CLK input will simply result in a comparable phase shift in the output of the inverter 120 .
  • the purpose of the current limiter 110 is to shift the trip point of the transistor pair 120 from what is normally the approximate midpoint between V DD and V SS .
  • the new trip point will approximate either V TN (V T′ in FIG. 6A) or V DD -V TP (V T′′ in FIG. 6B).
  • V TN is the threshold voltage of the N-channel transistor
  • V TP is the threshold voltage of the P-channel transistor.
  • the current limiter 110 may be implemented in a variety of fashions.
  • the current limiter 110 is implemented via a current mirror 111 as shown in FIGS. 5A and 5B.
  • FIG. 5A illustrates the current mirror 111 in series with and directly connected to the P-channel device.
  • FIG. 5B illustrates the current mirror 111 in series with and directly connected to the N-channel device.
  • a current limiter may include components beyond a current mirror to effectively limit current.
  • simple resistor networks are typically not preferred because of resulting inefficiencies in the fabrication process.
  • implementations of adjusting the trip point of the inverter other than the current mirror include geometrical manipulation of the inverter N-channel and P-channel length/width ratio as part of the fabrication process.
  • the length/width ratios of the transistors are manipulated in the fabrication process. Additional fabrication techniques to adjust the trip point of the inverter such as doping and ion implantation may also be employed.
  • V T ( V TN +( V DD ⁇ V TN ))/2 ( V DD )/2 (1)
  • the trip point is approximately half of the supply voltage V DD .
  • Gain is defined as the width to length ratio of the transistor multiplied by a constant. If the gain of the N- and P-channel transistors are not equal then the denominator of equation (1) becomes more complicated in the form of 1+(k P /k N ) .5 , where k P and k N are the gain ratios of the P- and N-channel transistors, respectively. Thus, it becomes intuitive that shifting the trip point can be accomplished by altering the gain ratios as between the N- and P-channel transistors.
  • the gain ratios k P and k N are determined by the length/width ratios of the respective transistors as well as by fabrication parameters. However, if the gain ratios are equal, then the denominator of equation (1) is simply 1+(1) .5 , or 2.
  • I D ( k/ 2)*( V GS ⁇ V TH ) 2 (2)
  • I D is the current at the drain
  • k is the gain factor
  • V GS is the gate-source voltage
  • V TH is the threshold voltage
  • the N-channel transistor is the relevant device for determining the new trip point because the N-channel transistor is without a current limitation between the output node 130 and the lower rail 140 .
  • the P-channel device is not relevant in determining the new trip point for FIGS. 4A and 4B because the current limiter 110 is in series with the P-channel transistor and both the current limiter 110 and P-channel device are located between the upper rail V DD 150 and the output node 130 .
  • the P-channel device's contribution to the new trip point is regulated by the current limiter 110 .
  • the current for the N-channel transistor is expressed as follows.
  • I N is equal to the current through the N-channel transistor.
  • I LIM is the current provided by the current limiter 110 .
  • I N I LIM .
  • k N is the gain factor of the N-channel transistor, V IN is the input voltage and V TN is the threshold voltage of the N-channel device. Rearranging terms, and identifying V IN as the desired trip point, we have:
  • I P I LIM ( k P /2)( V IN ⁇ V DD ⁇
  • I P is equal to the current through the P-channel transistor.
  • I LIM is the current provided by the current limiter 110 .
  • I P I LIM .
  • k P is the gain factor of the P-channel transistor
  • V IN is the input voltage
  • V TP is the threshold voltage of the P-channel device.
  • FIG. 7 illustrates the operation of the present invention from a timing diagram perspective.
  • CLK is the master clock and is the input parameter to clock generator 101 as shown in FIG. 4A.
  • C 1 is the output of clock generator 101 .
  • the trip point for C 1 has shifted to V TN because of the current limiter 110 in series with the P-channel device.
  • CLK is also the input parameter to clock generator 103 as depicted in FIG. 4C.
  • +E,uns C 2 is the output of clock generator 103 . Note that the trip point for +E,uns C 2 has shifted to V DD ⁇
  • C 1 and C 2 are non-overlapping clocks for and active high signal.
  • +E,uns CLK is also the input parameter to clock generator 104 as depicted in FIG. 4D.
  • +E,uns C 1 is the output of clock generator 102 . Note that the trip point for +E,uns C 1 has shifted to V DD ⁇
  • C 1 and +E,uns C 1 are applied to the gating transistor pair 10 .
  • C 2 and +E,uns C 2 are applied to the gating transistor pair 30 .
  • FIGS. 8A and 8B where like numerals represent like elements, an alternative embodiment of the present invention is shown which relies on a single master clock CLK, as opposed to the complementary signals CLK & +E,uns CLK, to produce the non-overlapping synthesized clocks: C 1 , +E,uns C 1 , C 2 & +E,uns C 2 .
  • the clock generators 101 and 104 with current limiters 110 and the two transistor inverters 120 , are as previously described.
  • the clock generator 104 is connected to the output of clock generator 101 which is the derived clock C 1 .
  • the output of clock generator 104 is +E,uns C 1 .
  • clock generator 102 is connected to the +E,uns C 2 output of clock generator 103 .
  • the output of clock generator 102 is the complement of +E,uns C 2 , which is the derived non-overlapping clock C 2 . Therefore, a more robust, yet simpler and more flexible approach is to derive C 1 , +E,uns C 1 , C 2 and +E,uns C 2 from a common or single master clock CLK.
  • FIG. 9 the timing diagrams of the single CLK input and the non-overlapping clock outputs of the clock generators illustrated in FIGS. 8A and 8B are shown.
  • the result is the same as illustrated in FIG. 7, where C 1 , +E,uns C 1 , C 2 and +E,uns C 2 are derived from a combination of CLK and +E,uns CLK.

Landscapes

  • Manipulation Of Pulses (AREA)

Abstract

An improved master-slave flip-flop that is characterized by a novel clock generator. The improved flip-flop preserves the true master-slave relationship by ensuring a two step latching process is executed by non-overlapping clocks. The clock generator features an inverter in combination with a current limiter. The current limiter has the effect of shifting the trip point of the inverter such that non-overlapping clocks may be derived from a single master clock signal or a master clock signal and its complement.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention relates generally to digital computer systems and specifically to digital computer systems which rely on master-slave latches or flip flops. This invention provides an apparatus and method for generating quickly slewing clock signals with non-overlapping duty cycles from a master clock that has relatively slow rise and fall times. [0002]
  • 2. Description of the Prior Art [0003]
  • Referring to FIG. 1, the current state of the art describes a master slave latch combination in which data is clocked into the [0004] master latch 20 and slave latch 40 through a two sets of gating transistor pairs 10 and 30, respectively, by a master clock CLK and its complement CLK1. 1 The conventional method to indicate a complementary signal is to overline the signal. However, due to a word processing limitation, following this convention is not possible, Thus, in the text of this application the symbol for a complementary signal is set for as the signal underlined (e.g. CLK). D indicates the input data and Q represents the static state output of D after proper latching by the master latch 20 and the slave latch 40. The master clock signal CLK and its complement +E,uns CLK are depicted in FIG. 2.
  • When properly operating, the master clock CLK goes from low to high, the [0005] gating transistor pair 10 is conducting and data is permitted to pass into the master latch 20. Also at this time, because the clock signals are inverted at gating transistor pair 30, this transistor pair is switched off and data is not permitted to pass into the slave latch 40.
  • When the master clock CLK reverses state, i.e. from high to low, the first gating transistor pair [0006] 10 ceases to conduct. However, the second gating transistor pair 30 begins conducting and the data which was latched into the master latch 20 is now permitted to pass into the slave latch 40. After a brief propagation delay, the data is latched and stable at output Q.
  • Thus, when the master-slave latch is operating properly, latching occurs in two separate, discrete steps. These two steps provides for stable data at output Q. However, a problem arises during slow rise and fall times of the master clock CLK. [0007]
  • The problem during the clock transition characterized by relatively slow rise and fall times is that both [0008] gating transistor pairs 10 and 30 may be partially conducting at the same time. This will result in the data racing through the master- slave latch pair 20 and 40 without achieving a steady state. This occurs when the two step process described above is circumvented because of overlapping master clock signals as a result of relatively slow rise and fall times. Therefore, a need existed to provide a master-slave latch pair with non-overlapping clock signals to permit proper latching of data in a two step process for master-slave latches.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a master-slave flip-flop which prevents data from racing through the device without being properly latched. [0009]
  • It is another object of the present invention to provide a master-slave flip-flop which prevents partial conduction of the gating transistor pairs. [0010]
  • It is another object of the present invention to provide an improved clock generator which produces non-overlapping clock signals from a master clock signal. [0011]
  • It is another object of the present invention to combine the non-overlapping clock signals provided by the improved clock generators with gating transistor pairs and master-slave latches to preserve the two, discrete latching steps of a master-slave flip-flop. [0012]
  • In accordance with one embodiment of the present invention, an improved master-slave flip-flop comprises a master gating transistor pair, a master latch coupled to the master gating transistor pair, a slave gating transistor pair coupled to the master latch, a slave latch coupled to the slave gating transistor pair, a clock generator coupled to the master gating transistor pair, a second clock generator coupled to the master gating transistor pair, a third clock generator coupled to the slave gating transistor pair, and a fourth clock generator coupled to the slave gating transistor pair. [0013]
  • In accordance with another embodiment of the present invention, a clock generator is comprised of a current limiter and an inverter coupled to the current limiter. Furthermore, the current limiter may be implemented as a current mirror. [0014]
  • In accordance with another embodiment of the present invention the trip point of the inverter is adjusted by means of the current limiter or by geometrical manipulation of the CMOS devices which comprise the inverter. [0015]
  • In accordance with another embodiment of the present invention, non-overlapping clocks may be derived from a single master clock signal by the clock generators. [0016]
  • In accordance with another embodiment of the present. invention, non-overlapping clocks may be derived from a single master clock signal and the complement of the master clock signal. [0017]
  • The foregoing and other objects, features, and advantages of the invention will be apparent from the following, more particular, description of the preferred embodiments of the invention, as illustrated in the accompanying drawings. [0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a simplified diagram of a master-slave latch pair. [0019]
  • FIG. 2 illustrates a master clock and complement with relatively slow rise and fall times. [0020]
  • FIG. 3 is a block diagram of the present invention. [0021]
  • FIGS. 4A, 4B, [0022] 4C and 4D are various embodiments of the clock generator in the present invention which rely on a master clock signal and its complement.
  • FIGS. 5A and 5B illustrate the clock generator implemented by a current mirror. [0023]
  • FIGS. 6A and 6B illustrate how the present invention shifts the trip point of an inverter. [0024]
  • FIG. 7 is a timing diagram of the non-overlapping clock signals derived from complementary master clock signals. [0025]
  • FIGS. 8A and 8B illustrate an alternative embodiment of the clock generators in the present invention using a single master clock signal without its complement. [0026]
  • FIG. 9 is a timing diagram of the non-overlapping clock signals derived from a single master clock signal. [0027]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to FIG. 3, an improved master-slave flip-flop with [0028] non-overlapping clocks 100 is shown. The invention is comprised of a master gating transistor pair 10, a master latch 20, a slave gating transistor pair 30, a slave latch 40 and four independent clock generators 101-104. Input data D occurs at the input side of master gating pair 10 and output Q occurs at the output of slave latch 40.
  • Referring to FIGS. 4A, 4B, [0029] 4C and 4D, simplified diagrams of the clock generators 101-104 are shown comprising of a current limiter 110 coupled to a two transistor inverter 120. The current limiter 110 may be positioned either on the power side of the transistor pair as shown in FIGS. 4A and 4B, i.e. in series with the P-channel device as depicted by 101 and 102; or on the ground potential side of the transistor pair as shown in FIGS. 4C and 4D, i.e in series with the N-channel device as depicted by 103 and 104. The input may be either the master clock CLK, as in FIGS. 4A and 4C or the complementary master clock +E,uns CLK, as in FIGS. 4B and 4D. The phase shift in the CLK versus +E,uns CLK input will simply result in a comparable phase shift in the output of the inverter 120.
  • The purpose of the [0030] current limiter 110 is to shift the trip point of the transistor pair 120 from what is normally the approximate midpoint between VDD and VSS. As shown in FIGS. 6A and 6B, the Grip point (VT) is conventionally defined as the point where VIN=VOUT. However, depending on the positioning of the current limiter 110, the new trip point will approximate either VTN (VT′ in FIG. 6A) or VDD-VTP (VT″ in FIG. 6B). Where VTN is the threshold voltage of the N-channel transistor and VTP is the threshold voltage of the P-channel transistor.
  • The [0031] current limiter 110 may be implemented in a variety of fashions. In the preferred embodiment, the current limiter 110 is implemented via a current mirror 111 as shown in FIGS. 5A and 5B. FIG. 5A illustrates the current mirror 111 in series with and directly connected to the P-channel device. FIG. 5B illustrates the current mirror 111 in series with and directly connected to the N-channel device.
  • Other embodiments of a current limiter may include components beyond a current mirror to effectively limit current. However, simple resistor networks are typically not preferred because of resulting inefficiencies in the fabrication process. [0032]
  • However, other implementations of adjusting the trip point of the inverter other than the current mirror include geometrical manipulation of the inverter N-channel and P-channel length/width ratio as part of the fabrication process. In this implementation the length/width ratios of the transistors are manipulated in the fabrication process. Additional fabrication techniques to adjust the trip point of the inverter such as doping and ion implantation may also be employed. [0033]
  • The following relates the function of the [0034] current limiter 110 to the shift in the trip point VT. Referring to FIG. 4A, disregarding the presence of the current limiter 110 and where the gain of the P-channel transistor is equal to the gain of the N-channel transistor for the inverter 120, then the trip point can be expressed as:
  • V T(V TN+(V DD −V TN))/2=(V DD)/2  (1)
  • Thus, in the absence of a [0035] current limiter 110, the trip point is approximately half of the supply voltage VDD. Gain is defined as the width to length ratio of the transistor multiplied by a constant. If the gain of the N- and P-channel transistors are not equal then the denominator of equation (1) becomes more complicated in the form of 1+(kP/kN).5, where kP and kN are the gain ratios of the P- and N-channel transistors, respectively. Thus, it becomes intuitive that shifting the trip point can be accomplished by altering the gain ratios as between the N- and P-channel transistors. The gain ratios kP and kN are determined by the length/width ratios of the respective transistors as well as by fabrication parameters. However, if the gain ratios are equal, then the denominator of equation (1) is simply 1+(1).5, or 2.
  • At this point the [0036] current limiter 110 is introduced into the circuit and the relationship between current and the trip point VT is explained. Assuming that both the N- and P-channel transistors 120 are in saturation, the well known saturated current equation for a MOS transistor is given as:
  • ID=(k/2)*(V GS −V TH)2  (2)
  • Where, I[0037] D is the current at the drain, k is the gain factor, VGS is the gate-source voltage and VTH is the threshold voltage.
  • For a [0038] current limiter 110 in series with and directly connected to the P-channel transistor, as depicted in FIGS. 4A and 4B, the N-channel transistor is the relevant device for determining the new trip point because the N-channel transistor is without a current limitation between the output node 130 and the lower rail 140. The P-channel device is not relevant in determining the new trip point for FIGS. 4A and 4B because the current limiter 110 is in series with the P-channel transistor and both the current limiter 110 and P-channel device are located between the upper rail V DD 150 and the output node 130. Thus, the P-channel device's contribution to the new trip point is regulated by the current limiter 110. The current for the N-channel transistor is expressed as follows.
  • I N =I LIM=(k N/2)(V IN −V TN)2  (3)
  • Where I[0039] N is equal to the current through the N-channel transistor. ILIM is the current provided by the current limiter 110. At the trip point IN =I LIM. kN is the gain factor of the N-channel transistor, VIN is the input voltage and VTN is the threshold voltage of the N-channel device. Rearranging terms, and identifying VIN as the desired trip point, we have:
  • VT =V I=((2*I LIM)/k N).5 +V TN  (4)
  • Thus, if the current I[0040] LIM is limited to a small amount, then:
  • VT≈Vhd TN  (5)
  • This equation (5) is reflected in FIG. 6A, where the trip point is shifted to V[0041] T′ which is approximately VTN, by means of the current limiter 110 in series with the P-channel transistor.
  • In the case of the [0042] current limiter 110 in series with and directly connected to the N-channel transistor, as depicted in FIGS. 4C and 4D, the equations are as follows:
  • I P I LIM=(k P/2)(V IN −V DD −|V TP|)2  (6)
  • Where I[0043] P is equal to the current through the P-channel transistor. ILIM is the current provided by the current limiter 110. At the trip point IP=ILIM. kP is the gain factor of the P-channel transistor, VIN is the input voltage and VTP is the threshold voltage of the P-channel device. Rearranging terms, and once again identifying VIN as the desired trip point, we have:
  • V T =V IN=((2 *I LIM)/k P).5 +V DD −|V TP|  (7)
  • Thus, if the current I[0044] LIM is limited to a small amount then:
  • V T ≈V DD −|V TP|  (8)
  • This equation (8) is reflected in FIG. 6B, where the trip point is shifted to V[0045] T″ which is approximately VDD−|VTP| by means of the current limiter 110 in series with the N-channel transistor.
  • FIG. 7 illustrates the operation of the present invention from a timing diagram perspective. CLK is the master clock and is the input parameter to [0046] clock generator 101 as shown in FIG. 4A. C1 is the output of clock generator 101. Note that the trip point for C1 has shifted to VTN because of the current limiter 110 in series with the P-channel device. CLK is also the input parameter to clock generator 103 as depicted in FIG. 4C. +E,uns C2 is the output of clock generator 103. Note that the trip point for +E,uns C2 has shifted to VDD−|VTP| because of the current limiter 110 in series with the N-channel device.
  • Turning next to the clocks generated by the complementary master clock +E,uns CLK. +E,uns CLK is the input parameter to [0047] clock generator 102 as shown in FIG. 4B. C2 is the output of clock generator 102. Note that the trip point for C2 has shifted to VTN because of the current limiter 110 in series with the P-channel device.
  • Further note that C[0048] 1 and C2 are non-overlapping clocks for and active high signal. +E,uns CLK is also the input parameter to clock generator 104 as depicted in FIG. 4D. +E,uns C1 is the output of clock generator 102. Note that the trip point for +E,uns C1 has shifted to VDD− |VTP| because of the current limiter 110 in series with the N-channel device. Further note that +E,uns C1 and +E,uns C2 are non-overlapping clocks for an active low signal.
  • Referring to FIG. 3, C[0049] 1 and +E,uns C1 are applied to the gating transistor pair 10. C2 and +E,uns C2 are applied to the gating transistor pair 30. Thus, by having non-overlapping clocks at the gating transistor pairs 10 and 30, the two discrete latching process of the master-slave device is preserved because the non-overlapping, clocks ensure that the incoming data D must first be latched into the master latch before it can be latched into the slave latch.
  • Referring to FIGS. 8A and 8B, where like numerals represent like elements, an alternative embodiment of the present invention is shown which relies on a single master clock CLK, as opposed to the complementary signals CLK & +E,uns CLK, to produce the non-overlapping synthesized clocks: C[0050] 1, +E,uns C1, C2 & +E,uns C2. In FIG. 8A, the clock generators 101 and 104, with current limiters 110 and the two transistor inverters 120, are as previously described. The clock generator 104 is connected to the output of clock generator 101 which is the derived clock C1. The output of clock generator 104 is +E,uns C1.
  • Similarly, in FIG. 8B, [0051] clock generator 102 is connected to the +E,uns C2 output of clock generator 103. Thus the output of clock generator 102 is the complement of +E,uns C2, which is the derived non-overlapping clock C2. Therefore, a more robust, yet simpler and more flexible approach is to derive C1, +E,uns C1, C2 and +E,uns C2 from a common or single master clock CLK.
  • Referring to FIG. 9, the timing diagrams of the single CLK input and the non-overlapping clock outputs of the clock generators illustrated in FIGS. 8A and 8B are shown. Thus, the result is the same as illustrated in FIG. 7, where C[0052] 1, +E,uns C1, C2 and +E,uns C2 are derived from a combination of CLK and +E,uns CLK.
  • The invention has been particularly shown and described with reference to a preferred embodiment thereof, it will be understood by those skilled in the art that changes in form and detail may be made therein without departing from the spirit and scope of the invention. [0053]

Claims (40)

What is claimed is:
1. An improved flip-flop comprising:
a master gating transistor pair;
a master latch coupled to the master gating transistor pair;
a slave gating transistor pair coupled to the master latch;
a slave latch coupled to the slave gating transistor pair;
a clock generator coupled to the master gating transistor pair;
a second clock generator coupled to the master gating transistor pair;
a third clock generator coupled to the slave gating transistor pair; and
a fourth clock generator coupled to the slave gating transistor pair.
2. The flip-flop in accordance with
claim 1
wherein the first clock generator is comprised of:
a current limiter, and
an inverter coupled to the current limiter.
3. The flip-flop in accordance with
claim 1
wherein the second clock generator is comprised of:
a current limiter, and
an inverter coupled to the current limiter.
4. The flip-flop in accordance with
claim 1
wherein the third clock generator is comprised of:
a current limiter, and
an inverter coupled to the current limiter.
5. The flip-flop in accordance with
claim 1
wherein the fourth clock generator is comprised of:
a current limiter, and
an inverter coupled to the current limiter.
6. The flip-flop in accordance with claims 2, 3, 4, or 5 wherein the current limiter is a current mirror.
7. The flip-flop in accordance with
claim 1
wherein the first, second, third and fourth clock generators have a common input.
8. The flip-flop in accordance with
claim 1
wherein the first and third clock generators have a common input.
9. The flip-flop in accordance with
claim 8
wherein the second and fourth clock generators have a common input.
10. The flip-flop in accordance with
claim 9
wherein the common input to the second and fourth clock generators is the complement of the common input to the first and third clock generators.
11. The flip-flop in accordance with
claim 1
wherein an output of the first clock generator is the complement of an output of the second clock generator.
12. The flip-flop in accordance with
claim 1
wherein an output of the third clock generator is the complement of an output of the fourth clock generator.
13. The flip-flop in accordance with
claim 1
wherein an output of the first clock generator and an output selected from the group consisting of the third clock generator and the fourth clock generator are non-overlapping outputs.
14. The flip-flop in accordance with
claim 1
wherein an output of the second clock generator and an output selected from the group consisting of the third clock generator and the fourth clock generator are non-overlapping outputs.
15. The flip-flop in accordance with
claim 1
wherein the first clock generator is directly connected to the second clock generator.
16. The flip-flop in accordance with
claim 1
wherein the third clock generator is directly connected to the fourth clock generator.
17. A clock generator for use in an improved flip-flop comprising:
a current limiter, and
an inverter coupled to the current limiter.
18. The clock generator in accordance with
claim 17
wherein the current limiter is a current mirror.
19. The clock generator in accordance with
claim 17
wherein the inverter is comprised of:
a P-channel transistor, and
an N-channel transistor coupled to the P-channel transistor.
20. The clock generator in accordance with
claim 19
wherein the current limiter is directly connected to the P-channel transistor.
21. The clock generator in accordance with
claim 19
wherein the current limiter is directly connected to the N-channel transistor.
22. The clock generator in accordance with
claim 20
wherein the current limiter causes the trip point of the inverter to approximate the supply voltage minus the threshold voltage of the P-channel transistor.
23. The clock generator in accordance with
claim 21
wherein the current limiter causes the trip point of the inverter to approximate the threshold voltage of the N-channel transistor.
24. A clock generator comprising:
an N-channel transistor; and
a P-channel transistor coupled to the N-channel transistor,
wherein a trip point of the clock generator is adjusted by a length/width ratio of the N-channel transistor.
25. A clock generator comprising:
an N-channel transistor; and
a P-channel transistor coupled to the N-channel transistor,
wherein a trip point of the clock generator is adjusted by a length/width ratio of the P-channel transistor.
26. A clock generator comprising:
an N-channel transistor; and
a P-channel transistor coupled to the N-channel transistor,
wherein a trip point of the clock generator is adjusted by a gain ratio of the N-channel transistor.
27. A clock generator comprising:
an N-channel transistor; and
a P-channel transistor coupled to the N-channel transistor,
wherein a trip point of the clock generator is adjusted by a gain ratio of the P-channel transistor.
28. A method of generating non-overlapping clocks for a master-slave flip-flop comprising the steps of:
providing a master gating transistor pair;
providing a master latch coupled to the master gating transistor pair;
providing a slave gating transistor pair couple to the master latch;
providing a slave latch coupled to the slave gating transistor pair;
providing a clock generator coupled to the master gating transistor pair;
providing a second clock generator coupled to the master gating transistor pair;
providing a third clock generator coupled to the slave gating transistor pair; and
providing a fourth clock generator coupled to the slave gating transistor pair.
29. The method in accordance with
claim 28
wherein the step of providing the first clock generator further comprises the steps of:
providing a current limiter; and
providing an inverter coupled to the current limiter.
30. The method in accordance with
claim 28
wherein the step of providing the second clock generator further comprises the steps of:
providing a current limiter; and
providing an inverter coupled to the current limiter.
31. The method in accordance with
claim 28
wherein the step of providing the third clock generator further comprises the steps of:
providing a current limiter; and
providing an inverter coupled to the current limiter.
32. The method in accordance with
claim 28
wherein the step of providing the fourth clock generator further comprises the steps of:
providing a current limiter; and
providing an inverter coupled to the current limiter.
33. The method in accordance with
claim 28
further comprising the step of providing a common master clock input to the first clock generator, the second clock generator, the third clock generator and the fourth clock generator.
34. The method in accordance with
claim 28
further comprising the steps of:
providing a master clock input to the first clock generator and a complement of the master clock input to the second clock generator; and
providing the master clock input to the third clock generator and the complement of the master clock input to the fourth clock generator.
35. A method for generating non-overlapping clocks comprising the steps of:
providing a current limiter; and
providing an inverter coupled to the current limiter.
36. The method for generating non-overlapping clocks in accordance with
claim 35
wherein the step of providing an inverter further comprises the steps of:
providing a P-channel transistor; and
providing an N-channel transistor coupled to the P-channel transistor.
37. The method in accordance with
claim 36
wherein the step of providing the current limiter is directly connected to the P-channel transistor of the inverter.
38. The method in accordance with
claim 36
wherein the step of providing the current limiter is directly connected to the N-channel transistor of the inverter.
39. The method in accordance with
claim 37
wherein the step of directly connecting the current limiter to the P-channel transistor causes the trip point of the inverter to approximate the supply voltage minus the threshold voltage of the P-channel transistor.
40. The method in accordance with
claim 38
wherein the step of directly connecting the current limiter to the N-channel transistor causes the trip point of the inverter to approximate the threshold voltage of the N-channel transistor.
US09/812,046 1998-10-29 2001-03-19 Apparatus and method for an improved master-slave flip-flop with non-overlapping clocks Abandoned US20010010474A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/812,046 US20010010474A1 (en) 1998-10-29 2001-03-19 Apparatus and method for an improved master-slave flip-flop with non-overlapping clocks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/182,088 US6204708B1 (en) 1998-10-29 1998-10-29 Apparatus and method for an improved master-slave flip-flop with non-overlapping clocks
US09/812,046 US20010010474A1 (en) 1998-10-29 2001-03-19 Apparatus and method for an improved master-slave flip-flop with non-overlapping clocks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/182,088 Continuation US6204708B1 (en) 1998-10-29 1998-10-29 Apparatus and method for an improved master-slave flip-flop with non-overlapping clocks

Publications (1)

Publication Number Publication Date
US20010010474A1 true US20010010474A1 (en) 2001-08-02

Family

ID=22667010

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/182,088 Expired - Fee Related US6204708B1 (en) 1998-10-29 1998-10-29 Apparatus and method for an improved master-slave flip-flop with non-overlapping clocks
US09/812,046 Abandoned US20010010474A1 (en) 1998-10-29 2001-03-19 Apparatus and method for an improved master-slave flip-flop with non-overlapping clocks

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/182,088 Expired - Fee Related US6204708B1 (en) 1998-10-29 1998-10-29 Apparatus and method for an improved master-slave flip-flop with non-overlapping clocks

Country Status (1)

Country Link
US (2) US6204708B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050151570A1 (en) * 2002-02-21 2005-07-14 Van Lammeren Johannes P.M. Integrated circuit having reduced substate bounce
US20060013352A1 (en) * 2004-07-13 2006-01-19 Ching-Wei Lin Shift register and flat panel display apparatus using the same
US20070147572A1 (en) * 2005-12-28 2007-06-28 Intel Corporation Registers for an enhanced idle architectural state
US20120128092A1 (en) * 2010-11-22 2012-05-24 Jie-Wei Lai Digital signal processing circuit for generating output signal according to non-overlapping clock signals and input bit streams and related wireless communication transmitters

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6369631B1 (en) * 2000-06-29 2002-04-09 Intel Corporation High performance impulse flip-flops
US6882202B2 (en) * 2003-01-21 2005-04-19 Infineon Technologies Ag Multiple trip point fuse latch device and method
US8253452B2 (en) * 2006-02-21 2012-08-28 Spansion Israel Ltd Circuit and method for powering up an integrated circuit and an integrated circuit utilizing same
KR102116722B1 (en) 2013-10-16 2020-06-01 삼성전자 주식회사 Semiconductor circuit and semiconductor system
JP6169050B2 (en) * 2014-06-30 2017-07-26 株式会社東芝 Flip-flop circuit
US11349456B2 (en) * 2017-07-21 2022-05-31 Texas Instruments Incorporated Ultra-low energy per cycle oscillator topology
US11387819B2 (en) * 2020-12-10 2022-07-12 Qualcomm Incorporated Fault resilient flip-flop with balanced topology and negative feedback

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495628A (en) * 1982-06-17 1985-01-22 Storage Technology Partners CMOS LSI and VLSI chips having internal delay testing capability
EP0236525B1 (en) * 1986-03-12 1990-12-19 Deutsche ITT Industries GmbH Integrated field-effect transistor delay line for digital signals
EP0262412A1 (en) * 1986-09-01 1988-04-06 Siemens Aktiengesellschaft Load-adapted CMOS clock generator
US5081380A (en) * 1989-10-16 1992-01-14 Advanced Micro Devices, Inc. Temperature self-compensated time delay circuits
FI92120C (en) * 1992-04-15 1994-09-26 Nokia Mobile Phones Ltd Voltage controlled oscillator
JP3043201B2 (en) * 1993-04-22 2000-05-22 株式会社東芝 Boost circuit
US5719878A (en) * 1995-12-04 1998-02-17 Motorola Inc. Scannable storage cell and method of operation
US5751176A (en) * 1995-12-18 1998-05-12 Lg Semicon Co., Ltd. Clock generator for generating complementary clock signals with minimal time differences
US5705944A (en) * 1996-06-13 1998-01-06 United Microelectronics Corp. Method and device for detecting internal resistance voltage drop on a chip
US5929680A (en) * 1997-05-16 1999-07-27 Tritech Microelectronics International Ltd Short circuit reduced CMOS buffer circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050151570A1 (en) * 2002-02-21 2005-07-14 Van Lammeren Johannes P.M. Integrated circuit having reduced substate bounce
US20060013352A1 (en) * 2004-07-13 2006-01-19 Ching-Wei Lin Shift register and flat panel display apparatus using the same
US20070147572A1 (en) * 2005-12-28 2007-06-28 Intel Corporation Registers for an enhanced idle architectural state
US20120128092A1 (en) * 2010-11-22 2012-05-24 Jie-Wei Lai Digital signal processing circuit for generating output signal according to non-overlapping clock signals and input bit streams and related wireless communication transmitters
US8705657B2 (en) * 2010-11-22 2014-04-22 Mediatek Inc. Digital signal processing circuit for generating output signal according to non-overlapping clock signals and input bit streams and related wireless communication transmitters

Also Published As

Publication number Publication date
US6204708B1 (en) 2001-03-20

Similar Documents

Publication Publication Date Title
US5867049A (en) Zero setup time flip flop
US20080180139A1 (en) Cmos differential rail-to-rail latch circuits
EP0502732B1 (en) Pulse generator
KR100472836B1 (en) High speed sampling receiver
KR20010021784A (en) A master-slave delay locked loop for accurate delay of non-periodic signals
US6204708B1 (en) Apparatus and method for an improved master-slave flip-flop with non-overlapping clocks
US6573775B2 (en) Integrated circuit flip-flops that utilize master and slave latched sense amplifiers
KR100464932B1 (en) Method and apparatus for doubling a clock signal using phase interpolation
US7764091B2 (en) Square to pseudo-sinusoidal clock conversion circuit and method
KR960018901A (en) How to form a feedback latch and a feedback action on the feedback latch
US6535048B1 (en) Secure asynchronous clock multiplexer
US4933571A (en) Synchronizing flip-flop circuit configuration
JPH0738423A (en) Divider circuit
US6529052B2 (en) Frequency multiplier based on exclusive-or gate and frequency divider
US6700425B1 (en) Multi-phase clock generators that utilize differential signals to achieve reduced setup and hold times
JP4756135B2 (en) Frequency divider
JPS61101113A (en) flip-flop circuit
KR100735941B1 (en) Symmetric clock receiver for differential input signals
JP2560698B2 (en) Latch circuit
JPH0212055B2 (en)
JPH066186A (en) Latch circuit
KR100252770B1 (en) Ring oscillator
KR102229659B1 (en) Transmission-Gate-Based Master-Slave Flop-Flop having Reduced Setup Time
JP2706042B2 (en) Dynamic flip-flop
KR100223740B1 (en) Clock synchronizing circuit in semiconductor

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION