JPH0232959Y2 - - Google Patents

Info

Publication number
JPH0232959Y2
JPH0232959Y2 JP11831385U JP11831385U JPH0232959Y2 JP H0232959 Y2 JPH0232959 Y2 JP H0232959Y2 JP 11831385 U JP11831385 U JP 11831385U JP 11831385 U JP11831385 U JP 11831385U JP H0232959 Y2 JPH0232959 Y2 JP H0232959Y2
Authority
JP
Japan
Prior art keywords
heat
liquefied gas
heat pipe
gap
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11831385U
Other languages
Japanese (ja)
Other versions
JPS6227298U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11831385U priority Critical patent/JPH0232959Y2/ja
Publication of JPS6227298U publication Critical patent/JPS6227298U/ja
Application granted granted Critical
Publication of JPH0232959Y2 publication Critical patent/JPH0232959Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は液化天然ガス(以下LNGと称する)
液化石油ガス、液体窒素、液体酸素等の液化ガス
を大気によつて加温し気化する装置に関するもの
である。
[Detailed explanation of the invention] (Industrial application field) This invention uses liquefied natural gas (hereinafter referred to as LNG)
This invention relates to a device that heats and vaporizes liquefied gases such as liquefied petroleum gas, liquid nitrogen, and liquid oxygen using the atmosphere.

(従来の技術) LNG気化基地における気化装置には、アルミ
製フインチユーブを垂直に設けて海水と接触する
方式、水中燃焼によつて加熱された温水中にコイ
ルによつてLNGを流す方式、あるいはプロパン
等の中間媒体を用いて間接的に気化させる方式な
どがあるが、これらは氷結の融解や燃焼装置更に
は中間媒体の使用などに伴い装置が複雑となつて
いる。
(Prior technology) The vaporizers at LNG vaporization terminals include a method in which an aluminum finch tube is installed vertically and makes contact with seawater, a method in which LNG is passed through a coil through hot water heated by underwater combustion, or a method in which LNG is passed through a coil through hot water heated by underwater combustion. There are methods for indirect vaporization using an intermediate medium such as , but these systems require complicated equipment such as melting of ice and the use of a combustion device and an intermediate medium.

他の先行技術としては実開昭59−175798号公報
に、ヒートパイプを用い空気流によつて加熱する
液化ガスの蒸発兼用熱回収装置が記載されてい
る。即ち液化ガスを導入する気化タンク内に周壁
を貫通してヒートパイプ凝縮部を挿入し、蒸発部
に向けて空気を流通させ液化ガスの気化を行つて
いる。
As another prior art, Japanese Utility Model Application Publication No. 59-175798 describes a heat recovery device for evaporation of liquefied gas which uses a heat pipe and is heated by an air flow. That is, a heat pipe condensing section is inserted through the peripheral wall into a vaporization tank into which liquefied gas is introduced, and air is circulated toward an evaporation section to vaporize the liquefied gas.

また海岸から離れた都市のLNG気化基地用と
して縦フインチユーブを使用して大気と熱交換す
る空温気化装置があり、伝熱面積を或る程度の広
さに抑えた経済的規模の装置が実用に供されてい
る。
In addition, there is an air temperature vaporization device that exchanges heat with the atmosphere using a vertical finch tube for LNG vaporization terminals in cities far from the coast, and an economical-scale device that suppresses the heat transfer area to a certain extent has been put into practical use. It is served to.

(考案が解決しようとする問題点) しかしながら前記のような先行技術の装置は、
大気中の水分の氷結による伝熱量の低下が原因と
なつて気化運転を中断し、散水による融氷作業を
余儀なくされ、気化運転時間の短縮及びこれに伴
う作業能率の低下など問題が多かつた。
(Problem to be solved by the invention) However, the prior art device as described above,
Due to the reduction in the amount of heat transfer due to the freezing of moisture in the atmosphere, the vaporization operation had to be interrupted and ice melting work was required by water sprinkling, resulting in many problems such as shortening the vaporization operation time and reducing work efficiency. .

(問題点を解決するための手段) 上記に鑑み、本出願人は昭和60年6月5日付の
先の実用新案登録願によつて、ヒートパイプ放熱
部を隙間を融ててフイン付外管で囲み、大気へ露
出して、この外管内に導入した液化ガスを内外両
側より加熱気化するヒートパイプ式液化ガス空温
気化装置を開示したが、本考案は更にこれを改良
したもので、前記フイン付外管とヒートパイプ放
熱部との間の隙間を、液化ガス導入の上流側と下
流側とで変化させることにより、即ち液化ガス導
入の上流側の主に蒸発により気化が行われる部分
では隙間の流路面積を広くし、蒸発を円滑に行わ
せてガスの生成を促進させ、下流側の主に気化ガ
スの過熱が行われる部分では、隙間の流路断面積
を小さく形成して流速を上げ熱伝達を改善させる
ことにより当該装置のコンパクト化を図つたもの
である。
(Means for Solving the Problems) In view of the above, the present applicant proposed, in the earlier utility model registration application dated June 5, 1985, that the heat dissipation part of the heat pipe was melted into a finned outer tube by melting the gap. A heat pipe type liquefied gas air temperature vaporization device has been disclosed which heats and vaporizes the liquefied gas introduced into the outer tube from inside and outside by exposing it to the atmosphere. By changing the gap between the finned outer tube and the heat pipe heat dissipation section on the upstream and downstream sides of the liquefied gas introduction, that is, in the part where vaporization is mainly performed by evaporation on the upstream side of the liquefied gas introduction, The flow path area of the gap is widened to allow smooth evaporation to promote gas generation, and in the downstream area where vaporized gas is mainly superheated, the cross-sectional area of the gap is made small to increase the flow rate. The aim is to make the device more compact by increasing heat transfer and improving heat transfer.

(実施例) 第1図は本考案の一実施例であつて、ヒートパ
イプ1は例えば竪形に配置され、通常のように上
下両端が封止されて内部にフロンR−22のような
作動液が封入されており、作動液を凝縮させる放
熱部2は裸管状を呈し、底板4を有する外管3で
覆われ、この外管3と放熱部2との間に隙間5が
設けられている。外管3は液化ガス入口6と出口
7を備え、さらに外方に縦フイン8が植設されて
大気へ露出配置されている。この外管3はヒート
パイプ1とはデツトスペースを無くする目的で二
重管構造となるよう円筒形が好ましく、またヒー
トパイプ放熱部2の外面に多数の溝を設ければ伝
熱効果が増大する。
(Embodiment) Fig. 1 shows an embodiment of the present invention, in which a heat pipe 1 is arranged, for example, in a vertical shape, and the upper and lower ends are sealed as usual, and there is an active material such as Freon R-22 inside. The heat dissipation section 2, which is filled with liquid and condenses the working fluid, has a bare tubular shape and is covered with an outer tube 3 having a bottom plate 4, and a gap 5 is provided between the outer tube 3 and the heat dissipation section 2. There is. The outer tube 3 has a liquefied gas inlet 6 and an outlet 7, and furthermore, vertical fins 8 are installed on the outside and exposed to the atmosphere. This outer tube 3 is preferably cylindrical so that it has a double tube structure in order to eliminate dead space from the heat pipe 1, and if a large number of grooves are provided on the outer surface of the heat pipe heat dissipation section 2, the heat transfer effect will be increased. .

ヒートパイプ1の受熱部9は縦フイン8が植設
されていて、放熱部2のほぼ3倍の長さを有し、
大気中に露出され、下端が据付台10の孔11に
嵌入支承されており、上方の外管3はスペーサー
12に係止されていてその位置を保つている。
The heat receiving section 9 of the heat pipe 1 has vertical fins 8 planted therein, and has a length approximately three times that of the heat dissipating section 2.
It is exposed to the atmosphere, and its lower end is fitted and supported in a hole 11 of a mounting base 10, and the upper outer tube 3 is held in place by a spacer 12 to maintain its position.

前記ヒートパイプは気化容量に応じて適宜複数
本直列に連結してヒートパイプ式熱交換器13が
形成され、この場合、湾曲管14を用いて2本1
対として、連絡管15によつて下流側の外管と連
結すれば配管は簡単となり、しかもこの湾曲管1
4が液化ガスの気化に関与できる。
A heat pipe type heat exchanger 13 is formed by appropriately connecting a plurality of heat pipes in series according to the vaporization capacity.
As a pair, if the connecting pipe 15 is used to connect the outer pipe on the downstream side, the piping becomes simple.Moreover, this curved pipe 1
4 can participate in the vaporization of liquefied gas.

ここで液化ガスを導入する、例えば1対のヒー
トパイプ1A,1aで示した上流側のヒートパイ
プ式熱交換器では主に液化ガスの蒸発が行われ、
下流側のヒートパイプ1B,1bでは主に気化ガ
スの過熱が行われるが、この上流側のヒートパイ
プ1A,1aの放熱部を覆い、隙間を融てて設け
られた外管は第2図で明らかなように隙間5の流
路断面積が大であり、下流側のヒートパイプ1
B,1bの放熱部の外管3′における隙間5′の流
路断面積は第3図に示すように小さく形成され、
例えばヒートパイプの外径が38mmの場合、上流側
の大きい隙間は幅6mm、小さい隙間は幅3mmとす
れば、前者の幅におけるガス流速は約3〜6m/
s、後者ではガス流速が約6〜12m/sとなつて
総括伝熱系数の値は前者より約60%上昇する。
Here, the liquefied gas is mainly evaporated in the upstream heat pipe type heat exchanger shown by a pair of heat pipes 1A and 1a, for example, where the liquefied gas is introduced.
The downstream heat pipes 1B and 1b mainly superheat the vaporized gas, and the outer tube that covers the heat dissipation part of the upstream heat pipes 1A and 1a and is installed by melting the gap is shown in Figure 2. As is clear, the flow path cross-sectional area of the gap 5 is large, and the heat pipe 1 on the downstream side
The flow passage cross-sectional area of the gap 5' in the outer tube 3' of the heat dissipation part of B, 1b is formed small as shown in FIG.
For example, if the outer diameter of the heat pipe is 38 mm, and the large gap on the upstream side is 6 mm wide and the small gap is 3 mm wide, the gas flow velocity in the former width is approximately 3 to 6 m/min.
In the latter case, the gas flow velocity is about 6 to 12 m/s, and the value of the overall heat transfer coefficient increases by about 60% compared to the former case.

第5図は他の実施例であつて、ヒートパイプ式
液化ガス空温気化装置は水平方向に、しかも管内
作動液が流れやすいようやや傾斜して設け、複数
本上方に積重ねた構成であり、環状フイン16が
設けられている。
FIG. 5 shows another embodiment, in which the heat pipe type liquefied gas air temperature vaporization device is installed horizontally and slightly inclined so that the working fluid inside the pipe can easily flow, and has a configuration in which a plurality of heat pipes are stacked upward. An annular fin 16 is provided.

(作用) 上記の構成を有するヒートパイプ式液化ガス空
温気化装置において、例えばLNGは入口6から
上流側ヒートパイプの外管3に入り、縦フイン8
を介して大気温による外部からの伝熱と、大気に
露出する受熱部9が作動液を蒸発させ放熱部2で
凝縮してその凝縮潜熱との熱交換による内部から
の伝熱の、内外両側よりの加熱によつてLNGは
一部気化するが、ここでは流路断面積が大である
から蒸発は円滑に行われる。
(Function) In the heat pipe type liquefied gas air temperature vaporizer having the above configuration, for example, LNG enters the outer tube 3 of the upstream heat pipe from the inlet 6, and the vertical fin 8
The heat receiving part 9 exposed to the atmosphere evaporates the working fluid, condenses it in the heat radiating part 2, and exchanges heat with the latent heat of condensation. Part of the LNG vaporizes due to further heating, but here the evaporation occurs smoothly because the cross-sectional area of the flow path is large.

このようにして一部気化したLNGは湾曲管1
3を通過し、この湾曲管13でも大気と熱交換し
たのち隣接する外管に入つて気化し、更に下流側
において順次同様に作動して気化量は増大する。
The LNG partially vaporized in this way is transferred to the curved pipe 1.
3, and after exchanging heat with the atmosphere in this curved tube 13, it enters the adjacent outer tube and is vaporized, and further downstream, the same operation occurs one after another, increasing the amount of vaporization.

しかしながらこの気化ガスは未だ低温であるた
めこのままで需要先へ供給しても、配管表面に大
気中の水分が氷着する恐れがあるので、これを除
くため、下流側に形成した外管3′流路断面積の
小さい隙間5′に流し、ガス流速をあげて熱伝達
率の向上を図り、氷着のない温度まで昇温したの
ち出口17から需要先送出することができる。
However, since this vaporized gas is still at a low temperature, even if it is supplied as it is to the customer, there is a risk that moisture from the atmosphere will form on the surface of the pipe. The gas is allowed to flow through the gap 5' with a small flow path cross-sectional area, and the gas flow rate is increased to improve the heat transfer coefficient, and after the temperature is raised to a temperature that does not cause ice formation, it can be sent out from the outlet 17 to the customer.

なお図示ではヒートパイプ1A,1a,1B,
1bは対として形成したが、1本ごとに、あるい
は数本まとめて外管内に隙間を形成して収容し、
上流側と下流側の隙間の流路断面積を変化させて
もよい。
In the illustration, heat pipes 1A, 1a, 1B,
1b were formed as a pair, but they were accommodated individually or in groups by forming a gap in the outer tube.
The flow path cross-sectional area of the gap between the upstream side and the downstream side may be changed.

また液化ガスはLNGに限らず、液体窒素、液
体酸素、液化プロパン、液化ブタン等でもよい。
Furthermore, the liquefied gas is not limited to LNG, but may also be liquid nitrogen, liquid oxygen, liquefied propane, liquefied butane, or the like.

(効果) 本考案は、ヒートパイプはその放熱部を隙間を
融てて液化ガスの出入口のある外管で覆い、該外
管は複数本連絡して受熱部とともに大気中に露出
設置し、隙間には液化ガスを流してその上流側で
は主に蒸発を行わせ、下流側の隙間内では主に気
化ガスの過熱を行わせるヒートパイプ式熱交換器
であつて、前記隙間の断面積を上流側では大と
し、下流側では小さく形成してなるヒートパイプ
式液化ガス空温気化装置であるから、液化ガスの
気化は流路断面積の広い外管内で行われて蒸発は
円滑となり、また気化後は流路断面積の小さい外
管内に導れるため、ガス流速の増大による熱伝達
率の向上が一層促進され、気化ガスの過熱が容易
となるので、伝熱効率のよい、しかもコンパクト
な装置となし得るのである。
(Effects) The heat pipe has its heat dissipating part covered by an outer tube with an inlet and an inlet for liquefied gas by melting the gap, and multiple outer tubes are connected together and exposed to the atmosphere together with the heat receiving part. is a heat pipe type heat exchanger in which liquefied gas is passed through, and the upstream side mainly evaporates, and the downstream gap mainly superheats the vaporized gas, and the cross-sectional area of the gap is Since this is a heat pipe type liquefied gas air temperature vaporization device that is large on the side and small on the downstream side, the liquefied gas is vaporized in the outer tube with a wide flow path cross section, making the evaporation smooth. Since the rest of the flow is guided into the outer tube with a small cross-sectional area, the heat transfer coefficient is further promoted by increasing the gas flow rate, making it easier to superheat the vaporized gas, resulting in a compact device with high heat transfer efficiency. It can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案の実施例であつて、第1図は一部を
省略した部分的切欠き正面図、第2図第3図及び
第4図はそれぞれ第1図の−線、−線及
び−線拡大断面図であり、第5図は他の実施
例の正面図である。 1……ヒートパイプ、2……放熱部、3……外
管、4……底板、5……隙間、6……液化ガス入
口、7……出口、8……縦フイン、9……受熱
部、10……据付台、11……孔、12……スペ
ーサー、13……ヒートパイプ式熱交換器、14
……湾曲管、15……連絡管、16……環状フイ
ン、17……出口。
The figures show an embodiment of the present invention, in which FIG. 1 is a partially cutaway front view with a part omitted, FIG. 2, FIG. 3, and FIG. 4 are the - line, - line, and - line of FIG. FIG. 5 is an enlarged line sectional view, and FIG. 5 is a front view of another embodiment. 1...Heat pipe, 2...Heat radiation section, 3...Outer tube, 4...Bottom plate, 5...Gap, 6...Liquefied gas inlet, 7...Outlet, 8...Vertical fin, 9...Heat receiving Part, 10... Installation stand, 11... Hole, 12... Spacer, 13... Heat pipe type heat exchanger, 14
... Curved pipe, 15 ... Communication pipe, 16 ... Annular fin, 17 ... Exit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 放熱部を覆い隙間を隔てて設けられた外管を順
次連結した複数のヒートパイプからなるヒートパ
イプ式熱交換器であつて、液化ガスが流れる前記
隙間を、上流側では大きく下流側では小さく形成
してなるヒートパイプ式液化ガス気化装置。
A heat pipe type heat exchanger consisting of a plurality of heat pipes sequentially connecting outer tubes that cover a heat radiating part and are separated by gaps, and the gaps through which liquefied gas flows are formed to be large on the upstream side and small on the downstream side. A heat pipe type liquefied gas vaporization device.
JP11831385U 1985-07-31 1985-07-31 Expired JPH0232959Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11831385U JPH0232959Y2 (en) 1985-07-31 1985-07-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11831385U JPH0232959Y2 (en) 1985-07-31 1985-07-31

Publications (2)

Publication Number Publication Date
JPS6227298U JPS6227298U (en) 1987-02-19
JPH0232959Y2 true JPH0232959Y2 (en) 1990-09-05

Family

ID=31004650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11831385U Expired JPH0232959Y2 (en) 1985-07-31 1985-07-31

Country Status (1)

Country Link
JP (1) JPH0232959Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616231Y2 (en) * 1988-09-30 1994-04-27 昭和アルミニウム株式会社 Multi-tube evaporator

Also Published As

Publication number Publication date
JPS6227298U (en) 1987-02-19

Similar Documents

Publication Publication Date Title
JP3946398B2 (en) Intermediate medium type vaporizer and method of supplying natural gas using the vaporizer
JP3049445B2 (en) Split type meandering heat pipe type heat exchange device, its manufacturing method and its use
US5341769A (en) Vaporizer for liquefied natural gas
US5251452A (en) Ambient air vaporizer and heater for cryogenic fluids
CA1105922A (en) Heat transfer apparatus
JPS621183B2 (en)
JP6198452B2 (en) Intermediate medium vaporizer
US8534645B2 (en) Heat exchanger for removal of condensate from a steam dispersion system
JP2540228B2 (en) Evaporative heat exchanger
ES2663084T5 (en) Cryogenic air separation
JPH0232959Y2 (en)
JP3037073B2 (en) Cryogenic liquid vaporizer
US6006998A (en) Apparatus for heating a building using a heat pipe
JP2668484B2 (en) Liquefied natural gas vaporizer
JPH0416067Y2 (en)
JPH0232958Y2 (en)
JPS61180855A (en) Condensation boiler
JPH102616A (en) Evaporation block for heat storage heat pipe-type hot water supply device
JPS6124634B2 (en)
CN106017169A (en) LNG vaporizer adopting self-circulation intermediate and implementation method
JPH0612369Y2 (en) Double pipe heat exchanger heat pipe
JPS5821195B2 (en) Open type sprinkler type evaporator
JP2005003194A (en) Air temperature type liquefied gas vaporizer
JPS5919888Y2 (en) Open type heat exchanger
RU2087824C1 (en) Thermosiphon heat exchanger