US1544052A - Method of and apparatus for purifying liquids - Google Patents
Method of and apparatus for purifying liquids Download PDFInfo
- Publication number
- US1544052A US1544052A US613648A US61364823A US1544052A US 1544052 A US1544052 A US 1544052A US 613648 A US613648 A US 613648A US 61364823 A US61364823 A US 61364823A US 1544052 A US1544052 A US 1544052A
- Authority
- US
- United States
- Prior art keywords
- liquid
- plates
- water
- container
- thru
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/463—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
Definitions
- This invention relates to a method and means forsterilizing, clarifying and purifying li uids.
- One o the objects of the invention is the provision of improved method and means to produce a hydrolyzed condition in the liquid under treatment, in which the mineral salts in the solution apparently attack the electrodes in the apparatus and form coagula, by the chemical effect of the gases and reagents roduce insoluble hydroxids upon the constituents of the liquids, and the provision of maximum surface for Contact of the disorganized atoms or ions in the liquids with the electrodes of the apparatus.
- the present invention is an improvement of the apparatus and mode of operation disclosed in my United States Letters Patent No. 1,066,570 granted to me July 8, 1913, to which reference may be had for a more technical statement of the objects and capabilities of an apparatus of this character.
- the invention disclosed in the present a plication relates more particularly to t e method employed in carrying the invention into effect and the difference in the arrangement of the anode and cathode plates and the means em loyed in circulating the liquid in the tanli and between the plates.
- Fig. l is a vertical central section showing one embodiment of the invention.
- Fig. 2 is a similar section taken at right angles to Fig. 1.
- Fig. 3 is another embodiment of the invention showing a slight variation.
- Fig. 4 is a transverse section taken on line 4 4 of Fig. 2.
- Fig. 5 is a section of a faucet.
- the cylinder 5 is closed at one of its ends by the bottom 6 and is preferably of glass so that the action within the cylinder may be observed.
- the device is provided with a removable cover 7 to which the removable elements of the apparatus are attached and with which they are removable.
- a staff or tube 8 of insulating material such as a phenolic condensation roduct, which is substantially unaffected y heat within the working temperature range of the device, or by the electro-chemical activity, is provided with an integral enlarged head 9, and is provided with a central bore, or liquid conduit 10, terminating within the staff at 11 and at 12.
- a liquid inlet pipe 13 taps the bore 10 at 14 and the flow of liquid is controlled to the shut off valve or cock 15.
- the valve or cock 15 is connected to a fitting 17 which may be connected to the source of liquid supply under pressure.
- the lower end of the stack 8 terminates at right angles to its axis, at 20, except that an integral tubular extension 21 terminates at 22.
- a metallic disk 23 is placed over the .tubular extension 21 and the conducting rods 24-24.
- the disk is connected to rod 24 by a threaded nut 25.
- a tube 26 is then placed over rod 24 and a spacing block 27 is then placed over the tubes 21and 26 and a disk 28 is placed over tube 26 and rod 24 and nut 29 connects disk 28 to rod 24.
- Another spacing block 30 is then placed oven tube 26 and rod 24 and disk 31 .is then connected to rod 24 by nut 32.
- Caps 33 and 34 are then placed over the nuts 29 and 32, respectively, and the respective rods.
- Disks 23 .and 31 are connected in parallel to rod 24. They are jointly about as thick as disk 28, which is connected to rod 24. Rods 24 and 24 extend thru the stack into a cavity 35 and at their upper ends are each connected by nut 36 to a plate 37. Each plate carries a spring switch clip 38 for a terminal 39 of a removable connector plug 40.
- the openings 15)-19 of the tubes 18-18, respectively, are between adjacent disks so that the liquid passing into the container 5 thru these openings is given a rotary movement which causes the evolved gases from the electrolytic action of the current and electrolyte to be swept from surface contact with the disks and renders the entire surfaces of the disks available at all times, thus keeping the internal resistance of the device at all times at its lowest value, and at the same time the metallic ions are brought into more rapid contact with the electrically energized plates or disks.
- Fig. 3 I have shown an obvious modiiication in which a larger number of pairs of disks may be supported on the staff 8 and, instead of the central bore 10, a tube l0 having openings 19 may be arranged at one side of the disks and connected to cock l5 to admit liquid into the container and to give it a rotary motion.
- the inside surface of the cylindrical container .5 becomes fogged I remove this fog by a spray of water or other liquid thru a pipe 44, which is connected to a cock 45 and which is also connected to the fitting 17.
- the pipe 44 has spaced openings 46 which spray the water on the inside surface of the cylindrical container.
- the plates or disks are preferably of like metal and, preferably, an alloy .of manganese and aluminum, so that there will be no local electric action thru the solution when the primary current is shut off or withdrawn.
- the electrolytic action depends upon What takes place at the cathodes.
- the hydroxids thus formed are brought into contact with the metallic salts producedat the anode, forming a coagulum which collects and removes the suspended impurities.
- the metals usually present in the water are not deposited thereon, but as soon as they have lost their charge, decompose the water and form an alkali.
- the alkali during the flow of the water, is brought into contact with the injurious salt and products formed at the anode, and not being removed, they unite with each other to form a coagulum.
- the action of the anodes is such, that a compound of any one metal will be deposited from the solution, by any one succeeding it.
- metal will cause any zinc in solution to be deposited, there being always a corresponding amount of the metal which goes into solution in place of the metal deposited.
- Any of the metals, as anodes, will be disintegrated in presence of chloride, forming chlorids of the metal. These compounds will be partially hydrolyzed, forming hydroxide and partially decimposed by the alkali formed at the catho e.
- Chlorids in the water cause considerable chlorin to be disengaged, which serves to sterilize or disinfect the water and destroy organic life, or bacteria.
- the anode is of such metal as would be attacked by the chlorin, at least a part of the chlorin would be consumed in dissolving the anode and the salt formed would be preliminary to the formation of the coagulum.
- the anode is of such character that it would not be attacked by the anions nascent oxygen is formed. The anions then decompose the water, setting free oxygen, which in the nascent state serves the same purpose as ozone, being a powerful agent in the oxidation of steril1zation of organic impurities and other deleterious matter in the water.
- Aluminum precipitate is as harmless to the human system as any solid matter can be, and this is one reason why I prefer to use aluminum plates or disks or a metal compound or alloy of which aluminum forms a large part.
- the solid aluminum matter will precipitate out of the solution, while nearly all other metals chemically combine with the components of the liquid, thus leaving some of the metal in the liquid.
- the body of the liquid may be given a rotary effect by the water as it enters the receptacle, due to the pressure to which the water may be subjected or the receptacle may first be filled with water or other liquid and given a rotary motion by air or other fluid under pressure which may be blown thru the liquid by the use of the apparatus herein disclosed.
- a greater or less number-of disks may be used as shown in Figs. 2er 3. the entire body of water will continue to rot-ate so long as the propelling fluid is entering the container.
- the liquid may be drawn off thru opening 47 or it may continuously flow out of opening 47 as it is being admitted in the manner described, thus providing a continuous process.
- the faucet 47 with the tube l()n may be used in lieu of the. conduit l0, and in place of the inlet pipe 13.
- the faucet may also be usedfor draining the receptacle 5. As shown in Fig. 5, the receptacle will be drained as the liquid will pass from the receptacle thru the duct 49 into the duct 50 thru the port 5l of the faucet.
- the tube 10a may be made much longer and may contain a larger number of apertures 19 than shown herein.
- the method of electrically purifying liquid which includes rotating a confined body of liquid under pressure by projecting it by effect of its velocity between oppositely polarized plates and passing a current of electricity thru the liquid while rotating.
- the method of electrically purifying liquid which includes rotating a confined body of liquid under pressure by projecting it by effect of its velocity between oppositely polarized plates near the bottoni ⁇ of a container; passing a current of electricity thru the liquid while rotating and supplying more liquid to the plates while the container is being filled.
- An apparatus of tln ⁇ character dcscribed comprising a cylindrical container; a series of parallel stationary plates in the container; means to introduce a liquid into the container' and to cause its rotation between the plates by effect of its Velocity, and electric conductors connected to alternate plates, respectively.
- An apparatus of the character described comprising a container; a plurality of spaced plates in the container; means to introduce a liquid into the container and direct into a path to cause its rotation; means -to convey electricity to the plates and a support for the plates and for the current carrying means.
- An apparatus of the character described comprising a container; a plurality of spaced plates in the container supported by a pendant means near their axes; a tube parallel with the axes of the plates near the periphery of the plates having lateral apertures spaced to lie in planes between the plates; means for admitting water under pressure into thc tube and means to drain the receptacle.
- an apparatus of the character dcscribed for producing electrolytic decomposition comprising a container; a plurality of spaced, fixed plates therein; means for producing a whirling motion of an electrolyte between the plates by directing it into a path to produce this effect and means for electrically energizing the plates.
- An apparatus of the character described comprising a container; a plurality of spaced horizontally disposed electrically potentiated, round plates in the container; and means to rotate a liquid between the plates by directing the liquid under pressure in a path tangent to the perimeter of said plates.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US613648A US1544052A (en) | 1923-01-19 | 1923-01-19 | Method of and apparatus for purifying liquids |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US613648A US1544052A (en) | 1923-01-19 | 1923-01-19 | Method of and apparatus for purifying liquids |
GB15701/25A GB251136A (en) | 1925-06-17 | 1925-06-17 | Improvements in a method of and apparatus for purifying liquids |
Publications (1)
Publication Number | Publication Date |
---|---|
US1544052A true US1544052A (en) | 1925-06-30 |
Family
ID=10063911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US613648A Expired - Lifetime US1544052A (en) | 1923-01-19 | 1923-01-19 | Method of and apparatus for purifying liquids |
Country Status (5)
Country | Link |
---|---|
US (1) | US1544052A (de) |
DE (1) | DE481606C (de) |
FR (1) | FR601031A (de) |
GB (1) | GB251136A (de) |
NL (1) | NL18772C (de) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2839463A (en) * | 1953-12-11 | 1958-06-17 | Vellas Jean Justin Leon | Device for treatment and particularly sterilisation of liquids |
US2930747A (en) * | 1957-06-17 | 1960-03-29 | Central Scient Co | Titrator electrode pair |
US3511765A (en) * | 1965-07-09 | 1970-05-12 | Basf Ag | Carrying out electrochemical reactions |
US3769186A (en) * | 1971-06-02 | 1973-10-30 | Mitsui Mining & Smelting Co | Method of treating waste water through electrolysis |
US3856642A (en) * | 1973-06-21 | 1974-12-24 | Diamond Shamrock Corp | Method for electrosanitizing waste water |
US3888751A (en) * | 1972-12-20 | 1975-06-10 | Toyomasa Minegishi | Method for purifying waste water |
US3915820A (en) * | 1973-07-06 | 1975-10-28 | Nippon Risui Kagaku Kenkyusho | Process of purifying waste water by electrolysis |
US3936364A (en) * | 1973-02-20 | 1976-02-03 | Middle Sidney A | Apparatus and method for treatment of water oligodynamically |
US4107021A (en) * | 1976-11-24 | 1978-08-15 | Okazaki Manufacturing Company Ltd. | Water pot with an electrolyzing device |
US4124463A (en) * | 1976-12-29 | 1978-11-07 | Ross Derisley Wood | Electrolytic cell |
US4450060A (en) * | 1980-11-18 | 1984-05-22 | Ernesto Gonzalez | Bipolar electrolytic cell |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1195684B (de) * | 1956-09-25 | 1965-06-24 | Georg Neidl Dipl Ing | Becken zum Reinigen von Abwasser oder zum Behandeln von Klaerschlamm |
-
0
- NL NL18772D patent/NL18772C/xx active
-
1923
- 1923-01-19 US US613648A patent/US1544052A/en not_active Expired - Lifetime
-
1925
- 1925-06-17 GB GB15701/25A patent/GB251136A/en not_active Expired
- 1925-06-20 DE DEA45276D patent/DE481606C/de not_active Expired
- 1925-06-22 FR FR601031D patent/FR601031A/fr not_active Expired
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2839463A (en) * | 1953-12-11 | 1958-06-17 | Vellas Jean Justin Leon | Device for treatment and particularly sterilisation of liquids |
US2930747A (en) * | 1957-06-17 | 1960-03-29 | Central Scient Co | Titrator electrode pair |
US3511765A (en) * | 1965-07-09 | 1970-05-12 | Basf Ag | Carrying out electrochemical reactions |
US3769186A (en) * | 1971-06-02 | 1973-10-30 | Mitsui Mining & Smelting Co | Method of treating waste water through electrolysis |
US3888751A (en) * | 1972-12-20 | 1975-06-10 | Toyomasa Minegishi | Method for purifying waste water |
US3936364A (en) * | 1973-02-20 | 1976-02-03 | Middle Sidney A | Apparatus and method for treatment of water oligodynamically |
US3856642A (en) * | 1973-06-21 | 1974-12-24 | Diamond Shamrock Corp | Method for electrosanitizing waste water |
US3915820A (en) * | 1973-07-06 | 1975-10-28 | Nippon Risui Kagaku Kenkyusho | Process of purifying waste water by electrolysis |
US4107021A (en) * | 1976-11-24 | 1978-08-15 | Okazaki Manufacturing Company Ltd. | Water pot with an electrolyzing device |
US4124463A (en) * | 1976-12-29 | 1978-11-07 | Ross Derisley Wood | Electrolytic cell |
US4450060A (en) * | 1980-11-18 | 1984-05-22 | Ernesto Gonzalez | Bipolar electrolytic cell |
Also Published As
Publication number | Publication date |
---|---|
FR601031A (fr) | 1926-02-20 |
NL18772C (de) | |
DE481606C (de) | 1929-08-31 |
GB251136A (en) | 1926-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1544052A (en) | Method of and apparatus for purifying liquids | |
KR100392798B1 (ko) | 기능수 세탁기 | |
US2921005A (en) | Electrolytic conversions with permselective membranes | |
US20090071844A1 (en) | Electrolytic activation of water | |
WO2007140544A1 (en) | Electrolytic activation of water | |
CN105858990A (zh) | 一种利用脱硫废水零排放盐溶液制备次氯酸钠溶液的工艺和装置 | |
US3547800A (en) | Apparatus and method for purifying waste waters | |
US2796395A (en) | Electrolytic desalting of saline solutions | |
JP7054554B2 (ja) | アルカリ金属塩化物溶液から電解生成物を得るためのデバイス | |
PT87602B (pt) | Sistema para o tratamento electrolitico de liquidos | |
US1219333A (en) | Water-purifying apparatus. | |
JP4394941B2 (ja) | 電解式オゾナイザ | |
JP4126904B2 (ja) | 冷却水系の水処理方法及び装置 | |
JPH04222690A (ja) | 脱シアン装置及び廃水からシアン化物を除去する方法 | |
CN110204016B (zh) | 一种含氨废水电解装置酸洗的系统及方法 | |
US3546089A (en) | Apparatus for the continuous electrolytic production of chlorine for the sterilization of water | |
US930772A (en) | Process of curing meat. | |
TWI605020B (zh) | Continuous waste water treatment device and treatment method | |
US736868A (en) | Process of decomposing water by electrolysis. | |
JP2008279408A (ja) | 水処理装置及び水処理システム | |
NO742297L (de) | ||
TWI649269B (zh) | Waste water treatment device for supplying high pressure gas | |
US1726236A (en) | Electrochemical treatment of saline and alkaline solutions | |
US1322580A (en) | Method and apparatus for producing quinone and quinol | |
US2099801A (en) | Electrolytic apparatus for prepar |