US1968260A - Push-pull connection for amplifying electric oscillations - Google Patents

Push-pull connection for amplifying electric oscillations Download PDF

Info

Publication number
US1968260A
US1968260A US610767A US61076732A US1968260A US 1968260 A US1968260 A US 1968260A US 610767 A US610767 A US 610767A US 61076732 A US61076732 A US 61076732A US 1968260 A US1968260 A US 1968260A
Authority
US
United States
Prior art keywords
push
grid
connections
anode
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US610767A
Other languages
English (en)
Inventor
Posthumus Klaas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Application granted granted Critical
Publication of US1968260A publication Critical patent/US1968260A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/14Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of neutralising means
    • H03F1/16Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of neutralising means in discharge-tube amplifiers

Definitions

  • valves could be used between the filaments of which no impedance appears. If, however, large quantitiesof energy are dealt with one is practically compelled to use large valves which are spaced apart from each other. and in which the cathodes are interconnected by a line. This is especially .the case when using two pairs of valves and if it is required to be able to change over to other wave lengths.
  • a perfect stability independent of; thefrequency may be obtained, by giving the impedances (self-inductions) referred to above a ratio substantially corresponding to the ratio existing between the two capacities plate-filament and plate-grid of the valves respectively.
  • Fig. 1 shows the well-known diagram of connections of a neutralized push-pull amplifier.
  • Fig. 2 represents the diagram according to Fig. 1 but shown as a Wheatstone bridge.
  • Fig. 3 shows the same diagram but modified in accordance with the invention.
  • Fig. 4 shows a spare diagram of Fig. 3 from which clearly appears the principle of the invention.
  • both push-pull connected valves are designated by V1 and V2.
  • V1 and V2 Between their grids G1 and (312 connected a tunable input circuit I and between their anodes A1 and A2 is mounted a.
  • the anodes A1 and A2 are connected to the grids G2 and G1 respectively through neutralizing condensers Cn.
  • One pole of both filaments F1 and F2 are interconnected through a short conductor. 7
  • Fig. 1 may be replaced by the bridge connection shown in Fig. 2, in which the capacities Cag are arranged between A1 and G and between A2 and G2 respectively, whereas the capacities Cat are inserted between A1 and F1 and between A2 and F2 respectively.
  • This figure shows furthermore both neutralizing condensers C11 and the impedances which in the case under View are imagined as pure inductances Z11 of both cross lines and the impedance, in this case the inductance Z1, of the line between both filaments.
  • the input circuit I lies between the points G1 and G2 and the output circuit between the points A1 and A2.
  • An improvement of the arrangement according to the invention can be obtained by taking care that the oscillations between the points A1 and A2 7 do not produce current variations in the input circuit.
  • the points of junction of the input circuit lie preferably in the middle of the cross lines with the inductances Z11.
  • An electrical network comprising a pair of electronic tubes each thereof having anode, cathode and grid electrodes, push-pull input and output circuits therefor, connections having appreciable inductances from a grid of each tube to the anode of the other tube, each of said connections including neutralizing condensers, and means for connecting the input circuit between the inductive rnidpoints of said connections whereby voltages existing across the output circuit are prevented from producing a potential difference across the input circuit.
  • An electrical network comprising a pair of electronic tubes each thereof beingprovided with anode, cathode and grid electrodes, push-pull input and output circuits therefor, connections having appreciable inductance from a grid of each tube to the anode of the other tube, each of said connections including neutralizing condensers, means for connecting the input circuit from a point of one of said connections to a point of the other thereof, said connecting points being arranged so that the inductance of the portion of the connection between the grid and the input circuit connecting point of one connection is the same as that between the neutralizing condenser and the input circuit connecting point of the other connection.
  • An electrical network comprising a pair of substantially alike electronic tubes each thereof being provided with anode, cathode and grid electrodes, push-pull input and output circuits therefor, connections having appreciable induct.- ance from a grid of each tube to the anode of the other tube each of said connections including neutralizing condensers, the inductance of both said connections being substantially equal, a connection also having appreciable inductance between the cathode of one tube and the cathode of the other tube, the inductance of the connection between the two cathodes bearing substantially the same ratio to the inductance of either of said first named connections as the capacity betweenthe anode and grid bears to the capacity between the anode and cathode of either tube whereby voltages existing across the output circuit are prevented from producing potential differences between the grid and filament of either of said tubes.
  • a neutralized amplifier circuit comprising a pair of electronic tubes each thereof being provided with anode, cathode and grid electrodes said tubes having substantially like characteristics, push-pull input and output circuits therefor, connections having appreciable inductance from a grid of each tube to the anode of the other tube each of said connections including a neutralizing condenser, the inductances of all of said connections being substatially equal, a connection also having appreciable inductance between the cathode of one tube and the cathode of the other tube, the inductance of the connection between the two cathodes bearing substantially the same ratio to the inductance of either of the first named connections as the ratio of the capacity between the anode and grid of either tube bears to the capacity between the anode and cathode of one of the tubes whereby voltages existing acrossthe output circuit are prevented from producing potential differences between the grid and filament of either of said tubes, and means for connecting the input circuit from a point of one of said first named connections to a point of the other of

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Induction Heating (AREA)
  • Surgical Instruments (AREA)
  • Microwave Amplifiers (AREA)
US610767A 1931-05-05 1932-05-12 Push-pull connection for amplifying electric oscillations Expired - Lifetime US1968260A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL383545X 1931-05-05

Publications (1)

Publication Number Publication Date
US1968260A true US1968260A (en) 1934-07-31

Family

ID=19785673

Family Applications (1)

Application Number Title Priority Date Filing Date
US610767A Expired - Lifetime US1968260A (en) 1931-05-05 1932-05-12 Push-pull connection for amplifying electric oscillations

Country Status (6)

Country Link
US (1) US1968260A (xx)
BE (1) BE387774A (xx)
DE (1) DE578653C (xx)
FR (1) FR735005A (xx)
GB (1) GB383545A (xx)
NL (1) NL34773C (xx)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2477545A (en) * 1940-06-14 1949-07-26 Hartford Nat Bank & Trust Co Neutralized high-frequency amplifier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1091611B (de) * 1958-07-11 1960-10-27 Grundig Max Verstaerkerschaltung fuer Stereofonie mit mindestens zwei unabhaengigen Verstaerkungskanaelen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2477545A (en) * 1940-06-14 1949-07-26 Hartford Nat Bank & Trust Co Neutralized high-frequency amplifier

Also Published As

Publication number Publication date
FR735005A (fr) 1932-11-02
DE578653C (de) 1933-06-16
GB383545A (en) 1932-11-17
BE387774A (xx)
NL34773C (xx)

Similar Documents

Publication Publication Date Title
US1882128A (en) Radiofrequency amplification system
US2431333A (en) Electric wave amplifier
US1968260A (en) Push-pull connection for amplifying electric oscillations
US2606284A (en) Mixing circuit arrangement
US2266197A (en) Wide frequency band amplifier system
US2226694A (en) Neutralization circuit for short wave transmitters
US2143864A (en) Wide range beat frequency generator
US2137265A (en) Circuit for suppressing disturbance waves and upper harmonics
US1953775A (en) Circuits for relaying or amplifying direct or alternating current energy
US1999318A (en) Electron discharge amplifier
US2863007A (en) Distributed amplifier arrangement
US2213871A (en) Thermionic amplifier
US1401644A (en) Method of and apparatus for amplification of small gurrents
US2314916A (en) Circuit for the amplification and/or frequency-transformation of electrical oscillations of ultra high frequency
US2577454A (en) Cavity-resonator tube and associated circuit
US2119315A (en) Neutralizing circuit for screen-grid tubes
US1994486A (en) Vacuum tube circuit
US2427241A (en) Push-pull circuit arrangement for ultra-short waves
US2008996A (en) Radio amplifier
US2202361A (en) Amplifier circuit
US1968104A (en) Amplifying system
US1325879A (en) Vacuum-tube circuits.
US1764206A (en) Electron-tube circuit
US2212205A (en) Amplifier
US2187775A (en) Push-pull tube arrangement