US20010008126A1 - Intermediate fluid type vaporizer - Google Patents

Intermediate fluid type vaporizer Download PDF

Info

Publication number
US20010008126A1
US20010008126A1 US09/760,726 US76072601A US2001008126A1 US 20010008126 A1 US20010008126 A1 US 20010008126A1 US 76072601 A US76072601 A US 76072601A US 2001008126 A1 US2001008126 A1 US 2001008126A1
Authority
US
United States
Prior art keywords
heat source
intermediate fluid
tubes
shell
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/760,726
Other versions
US6367429B2 (en
Inventor
Masahide Iwasaki
Kazuhiko Asada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Assigned to KABUSHIKI KAISHA KOBE SEIKO SHO reassignment KABUSHIKI KAISHA KOBE SEIKO SHO ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASADA, KAZUHIKO, IWASAKI, MASAHIDE
Publication of US20010008126A1 publication Critical patent/US20010008126A1/en
Application granted granted Critical
Publication of US6367429B2 publication Critical patent/US6367429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0323Heat exchange with the fluid by heating using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Definitions

  • the present invention relates to an intermediate fluid type vaporizer for heating and vaporizing a low temperature liquid, such as liquefied natural gas (hereinafter referred to as “LNG”), by using an intermediate fluid such as propane.
  • LNG liquefied natural gas
  • an intermediate fluid type vaporizer using an intermediate fluid in addition to a heat source fluid is known as means for continuously vaporizing a low temperature liquid, such as LNG, with a compact structure (see, e.g., Japanese Unexamined Patent Application Publication No. 53-5207).
  • FIG. 6 shows one example of such an intermediate fluid type vaporizer for LNG.
  • This conventional vaporizer comprises an intermediate fluid evaporator E 1 , an LNG evaporator E 2 , and a natural gas (hereinafter referred to as “NG”) heater E 3 .
  • NG natural gas
  • the intermediate fluid evaporator E 1 comprises a first shell 101 , an outlet chamber 102 formed at one end of the first shell 101 , an intermediate chamber 103 formed at the other end of the first shell 101 , and a large number of heat source tubes 104 disposed in a lower portion of an inner space of the first shell 101 and extending between both the chambers 102 , 103 .
  • the first shell 101 contains therein an intermediate fluid (e.g., propane) having a boiling point lower than that of sea water as a heat source fluid.
  • the LNG evaporator E 2 comprises an inlet chamber 111 and an outlet chamber 112 divided from each other by a partition wall 110 , and a large number of heat transfer tubes 113 for communicating both the chambers 111 and 112 with each other.
  • Each of the heat transfer tubes 113 has a substantially U-shape and projects into an upper portion of the inner space of the first shell 101 .
  • the NG heater E 3 comprises a second shell 120 provided in continuation with the intermediate chamber 103 , an inlet chamber 121 , and a large number of heat source tubes 122 extending between both the chambers 103 , 121 .
  • a heat source fluid (sea water in the illustrated related art) flows through the inlet chamber 121 , the large number of heat source tubes 122 , the intermediate chamber 103 , the large number of heat source tubes 104 , and the outlet chamber 102 successively in the order named.
  • the heat source tubes 122 are disposed in the NG heater E 3 and the heat source tubes 104 are disposed in the intermediate fluid evaporator E 1 .
  • the outlet chamber 112 of the LNG evaporator E 2 is connected to the second shell 120 side of the NG heater E 3 through an NG conduit 123 .
  • sea water as a heat source fluid flows into the outlet chamber 102 after passing through the inlet chamber 121 , the heat source tubes 122 , the intermediate chamber 103 , and the heat source tubes 104 . While passing through the heat source tubes 104 , the sea water is subjected to heat exchange with the intermediate fluid 105 of liquid phase in the intermediate fluid evaporator E 1 , thereby evaporating the liquid intermediate fluid 105 .
  • LNG to be vaporized is introduced to the heat transfer tubes 113 through the inlet chamber 111 .
  • the evaporated intermediate fluid 105 condenses with heat exchange between the LNG in the heat transfer tubes 113 and the intermediate fluid 105 of gaseous phase in the intermediate fluid evaporator E 1 .
  • the LNG evaporates and becomes NG in the heat transfer tubes 113 .
  • the produced NG is introduced to the NG heater E 3 from the outlet chamber 112 through the NG conduit 123 , and is further heated with heat exchange between the NG and the sea water flowing through the heat source tubes 122 in the NG heater E 3 . Thereafter, the NG is supplied to consumers.
  • LNG With the intermediate fluid type LNG vaporizer having the above-described construction, LNG can be continuously vaporized through repeated evaporation and condensation of the intermediate fluid 105 .
  • the heat source fluid is sea water.
  • another heat source fluid such as warm water or an aqueous solution of glycol has become used in a place where sea water cannot be used from the standpoint of environmental protection, or in the case where sea water is not used to combine the cold heat recovery system.
  • a temperature difference obtainable with sea water as a heat source for vaporization is in the range of 5-7° C.
  • a relatively large temperature difference of about 20° C. can be utilized for vaporization.
  • One conceivable method for increasing a flow speed of the heat source in the heat source tubes is to reduce the number of the heat source tubes 104 in the intermediate fluid evaporator E 1 and the number of the heat source tubes 122 in the NG heater E 3 .
  • reducing the number of the heat source tubes decreases a heat transfer area and hence gives rise to another necessity of increasing the lengths of the heat source tubes 104 in the intermediate fluid evaporator E 1 and the heat source tubes 122 in the NG heater E 3 .
  • an intermediate fluid type vaporizer comprises an intermediate fluid evaporator constructed by providing heat source tubes in a shell, which contains an intermediate fluid therein, to evaporate the intermediate fluid of liquid phase with heat exchange between the heat source fluid and the liquid intermediate fluid, and a liquefied gas evaporator constructed by providing heat transfer tubes in the shell to evaporate liquefied gas with heat exchange between the liquefied gas and the evaporated intermediate fluid.
  • the heat source tubes are formed by a plurality of straight tubes, i.e., straight tubes arranged so as to constitute two or more passes.
  • the two or more passes of the heat source tubes are constituted by the combination of straight tubes and a return chamber rather than using U-tubes, tube bundles can be arranged in a smaller area, thus resulting in a smaller diameter of the shell and a more compact structure of the vaporizer.
  • the heat source tubes are formed by bundles of straight tubes arranged between tube plates provided at opposite ends of the shell such that the tube bundles are extended to go and return between the tube plates while constituting an even number of passes not less than two.
  • inlet and outlet chambers for the heat source fluid can be arranged at one end of the shell, and a return chamber can be arranged at the other end of the shell.
  • the inlet and outlet chambers for the heat source fluid can be arranged closer to each other.
  • the intermediate fluid type vaporizer further comprises a gas heater for heating gas discharged from the liquefied gas evaporator with heat exchange effected between the discharged gas and the heat source fluid supplied to the intermediate fluid evaporator.
  • the gas heater can be installed independently of the intermediate fluid evaporator and the liquefied gas evaporator.
  • the heat source tubes of the intermediate fluid evaporator are no longer necessarily arranged in series with respect to the heat source tubes of the gas heater.
  • the gas heater can be installed as a separate unit independent of the intermediate fluid evaporator and the liquefied gas evaporator. Therefore, the diameter and length of a shell of the gas heater can be set as appropriate without undergoing limitations imposed by the diameter and length of the shell that is in common to both the intermediate fluid evaporator and the liquefied gas evaporator. Consequently, equipment layout of the vaporizer can be more freely designed.
  • the gas heater is preferably mounted on the shell. This arrangement enables an overall installation area of the vaporizer to be cut down.
  • the intermediate fluid type vaporizer of the present invention employs the heat source fluid capable of providing a relatively large temperature difference utilizable for vaporization and is constructed with a more efficient and compact structure, it can be suitably used for efficiently vaporizing liquefied natural gas into natural gas and supplying the natural gas to consumers.
  • FIG. 1 is a front sectional view of principal part of an intermediate fluid type vaporizer according to one embodiment of the present invention
  • FIG. 2 is a sectional view taken along line II-II in FIG. 1;
  • FIG. 3 is a sectional view taken along line III-III in FIG. 1;
  • FIG. 4 is a front view showing one example of equipment layout of the intermediate fluid type vaporizer according to the present invention.
  • FIG. 5 is a front view showing another example of equipment layout of the intermediate fluid type vaporizer according to the present invention.
  • FIG. 6 is a front sectional view of principal part of a conventional intermediate fluid type vaporizer.
  • FIG. 1 is a front sectional view of principal part of the intermediate fluid type vaporizer according to one embodiment of the present invention
  • FIG. 2 is a sectional view taken along line II-II in FIG. 1
  • FIG. 3 is a sectional view taken along line III-III in FIG. 1.
  • the intermediate fluid type vaporizer shown in FIG. 1 is suitable for vaporizing LNG by using a heat source fluid, such as warm water or an aqueous solution of glycol, which can provide a relatively large temperature difference utilizable for vaporization of the LNG.
  • the vaporizer comprises an intermediate fluid evaporator E 1 , an LNG evaporator E 2 , and an NG heater E 3 .
  • the intermediate fluid evaporator E 1 comprises a shell 1 , a large number of 2-pass heat source tubes 2 provided in a lower portion of an inner space of the shell 1 , a heat source inlet chamber 3 and a heat source outlet chamber 4 both provided at one end of the shell 1 , and a return chamber 5 provided at the other end of the shell 1 .
  • Each of the heat source tubes 2 has opposite ends fixed to and penetrating through tube plates 7 , 8 at both the ends of the shell 1 , respectively, and it is in the form of a straight tube.
  • the heat source tubes 2 are made up of a first tube bundle 11 forming a first pass and a second tube bundle 12 forming a second pass.
  • the heat source fluid flows through the first tube bundle 11 from the heat source inlet chamber 3 to the return chamber 5
  • the heat source fluid flows through the second tube bundle 12 from the return chamber 5 to the heat source outlet chamber 4 .
  • the heat source tubes 2 are each in the form of a straight tube, a spacing L between the first tube bundle 11 and the second tube bundle 12 can be minimized so that the diameter of the shell 1 is reduced. If U-tubes are used as the heat source tubes 2 , the spacing L would be increased and so would be the diameter of the shell 1 because of a necessary minimum bending radius of the U-tubes.
  • An intermediate fluid 9 is contained in the shell 1 , and the heat source tubes 2 are situated in the intermediate fluid 9 of liquid phase. As more clearly shown in FIG. 3, the heat source inlet chamber 3 and the heat source outlet chamber 4 are divided from each other by a partition wall 6 .
  • the LNG evaporator E 2 comprises the same shell 1 as constituting the intermediate fluid evaporator E 1 , an inlet chamber 22 and an outlet chamber 23 divided from each other by a partition wall 21 , and a large number of heat transfer tubes 24 for communicating both the chambers 22 , 23 with each other.
  • the heat transfer tubes 24 have a substantially U-form constituted by a lower pass 25 and an upper pass 26 , and are horizontally projected into an upper portion of the inner space of the shell 1 .
  • the heat transfer tubes 24 are situated in the intermediate fluid 9 of gaseous phase.
  • the intermediate fluid type vaporizer has such a structure that the shell 1 of the intermediate fluid evaporator E 1 includes therein both the heat source tubes 2 for evaporating the intermediate fluid 9 of liquid phase with heat exchange between the heat source fluid and the liquid intermediate fluid 9 , and the heat transfer tubes 24 of the LNG evaporator E 2 for evaporating the LNG with heat exchange between the LNG and the intermediate fluid 9 of gaseous phase.
  • the NG heater E 3 is provided separately from the intermediate fluid evaporator E 1 and the LNG evaporator E 2 , and it comprises a shell 31 , an inlet chamber 32 , an outlet chamber 33 , and a large number of heat source tubes 34 for connecting both the chambers 32 , 33 to each other.
  • the NG outgoing from the outlet chamber 23 of the LNG evaporator E 2 is introduced to the shell 31 of the NG heater E 3 through a conduit 35 .
  • the heat source fluid outgoing from the outlet chamber 23 of the NG heater E 3 is introduced to the heat source inlet chamber 3 of the intermediate fluid evaporator E 1 .
  • the NG heater E 3 serves to heat the NG with heat exchange between the NG and the heat source fluid.
  • a heat source fluid such as warm water or an aqueous solution of glycol flows into the heat source outlet chamber 4 after passing through the NG heater E 3 , the heat source inlet chamber 3 of the intermediate fluid evaporator E 1 , the heat source tubes 2 of the first tube bundle 11 (see FIG. 2), the return chamber 5 , and the heat source tubes 2 of the second tube bundle 12 (see FIG. 2). While passing through the heat source tubes 2 , the heat source fluid is subjected to heat exchange with the intermediate fluid 9 of liquid phase in the intermediate fluid evaporator E 1 , thereby evaporating the liquid intermediate fluid 9 .
  • LNG to be vaporized is introduced to the heat transfer tubes 24 through the inlet chamber 22 .
  • the evaporated intermediate fluid 9 condenses with heat exchange between the LNG in the heat transfer tubes 24 and the intermediate fluid 9 of gaseous phase in the intermediate fluid evaporator E 1 .
  • the LNG evaporates and becomes NG in the heat transfer tubes 24 .
  • the produced NG is introduced to the shell 31 of the NG heater E 3 from the outlet chamber 21 through the conduit 35 , and is further heated with heat exchange between the NG and the heat source fluid flowing through the heat source tubes 34 in the NG heater E 3 . Thereafter, the NG is supplied to consumers.
  • the intermediate fluid type vaporizer of this embodiment since warm water, an aqueous solution of glycol or the like is employed as the heat source fluid, a relatively large temperature difference can be utilized for vaporization, whereby the required flow rate of the heat source fluid can be reduced and more compact design of the vaporization equipment can be realized. Also, the heat source tubes 2 of the intermediate fluid evaporator E 1 are arranged so as to constitute two passes, and the number of the heat source tubes 2 for each pass is reduced. In spite of the reduced flow rate of the heat source fluid, therefore, a flow speed of the heat source fluid in the heat source tubes 2 can be maintained at an appropriate level, and the vaporizer can be designed with high efficiency while maintaining a high film heat transfer coefficient.
  • the heat source tubes 2 are arranged so as to constitute two passes, a sufficient heat transfer area can be ensured, and hence an axial length of the vaporizer can be reduced.
  • the two passes of the heat source tubes 2 are constituted by the combination of straight tubes and a return chamber rather than using U-tubes, the two tube bundles 11 , 12 can be arranged closer to each other in a more compact structure, and the diameter of the shell 1 can be reduced. As a result of the combined effect of those features, it is possible to realize more compact design and a cost reduction of the vaporizer comprising the intermediate fluid evaporator E 1 and the LNG evaporator E 2 which are constructed as an integral unit.
  • the shell 1 being in common to both the intermediate fluid evaporator E 1 and the LNG evaporator E 2 has a reduced diameter, the volume of the shell 1 can be reduced, and the amount of the intermediate fluid to be maintained in the shell can also be reduced. Therefore, the isolation distance required for in accordance with the applicable regulations can be set to a smaller value.
  • the heat source tubes 2 of the intermediate fluid evaporator E 1 are constituted by the combination of straight tubes and a return chamber, it is possible to more easily carry out inspection and maintenance of the heat source tubes 2 , which require the chambers 3 , 4 and 5 at the opposite ends of the shell 1 to be removed when the inspection and maintenance are carried out. Should the heat source tubes are damaged, they can be replaced by new ones.
  • the NG heater E 3 is constituted as an independent heat exchanger separate from the intermediate fluid evaporator E 1 and the LNG evaporator E 2 , the NG heater E 3 can be freely designed from the viewpoint of chemical engineering without being affected by the size of the shell 1 unlike the case where the shell 1 is used in common to both the intermediate fluid evaporator E 1 and the NG heater E 3 , whereby the NG heater E 3 can be constructed in more compact size.
  • a more free arrangement and combination of the NG heater E 3 can be realized relative to the intermediate fluid evaporator E 1 and the LNG evaporator E 2 . For example, as shown in FIG.
  • the shell 1 of the intermediate fluid evaporator E 1 and the shell 31 of the NG heater E 3 may be arranged in parallel.
  • the shell 31 of the NG heater E 3 may be mounted on the shell 1 of the intermediate fluid evaporator E 1 . This vertical mounting of the shells can reduce an overall installation area of the vaporizer.
  • the intermediate fluid type vaporizer may comprise only the intermediate fluid evaporator E 1 and the LNG evaporator E 2 . If the temperature of the NG vaporized by the LNG evaporator E 2 is not lower than 0° C., the vaporized NG can be directly supplied to consumers without being heated by the NG heater E 3 .
  • the heat source tubes 2 of the intermediate fluid evaporator E 1 can be constructed so as to provide three, four or more passes. In these cases, a partition wall is provided between adjacent chambers at the opposite ends of the shell 1 for appropriate separation. Employing an even number of passes, such as four or six passes, is more advantageous from the standpoint of piping design because outlets and inlets of the heat source tubes 2 can be arranged at one end of the shell 1 .
  • the heat source fluid used in the present invention is not limited to warm water or an aqueous solution of glycol, but may be selected from other various heat source fluids.
  • the intermediate fluid used in the present invention is not limited to propane, but may be selected from other various fluids.
  • a target to be vaporized is not limited to liquefied natural gas.
  • the present invention is also applicable to vaporization of, e.g., liquefied ethylene, LO 2 (liquefied oxygen), and LN 2 (liquefied nitrogen).
  • heat source tubes of an intermediate fluid evaporator are formed by straight tubes arranged so as to constitute two or more passes. Therefore, when a heat source fluid capable of providing a relatively large temperature difference utilizable for vaporization at a smaller flow rate is used and flows through the heat source tubes, a flow speed of the heat source fluid in each heat source tube can be increased, and a reduction of the boundary-film heat transfer coefficient can be prevented. In addition, a sufficiently large heat transfer area can be ensured between the heat source fluid and each heat source tube, and tube bundles constituted by respective groups of the heat source tubes can be arranged closer to each other. As a result, a more efficient and compact vaporizer can be achieved.
  • a gas heater is provided independently of both the intermediate fluid evaporator and a liquefied gas evaporator. Therefore, the gas heater can be installed in appropriate layout and can be freely designed from the viewpoint of chemical engineering depending on conditions required in constructing the intermediate fluid type vaporizer, e.g., a restriction in installation area of the vaporizer. Consequently, an installation area of the intermediate fluid type vaporizer can be minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)

Abstract

An intermediate fluid type vaporizer is provided which employs a heat source fluid capable of providing a relatively large temperature difference utilizable for vaporization, and which can make an overall size of the vaporizer more compact. The intermediate fluid type vaporizer comprises an intermediate fluid evaporator constructed by providing heat source tubes in a shell, which contains an intermediate fluid therein, to evaporate the intermediate fluid of liquid phase with heat exchange between the heat source fluid and the liquid intermediate fluid, and a liquefied gas evaporator constructed by providing heat transfer tubes in the shell to evaporate liquefied gas with heat exchange between the liquefied gas and the evaporated intermediate fluid. The heat source tubes are formed by straight tubes arranged so as to constitute two or more passes.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to an intermediate fluid type vaporizer for heating and vaporizing a low temperature liquid, such as liquefied natural gas (hereinafter referred to as “LNG”), by using an intermediate fluid such as propane. [0002]
  • 2. Description of the Related Art [0003]
  • Hitherto, an intermediate fluid type vaporizer using an intermediate fluid in addition to a heat source fluid is known as means for continuously vaporizing a low temperature liquid, such as LNG, with a compact structure (see, e.g., Japanese Unexamined Patent Application Publication No. 53-5207). [0004]
  • FIG. 6 shows one example of such an intermediate fluid type vaporizer for LNG. This conventional vaporizer comprises an intermediate fluid evaporator E[0005] 1, an LNG evaporator E2, and a natural gas (hereinafter referred to as “NG”) heater E3.
  • The intermediate fluid evaporator E[0006] 1 comprises a first shell 101, an outlet chamber 102 formed at one end of the first shell 101, an intermediate chamber 103 formed at the other end of the first shell 101, and a large number of heat source tubes 104 disposed in a lower portion of an inner space of the first shell 101 and extending between both the chambers 102, 103. The first shell 101 contains therein an intermediate fluid (e.g., propane) having a boiling point lower than that of sea water as a heat source fluid. The LNG evaporator E2 comprises an inlet chamber 111 and an outlet chamber 112 divided from each other by a partition wall 110, and a large number of heat transfer tubes 113 for communicating both the chambers 111 and 112 with each other. Each of the heat transfer tubes 113 has a substantially U-shape and projects into an upper portion of the inner space of the first shell 101. The NG heater E3 comprises a second shell 120 provided in continuation with the intermediate chamber 103, an inlet chamber 121, and a large number of heat source tubes 122 extending between both the chambers 103, 121.
  • A heat source fluid (sea water in the illustrated related art) flows through the [0007] inlet chamber 121, the large number of heat source tubes 122, the intermediate chamber 103, the large number of heat source tubes 104, and the outlet chamber 102 successively in the order named. Of this route, the heat source tubes 122 are disposed in the NG heater E3 and the heat source tubes 104 are disposed in the intermediate fluid evaporator E1. The outlet chamber 112 of the LNG evaporator E2 is connected to the second shell 120 side of the NG heater E3 through an NG conduit 123.
  • In such a vaporizer, sea water as a heat source fluid flows into the [0008] outlet chamber 102 after passing through the inlet chamber 121, the heat source tubes 122, the intermediate chamber 103, and the heat source tubes 104. While passing through the heat source tubes 104, the sea water is subjected to heat exchange with the intermediate fluid 105 of liquid phase in the intermediate fluid evaporator E1, thereby evaporating the liquid intermediate fluid 105. On the other hand, LNG to be vaporized is introduced to the heat transfer tubes 113 through the inlet chamber 111. The evaporated intermediate fluid 105 condenses with heat exchange between the LNG in the heat transfer tubes 113 and the intermediate fluid 105 of gaseous phase in the intermediate fluid evaporator E1. By receiving heat generated upon condensation of the gaseous intermediate fluid 105, the LNG evaporates and becomes NG in the heat transfer tubes 113. The produced NG is introduced to the NG heater E3 from the outlet chamber 112 through the NG conduit 123, and is further heated with heat exchange between the NG and the sea water flowing through the heat source tubes 122 in the NG heater E3. Thereafter, the NG is supplied to consumers.
  • With the intermediate fluid type LNG vaporizer having the above-described construction, LNG can be continuously vaporized through repeated evaporation and condensation of the [0009] intermediate fluid 105.
  • In most of intermediate fluid type vaporizers that have been conventionally used, the heat source fluid is sea water. In some of stations employing intermediate fluid type vaporizers, however, another heat source fluid such as warm water or an aqueous solution of glycol has become used in a place where sea water cannot be used from the standpoint of environmental protection, or in the case where sea water is not used to combine the cold heat recovery system. [0010]
  • In a conventional intermediate fluid type vaporizer using sea water as a heat source, a temperature difference obtainable with sea water as a heat source for vaporization is in the range of 5-7° C. Meanwhile, in an intermediate fluid type vaporizer using another heat source fluid such as warm water or an aqueous solution of glycol instead of sea water, a relatively large temperature difference of about 20° C. can be utilized for vaporization. [0011]
  • In the latter vaporizer, therefore, a flow rate of the heat source can be reduced. However, the heat transfer efficiency is deteriorated because a flow speed of the heat source flowing through the [0012] heat source tubes 104 in the intermediate fluid evaporator E1 and the heat source tubes 122 in the NG heater E3 cannot be set to a sufficiently high value. Thus, it has been found that, in order to compensate for such a deterioration of the heat transfer efficiency, the overall size of an intermediate fluid type vaporizer must be enlarged, and the cost of a heat exchanger is increased.
  • One conceivable method for increasing a flow speed of the heat source in the heat source tubes is to reduce the number of the [0013] heat source tubes 104 in the intermediate fluid evaporator E1 and the number of the heat source tubes 122 in the NG heater E3. However, reducing the number of the heat source tubes decreases a heat transfer area and hence gives rise to another necessity of increasing the lengths of the heat source tubes 104 in the intermediate fluid evaporator E1 and the heat source tubes 122 in the NG heater E3. This means that, since the intermediate fluid evaporator E1 and the NG heater E3 are connected to each other in series as shown in FIG. 6, the above method requires a longer installation area in the longitudinal direction, impedes free layout in design due to restrictions imposed on an equipment layout plan at a factory site, and eventually needs a larger land for installation.
  • SUMMARY OF THE INVENTION
  • In consideration of the state of the art set forth above, it is an object of the present invention to provide an intermediate fluid type vaporizer which employs a heat source fluid capable of providing a relatively large temperature difference utilizable for vaporization, and which can make an overall size of the vaporizer more compact. [0014]
  • To achieve the above object, an intermediate fluid type vaporizer according to the present invention comprises an intermediate fluid evaporator constructed by providing heat source tubes in a shell, which contains an intermediate fluid therein, to evaporate the intermediate fluid of liquid phase with heat exchange between the heat source fluid and the liquid intermediate fluid, and a liquefied gas evaporator constructed by providing heat transfer tubes in the shell to evaporate liquefied gas with heat exchange between the liquefied gas and the evaporated intermediate fluid. The heat source tubes are formed by a plurality of straight tubes, i.e., straight tubes arranged so as to constitute two or more passes. [0015]
  • With the above features, by employing a heat source fluid that is capable of providing a relatively large temperature difference utilizable for vaporization, the required flow rate of the heat source fluid can be reduced. Also, by arranging the heat source tubes of the intermediate fluid evaporator so as to constitute two or more passes, a flow speed of the heat source fluid in each heat source tube can be increased, whereby the heat transfer efficiency is enhanced and a sufficient heat transfer area can be ensured. Therefore, a more efficient and compact heat exchanger can be realized. Further, since the two or more passes of the heat source tubes are constituted by the combination of straight tubes and a return chamber rather than using U-tubes, tube bundles can be arranged in a smaller area, thus resulting in a smaller diameter of the shell and a more compact structure of the vaporizer. [0016]
  • Preferably, the heat source tubes are formed by bundles of straight tubes arranged between tube plates provided at opposite ends of the shell such that the tube bundles are extended to go and return between the tube plates while constituting an even number of passes not less than two. With this feature, inlet and outlet chambers for the heat source fluid can be arranged at one end of the shell, and a return chamber can be arranged at the other end of the shell. As a result, the inlet and outlet chambers for the heat source fluid can be arranged closer to each other. [0017]
  • Preferably, the intermediate fluid type vaporizer further comprises a gas heater for heating gas discharged from the liquefied gas evaporator with heat exchange effected between the discharged gas and the heat source fluid supplied to the intermediate fluid evaporator. In this case, the gas heater can be installed independently of the intermediate fluid evaporator and the liquefied gas evaporator. [0018]
  • More specifically, by arranging the heat source tubes of the intermediate fluid evaporator so as to constitute two or more passes, the heat source tubes of the intermediate fluid evaporator are no longer necessarily arranged in series with respect to the heat source tubes of the gas heater. For this reason, the gas heater can be installed as a separate unit independent of the intermediate fluid evaporator and the liquefied gas evaporator. Therefore, the diameter and length of a shell of the gas heater can be set as appropriate without undergoing limitations imposed by the diameter and length of the shell that is in common to both the intermediate fluid evaporator and the liquefied gas evaporator. Consequently, equipment layout of the vaporizer can be more freely designed. [0019]
  • The gas heater is preferably mounted on the shell. This arrangement enables an overall installation area of the vaporizer to be cut down. [0020]
  • Thus, since the intermediate fluid type vaporizer of the present invention employs the heat source fluid capable of providing a relatively large temperature difference utilizable for vaporization and is constructed with a more efficient and compact structure, it can be suitably used for efficiently vaporizing liquefied natural gas into natural gas and supplying the natural gas to consumers. [0021]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a front sectional view of principal part of an intermediate fluid type vaporizer according to one embodiment of the present invention; [0022]
  • FIG. 2 is a sectional view taken along line II-II in FIG. 1; [0023]
  • FIG. 3 is a sectional view taken along line III-III in FIG. 1; [0024]
  • FIG. 4 is a front view showing one example of equipment layout of the intermediate fluid type vaporizer according to the present invention; [0025]
  • FIG. 5 is a front view showing another example of equipment layout of the intermediate fluid type vaporizer according to the present invention; and [0026]
  • FIG. 6 is a front sectional view of principal part of a conventional intermediate fluid type vaporizer. [0027]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • An intermediate fluid type vaporizer according to one embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a front sectional view of principal part of the intermediate fluid type vaporizer according to one embodiment of the present invention, FIG. 2 is a sectional view taken along line II-II in FIG. 1, and FIG. 3 is a sectional view taken along line III-III in FIG. 1. [0028]
  • The intermediate fluid type vaporizer shown in FIG. 1 is suitable for vaporizing LNG by using a heat source fluid, such as warm water or an aqueous solution of glycol, which can provide a relatively large temperature difference utilizable for vaporization of the LNG. The vaporizer comprises an intermediate fluid evaporator E[0029] 1, an LNG evaporator E2, and an NG heater E3.
  • The intermediate fluid evaporator E[0030] 1 comprises a shell 1, a large number of 2-pass heat source tubes 2 provided in a lower portion of an inner space of the shell 1, a heat source inlet chamber 3 and a heat source outlet chamber 4 both provided at one end of the shell 1, and a return chamber 5 provided at the other end of the shell 1.
  • Each of the [0031] heat source tubes 2 has opposite ends fixed to and penetrating through tube plates 7, 8 at both the ends of the shell 1, respectively, and it is in the form of a straight tube. As more clearly shown in FIG. 2, the heat source tubes 2 are made up of a first tube bundle 11 forming a first pass and a second tube bundle 12 forming a second pass. The heat source fluid flows through the first tube bundle 11 from the heat source inlet chamber 3 to the return chamber 5, and the heat source fluid flows through the second tube bundle 12 from the return chamber 5 to the heat source outlet chamber 4. Since the heat source tubes 2 are each in the form of a straight tube, a spacing L between the first tube bundle 11 and the second tube bundle 12 can be minimized so that the diameter of the shell 1 is reduced. If U-tubes are used as the heat source tubes 2, the spacing L would be increased and so would be the diameter of the shell 1 because of a necessary minimum bending radius of the U-tubes. An intermediate fluid 9 is contained in the shell 1, and the heat source tubes 2 are situated in the intermediate fluid 9 of liquid phase. As more clearly shown in FIG. 3, the heat source inlet chamber 3 and the heat source outlet chamber 4 are divided from each other by a partition wall 6.
  • By so arranging the heat source tube bundle on the inlet side and the heat source tube bundle on the outlet side to separate from each other horizontally, a convection within the shell can be accelerated due to a temperature difference between the heat source tube bundles on both the inlet and outlet sides. The accelerated convection causes vapor of the intermediate fluid to uniformly spread over the entire inner space of the shell, and hence enables heat exchange to be efficiently performed at heat transfer tubes. [0032]
  • The LNG evaporator E[0033] 2 comprises the same shell 1 as constituting the intermediate fluid evaporator E1, an inlet chamber 22 and an outlet chamber 23 divided from each other by a partition wall 21, and a large number of heat transfer tubes 24 for communicating both the chambers 22, 23 with each other. As more clearly shown in FIG. 2, the heat transfer tubes 24 have a substantially U-form constituted by a lower pass 25 and an upper pass 26, and are horizontally projected into an upper portion of the inner space of the shell 1. The heat transfer tubes 24 are situated in the intermediate fluid 9 of gaseous phase.
  • Thus, the intermediate fluid type vaporizer has such a structure that the [0034] shell 1 of the intermediate fluid evaporator E1 includes therein both the heat source tubes 2 for evaporating the intermediate fluid 9 of liquid phase with heat exchange between the heat source fluid and the liquid intermediate fluid 9, and the heat transfer tubes 24 of the LNG evaporator E2 for evaporating the LNG with heat exchange between the LNG and the intermediate fluid 9 of gaseous phase.
  • The NG heater E[0035] 3 is provided separately from the intermediate fluid evaporator E1 and the LNG evaporator E2, and it comprises a shell 31, an inlet chamber 32, an outlet chamber 33, and a large number of heat source tubes 34 for connecting both the chambers 32, 33 to each other. The NG outgoing from the outlet chamber 23 of the LNG evaporator E2 is introduced to the shell 31 of the NG heater E3 through a conduit 35. The heat source fluid outgoing from the outlet chamber 23 of the NG heater E3 is introduced to the heat source inlet chamber 3 of the intermediate fluid evaporator E1. The NG heater E3 serves to heat the NG with heat exchange between the NG and the heat source fluid.
  • A method of vaporizing the LNG by using the above-described intermediate fluid type vaporizer will now be described with reference to FIG. 1. A heat source fluid, such as warm water or an aqueous solution of glycol, flows into the heat [0036] source outlet chamber 4 after passing through the NG heater E3, the heat source inlet chamber 3 of the intermediate fluid evaporator E1, the heat source tubes 2 of the first tube bundle 11 (see FIG. 2), the return chamber 5, and the heat source tubes 2 of the second tube bundle 12 (see FIG. 2). While passing through the heat source tubes 2, the heat source fluid is subjected to heat exchange with the intermediate fluid 9 of liquid phase in the intermediate fluid evaporator E1, thereby evaporating the liquid intermediate fluid 9. On the other hand, LNG to be vaporized is introduced to the heat transfer tubes 24 through the inlet chamber 22. The evaporated intermediate fluid 9 condenses with heat exchange between the LNG in the heat transfer tubes 24 and the intermediate fluid 9 of gaseous phase in the intermediate fluid evaporator E1. By receiving heat generated upon condensation of the gaseous intermediate fluid 9, the LNG evaporates and becomes NG in the heat transfer tubes 24. The produced NG is introduced to the shell 31 of the NG heater E3 from the outlet chamber 21 through the conduit 35, and is further heated with heat exchange between the NG and the heat source fluid flowing through the heat source tubes 34 in the NG heater E3. Thereafter, the NG is supplied to consumers.
  • In the intermediate fluid type vaporizer of this embodiment, since warm water, an aqueous solution of glycol or the like is employed as the heat source fluid, a relatively large temperature difference can be utilized for vaporization, whereby the required flow rate of the heat source fluid can be reduced and more compact design of the vaporization equipment can be realized. Also, the [0037] heat source tubes 2 of the intermediate fluid evaporator E1 are arranged so as to constitute two passes, and the number of the heat source tubes 2 for each pass is reduced. In spite of the reduced flow rate of the heat source fluid, therefore, a flow speed of the heat source fluid in the heat source tubes 2 can be maintained at an appropriate level, and the vaporizer can be designed with high efficiency while maintaining a high film heat transfer coefficient. Further, since the heat source tubes 2 are arranged so as to constitute two passes, a sufficient heat transfer area can be ensured, and hence an axial length of the vaporizer can be reduced. Moreover, since the two passes of the heat source tubes 2 are constituted by the combination of straight tubes and a return chamber rather than using U-tubes, the two tube bundles 11, 12 can be arranged closer to each other in a more compact structure, and the diameter of the shell 1 can be reduced. As a result of the combined effect of those features, it is possible to realize more compact design and a cost reduction of the vaporizer comprising the intermediate fluid evaporator E1 and the LNG evaporator E2 which are constructed as an integral unit.
  • Also, since the [0038] shell 1 being in common to both the intermediate fluid evaporator E1 and the LNG evaporator E2 has a reduced diameter, the volume of the shell 1 can be reduced, and the amount of the intermediate fluid to be maintained in the shell can also be reduced. Therefore, the isolation distance required for in accordance with the applicable regulations can be set to a smaller value.
  • Furthermore, since the [0039] heat source tubes 2 of the intermediate fluid evaporator E1 are constituted by the combination of straight tubes and a return chamber, it is possible to more easily carry out inspection and maintenance of the heat source tubes 2, which require the chambers 3, 4 and 5 at the opposite ends of the shell 1 to be removed when the inspection and maintenance are carried out. Should the heat source tubes are damaged, they can be replaced by new ones.
  • Moreover, since the NG heater E[0040] 3 is constituted as an independent heat exchanger separate from the intermediate fluid evaporator E1 and the LNG evaporator E2, the NG heater E3 can be freely designed from the viewpoint of chemical engineering without being affected by the size of the shell 1 unlike the case where the shell 1 is used in common to both the intermediate fluid evaporator E1 and the NG heater E3, whereby the NG heater E3 can be constructed in more compact size. In addition, a more free arrangement and combination of the NG heater E3 can be realized relative to the intermediate fluid evaporator E1 and the LNG evaporator E2. For example, as shown in FIG. 4, the shell 1 of the intermediate fluid evaporator E1 and the shell 31 of the NG heater E3 may be arranged in parallel. Alternatively, as shown in FIG. 5, the shell 31 of the NG heater E3 may be mounted on the shell 1 of the intermediate fluid evaporator E1. This vertical mounting of the shells can reduce an overall installation area of the vaporizer.
  • Note that the present invention is not limited to the illustrated embodiment, but may be implemented, by way of example, as follows. [0041]
  • (1) The intermediate fluid type vaporizer may comprise only the intermediate fluid evaporator E[0042] 1 and the LNG evaporator E2. If the temperature of the NG vaporized by the LNG evaporator E2 is not lower than 0° C., the vaporized NG can be directly supplied to consumers without being heated by the NG heater E3.
  • (2) The [0043] heat source tubes 2 of the intermediate fluid evaporator E1 can be constructed so as to provide three, four or more passes. In these cases, a partition wall is provided between adjacent chambers at the opposite ends of the shell 1 for appropriate separation. Employing an even number of passes, such as four or six passes, is more advantageous from the standpoint of piping design because outlets and inlets of the heat source tubes 2 can be arranged at one end of the shell 1.
  • (3) The heat source fluid used in the present invention is not limited to warm water or an aqueous solution of glycol, but may be selected from other various heat source fluids. [0044]
  • (4) The intermediate fluid used in the present invention is not limited to propane, but may be selected from other various fluids. [0045]
  • (5) While the above description is made in connection with the case of vaporizing LNG as liquefied gas, a target to be vaporized is not limited to liquefied natural gas. The present invention is also applicable to vaporization of, e.g., liquefied ethylene, LO[0046] 2 (liquefied oxygen), and LN2 (liquefied nitrogen).
  • According to the intermediate fluid type vaporizer of the present invention, as described above, heat source tubes of an intermediate fluid evaporator are formed by straight tubes arranged so as to constitute two or more passes. Therefore, when a heat source fluid capable of providing a relatively large temperature difference utilizable for vaporization at a smaller flow rate is used and flows through the heat source tubes, a flow speed of the heat source fluid in each heat source tube can be increased, and a reduction of the boundary-film heat transfer coefficient can be prevented. In addition, a sufficiently large heat transfer area can be ensured between the heat source fluid and each heat source tube, and tube bundles constituted by respective groups of the heat source tubes can be arranged closer to each other. As a result, a more efficient and compact vaporizer can be achieved. [0047]
  • Also, a gas heater is provided independently of both the intermediate fluid evaporator and a liquefied gas evaporator. Therefore, the gas heater can be installed in appropriate layout and can be freely designed from the viewpoint of chemical engineering depending on conditions required in constructing the intermediate fluid type vaporizer, e.g., a restriction in installation area of the vaporizer. Consequently, an installation area of the intermediate fluid type vaporizer can be minimized. [0048]
  • Further, by employing the intermediate fluid type vaporizer of the present invention and using the heat source fluid which can provide a relatively large temperature difference utilizable for vaporization, it is possible to efficiently vaporize liquefied natural gas into natural gas and supply the natural gas to consumers. [0049]

Claims (5)

What is claimed is:
1. An intermediate fluid type vaporizer comprising:
a shell containing an intermediate fluid therein;
heat source tubed formed by a plurality of straight tubes, which are provided in said shell, and allowing a heat source fluid to flow through said heat source tubes for evaporating the intermediate fluid of liquid phase with heat exchange between the heat source fluid and the liquid intermediate fluid;
a return chamber connecting said plurality of straight tubes to each other at ends thereof; and
heat transfer tubes provided in said shell and allowing liquefied gas to be introduced to and flow through said heat transfer tube for heat exchange between the evaporated intermediate fluid and the liquefied gas.
2. An intermediate fluid type vaporizer according to
claim 1
, wherein said heat source tubes are formed by an even number of straight tubes.
3. An intermediate fluid type vaporizer according to
claim 1
, further comprising a gas heater for heating gas discharged from said heat transfer tubes with heat exchange effected between the discharged gas and the heat source fluid before being supplied to said heat source tube.
4. An intermediate fluid type vaporizer according to
claim 3
, wherein said gas heater is installed independently of said shell.
5. An intermediate fluid type vaporizer according to
claim 3
, wherein said gas heater is installed on said shell.
US09/760,726 2000-01-18 2001-01-17 Intermediate fluid type vaporizer Expired - Lifetime US6367429B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-013884 2000-01-18
JP2000013884A JP3946398B2 (en) 2000-01-18 2000-01-18 Intermediate medium type vaporizer and method of supplying natural gas using the vaporizer

Publications (2)

Publication Number Publication Date
US20010008126A1 true US20010008126A1 (en) 2001-07-19
US6367429B2 US6367429B2 (en) 2002-04-09

Family

ID=18541415

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/760,726 Expired - Lifetime US6367429B2 (en) 2000-01-18 2001-01-17 Intermediate fluid type vaporizer

Country Status (3)

Country Link
US (1) US6367429B2 (en)
JP (1) JP3946398B2 (en)
CN (1) CN1105849C (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598408B1 (en) 2002-03-29 2003-07-29 El Paso Corporation Method and apparatus for transporting LNG
US20030159800A1 (en) * 2002-02-27 2003-08-28 Nierenberg Alan B. Method and apparatus for the regasification of LNG onboard a carrier
US6688114B2 (en) 2002-03-29 2004-02-10 El Paso Corporation LNG carrier
WO2005043034A1 (en) * 2003-10-29 2005-05-12 Shell Internationale Research Maatschappij B.V. Vaporizing systems for liquified natural gas storage and receiving structures
US20050115248A1 (en) * 2003-10-29 2005-06-02 Koehler Gregory J. Liquefied natural gas structure
US20060242969A1 (en) * 2005-04-27 2006-11-02 Black & Veatch Corporation System and method for vaporizing cryogenic liquids using a naturally circulating intermediate refrigerant
EP1855047A1 (en) * 2006-05-12 2007-11-14 Black & Veatch Corporation A system and method for vaporizing cryogenic liquids using a naturally circulating intermediate refrigerant
CN102353289A (en) * 2011-10-14 2012-02-15 中国空分设备有限公司 Intermediate heat medium re-boiling type vaporizer
US20120222430A1 (en) * 2009-11-13 2012-09-06 Hamworthy Gas Systems As Plant for regasification of lng
US20150252948A1 (en) * 2014-02-25 2015-09-10 Marine Service Gmbh Device for Evaporating Low-Boiling Liquefied Gases
CN110878907A (en) * 2018-09-06 2020-03-13 青岛海湾化学有限公司 Ethylene vaporization system and control method thereof

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1490625B1 (en) * 2002-03-29 2011-08-31 Excelerate Energy Limited Partnership Method and apparatus for the regasification of lng onboard a carrier
US6644041B1 (en) * 2002-06-03 2003-11-11 Volker Eyermann System in process for the vaporization of liquefied natural gas
US6945049B2 (en) 2002-10-04 2005-09-20 Hamworthy Kse A.S. Regasification system and method
US20040261395A1 (en) * 2003-06-25 2004-12-30 Engdahl Gerald E. Reliable LNG vaporizer
US20050081535A1 (en) * 2003-10-16 2005-04-21 Engdahl Gerald E. Spiral tube LNG vaporizer
US7168395B2 (en) * 2003-10-16 2007-01-30 Gerald E Engdahl Submerged combustion LNG vaporizer
US20060196449A1 (en) * 2004-09-17 2006-09-07 Mockry Eldon F Fluid heating system and method
US7540160B2 (en) * 2005-01-18 2009-06-02 Selas Fluid Processing Corporation System and method for vaporizing a cryogenic liquid
DE602007003478D1 (en) 2006-07-25 2010-01-07 Shell Int Research METHOD AND DEVICE FOR EVAPORATING A LIQUID CURRENT
EP2164320A4 (en) * 2007-05-30 2010-08-11 Syngenta Participations Ag Cytochrome p450 genes conferring herbicide resistance
US20090065181A1 (en) * 2007-09-07 2009-03-12 Spx Cooling Technologies, Inc. System and method for heat exchanger fluid handling with atmospheric tower
ES2547329T3 (en) * 2009-04-17 2015-10-05 Excelerate Energy Limited Partnership LNG transfer from ship to ship at dock
JP5409440B2 (en) * 2010-02-26 2014-02-05 株式会社ダイキンアプライドシステムズ Refrigeration refrigerant manufacturing method using intermediate medium vaporizer and refrigeration refrigerant supply facility
SG185008A1 (en) 2010-05-20 2012-11-29 Excelerate Energy Ltd Partnership Systems and methods for treatment of lng cargo tanks
CN102313131A (en) * 2010-06-29 2012-01-11 赖彦村 Liquid-phase gas heating method
US8978769B2 (en) * 2011-05-12 2015-03-17 Richard John Moore Offshore hydrocarbon cooling system
CN102384682B (en) * 2011-08-09 2013-01-16 江苏中圣高科技产业有限公司 Internal-circulation special high-efficiency heat exchanger
CN102434778A (en) * 2011-12-05 2012-05-02 中国寰球工程公司 Low-temperature liquid hydrocarbon generator with novel structure
KR101335249B1 (en) * 2012-02-28 2013-12-03 삼성중공업 주식회사 Floating support and pipeline laying vessel having the same
WO2013186277A1 (en) 2012-06-12 2013-12-19 Shell Internationale Research Maatschappij B.V. Apparatus and method for heating a liquefied stream
JP6111157B2 (en) 2013-07-01 2017-04-05 株式会社神戸製鋼所 Gas vaporizer with cold energy recovery function and cold energy recovery device
CN103899913B (en) * 2014-03-24 2016-06-22 华南理工大学 A kind of portable LNG feeder utilizing remaining used heat
CN104075108A (en) * 2014-06-18 2014-10-01 上海交通大学 Novel spiral pipe structure type LNG (Liquefied Natural Gas) intermediate fluid vaporizer
JP6419629B2 (en) * 2015-03-31 2018-11-07 株式会社神戸製鋼所 Gas vaporizer for cold recovery
JP6454628B2 (en) 2015-10-21 2019-01-16 株式会社神戸製鋼所 Intermediate medium gas vaporizer
DE102016006121A1 (en) 2015-12-28 2017-06-29 Eco ice Kälte GmbH Process and heat exchanger for the recovery of cold during the regasification of cryogenic liquids
DE202015008836U1 (en) 2015-12-28 2016-02-25 Eco ice Kälte GmbH Heat exchanger for the recovery of cold during the regasification of cryogenic liquids
EP3495712B1 (en) * 2016-08-02 2022-10-19 Juan Eusebio Nomen Calvet Regasification device
JP6779146B2 (en) * 2017-01-27 2020-11-04 株式会社神戸製鋼所 Natural gas-fired combined cycle power generation system and natural gas-fired combined cycle power generation method
JP6956491B2 (en) * 2017-02-01 2021-11-02 株式会社Ihiプラント Heat exchanger and heat exchange system
JP6771407B2 (en) * 2017-03-07 2020-10-21 株式会社フェザーグラス Heat removal method and heat removal system
CN106969258B (en) * 2017-04-10 2019-08-20 合肥通用机械研究院有限公司 A kind of integrated form central fluid gasifier
DE102017007009A1 (en) 2017-07-25 2019-01-31 Eco ice Kälte GmbH Refrigeration system, coupled to the Regasifizierungseinrichtung a Liquified Natural Gas Terminal
WO2019046910A1 (en) * 2017-09-11 2019-03-14 Robert Louis Clegg A heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2119091A (en) * 1935-11-29 1938-05-31 Standard Oil Dev Co Process and apparatus for indirect heat transfer between two liquid materials
US2535996A (en) * 1946-02-27 1950-12-26 Lummus Co Evaporator
US3986340A (en) * 1975-03-10 1976-10-19 Bivins Jr Henry W Method and apparatus for providing superheated gaseous fluid from a low temperature liquid supply
GB2018967B (en) * 1978-03-28 1982-08-18 Osaka Gas Co Ltd Apparatus and process for vaporizing liquefied natural gas

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7293600B2 (en) 2002-02-27 2007-11-13 Excelerate Energy Limited Parnership Apparatus for the regasification of LNG onboard a carrier
US20030159800A1 (en) * 2002-02-27 2003-08-28 Nierenberg Alan B. Method and apparatus for the regasification of LNG onboard a carrier
US6688114B2 (en) 2002-03-29 2004-02-10 El Paso Corporation LNG carrier
US6598408B1 (en) 2002-03-29 2003-07-29 El Paso Corporation Method and apparatus for transporting LNG
WO2005043034A1 (en) * 2003-10-29 2005-05-12 Shell Internationale Research Maatschappij B.V. Vaporizing systems for liquified natural gas storage and receiving structures
US20050115248A1 (en) * 2003-10-29 2005-06-02 Koehler Gregory J. Liquefied natural gas structure
US20060242969A1 (en) * 2005-04-27 2006-11-02 Black & Veatch Corporation System and method for vaporizing cryogenic liquids using a naturally circulating intermediate refrigerant
EP1855047A1 (en) * 2006-05-12 2007-11-14 Black & Veatch Corporation A system and method for vaporizing cryogenic liquids using a naturally circulating intermediate refrigerant
US20120222430A1 (en) * 2009-11-13 2012-09-06 Hamworthy Gas Systems As Plant for regasification of lng
US9695984B2 (en) * 2009-11-13 2017-07-04 Hamworthy Gas Systems As Plant for regasification of LNG
CN102353289A (en) * 2011-10-14 2012-02-15 中国空分设备有限公司 Intermediate heat medium re-boiling type vaporizer
US20150252948A1 (en) * 2014-02-25 2015-09-10 Marine Service Gmbh Device for Evaporating Low-Boiling Liquefied Gases
CN110878907A (en) * 2018-09-06 2020-03-13 青岛海湾化学有限公司 Ethylene vaporization system and control method thereof

Also Published As

Publication number Publication date
JP2001200995A (en) 2001-07-27
CN1105849C (en) 2003-04-16
JP3946398B2 (en) 2007-07-18
US6367429B2 (en) 2002-04-09
CN1319739A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
US6367429B2 (en) Intermediate fluid type vaporizer
US6164247A (en) Intermediate fluid type vaporizer, and natural gas supply method using the vaporizer
US6092590A (en) Method and evaporator device for evaporating a low temperature liquid medium
US8171985B2 (en) Water vaporizer with intermediate steam superheating pass
WO2014181661A1 (en) Intermediate fluid vaporizer
US8136582B2 (en) Water vaporizer with intermediate steam superheating pass
US20010035025A1 (en) Condenser and air conditioning refrigeration system using the same
CN105042326B (en) Close-coupled intermediate fluid type gasifier
CN1161874A (en) Device for vaporizing liquid and method thereof
JP2001182895A (en) Air-temperature and hot-water combination vaporizer and air-temperature and hot-water combination gas manufacturing plant
US4083707A (en) Flow stabilizer for tube and shell vaporizer
JP2540228B2 (en) Evaporative heat exchanger
WO2017068983A1 (en) Intermediate-medium-type gas vaporizer
US5289871A (en) Evaporation heat exchanger, especially for a spacecraft
JP2007247797A (en) Lng vaporizer
US7246658B2 (en) Method and apparatus for efficient heat exchange in an aircraft or other vehicle
KR100288398B1 (en) Waste heat recovery system
KR100198695B1 (en) Heat exchanger for lng
WO2024135406A1 (en) Ammonia vaporizer
JP2010038331A (en) Hot water bath type vaporizer
JP2822823B2 (en) Melting equipment
WO2024135407A1 (en) Ammonia vaporizer
JP2643062B2 (en) Vaporization heat exchanger
JPH0232959Y2 (en)
JP4477419B2 (en) Air temperature / hot water combined type vaporizer and air temperature / hot water combined type gas production plant

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA KOBE SEIKO SHO, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IWASAKI, MASAHIDE;ASADA, KAZUHIKO;REEL/FRAME:011463/0588

Effective date: 20010109

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12