US11852316B2 - Construction component, light radiating system, and illumination system - Google Patents

Construction component, light radiating system, and illumination system Download PDF

Info

Publication number
US11852316B2
US11852316B2 US17/915,868 US202117915868A US11852316B2 US 11852316 B2 US11852316 B2 US 11852316B2 US 202117915868 A US202117915868 A US 202117915868A US 11852316 B2 US11852316 B2 US 11852316B2
Authority
US
United States
Prior art keywords
light
construction component
function
illumination
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US17/915,868
Other languages
English (en)
Other versions
US20230151936A1 (en
Inventor
Hiroshi Kitano
Kenichiro Tanaka
Takanori Aketa
Yoshiyuki Takegawa
Satoshi Hyodo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Krysse AS
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Assigned to PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. reassignment PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HYODO, SATOSHI, AKETA, TAKANORI, KITANO, HIROSHI, TAKEGAWA, YOSHIYUKI, TANAKA, KENICHIRO
Assigned to KRYSSE AS reassignment KRYSSE AS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THALBERG, ANDERS P.
Publication of US20230151936A1 publication Critical patent/US20230151936A1/en
Application granted granted Critical
Publication of US11852316B2 publication Critical patent/US11852316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/02Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
    • F21S8/026Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters intended to be recessed in a ceiling or like overhead structure, e.g. suspended ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • F21V33/006General building constructions or finishing work for buildings, e.g. roofs, gutters, stairs or floors; Garden equipment; Sunshades or parasols
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/05Optical design plane
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre

Definitions

  • the present disclosure generally relates to a construction component, a light radiating system, and an illumination system, and more particularly to a construction component that emits illumination light, a light radiating system including the construction component, and an illumination system including the light radiating system.
  • Patent Literature 1 Described in Patent Literature 1 is a construction panel with a lighting function.
  • the construction panel with a lighting function described in Patent Literature 1 includes an outer frame, a metal frame, a front panel plate, a light source, and a light-guiding plate.
  • the outer frame consists of a construction component.
  • the metal frame is attached to the outer frame.
  • the front panel plate is detachably attached to the metal frame.
  • the light-guiding plate is arranged between the metal frame and the front panel plate.
  • the light source is disposed so as to make its light-emitting portion face the light-guiding plate.
  • the light-guiding plate guides the incident light coming from the light source therethrough, and emits the light from its emitting face facing the front panel plate.
  • Patent Literature 1 discloses that a construction panel with a lighting function is installed between two construction panels without a lighting function when constructing the construction panel into a ceiling.
  • Patent Literature 1 It has been difficult to realize weigh reduction of the construction panel with a lighting function described in Patent Literature 1.
  • a construction component forms at least a part of a structure facing a target space.
  • the construction component has a first function, a second function, and a third function.
  • the first function is a function of emitting illumination light toward the target space.
  • the second function is a function of allowing the incident light to enter the construction component.
  • the incident light is emitted from a light source disposed out of a projection area, viewed from the target space, of the construction component, and is incident on the construction component via a light transmission member.
  • the third function is a function of converting the incident light into the illumination light.
  • a light radiating system includes the construction component and the light transmission member.
  • An illumination system includes the light radiating system and the light source.
  • FIG. 1 illustrates a configuration of an illumination system including a construction component according to a first embodiment
  • FIG. 2 A is a cross-sectional view, taken along a plane X2-X2 shown in FIG. 2 B , of the construction component;
  • FIG. 2 B is a bottom view illustrating the construction component
  • FIG. 3 is a perspective view illustrating a structure including the construction component
  • FIG. 4 illustrates a configuration of another illumination system including the construction component according to the first embodiment
  • FIG. 5 illustrates a configuration of an illumination system including a construction component according to a second embodiment
  • FIG. 6 illustrates a configuration of an illumination system including a construction component according to a third embodiment
  • FIG. 7 illustrates a configuration of an illumination system including a construction component according to a fourth embodiment
  • FIG. 8 illustrates a configuration of an illumination system including a construction component according to a fifth embodiment
  • FIG. 9 illustrates a configuration of an illumination system including a construction component according to a sixth embodiment.
  • FIGS. 1 - 3 a construction component 10 , a light radiating system 100 , and an illumination system 200 according to the first embodiment will be described with reference to FIGS. 1 - 3 .
  • the construction component 10 serves as at least a part of a structure 1 that faces a target space S 1 .
  • “Faces the target space S 1 ” means the structure 1 is in contact with the target space S 1 .
  • the structure 1 including the construction component 10 according to the first embodiment, is in contact with the target space S 1 to define the target space S 1 .
  • the structure 1 may be a ceiling in a facility (e.g., an office construction) (refer to FIG. 3 ).
  • the target space S 1 is a space under the ceiling.
  • the ceiling may be a complex ceiling system and include a grid-like support member, a plurality of ceiling members (ceiling panels) 9 to be supported by the support member, and the construction component 10 .
  • Each of the plurality of ceiling members 9 has a panel shape.
  • the ceiling member 9 has a shape of square when viewed along the thickness direction of the ceiling member 9 , but it may be rectangular.
  • the construction component 10 has a panel shape.
  • the construction component 10 is a ceiling member.
  • the construction component 10 is supported by the support member, as with the ceiling members 9 .
  • the construction component 10 is arranged adjacent to at least one of the plurality of ceiling members 9 .
  • the construction component 10 converts incident light L 1 (refer to FIG. 2 A ) into illumination light L 2 and emits the illumination light L 2 into the target space S 1 .
  • the incident light L 1 is emitted from a light source 2 , and is incident on the construction component 10 via a light transmission member 3 .
  • the light source 2 is disposed out of a projection area A 10 , viewed from the target space S 1 , of the construction component 10 .
  • “A projection area A 10 , viewed from the target space S 1 , of the construction component 10 ” means the projection area of the construction component 10 viewed along a direction perpendicular to a main surface 111 , which is in contact with the target space S 1 , of the construction component 10 .
  • the light radiating system 100 includes the construction component 10 and the light transmission member 3 .
  • the illumination system 200 includes the light radiating system 100 and the light source 2 .
  • the light radiating system 100 makes light that has been emitted from the light source 2 incident on the construction component 10 as the incident light L 1 via the light transmission member 3 , and converts, in the construction component 10 , the incident light L 1 into the illumination light L 2 , and emits the illumination light L 2 from the construction component 10 .
  • the illumination system 200 makes the light source 2 emit light, makes the light incident on the construction component 10 as the incident light L 1 via the light transmission member 3 , and converts, in the construction component 10 , the incident light L 1 into the illumination light L 2 , and emits the illumination light L 2 from the construction component 10 .
  • the facility is not limited to office constructions, and it may be stand-alone houses, apartments, stores, museums, hotels, factories, stadiums, airports, or other constructions.
  • the illumination system 200 includes, as shown in FIG. 1 , the light source 2 , the light transmission member 3 , and the construction component 10 .
  • the light source 2 includes a laser light source 21 .
  • the light emitted from the light source 2 may be light emitted from the laser light source 21 .
  • the laser light source 21 may be a semiconductor laser that emits a blue light ray (a laser beam), for example, thus allowing the light source 2 to emit a blue light ray.
  • the semiconductor laser may be a GaN-based semiconductor laser, for example. The peak wavelength of the laser light falls within the range from 440 nm to 480 nm, for example.
  • the light source 2 includes a case 20 , which contains the laser light source 21 .
  • the case 20 is disposed at a position away from the construction component 10 . More specifically, the light source 2 is disposed out of the projection area A 10 , viewed from the target space S 1 , of the construction component 10 .
  • the light source 2 is disposed in the ceiling space. However, this is only an example and should not be construed as limiting.
  • the light source 2 may be disposed on the surface of the floor behind a wall that defines the target space S 1 together with the structure 1 .
  • the projection area A 10 viewed from the target space S 1 , of the construction component 10 is the projection area (a vertical projection area), viewed from the target space S 1 in a thickness direction of the construction component 10 having a panel shape, of the construction component 10 .
  • the projection area A 10 is a projection area along a thickness direction of the construction component 10 .
  • the light transmission member 3 includes an optical fiber 31 .
  • the optical fiber 31 includes a core, a clad, and a coating portion.
  • the clad covers the outer peripheral surface of the core.
  • the coating portion covers the outer peripheral surface of the clad.
  • the core has a first end face, and a second face opposite from the first end face.
  • a cross section, taken along a plane perpendicular to the optical axis, of the core has a circular shape.
  • the clad is disposed coaxially with the core.
  • the material of the core includes a light-transmitting material.
  • the light transmitting-material may be, for example, a fluoride, an oxide, or a nitride.
  • the fluoride may be glass fluoride.
  • the oxide may be a silicon oxide or quartz, for example.
  • the refractive index of the clad is less than the refractive index of the core.
  • the coating portion covers the outer peripheral surface of the clad.
  • the material of the coating portion may be a resin, for example.
  • the core of the optical fiber 31 may have a diameter falling within the range from 20 ⁇ m to 1000 ⁇ m, for example.
  • the optical fiber 31 may have a length falling within the range from 1 m to 100 m, for example. If the diameter of the core of the optical fiber 31 is less than 20 ⁇ m, it becomes difficult to optically couple the light of the laser light source 21 with the optical fiber 31 with high efficiency. If the diameter of the core of the optical fiber 31 is more than 1000 ⁇ m, it becomes difficult to bend the optical fiber 31 with a small bending radius, thus increasing handling restrictions.
  • the optical fiber 31 includes a first end 311 and a second end 312 , which are arranged opposite from each other in its lengthwise direction.
  • the first end 311 of the optical fiber 31 includes an incident end face (the first end face of the core) on which light emitted from the light source 2 is incident.
  • the second end 312 of the optical fiber 31 includes an emerging end face (the second end face of the core) from which the light is emitted that has been incident on the incident end face and been transmitted through the optical fiber 31 .
  • the first end 311 of the optical fiber 31 may be connected to the laser light source 21 via an optical fiber connector, for example. This connection allows the core of the optical fiber 31 to be coupled with the laser light source 21 optically.
  • the second end 312 of the optical fiber 31 is connected with a light input/output portion 12 of the construction component 10 via an optical fiber connector, for example. This connection allows the core of the optical fiber 31 to be optically coupled with the light input/output portion 12 of the construction component 10 .
  • the construction component 10 is a ceiling member that is arranged adjacent to at least one of the plurality of ceiling members 9 (which do not include the construction component 10 by definition). However, this is only an example and should not be construed as limiting.
  • the construction component 10 may be arranged adjacent to another construction component 10 .
  • the construction component 10 has a panel shape and square, like the ceiling member 9 , when viewed in its thickness direction. However, this is only an example and should not be construed as limiting.
  • the construction component 10 may be rectangular. In this specification, “the construction component 10 is viewed in the thickness direction of construction component 10 ” means that the construction component 10 is viewed from the target space S 1 in the thickness direction of the construction component 10 , for example.
  • the size of the construction component 10 is the same as the size of the ceiling member 9 , but they may be different in size from each other.
  • the construction component 10 is, like the ceiling members 9 , supported by the support member.
  • the support member may be, for example, formed of a plurality of galvanized steel plates or other similar members.
  • the construction component 10 includes a main body 11 and the light input/output portion 12 .
  • the light input/output portion 12 is integrally formed with the main body 11 . Therefore, a position, relative to the target space S 1 , of the light input/output portion 12 is determined when the construction component 10 is supported by the support member.
  • the main body 11 has a panel shape. Viewed in the thickness direction of the construction component 10 , an outer peripheral shape of the main body 11 is the same as an outer peripheral shape of the construction component 10 . In other words, viewed from the thickness direction of the construction component 10 , the outer peripheral shape of the construction component 10 is the same as the outer peripheral shape of the main body 11 . In addition, viewed in the thickness direction of the construction component 10 , size of the construction component 10 is the same as size of the main body 11 .
  • the main body 11 may be, for example, made of decorative plywood or decorative boards.
  • the decorative plywood include natural-wood decorative board and specially-treated decorative board.
  • the specially-treated decorative board include synthetic resin decorative board, printed plywood, vinyl chloride decorative plywood, and overlayed plywood made of paper or cloth.
  • the decorative board include MDF (medium-quality fiber board), volcanic silicates fiber reinforced multi-layer board, rock wool board, calcium silicate plate, and insulation board.
  • the main body 11 include, for example, light-proofness, incombustibility, sound absorbency, and heat-insulating properties.
  • the main body 11 may include at least light-proofness and incombustibility.
  • the light input/output portion 12 is, viewed in the thickness direction of construction component 10 , located within a circumferential periphery (an outer edge) of the main body 11 and is apart from the circumferential periphery of the main body 11 .
  • the light input/output portion 12 penetrates through a substantial center part of the main body 11 .
  • the outer peripheral shape of the light input/output portion 12 is circular.
  • the area of the light input/output portion 12 is, viewed in the thickness direction of the construction component 10 , suitably much more smaller than the area of the main body 11 .
  • the diameter of the light input/output portion 12 is equal to or less than one tenth of one side of the main body 11 , viewed in the thickness direction of the construction component 10 , suitably equal to or less than one twentieth, and more suitably equal to or less than one thirtieth.
  • the light input/output portion 12 has translucency so that part of the incident light L 1 (refer to FIG. 2 A ) can pass therethrough.
  • the incident light L 1 is emitted from the light source 2 , which is disposed out of the projection area A 10 , viewed from the target space S 1 , of the construction component 10 , and is incident on the construction component 10 via the light transmission member 3 .
  • the light input/output portion 12 emits the illumination light L 2 , which includes part of the incident light L 1 , toward the target space S 1 .
  • the illumination light L 2 may be white light.
  • the construction component 10 has a first function, a second function, and a third function.
  • the first function is a function of emitting the illumination light L 2 toward the target space S 1 .
  • the second function is a function of allowing the incident light L 1 to enter the construction component 10 .
  • the incident light L 1 is emitted from the light source 2 , which is disposed out of the projection area A 10 , viewed from the target space S 1 , of the construction component 10 , and is incident on the construction component 10 via the light transmission member 3 .
  • the third function is a function of converting the incident light L 1 into the illumination light L 2 .
  • the incident light L 1 is light with a high coherence (coherent light) and the illumination light L 2 is light with a low coherence (incoherent light).
  • the light input/output portion 12 has the first function, the second function, and the third function.
  • the feature that the light input/output portion 12 “has translucency” means that the ratio of the optical energy of the illumination light L 2 to the optical energy of the incident light L 1 incident on the light input/output portion 12 is equal to or more than 10%.
  • the ratio may be suitably equal to or more than 20%, and more suitably equal to or more than 40%.
  • the light input/output portion 12 includes a light-input portion 121 , a wavelength-converting portion 122 , and a light-outputting portion 123 .
  • the light-outputting portion 123 , the light-input portion 121 , and the wavelength-converting portion 122 has the first function, the second function, and the third function, respectively.
  • the third function includes a function of converting the incident light L 1 into the illumination light L 2 containing light having a wavelength different from that of the incident light L 1 .
  • the light-input portion 121 allows the incident light L 1 to enter the construction component 10 .
  • the incident light L 1 is incident on to the construction component 10 via the light transmission member 3 , and transmits the incident light L 1 to the wavelength-converting portion 122 .
  • the light-input portion 121 suitably has low reflectivity and absorptivity to the incident light L 1 .
  • the light-input portion 121 may include, for example, an optical connector to which the optical fiber connector is detachably connected, the optical fiber connector being connected to the second end 312 of optical fiber 31 .
  • the wavelength-converting portion 122 includes a light transmission material portion and fluorescent particles, for example.
  • the wavelength-converting portion 122 includes a mixture of the light transmission material portion and the fluorescent particles.
  • the wavelength-converting portion 122 includes the light transmission material portion containing a lot of fluorescent particles.
  • the material (light transmission material) of the light transmission material portion is suitably a material having a high transmittance for a visible light ray.
  • the light transmission material may be a silicone-based resin, for example. This allows the light input/output portion 12 to have improved heat proofness and weatherability of the wavelength-converting portion 122 .
  • Siliconone-based resin may be, for example, a silicone resin or a denatured silicone resin.
  • the wavelength-converting portion 122 includes, as a wavelength-converting element, fluorescent particles.
  • the wavelength-converting element converts a part of the incident light L 1 that has been supplied by the light-input portion 121 and emits the light having wavelength different from that of the incident light L 1 .
  • the fluorescent particles for example, yellow fluorescent particles radiating yellow light may be employed.
  • the light (fluorescence) emitted from the yellow fluorescent particles may, for example, suitably have an emission spectrum with a main light-emitting peak wavelength falling within the wavelength range from 530 nm to 580 nm.
  • the yellow fluorescent particles may be Y 3 Al 5 O 12 activated with Ce, for example. However, this is only an example and should not be construed as limiting.
  • the wavelength-converting portion 122 includes, as the wavelength-converting element, only yellow fluorescent particles. However, this is only an example and should not be construed as limiting.
  • the wavelength-converting portion 122 contains, for example, yellow fluorescent particles, yellow-green fluorescent particles, green fluorescent particles, and red fluorescent particles. In other words, the wavelength-converting portion 122 may include plural kinds of fluorescent particles.
  • the light-outputting portion 123 is made from a light transmission material that does not contain fluorescent particles.
  • the light transmission material may be a silicone resin, for example.
  • the light transmission material may contain, for example, a fluorine-based resin, low-melting point glass, or sol-gel glass.
  • the light transmission material may suitably include a material having a high transmittance for visible light.
  • the light-outputting portion 123 may include light scattering particles.
  • the light-outputting portion 123 may have a lens shape that can control light distribution of the illumination light L 2 to be emitted from the light-outputting portion 123 . Since the light-outputting portion 123 is in contact with the target space S 1 , the light-outputting portion 123 may include a reflection-reducing portion to reduce Fresnel reflection.
  • the reflection-reducing portion may be made from a material having a refractivity smaller than that of the light transmission material portion of the wavelength-converting portion 122 , or may be microscopic surface unevenness having a difference in height equal to or less than 200 nm, whichever is appropriate.
  • the illumination system 200 may further has a power supply unit.
  • the power supply unit supplies electric power to the laser light source 21 and other components.
  • the power supply unit may include a drive circuit for driving the laser light source 21 of the light source 2 and a control circuit for controlling the drive circuit. In the illumination system 200 , controlling of the drive circuit by the control circuit allows the light-output of the laser light source 21 to be adjusted, as a result of which the luminance (brightness) of the illumination light L 2 can be adjusted.
  • the power supply unit may be contained in the case 20 of the light source 2 . However, this is only an example and should not be construed as limiting. The power supply unit may not be contained in the case 20 . To the power supply unit, a power supply voltage may be supplied from the off-site source via wires.
  • the light source 2 (more specifically, the laser light source 21 ) emits light.
  • the light (blue light) emitted from the light source 2 is incident on the optical fiber 31 and transmitted through the optical fiber 31 , and is incident on the light input/output portion 12 of the construction component 10 .
  • the incident light L 1 which is light incident on the light input/output portion 12 , is converted into the illumination light L 2 , and the illumination light L 2 is emitted.
  • the illumination light L 2 may be a mixed light in which blue light and yellow light are mixed together.
  • the mixed light, which is emitted from the light input/output portion 12 is incoherent light.
  • the construction component 10 forms at least a part of the structure 1 that faces the target space S 1 .
  • the construction component 10 has the first function, the second function, and the third function.
  • the first function is a function of emitting the illumination light L 2 toward the target space S 1 .
  • the second function is a function of allowing the incident light L 1 to enter the construction component.
  • the incident light L 1 is emitted from the light source 2 disposed out of the projection area A 10 , viewed from the target space S 1 , of the construction component 10 , and is incident on the construction component 10 via the light transmission member 3 .
  • the third function is a function of converting the incident light L 1 into the illumination light L 2 .
  • the construction component 10 , the light radiating system 100 , and the illumination system 200 according to the first embodiment enable reducing the weight of the construction component 10 that emits the illumination light L 2 .
  • the construction component 10 converts, instead of light from a light-emitting diode (LED), the incident light from the laser light source 21 into the illumination light L 2 and emits the illumination light L 2 , in the light input/output portion 12 . This enables narrowing the light distribution angle of the illumination light L 2 .
  • LED light-emitting diode
  • the construction component 10 according to the first embodiment enables reducing the light input/output portion 12 in size and making the design of the construction component 10 even more impressive for the viewer.
  • the construction component 10 according to the first embodiment does not need the power supply, a degree of freedom is increased in construction.
  • the illumination system 200 according to the first embodiment allows the light source 2 , which needs to be supplied the electric power, to be located apart from the construction component 10 , thus improving maintainability of the light source 2 .
  • the illumination system 200 according to the first embodiment includes the plurality of construction components 10 and the plurality of light sources 2 , which corresponds to the construction components 10 , respectively.
  • the construction component 10 allows the light source 2 , which is included in the illumination system 200 , to be disposed out of the projection area A 10 of the construction component 10 , thus reducing a rise in temperature of the construction component 10 .
  • the illumination system 200 employs the laser light (coherent light) emitted from the laser light source 21 .
  • the coherent light has a high directivity, so it is suitable to be transmitted over a long distance in space and to be coupled to the optical fiber 31 . Accordingly, when the light source 2 is located out of the projection area A 10 of the construction component 10 , the illumination system 200 enables transmitting light efficiently into the projection area A 10 of construction component 10 to form the incident light L 1 .
  • the illumination light L 2 is incoherent light, so it is suitable for illuminating the target space S 1 uniformly.
  • the construction component 10 has the third function, a coherence-lowering function, of converting the coherent light (the incident light L 1 ) which is suitable for transmission, into the incoherent light (the illumination light L 2 ) which is suitable for illumination. This enables reducing the weight of the construction component 10 that emits the high-grade illumination light L 2 .
  • any constituent element of the illumination system 200 of the variation having the same function as a counterpart of the first embodiment, will be designated by the same reference numerals as that counterpart's, and description thereof will be omitted herein.
  • the illumination system 200 according to the variation is different from the illumination system 200 according to the first embodiment in that light is incident on a plurality of construction components 10 from one light source 2 .
  • the light source 2 includes a splitter that splits the light emitted from the laser light source 21 and makes the lights incident on a plurality of optical fibers 31 . In the illumination system 200 according to variation 1 , this facilitates constructing the structure 1 and the illumination system 200 , which include a plurality of construction components 10 .
  • the light source 2 may include a plurality of laser light sources 21 , and the laser light sources 21 and the optical fibers 31 may be connected with each other on a one-to-one basis.
  • the illumination system 200 according to the variation makes it possible to reduce the number of the light sources 2 , thus improving maintainability, compared to a case where the light sources 2 correspond to the construction components 10 on a one-to-one basis.
  • any constituent element of the construction component 10 a , the light radiating system 100 a , and the illumination system 200 a of the second embodiment, having the same function as a counterpart of the construction component 10 , the light radiating system 100 , and the illumination system 200 of the first embodiment described above, will be designated by the same reference numeral as that counterpart's, and description thereof will be omitted herein.
  • the construction component 10 a according to the second embodiment is different from the construction component 10 according to the first embodiment in that the construction component 10 a includes a plurality of (e.g., two in the example) light input/output portions 12 .
  • the light radiating system 100 a according to the second embodiment is different from the light radiating system 100 according to the first embodiment in that it includes the construction component 10 a , instead of the light radiating system 100 of the construction component 10 according to the first embodiment.
  • the illumination system 200 a according to the second embodiment is different from the illumination system 200 according to the first embodiment in that it includes the light radiating system 100 a , instead of the light radiating system 100 according to the first embodiment.
  • the light input/output portions 12 are apart from each other.
  • the light radiating system 100 a includes a plurality of optical fibers 31 corresponding to the plurality of the light input/output portions 12 on a one-to-one basis.
  • the light source 2 includes a distributor that makes the light emitted from one laser light source 21 incident on the plurality of optical fibers 31 .
  • the construction component 10 a according to the second embodiment forms, like the construction component 10 according to the first embodiment, at least a part of the structure 1 facing the target space S 1 .
  • the construction component 10 a has a first function, a second function, and a third function.
  • the first function is a function of emitting the illumination light L 2 toward target space S 1 .
  • the second function is a function of allowing the incident light L 1 to enter the construction component 10 a .
  • the incident light L 1 is emitted from the light source 2 disposed out of the projection area A 10 , viewed from the target space S 1 , of the construction component 10 a , and is incident on the construction component 10 a via the light transmission member 3 .
  • the third function is a function of converting the incident light L 1 into the illumination light L 2 .
  • the construction component 10 a , the light radiating system 100 a , and the illumination system 200 a according to second embodiment enable reducing the weight of the construction component 10 a that emits the illumination light L 2 from two points.
  • the construction component 10 a according to the second embodiment is configured to make lights from one light source 2 incident on the plurality of light input/output portions 12 . This enables improving ease of implication while the construction component 10 a having the plurality of light input/output portions 12 .
  • any constituent element of the construction component 10 b , the light radiating system 100 b , and the illumination system 200 b of the third embodiment, having the same function as a counterpart of the construction component 10 a , the light radiating system 100 a , and the illumination system 200 a of the second embodiment described above, will be designated by the same reference numeral as that counterpart's, and description thereof will be omitted herein.
  • the construction component 10 b according to the third embodiment is different from the construction component 10 a according to the second embodiment in that the plurality of light input/output portions 12 have light distribution characteristics different from each other.
  • the light radiating system 100 b according to the third embodiment is different from the light radiating system 100 a according to the second embodiment in that it includes the construction component 10 b , instead of the construction component 10 a of the light radiating system 100 a according to the second embodiment.
  • the illumination system 200 b according to the third embodiment is different from the illumination system 200 a according to the second embodiment in that it includes the light radiating system 100 b , instead of the light radiating system 100 a according to the second embodiment.
  • the light distribution angle of the illumination light L 2 emitted from the light input/output portion 12 on the left side in FIG. 6 is larger than the light distribution angle of the illumination light L 2 emitted from the light input/output portion 12 on the right side in FIG. 6 .
  • the light input/output portion 12 on the left side in FIG. 6 and the light input/output portion 12 on the right side in FIG. 6 include the light-outputting portions 123 having lens shapes different from each other, and thereby their light distribution angles of them are different from each other.
  • the illumination light L 2 emitted from the light input/output portion 12 on the left side in FIG. 6 may be utilized as an ambient illumination
  • the illumination light L 2 emitted from the light input/output portion 12 on the right side in FIG. 6 may be utilized as a task illumination. Accordingly, the construction component 10 b , the light radiating system 100 b , and the illumination system 200 b according to the third embodiment enable implementing a task ambient illumination.
  • the construction component 10 b according to the third embodiment forms, like the construction component 10 a according to the second embodiment, at least a part of the structure 1 facing the target space S 1 .
  • the construction component 10 b has a first function, a second function, and a third function.
  • the first function is a function of emitting the illumination light L 2 toward the target space S 1 .
  • the second function is a function of allowing the incident light L 1 to enter the construction component 10 b .
  • the incident light L 1 is emitted from the light source 2 disposed out of the projection area A 10 , viewed from the target space S 1 , of the construction component 10 b and is incident on the construction component 10 b via the light transmission member 3 .
  • the third function is a function of converting the incident light L 1 into the illumination light L 2 .
  • the construction component 10 b , the light radiating system 100 b , and the illumination system 200 b according to the third embodiment enable reducing the weight of the construction component 10 b that emits the illumination light L 2 from two points.
  • any constituent element of the construction component 10 c , the light radiating system 100 c , and the illumination system 200 c of the fourth embodiment, having the same function as a counterpart of the construction component 10 , the light radiating system 100 , and the illumination system 200 of the first embodiment described above, will be designated by the same reference numeral as that counterpart's, and description thereof will be omitted herein.
  • the construction component 10 c according to the fourth embodiment is different from the construction component 10 according to the first embodiment in that light coming from the light source 2 is incident on the construction component 10 c (e.g., its light input/output portion 12 ) via a light transmission member 3 c .
  • the light radiating system 100 c according to the fourth embodiment is different from the light radiating system 100 according to the first embodiment in that it includes the construction component 10 c and the light transmission member 3 c , instead of the construction component 10 and the light transmission member 3 of the light radiating system 100 according to the first embodiment.
  • the illumination system 200 c according to the fourth embodiment is different from the illumination system 200 according to the first embodiment in that it includes the light radiating system 100 c , instead of the light radiating system 100 according to the first embodiment.
  • the light transmission member 3 c includes a mirror 32 .
  • the mirror 32 is disposed, in a thickness direction of the construction component 10 c , opposite to the target space S 1 with reference to the construction component 10 c .
  • the mirror 32 is disposed close to the light-input portion 121 , away from the light-outputting portion 123 , of the light input/output portion 12 , and is disposed apart from the light input/output portion 12 in the thickness direction of the construction component 10 c .
  • the mirror 32 is disposed within the projection area A 10 along the thickness direction of the construction component 10 c , and is overlapped with the light input/output portion 12 in the thickness direction of the construction component 10 c .
  • the mirror 32 is disposed apart from the light source 2 in a direction perpendicular to the thickness direction of the construction component 10 c.
  • the mirror 32 is disposed so as to reflect the light, which is emitted from the light source 2 (e.g., its laser light source 21 ) and is transmitted through a space, toward the construction component 10 c (e.g., its light input/output portion 12 ).
  • the construction component 10 c has the second function of allowing the incident light L 1 to enter the construction component 10 c .
  • the incident light L 1 is emitted from the light source 2 disposed out of the projection area A 10 , viewed from the target space S 1 , of the construction component 10 c , and is incident on the construction component 10 c via the light transmission member 3 c .
  • the light transmission member 3 c does not include a member corresponding to the optical fiber 31 included in the light transmission member 3 of the light radiating system 100 and the illumination system 200 according to the first embodiment. Therefore, the light-input portion 121 , which has the second function, does not have an optical fiber connector.
  • the construction component 10 c according to the fourth embodiment forms, like the construction component 10 according to the first embodiment, at least a part of the structure 1 facing the target space S 1 .
  • the construction component 10 c has a first function, a second function, and a third function.
  • the first function is a function of emitting the illumination light L 2 toward the target space S 1 .
  • the second function is a function of allowing the incident light L 1 to enter the construction component 10 c .
  • the incident light L 1 is emitted from the light source 2 disposed out of projection area A 10 , viewed from the target space S 1 , of the construction component 10 c , and is incident on the construction component 10 c via the light transmission member 3 c .
  • the third function is a function of converting the incident light L 1 into the illumination light L 2 .
  • the construction component 10 c , the light radiating system 100 c , and the illumination system 200 c according to the fourth embodiment enable reducing the weight of the construction component 10 c that emits the illumination light L 2 .
  • any constituent element of the construction component 10 d , the light radiating system 100 d , and the illumination system 200 d of the fifth embodiment, having the same function as a counterpart of the construction component 10 c , the light radiating system 100 c , and the illumination system 200 c of the fourth embodiment described above, will be designated by the same reference numeral as that counterpart's, and description thereof will be omitted herein.
  • the incident light L 1 incident on the construction component 10 d is white light.
  • the incident light L 1 is emitted from the light source 2 disposed out of the projection area A 10 , viewed from the target space S 1 , of the construction component 10 d , and is incident on the construction component 10 d via the light transmission member 3 c.
  • the laser light source 21 of the light source 2 includes a first semiconductor laser that emits a red light ray, a second semiconductor laser that emits a green light ray, and a third semiconductor laser that emits a blue light ray to emit a white light ray containing a red light ray, a green light ray, and a blue light ray.
  • the light input/output portion 12 d does not include a member corresponding to the wavelength-converting portion 122 of the light input/output portion 12 of the construction component 10 c according to the fourth embodiment.
  • the construction component 10 d includes, in the light input/output portion 12 d , a first function, a second function, and a third function.
  • the first function is a function of emitting the illumination light L 2 toward the target space S 1 .
  • the second function is a function of allowing the incident light L 1 to enter the construction component 10 d .
  • the incident light L 1 is emitted from the light source 2 , which is disposed out of the projection area A 10 , viewed from the target space S 1 , of the construction component 10 d and is incident on the construction component 10 d via the light transmission member 3 c .
  • the third function is a function of converting the incident light L 1 into the illumination light L 2 .
  • the light input/output portion 12 d includes an optical diffusion element 124 disposed between the light-input portion 121 and the light-outputting portion 123 , instead of the wavelength-converting portion 122 of the construction component 10 c according to the fourth embodiment.
  • the optical diffusion element 124 is, for example, an optical diffusion plate made of glass.
  • the optical diffusion element 124 has the third function.
  • the third function includes a function of converting the incident light L 1 into the illumination light L 2 that has a light distribution characteristic different from that of the incident light L 1 . While the incident light L 1 is light with a high-coherence, the illumination light L 2 is light with a relatively low-coherence.
  • the construction component 10 d , the light radiating system 100 d , and the illumination system 200 d according to the fifth embodiment enable reducing the weight of the construction component 10 d that emits the illumination light L 2 .
  • the construction component 10 d according to the fifth embodiment does not include a member corresponding to the wavelength-converting portion 122 of the construction component 10 c , a temperature rise of the construction component 10 d is further reduced, so that its service life is extended compared to the construction component 10 c.
  • any constituent element of the construction component 10 e , the light radiating system 100 e , and the illumination system 200 e of the sixth embodiment, having the same function as a counterpart of the construction component 10 c , the light radiating system 100 c , and the illumination system 200 c of the fourth embodiment described above, will be designated by the same reference numeral as that counterpart's, and description thereof will be omitted herein.
  • the construction component 10 e according to the sixth embodiment is different from the construction component 10 c according to the fourth embodiment in that it includes a plurality of (e.g., two in the example) light input/output portions 12 .
  • the light radiating system 100 e according to the sixth embodiment is different from the light radiating system 100 c according to the fourth embodiment in that it includes the construction component 10 e , instead of the construction component 10 c of the light radiating system 100 c according to the fourth embodiment.
  • the illumination system 200 e according to the sixth embodiment is different from the illumination system 200 c according to the fourth embodiment in that it includes the light radiating system 100 e , instead of the light radiating system 100 c according to the fourth embodiment.
  • the light radiating system 100 e includes a light transmission member 3 e , instead of the light transmission member 3 c of the light radiating system 100 c according to the fourth embodiment.
  • the light transmission member 3 e includes a mirror 33 , instead of the mirror 32 included in the light transmission member 3 c .
  • the mirror 33 serves as a mirror that can sweep the light coming from the light source 2 over the construction component 10 e .
  • the mirror 33 allows the light from the light source 2 , as the incident light L 1 , to be incident selectively on any of the plurality of light input/output portions 12 of the construction component 10 e .
  • the mirror 33 is a micro-electromechanical systems (MEMS) mirror. However, this is only an example and should not be construed as limiting.
  • the mirror 33 may be a polygon mirror, for example.
  • the properties of the illumination light L 2 (referred to as a first illumination light L 21 ) to be emitted from a light input/output portion 12 on the left side in FIG. 9 is different from the properties of the illumination light L 2 (referred to as a second illumination light L 22 ) to be emitted from the light input/output portion 12 on the right side in FIG. 9 .
  • the property of the illumination light L 2 means color temperature. However, this is only an example and should not be construed as limiting.
  • the properties of the illumination light L 2 may include, for example, color rendering performance or light distribution angle.
  • the construction component 10 e according to the sixth embodiment forms, as the construction component 10 c according to the fourth embodiment 4 does, at least a part of the structure 1 that faces the target space S 1 .
  • the construction component 10 e has a first function, a second function, and a third function.
  • the first function is a function of emitting the illumination light L 2 toward the target space S 1 .
  • the second function is a function of allowing the incident light L 1 to enter the construction component 10 e .
  • the incident light L 1 is emitted from the light source 2 disposed out of the projection area A 10 , viewed from the target space S 1 , of the construction component 10 e , and is incident on the construction component 10 e via the light transmission member 3 e .
  • the third function is a function of converting the incident light L 1 into the illumination light L 2 .
  • first to sixth embodiments described above are only ones of various embodiments of the present disclosure and should not be construed as limiting. Rather, the first to sixth embodiments may be readily modified in various manners depending on a design choice or any other factor without departing from the scope of the present disclosure.
  • the outer peripheral shape of the light input/output portion 12 does not have to be circular. It may have, for example, an ellipse, rectangle, polygonal, or star shape.
  • the polygonal shape includes pentagon, and more.
  • the construction component 10 does not have to be a ceiling member. It may be, for example, a wall member, flooring, or a beam.
  • the construction component 10 has a panel shape when employed in a ceiling member, a wall member, or flooring.
  • the light source 2 may include, for example, a light emitting diode (LED) light source and an optical system, instead of the laser light source 21 .
  • the optical system collimates the light coming from the LED light source and emits the collimated light.
  • a construction component ( 10 ; 10 a ; 10 b ; 10 c ; 10 d ; 10 e ) forms at least a part of a structure ( 1 ) that faces a target space (S 1 ).
  • the construction component ( 10 ; 10 a ; 10 b ; 10 c ; 10 d ; 10 e ) includes a first function, a second function, and a third function.
  • the first function is a function of emitting illumination light (L 2 ) toward the target space (S 1 ).
  • the second function is a function of allowing incident light to enter the construction component ( 10 ; 10 a ; 10 b ; 10 c ; 10 d ; 10 e ).
  • the incident light is emitted from a light source ( 2 ) disposed out of a projection area (A 10 ), viewed from the target space (S 1 ), of the construction component ( 10 ; 10 a ; 10 b ; 10 c ; 10 d ; 10 e ), and is incident on the construction component ( 10 ; 10 a ; 10 b ; 10 c ; 10 d ; 10 e ) via a light transmission member ( 3 ; 3 c ; 3 e ).
  • the third function is a function of converting the incident light into the illumination light (L 2 ).
  • the construction component ( 10 ; 10 a ; 10 b ; 10 c ; 10 d ; 10 e ) according to the first aspect enables reducing the weight of the construction component ( 10 ; 10 a ; 10 b ; 10 c ; 10 d ; 10 e ) that can emit illumination light (L 2 ).
  • the light source ( 2 ) includes a laser light source ( 21 ).
  • the construction component ( 10 ; 10 a ; 10 b ; 10 c ; 10 d ; 10 e ) according to the second aspect enables reducing the weight of the construction component ( 10 ; 10 a ; 10 b ; 10 c ; 10 d ; 10 e ).
  • the light transmission member ( 3 ) includes an optical fiber ( 31 ).
  • the construction component ( 10 ; 10 a ; 10 b ) according to the third aspect enables increasing the flexibility of the arrangement of the construction component ( 10 ; 10 a ; 10 b ).
  • the light transmission member ( 3 c ; 3 e ) includes a mirror ( 32 ; 33 ).
  • the construction component ( 10 c ; 10 d ; 10 e ) according to the fourth aspect enables making the light coming from the light source ( 2 ) incident on the construction component ( 10 c ; 10 d ; 10 e ) without using an optical fiber.
  • the illumination light (L 2 ) may be a light having a spectrum different from that of the incident light (L 1 ).
  • a construction component ( 10 ; 10 a ; 10 b ; 10 c ; 10 d ; 10 e ) according to a seventh aspect, which may be implemented in conjunction with any one of the first to sixth aspects, the construction component ( 10 ; 10 a ; 10 b ; 10 c ; 10 d ; 10 e ) has a panel shape.
  • the construction component ( 10 ) according to the eighth aspect enables reducing the weight of the construction component ( 10 ; 10 a ; 10 b ; 10 c ; 10 d ; 10 e ), thus improving ease of implementation.
  • An illumination system ( 200 ; 200 a ; 200 b ; 200 c ; 200 d ; 200 e ) according to a tenth aspect includes the light radiating system ( 100 ; 100 a ; 100 b ; 100 c ; 100 d ; 100 e ) according to the ninth aspect, and a light source ( 2 ).
  • the construction component ( 10 ) includes a plurality of construction components ( 10 ).
  • the illumination system ( 200 ; 200 a ; 200 b ; 200 c ; 200 d ; 200 e ) is configured to allow light emitted from the light source ( 2 ), which is single, incident on the plurality of construction components ( 10 ; 10 a ; 10 b ; 10 c ; 10 d ; 10 e ).
  • the illumination system ( 200 ; 200 a ; 200 b ; 200 c ; 200 d ; 200 e ) enables realizing a task ambient illumination, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
US17/915,868 2020-03-31 2021-03-16 Construction component, light radiating system, and illumination system Active US11852316B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020-064786 2020-03-31
JP2020064786 2020-03-31
PCT/JP2021/010683 WO2021200128A1 (ja) 2020-03-31 2021-03-16 建材、光照射システム、及び照明システム

Publications (2)

Publication Number Publication Date
US20230151936A1 US20230151936A1 (en) 2023-05-18
US11852316B2 true US11852316B2 (en) 2023-12-26

Family

ID=77929325

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/915,868 Active US11852316B2 (en) 2020-03-31 2021-03-16 Construction component, light radiating system, and illumination system

Country Status (5)

Country Link
US (1) US11852316B2 (zh)
EP (1) EP4130568A4 (zh)
JP (1) JPWO2021200128A1 (zh)
CN (1) CN115398141A (zh)
WO (1) WO2021200128A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171386A1 (ja) * 2022-03-11 2023-09-14 パナソニックIpマネジメント株式会社 光システム

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100202A (ja) 1998-09-21 2000-04-07 Ohbayashi Corp タスクアンビエント照明システム
JP2000353407A (ja) 1999-06-09 2000-12-19 Toshiba Lighting & Technology Corp 照明装置
JP2001093303A (ja) 1999-09-28 2001-04-06 Toshiba Lighting & Technology Corp タスク・アンビエント照明器具
JP2010205482A (ja) 2009-03-02 2010-09-16 Toshiba Lighting & Technology Corp 照明器具
US20110122627A1 (en) 2008-06-04 2011-05-26 Koninklijke Philips Electronics N.V. Lighting apparatus
US20110279039A1 (en) 2010-05-17 2011-11-17 Sharp Kabushiki Kaisha Laser downlight and laser downlight system
JP2012182003A (ja) 2011-03-01 2012-09-20 Stanley Electric Co Ltd 照明装置
JP2013114982A (ja) 2011-11-30 2013-06-10 Konica Minolta Advanced Layers Inc 照明機能付き建築用パネル及び建築構造
US20130247352A1 (en) 2012-03-26 2013-09-26 Toshiba Lighting & Technology Corporation Method for Designing Indoor Lighting
DE102012206644A1 (de) 2012-04-23 2013-10-24 Osram Gmbh Beleuchtungssystem mit mindestens einer Beleuchtungseinheit
US20140016300A1 (en) * 2012-07-13 2014-01-16 Sharp Kabushiki Kaisha Light emitting device, illuminating apparatus, and light emitting method
JP2016096048A (ja) 2014-11-14 2016-05-26 パナソニック株式会社 照明システム
US20180017220A1 (en) 2016-07-12 2018-01-18 Panasonic Intellectual Property Management Co., Lt d. Light emitting apparatus

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100202A (ja) 1998-09-21 2000-04-07 Ohbayashi Corp タスクアンビエント照明システム
JP2000353407A (ja) 1999-06-09 2000-12-19 Toshiba Lighting & Technology Corp 照明装置
JP2001093303A (ja) 1999-09-28 2001-04-06 Toshiba Lighting & Technology Corp タスク・アンビエント照明器具
US20110122627A1 (en) 2008-06-04 2011-05-26 Koninklijke Philips Electronics N.V. Lighting apparatus
JP2010205482A (ja) 2009-03-02 2010-09-16 Toshiba Lighting & Technology Corp 照明器具
JP2011243376A (ja) 2010-05-17 2011-12-01 Sharp Corp レーザダウンライト及びレーザダウンライトシステム
US20110279039A1 (en) 2010-05-17 2011-11-17 Sharp Kabushiki Kaisha Laser downlight and laser downlight system
JP2012182003A (ja) 2011-03-01 2012-09-20 Stanley Electric Co Ltd 照明装置
JP2013114982A (ja) 2011-11-30 2013-06-10 Konica Minolta Advanced Layers Inc 照明機能付き建築用パネル及び建築構造
US20130247352A1 (en) 2012-03-26 2013-09-26 Toshiba Lighting & Technology Corporation Method for Designing Indoor Lighting
JP2013201088A (ja) 2012-03-26 2013-10-03 Toshiba Lighting & Technology Corp 屋内照明設計方法
DE102012206644A1 (de) 2012-04-23 2013-10-24 Osram Gmbh Beleuchtungssystem mit mindestens einer Beleuchtungseinheit
US20140016300A1 (en) * 2012-07-13 2014-01-16 Sharp Kabushiki Kaisha Light emitting device, illuminating apparatus, and light emitting method
JP2016096048A (ja) 2014-11-14 2016-05-26 パナソニック株式会社 照明システム
US20180017220A1 (en) 2016-07-12 2018-01-18 Panasonic Intellectual Property Management Co., Lt d. Light emitting apparatus

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Extended European Search Report dated Jul. 27, 2023 issued for the corresponding European Patent Application No. 21779041.9.
International Search Report dated May 18, 2021 issued in International Patent Application No. PCT/JP2021/010683, with English translation.
Notice of Reasons for Refusal received in Japanese Application No. 2022-511824, dated Oct. 16, 2023.

Also Published As

Publication number Publication date
WO2021200128A1 (ja) 2021-10-07
EP4130568A4 (en) 2023-08-30
EP4130568A1 (en) 2023-02-08
JPWO2021200128A1 (zh) 2021-10-07
CN115398141A (zh) 2022-11-25
US20230151936A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
JP5608752B2 (ja) 発光装置
KR102255641B1 (ko) 대면적 광원 및 대면적 조명기구
JP5097548B2 (ja) 照明システム
EP1776544B1 (en) Light engine
TWI542813B (zh) 光源
RU2605690C2 (ru) Светильник
JP6173456B2 (ja) 照明デバイス
RU2707185C2 (ru) Осветительное устройство
CN102483215A (zh) 带嵌入式光源的光导
US11852316B2 (en) Construction component, light radiating system, and illumination system
US9429294B2 (en) System for directional control of light and associated methods
US9075170B2 (en) Optical element
WO2023080066A1 (ja) 照明システム
US20240011606A1 (en) Lighting system
WO2014044513A1 (en) Led illumination device
TW202040054A (zh) 照明裝置
Cornelissen Ultra-thin LED optics with novel angular filters
JPWO2023080066A5 (zh)
KR20150103962A (ko) 면광원 유닛

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KITANO, HIROSHI;TANAKA, KENICHIRO;AKETA, TAKANORI;AND OTHERS;SIGNING DATES FROM 20220608 TO 20220610;REEL/FRAME:062205/0631

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: KRYSSE AS, NORWAY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THALBERG, ANDERS P.;REEL/FRAME:063428/0226

Effective date: 20230324

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE