US1943730A - Radio frequency short wave receiver - Google Patents
Radio frequency short wave receiver Download PDFInfo
- Publication number
- US1943730A US1943730A US610799A US61079932A US1943730A US 1943730 A US1943730 A US 1943730A US 610799 A US610799 A US 610799A US 61079932 A US61079932 A US 61079932A US 1943730 A US1943730 A US 1943730A
- Authority
- US
- United States
- Prior art keywords
- circuit
- short wave
- tube
- control electrode
- coupled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003534 oscillatory effect Effects 0.000 description 9
- 238000009499 grossing Methods 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D11/00—Super-regenerative demodulator circuits
- H03D11/02—Super-regenerative demodulator circuits for amplitude-modulated oscillations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
- H04B1/163—Special arrangements for the reduction of the damping of resonant circuits of receivers
Definitions
- the super-regenerative tube 8 (pendulous tube 8) is connected to act as the oscillator for the ultra-audible pendulous frequency.
- the audion tube is fed with the pendulous potential by way of the coupling coil 6.
- Both the audio tube i, and tube 8 are of the indirectly heated type, and they receive their filament energy from the heating winding 9 of the network transformer 10.
- the plate potential of tube 3 is supplied from the winding 11 of the network transformer 10 by 5 way of rectifier 12. For the filtering of the plate potential of this tube, two condensers l3 and 14 each of 4 mid.
- FIG. 2 One embodiment disclosing the chance of using the rectifier tube at the same time for the purpose of producing the pendulous frequency is shown in Figure 2.
- antenna so 1 by means of the coil 2 is coupled to the receiver circuit 3 tuned to an ultra short wave.
- the voltage arising across the terminals of the receiving circuit is impressed upon the grid of the tube 4 connected to act as an audion.
- the plate circuit of this tube consists of the tickler coil 5, the coupler coil 6 and af. transformer 18.
- a circuit 17 tuned to the pendulous frequency, said circuit 17 being excited through regeneration by way of coil 6.
- the denotations for the circuit elements of the power pack are the same as in Figure 1.
- the rectifier tube a may, of course, be supplied also with direct current plate potential.
- network supply for the set and the operation of the latter become particularly simple when the audion tube is not supplied with a direct current plate, in line with what is shown in the drawing. If the plate of the rectifier is fed with a direct current potential then the pendulous or periodic potential may be supplied also to the grid.
- a super-regenerative ultra short wave circuit adapted to function on waves below ten meters comprising an electron discharge device having an anode and a control electrode, a source of alternating current for eiiecting the energization of the electrodes of said device, an input circuit coupled to said control electrode, a ieed-bacl connection from said anode to said input circuit,
- an oscillatory circuit and an output circuit both being coupled to said feed-back connection.
- a super-regenerative ultra short wave circuit adapted to function on waves below ten meters comprising an indirectly heated electron discharge device having an anode and a control electrode, a source of alternating current for effecting the energization of the electrodes of said device, an antenna coupled to said control electrode, a feed-back connection from said anode to said control electrode, an oscillatory circuit coupled to one of said electrodes, and an audio frequency utilization circuit coupled to said feed-back connection.
- a super-regenerative ultra short wave circuit adapted to function on waves below ten meters comprising an indirectly heated electron discharge device having an anode and a control electrode, a source of alternating current for effecting the energization of the electrodes of said device, an antenna inductively coupled to said control electrode, a feed-back connection from said anode to said control electrode and inductively coupled thereto, an oscillatory circuit coupled to one of said electrodes, and an audio frequency utilization circuit inductively coupled to said feed-back connection.
- a super-regenerative ultra short wave circuit adapted to function on waves below ten meters comprising an indirectly heated electron discharge device having an anode and a control electrode, a source of alternating current for effecting the energization of the electrodes of said device, an input circuit coupled to said control electrode, a feed-back connection from said anode to said input circuit, and an oscillating audion circuit arranged to generate super-audible frequencies whose output is coupled to said feed back connection, and a utilization circuit separately coupled to said feed-back connection.
- a super-regenerative ultra short Wave circuit adapted to function on waves below ten meters comprising an indirectly heated electron discharge device having an anode and a control electrode, a source of alternating current for eliecting the energization of the electrodes of said device, an input circuit coupled to said control electrode, a feed-back connection from said anode to said input circuit, an oscillatory circuit comprising ind ance and capacity in parallel relationship in circuit both with said feed-back connection and said control electrode, and an output circuit coupled to said iced-back connection.
- a super-regenerative ultra short wave circuit adapted to function on waves below ten meters comprising an indirectly heated electron discharge device having an anode and a control electrode, a source of alternating current for efiecting the enei "ization of the electrodes of said device, an antenna cicuit coupled to said control electrode, feed-back connection from said anode to said input circuit, said feed-back connection being coupled to said source through an impedance network and a r ctifier tube, said rectifier tube being in circuit with a transformer across said sou cc of alternating current supply, impedance network being arranged to smooth out the current from said rectifier tube, an oscillatory circuit comprising an inductance and a capacity in parallel relationship in circuit with said control electrode and inductively coupled to said connection, and an audio ire quency utilisation circuit separately coupled to said feed-back connection.
- a super-regenerative radio receiving circuit comprising electron discharge device having a cathode, an anode and a control electrode, an
- a super-regenerative radio receiving circuit comprising an electron discharge device having a cathode, an anode a control electrode, an input circuit coupled to said cathode and control electrode, a feed back connection from said anode to said input circuit, said feed back connection conductively extending to through two inductance coils, an audio frequency output circuit coupled to one inductance coil, and a super-audible oscillatory circuit coupled to the other coil.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Rectifiers (AREA)
- Amplifiers (AREA)
- Circuits Of Receivers In General (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DES98682D DE612824C (de) | 1931-05-13 | 1931-05-13 | Roehrenempfangsschaltung mit Rueckkopplung |
Publications (1)
Publication Number | Publication Date |
---|---|
US1943730A true US1943730A (en) | 1934-01-16 |
Family
ID=7521648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US610799A Expired - Lifetime US1943730A (en) | 1931-05-13 | 1932-05-12 | Radio frequency short wave receiver |
Country Status (6)
Country | Link |
---|---|
US (1) | US1943730A (enrdf_load_html_response) |
AT (1) | AT134506B (enrdf_load_html_response) |
BE (1) | BE388463A (enrdf_load_html_response) |
CH (1) | CH166616A (enrdf_load_html_response) |
DE (1) | DE612824C (enrdf_load_html_response) |
FR (1) | FR735166A (enrdf_load_html_response) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1002794B (de) * | 1954-03-26 | 1957-02-21 | Philips Nv | Gegengekoppelter Transistorverstaerker |
-
0
- BE BE388463D patent/BE388463A/xx unknown
-
1931
- 1931-05-13 DE DES98682D patent/DE612824C/de not_active Expired
-
1932
- 1932-03-03 AT AT134506D patent/AT134506B/de active
- 1932-04-13 FR FR735166D patent/FR735166A/fr not_active Expired
- 1932-04-15 CH CH166616D patent/CH166616A/de unknown
- 1932-05-12 US US610799A patent/US1943730A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CH166616A (de) | 1934-01-15 |
FR735166A (fr) | 1932-11-04 |
DE612824C (de) | 1935-05-06 |
BE388463A (enrdf_load_html_response) | |
AT134506B (de) | 1933-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2107395A (en) | Radio receiving system | |
US2091546A (en) | Short wave converter | |
US2038879A (en) | Reduction of interference in thermionic valve circuits | |
US2441452A (en) | Frequency changing circuits | |
US2230108A (en) | Superregenerative receiver | |
US1943730A (en) | Radio frequency short wave receiver | |
US2288214A (en) | Radio system | |
US2538715A (en) | Push-pull mixing circuit arrangement | |
US2081425A (en) | High frequency transmission system | |
US1996830A (en) | Amplifier | |
US1756131A (en) | High-frequency-oscillation generator | |
US2282103A (en) | Frequency modulation | |
US1847190A (en) | Electric wave signaling system | |
US2267732A (en) | Radio receiving system | |
US1762945A (en) | Radio receiving system | |
US2036690A (en) | Superregenerative receiver | |
US2127525A (en) | Radio receiving system | |
US1654976A (en) | Vacuum-tube circuits | |
US1330471A (en) | High-frequency signaling | |
US2176218A (en) | Antistray arrangement for radio communication | |
US2044229A (en) | Ultra-short wave auxiliary apparatus for radio receivers | |
US1998928A (en) | Crystal controlled oscillator | |
US1844941A (en) | Signaling | |
US1687896A (en) | Radio transmitting system | |
US2554230A (en) | Combined converter and oscillator circuit |