US1273627A - Method of and means for controlling electric currents or potentials. - Google Patents
Method of and means for controlling electric currents or potentials. Download PDFInfo
- Publication number
- US1273627A US1273627A US1914816836A US1273627A US 1273627 A US1273627 A US 1273627A US 1914816836 A US1914816836 A US 1914816836A US 1273627 A US1273627 A US 1273627A
- Authority
- US
- United States
- Prior art keywords
- current
- resistance
- grid
- potential
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/34—Negative-feedback-circuit arrangements with or without positive feedback
- H03F1/36—Negative-feedback-circuit arrangements with or without positive feedback in discharge-tube amplifiers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/18—Mechanical movements
- Y10T74/18056—Rotary to or from reciprocating or oscillating
- Y10T74/18144—Overcoming dead center
Definitions
- I, IRVING IJANGMUIII a citizen of the United States, residing at Schenectady, county of Schenectady, State of New York, have invented certain new and useful Improvements in Methods of and Means for Controlling Electric Currents or Potentials, of which the following is a specification.
- My present invention relates to means for controlling and regulating electric currents or potentials. I employ various and diverse agencies in such a way that variations of potential or current of one circuit are utilized to produce desired changes in the potential or current of another circuit suitably coupled with the first.
- this efiect may be employed in a system for controlling the value of a direct current of constant or slowly varying amplitude in the second circuit by means of a current of the same nature in the first circuit, in contra-distinction to the large class of devices which are in common use and which accomplish this result only in the case of alternating currents or pulsating direct currents.
- variable current flow thus produced may be utilized in turn to operate suitable regulating means to maintain a'constant potential in the first source.
- Figure 1 shows diagrammatically one way in which my invention may be utilized for the amplification of electric currents
- Fig. 2 shows a second modification thereof adapted to the operation of a constant potential regulator
- Fig. 3 shows a characteristic current curve of an electron discharge device which may be employed.
- an electron discharge tube 7 comprising a cathode 8 oi filamentary form provided with means for heating, consisting of a battery 9, an anode l0 and a conducting body 11 in the form or a grid interposed between the oathode and the anode.
- circuit with the oathode and anode is placed a battery or other source of current 12 and a resistance 13, the value of which bears a given ratio to that of the resistance 6.
- a suitable measuring instrument It for the purpose of measuring the amplified current.
- Fig. 3 illustrates the relation between current between cathode and anode and grid potential in an electron discharge device which is suitable for my purpose. From this it will be seen that with a certain negative potential on the grid no appreciable current will flow between the electrodes. As this negative potential becomes less, current starts to flow and increases with decrease in the negative potential. Beyond a point A the curve becomes a straight line, that is, the changein current is directly proportional to the change in the grid potential and small changes in the grid potential produce large changes in the current.
- the current through resistance 13 would increase until the drop therethrough had increased 25 volts so that the grid potential would be the same as before. Since, however, the current curve has a certain slant the current may increase only to a point where the increased drop through resistance 13 is 24 volts, making the grid 11 one volt less negative or more positive than before. It will be apparent that the ratio between the current through resistance 6 and the increase in current through resistance 13 will-be substantially the same as the ratio of resistance 13 to the resistance 6. If now the current through the photo-electric.
- the measuring device 14 may be calibrated to read directly in candle power or any suitable unit desired. It will of course be understood that this form of my invention is by no means limited to the measuring of currents derived from the photo-electric cell but will be useful in many cases .for' amplifying or measuring sm'all electrical currents derlved from other sources. It will also be apparent that many modifications of the system shown may be made without departing from the scope of my invention.
- , 1 is especially suitable for the amplification 20, consists preferably of a battery of standard cells the electromotive force of which is constant.
- tive force' is the generator 21, the potential of which it is desired to maintain at a constant value. It may be desirable in some cases to use enough standard cells so that the constant electromotive force of the source 20 is substantially equal to the electromotive force of the generator 21 If this is not expedient, however, a resistance 22
- the second source of electromo- 5 may be connected across the terminals of the generator and a portion of this resistance shunted in such a way that the drop of potential between the shunt connections 23 and 24 is normally equal to the electromotive force of the source 20.
- variable resistance 26 is normally in series with the shunt field 27 of the generator 21.
- the apparatus is so: arranged, however, that when the voltage of the generator falls below the desired value the current through the plate circuit of the electron discharge tube increases, enabling the relay 25 to pick up its armature and make contact with. the upper stop 28, thereby short circuiting all of the resistance and thus increasing the field strength of the generator.
- a condenser 29 may be connected across the relay contacts to prevent sparking when the relay drops its armature, by reason of the increase in voltage of the generator and the corresponding decrease in the current in the plate circuit.
- Means for amplifying small unidirectional electric currents comprising. an electron discharge tube having grid and plate circuits, a resistance which is included in both of said circuits, and means cooperating therewith whereby an increase of current is produced in the plate circuit of an amount substantially equal to a given multiple'of the value of the current to be amplified.
- Means for amplifying small electric currents comprising an electron discharge tube, a resistance in series therewith, and means cooperating with the tube and resistance to cause an increase in current flowing through the tube, whifii increase bears a predetermined definite ratio to the current which is to be amplified, which ratio is substantially independent of the operating characteristic of the tube.
- Means for amplifying small electric currents comprising an electron discharge tube and a resistance in series therewith, a second resistance through which the current to be amplified may be caused to flow, and means cooperating with the tube and resistances to cause an increase in the current flowing through the tube having a ratio to the current to be amplified substantially equal to the ratio of the second resistance to the first.
- Photometric means comprising a photoelectric cell and an amplifying device electrically associated with and cooperating therewith whereby an increase in a normally small current in said device is produced of an amount equal to a given multiple of the value of the current flowing through the photoelectric cell.
- Photometric means comprising a photoelectric cell, an electron discharge tube and means electrically associated with and cooperating therewith whereby an increase in current is produced in the tube of an amount equalto a given multiple of the value of the current in the photoelectric cell.
- Means for amplifying small electric currents comprising an electron discharge tube, a resistance through which the current to be amplified may be caused to flow, and means cooperating with the resistance and the tube whereby an increase in current is produced in the tube of an amount equal to a predetermined given multiple of the value of the current to be amplified, which multiple is substantially independent of the operating characteristic of the tube.
- Means for amplifying small electric currents comprising an electron discharge device having grid and plate circuits, a resistance which is included in both of said circuits, and a second resistance through which the current to be amplified may be caused to flow, and which is also included in said grid circuit.
- sistance which is included in both-of said circuits, and a second resistance through which the current to be amplified is caused to flow, saidsecond resistance being included in thegrid circuit in such a way that the drop in potential between its terminals opposes the drop in potentialbetween the terminals of the first resistance when current is flowing therein.
- Means for amplifying small electric currents comprising an electron discharge device having grid and plate circuits, a resistance which is included inboth of said circuits, and a second resistance through which the current to be amplified may be caused to flow and which is also included in said grid circuit, said resistances being so related to each other that when the current to be amplified flows through the second resistance it will cause an increase in current through the first resistance of an amount equal to a given multiple of the value of the current to be amplified.
- An electrical amplifyingsystem comprising an electron discharge device having an incandescent cathode, an anode and a grid inclosed in an evacuated envelop, an
- Means for amplifying electric currents I comprising an electron discharge device having grid and plate circuits, 'means for impressing upon the grad circuit potential variations produced by the current to be am 'plified and a coupling between the two cirbe amplified, and a second external circuit connecting the cathode and anode, and an ohmic resistance which' is common to both circuits whereby current changes in the sec- 0nd circuit are effective in producing potential variations in the first circuit.
- Means for amplifying small unidirectional currents comprising an electron discharge device having plate and grid circuits and an ohmic resistance included in the grid circuit through which the unidirectional current' to be amplified is caused to flow;
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
- Hybrid Cells (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DENDAT296016D DE296016C (enrdf_load_stackoverflow) | 1914-02-05 | ||
US1914816836 US1273627A (en) | 1914-02-05 | 1914-02-05 | Method of and means for controlling electric currents or potentials. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1914816836 US1273627A (en) | 1914-02-05 | 1914-02-05 | Method of and means for controlling electric currents or potentials. |
Publications (1)
Publication Number | Publication Date |
---|---|
US1273627A true US1273627A (en) | 1918-07-23 |
Family
ID=45445206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US1914816836 Expired - Lifetime US1273627A (en) | 1914-02-05 | 1914-02-05 | Method of and means for controlling electric currents or potentials. |
Country Status (2)
Country | Link |
---|---|
US (1) | US1273627A (enrdf_load_stackoverflow) |
DE (1) | DE296016C (enrdf_load_stackoverflow) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2695171A (en) * | 1949-03-22 | 1954-11-23 | Coffman Mfg Corp | Means for web feed correction |
US2779897A (en) * | 1952-01-17 | 1957-01-29 | Samuel B Ellis | Voltage regulating circuit |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE763502C (de) * | 1935-09-27 | 1953-06-15 | Koch & Sterzel A G | Schaltungsanordnung zum Messen von Wechselspannungen oder Wechselstroemen mit Verstaerkerroehren |
DE750591C (de) * | 1937-02-23 | 1945-01-19 | Anordnung zum Messen oder Wirksammachen von sehr hohen Spannungen mit Hilfe eines kapazitiven Spannungsteilers | |
DE898456C (de) * | 1937-12-18 | 1953-11-30 | Fernseh Gmbh | Anordnung zur selbsttaetigen Bildhelligkeitsregelung in Schaltungen mit Kathodenstrahlroehren fuer Bildwiedergabe, insbesondere Fernsehuebertragungs-Einrichtungen |
DE899368C (de) * | 1938-05-26 | 1953-12-10 | Aeg | Gleichstrom-Kompensationsverstaerker |
DE760218C (de) * | 1939-07-05 | 1954-04-29 | Siemens Schuckertwerke A G | Einrichtung zum Messen einer Gleichhoechstspannung mittels einer proportionalen Niederspannung oder eines proportionalen niedriggespannten Stromes |
DE751179C (de) * | 1940-01-10 | 1954-03-01 | Aeg | Einrichtung zur Regelung verbrennungselektrischer Fahrzeugantriebe |
DE976277C (de) * | 1950-03-04 | 1963-07-11 | Siemens Ag | Anordnung zur selbsttaetigen stufenweisen Drehzahlregelung eines elektrischen Stellmotors |
DE966827C (de) * | 1950-05-02 | 1957-09-12 | Heidenreich & Harbeck Gmbh | Fuehlergesteuerte Werkzeugmaschine, insbesondere Kopierdrehbank |
-
0
- DE DENDAT296016D patent/DE296016C/de not_active Expired
-
1914
- 1914-02-05 US US1914816836 patent/US1273627A/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2695171A (en) * | 1949-03-22 | 1954-11-23 | Coffman Mfg Corp | Means for web feed correction |
US2779897A (en) * | 1952-01-17 | 1957-01-29 | Samuel B Ellis | Voltage regulating circuit |
Also Published As
Publication number | Publication date |
---|---|
DE296016C (enrdf_load_stackoverflow) | 1900-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1273627A (en) | Method of and means for controlling electric currents or potentials. | |
GB253948A (en) | Improvements in and relating to temperature regulators | |
US2079500A (en) | Electrical control circuit | |
US2206123A (en) | Power supply device | |
US2330638A (en) | Electric control circuits | |
US2897429A (en) | Supply circuit transistor current control for electric loads | |
US2354930A (en) | Electric control circuit | |
US2407458A (en) | High-voltage regulator circuit | |
US1541311A (en) | Vacuum-tube circuits | |
US2156534A (en) | Electric discharge device circuits | |
US1487108A (en) | Regulating system | |
US2462190A (en) | Amplifier for small direct currents | |
US1752839A (en) | Amplifier | |
US1756893A (en) | Electron-discharge apparatus | |
US1585445A (en) | Electron-discharge apparatus and method of operating the same | |
US2246168A (en) | Deflecting system for cathode ray devices | |
US2313097A (en) | System fob | |
US1960689A (en) | Continuous current amplifier | |
US1434869A (en) | Electric regulator | |
US1604987A (en) | Energizing circuits for vacuum tubes | |
US1546875A (en) | Electron-discharge apparatus | |
US1690881A (en) | Circuit for amplifying direct or alternating currents by vacuum tubes | |
US1128280A (en) | Thermionic detector. | |
US2166184A (en) | Balanced electron tube amplifier | |
US1313187A (en) | Albert w |