US11673436B2 - Structures and methods providing tread sensor integration - Google Patents
Structures and methods providing tread sensor integration Download PDFInfo
- Publication number
- US11673436B2 US11673436B2 US17/252,869 US201917252869A US11673436B2 US 11673436 B2 US11673436 B2 US 11673436B2 US 201917252869 A US201917252869 A US 201917252869A US 11673436 B2 US11673436 B2 US 11673436B2
- Authority
- US
- United States
- Prior art keywords
- sensor element
- housing
- sensor
- circuit board
- tire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000010354 integration Effects 0.000 title description 6
- 239000000463 material Substances 0.000 claims abstract description 58
- 238000012544 monitoring process Methods 0.000 claims abstract description 33
- 230000004044 response Effects 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims description 29
- 238000000465 moulding Methods 0.000 claims description 4
- 238000001746 injection moulding Methods 0.000 claims description 2
- 238000004891 communication Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 238000004382 potting Methods 0.000 description 7
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 150000003071 polychlorinated biphenyls Chemical group 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/24—Wear-indicating arrangements
- B60C11/243—Tread wear sensors, e.g. electronic sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C23/00—Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
- B60C23/02—Signalling devices actuated by tyre pressure
- B60C23/04—Signalling devices actuated by tyre pressure mounted on the wheel or tyre
- B60C23/0408—Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
- B60C23/041—Means for supplying power to the signal- transmitting means on the wheel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C23/00—Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
- B60C23/02—Signalling devices actuated by tyre pressure
- B60C23/04—Signalling devices actuated by tyre pressure mounted on the wheel or tyre
- B60C23/0491—Constructional details of means for attaching the control device
- B60C23/0493—Constructional details of means for attaching the control device for attachment on the tyre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L17/00—Devices or apparatus for measuring tyre pressure or the pressure in other inflated bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
- B29C45/14639—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
- B29C45/14655—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/24—Wear-indicating arrangements
- B60C11/246—Tread wear monitoring systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C19/00—Tyre parts or constructions not otherwise provided for
- B60C2019/004—Tyre sensors other than for detecting tyre pressure
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/0701—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
- G06K19/0702—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including a battery
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2208—Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
- H01Q1/2241—Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in or for vehicle tyres
Definitions
- the present disclosure relates generally to tires, and more particularly, to tire sensors and related methods.
- tire pressure sensors may be provided in vehicle tires. Such sensors may be used to automatically monitor tire pressure, and a warning (e.g., a warning light) may be provided to the driver when low pressure is detected.
- a warning e.g., a warning light
- Other aspects of the tire may require manual monitoring and failure to adequately monitor such aspects may cause issues relating to safety. Accordingly, improved monitoring of vehicle tires may be desired.
- a tire monitoring system may include first and second sensor elements, a circuit board, and a housing.
- the circuitry board may include control circuitry coupled with at least one of the first and second sensor elements, wherein the control circuitry is configured to generate tire tread information based on an electrical response of at least one of the first and second sensor elements.
- the housing may include a housing material that surrounds the circuit board in a direction parallel with respect to a surface of the circuit board.
- a method may provide a tire monitoring system.
- First and second sensor elements may be provided, and a circuit board may be provided including control circuitry coupled with at least one of the first and second sensor elements.
- the control circuitry may be configured to generate tire tread information based on an electrical response of at least one of the first and second sensor elements.
- a housing may be formed on the circuit board using a housing material that surrounds the circuit board in a direction parallel with respect to a surface of the circuit board.
- FIG. 1 is a photograph illustrating a lid and a carrier according to some embodiments of inventive concepts together with a 1 Euro coin provided to illustrate scale;
- FIG. 2 is a photograph illustrating a rubber mount according to some embodiments of inventive concepts
- FIG. 3 is a cross-sectional/side view of a tread wear sensor mounted inside a carrier of FIG. 1 according to some embodiments of inventive concepts;
- FIG. 4 to a top view of a tread wear sensor of FIG. 3 according to some embodiments of inventive concepts
- FIG. 5 is a cross-sectional/side view of a tread wear sensor mounted in the carrier of FIG. 1 with a battery and a printed circuit board according to some embodiments of inventive concepts;
- FIG. 6 is a block diagram illustrating elements of a tire monitoring system according to some embodiments of inventive concepts
- FIGS. 7 A and 7 B are schematic diagrams illustrating operation of a tread wear sensor according to some embodiments of inventive concepts
- FIG. 8 illustrates a printed circuit board PCB that may be used according to some embodiments of inventive concepts
- FIG. 9 illustrates a dielectric substrate that may be used according to some embodiments of inventive concepts.
- FIG. 10 illustrates a battery that may be used according to some embodiments of inventive concepts
- FIG. 11 illustrates a housing that may be used according to some embodiments of inventive concepts
- FIG. 12 is a cross-sectional view of a sensor housing including a tire pressure monitoring system according to some embodiments of inventive concepts
- FIG. 13 illustrates top and bottom views of the sensor housing of FIG. 12 according to some embodiments of inventive concepts
- FIG. 14 is a cross-sectional view illustrating a sensor housing according to some embodiments of inventive concepts.
- FIG. 15 is a cross-sectional view of a sensor housing mounted on an inside surface of a tire according to some embodiments of inventive concepts.
- tire tread monitoring systems may be used to monitor vehicle tire tread wear.
- a tire tread monitoring system may use a sensor including two electrodes that may be formed, for example, by printing or other means on a rigid or flexible dielectric substrate.
- One approach for Tire Pressure Monitoring Systems TPMS is a package scheme like the one presented by VDO (http://www.vdo.com/passenger-cars/tire-pressure-monitoring-systems-tpms/the-vdo-redi-sensor/).
- VDO http://www.vdo.com/passenger-cars/tire-pressure-monitoring-systems-tpms/the-vdo-redi-sensor/.
- the TPMS sensors, battery, sense electronics and RF communications are all housed inside a small carrier roughly 1 inch in diameter as shown in FIG.
- a tread wear sensor may be mounted in the same carrier and share the power management and RF communications hardware used for TPMS.
- methods may be provided to integrate tire tread wear and pressure monitoring systems.
- 62/650,714 (“Structures and Methods Providing Sensor-Package Integration”) discusses integration of a tread sensor into a standard tire pressure monitoring system (TPMS) style package similar to that described by VDO.
- TPMS tire pressure monitoring system
- Tread wear sensor structures/designs and methods according to some embodiments disclosed herein may enable integration with a tire pressure monitor into a carrier/package.
- the tread wear sensor may be placed at the base of the carrier (also referred to as the bottom of the carrier) to position the sensor close to the inner tire surface.
- the battery may be placed at the bottom of the carrier.
- the tread wear sensor e.g., the tread wear sensor elements
- the tread wear sensor may be positioned between the battery and a base of the carrier. This design may position the tread wear sensor close to the tire surface (e.g., as close as possible) and may reduce/avoid RF (radio frequency) interference from the battery and/or electronics in the package.
- an epoxy or similar underfill or potting material may be used underneath and/or above the tread wear sensor to secure the tread wear sensor. In addition, this underfill/potting material may protect the tread wear sensor from harsh operating conditions including varying humidity and/or mechanical shock/vibration.
- the orientation of the tread wear sensor could be either upward facing or downward facing.
- FIG. 3 is a cross-sectional/side view of a tread wear sensor (labeled “sensor”) mounted inside the carrier of FIG. 1 .
- the tread wear sensor may be provided adjacent a base of the carrier, and an underfill/potting material may be provided on the tread wear sensor.
- sensor leads e.g., pigtail sensor leads
- FIG. 4 is a top view of the tread wear sensor of FIG. 3 in the carrier. For purposes of illustration, the tread wear sensor is shown through the underfill/potting material in FIG. 4 , but it will be understood that the underfill/potting material may cover the tread wear sensor (except for the pigtail sensor leads).
- the tread wear sensor may be encapsulated by applying a thin Kapton, PET (polyethylene terephthalate), or other layer over the top surface of the tread wear sensor after printing. This encapsulation may extend down the length of the leads but leave exposed the ends of the leads for subsequent electrical connection.
- Metal vias or feedthroughs may be provided in the tread wear sensor substrate (e.g., Kapton), particularly at the ends of the leads to improve subsequent electrical connection. These metal vias/feedthroughs may allow electrical and mechanical interface to the printed traces from either the top or bottom side of the sensor substrate.
- the sensor elements may be provided on a flexible sensor substrate, and mounted so that the sensor elements are between the flexible sensor substrate and the carrier base, and so that the sensor elements are between the flexible sensor substrate and the inner surface of the tire.
- a metal layer may be provided (e.g., as an RF ground plane) on the backside of the sensor substrate so that the sensor substrate is between the metal layer and the sensor elements.
- the sensor elements may be between the backside metal layer and the carrier base, and between the backside metal layer and the inner surface of the tire.
- a lid (e.g., as shown in FIG. 1 ) may be provided over the carrier of FIG. 5 to seal the tread wear sensor, battery, and PCB within the carrier/lid package, and the carrier base may be mounted on an inside surface of the tire to be monitored.
- the structure of FIG. 5 may thus be used to provide an integrated tread wear sensor and pressure monitor. While one PCB is shown in FIG. 5 for purposes of illustration, control circuitry may be provided using one or a plurality of PCBs.
- a pressure sensor e.g., a micro-electro-mechanical-system MEMS pressure sensor
- the PCB e.g., mounted on the PCB
- circuitry may be provided in/on the printed circuit board to provide controller 601 , wireless interface 603 , and/or pressure sensor 605 .
- Controller 601 and/or wireless interface 603 may be implemented using one or more integrated circuit devices that may be mounted (soldered) on PCB (or otherwise coupled with PCB).
- pressure sensor 605 may be a MEMS pressure sensor that is provided as a discrete device on/in the PCB, and/or pressure sensor 605 may be integrated with circuits used to provide controller 601 and/or wireless interface 603 .
- battery 609 may be positioned between the PCB and tread wear sensor 607 in the carrier, with the tread wear sensor positioned between battery 609 and the base of the carrier (which is mounted to the inside surface of the tire).
- Controller 601 may thus generate tire pressure information based on signals received from pressure sensor 605 , and controller 601 may thus generate tread wear information based on signals received from tread wear sensor 607 .
- the tire pressure information and/or tread wear information may thus be transmitted through wireless communication interface 603 (also referred to as a wireless interface circuit or wireless interface circuitry) to a receiver in the vehicle that provides the information to a controller in the vehicle.
- the wireless interface 603 may thus provide wireless communication (e.g., radio communication) with a receiver in the vehicle to facilitate wireless transmission of tire pressure and/or tread wear information from the spinning tire to the vehicle controller.
- the wireless interface 603 may also receive information (e.g., instructions) from a transmitter in the vehicle, such as instructions to transmit tire pressure and/or tread wear information. While pressure and tire wear sensors are discussed by way of example, other sensors (e.g., a temperature sensor) may also be included in the tire monitoring system. With a temperature sensor, for example, controller 601 may generate tire temperature information based on signals received from the temperature sensor, and controller 601 may transmit such temperature information through wireless communication interface 603 to the receiver in the vehicle.
- information e.g., instructions
- a transmitter in the vehicle such as instructions to transmit tire pressure and/or tread wear information.
- a temperature sensor e.g., a temperature sensor
- controller 601 may generate tire temperature information based on signals received from the temperature sensor, and controller 601 may transmit such temperature information through wireless communication interface 603 to the receiver in the vehicle.
- controller 601 may control wireless communication interface 603 to transmit communications (e.g., tread wear and/or tire pressure information) through wireless communication interface 603 over a radio interface to a vehicle receiver and/or to receive communications (e.g., requests for information) through wireless communication interface 603 from a vehicle transmitter over a radio interface.
- modules may be stored in memory, and these modules may provide instructions so that when instructions of a module are executed by controller 601 , controller 601 performs respective operations (e.g., operations discussed below with respect to the claims).
- the tread sensor also referred to as a tread wear sensor
- the tread wear sensor it's associated electronics, battery and communications chips are molded inside a rubber mount having outer dimensions similar to those shown in the “boot” of FIG. 2 , instead of placing the sensor inside a plastic housing including a lid and carrier of FIG. 1 .
- a custom Printed Circuit PC Board is illustrated in FIG. 8 according to some embodiments of inventive concepts.
- the custom PC board may include source electronic signal and sense, computation, RF data transmission and power management circuitry.
- Such circuitry may be provided using one or more discrete and/or integrated circuit (IC) electronic devices interconnected using conductive traces of the PC board.
- the PCB of FIG. 8 may provide circuitry as discussed above with respect to PCB of FIG. 5 and/or controller 601 of FIG. 6 .
- the sensor is illustrated in FIG. 9 according to some embodiments of inventive concepts.
- the sensor interfaces with the tire and is electrically connected to the PCB of FIG. 8 .
- the sensor includes two electrodes (Electrode 1 and Electrode 2 ) on a dielectric substrate, and the sensor may be mounted on an inside surface of the tire (opposite a tread block) so that the electrodes are between the dielectric substrate and the inside surface of the tire.
- the sensor (e.g., tread wear sensor or a tread monitoring sensor) of FIG. 9 may be provided using structures as discussed above, for example, with respect to FIGS. 3 , 4 , 5 , 6 , 7 A , and/or 7 B.
- FIGS. 11 , 12 , 13 and/or 14 A rubber housing or “boot” according to some embodiments of inventive concepts is illustrated in FIGS. 11 , 12 , 13 and/or 14 .
- the housing may be a rubber housing specific to the tread sensor components of FIGS. 8 - 10 , the rubber housing may be a shared housing for a TPMS system as shown in FIGS. 1 - 2 , and/or the rubber housing may be made of compliant materials other than rubber.
- a tire tread monitoring system may be mounted and/or encased inside a rubber housing (housing) or “boot.”
- the components encased in the housing may include the sensor, a battery and a PCB that includes circuitry for sensor drive and sense, power management and RF communication.
- the PCB may also include temperature, humidity, and/or pressure sensors.
- the sensor electrodes may be encased flush with the surface of the housing such that the sensor electrodes directly contact the tire surface upon mounting. In other embodiments, the electrodes might be fully encased in the housing and not directly in contact with the tire surface. As also shown in FIG.
- the battery may be mounted directly above the sensor and below the PCB. In another embodiment, the battery may by mounted above the PCB or to the side depending on the battery size and shape.
- FIG. 13 shows top and bottom views of the housing with the TPMS unit installed.
- FIG. 14 shows a cross section of some embodiments that do not include a TPMS unit.
- the housing may also provide a housing for a tire pressure monitoring sensor (TPMS).
- TPMS tire pressure monitoring sensor
- FIG. 13 the housing is shown to have a round shape but the shape may vary depending on sizes and shapes of tire tread sensor components.
- FIG. 12 is a cross sectional view of a sensor housing including a TPMS unit according to some embodiments.
- FIG. 13 provides top and bottom views of the sensor housing of FIG. 6 including a TPMS unit according to some embodiments.
- FIG. 14 is a cross sectional view of a sensor housing that includes only the TTMS components (without TPMS components) according to some embodiments.
- FIG. 15 is a cross sectional view of a sensor housing mounted inside a tire according to some embodiments.
- the housing of FIG. 12 may be formed by molding the housing material on/around the PCB, the battery, and/or the sensor (including sensor substrate and sensor electrodes). As shown, the housing material may extend between portions of the PCB and battery, between portions of the battery and the sensor, and/or between portions of the PCB and sensor. According to some other embodiments, the PCB, the battery, and/or the sensor may be bonded before forming the housing. For example, a bonding material (different than the housing material) may be used to bond the PCB, the battery, and/or the sensor, and then a molding process (e.g., an injection molding process) may be used to form the housing (also referred to as a boot).
- a bonding material may be used to bond the PCB, the battery, and/or the sensor
- a molding process e.g., an injection molding process
- the housing may include a recess to accept a tire pressure monitoring system TPMS (or portions thereof) that may be provided after forming the housing.
- a wireless communicative coupling may be provided between the TPMS and the PCB, or an electrical coupling may be provided through the housing between the TPMS and the PCB.
- a wireless communication interface of TPMS may be used to transmit tread wear information generated by PCB, and/or power may be provided from TPMS to PCB so that a battery is not required in the housing.
- TPMS, a wireless interface, and/or a power source may be provided separate from the housing, and an electrical coupling with the PCB may be provided through the housing.
- the tire monitoring system of FIG. 12 may thus include first and second sensor elements 1201 a and 1201 b , a printed circuit board PCB 1205 , and a housing 1209 .
- the circuit board 1205 may include control circuitry coupled with at least one of the first and second sensor elements 1201 a and/or 1201 b , where the control circuitry is configured to generate tire tread information based on an electrical response of at least one of the first and second sensor elements.
- the housing 1209 may include a housing material that surrounds the printed circuit board 1205 in a direction parallel with respect to a surface of the circuit board.
- the housing material for example, may be a compliant housing material, such as rubber, and the housing material may be molded around the printed circuit board 1205 .
- a power source 1211 e.g., a battery
- the housing material surrounds the power source (e.g., battery) in the direction parallel with respect to the surface of the printed circuit board 1205 .
- the power source may be between the printed circuit board 1205 and at least one of the first and second sensor elements 1201 a and/or 1201 b.
- the housing material of housing 1209 may define a base adapted to provide an interface with an inside surface of a tire, and respective surfaces of the first and second sensor elements 1201 a and 1201 b may be exposed through the base of the housing material.
- the housing material may define a base adapted to provide an interface with an inside surface of a tire, and respective surfaces of the first and second sensor elements 1201 a and 1201 b adjacent the base may be covered by the housing material.
- a wireless communication interface may be provided on the printed circuit board 1205 , and the wireless communication interface may be coupled with control circuitry on the printed circuit board 1205 .
- the wireless communication interface may be configured to wirelessly transmit the tread wear information to a remote receiver.
- at a least portion of the control circuitry and/or at least a portion of the wireless communication interface may be provided using one or more integrated circuit electronic devices mounted on the printed circuit board 1205 .
- a pressure sensor may also be coupled with the control circuitry, wherein the control circuitry is configured to generate tire pressure information based on an electrical response of the pressure sensor, and wherein the wireless communication interface is configured to wirelessly transmit the tire pressure information to the remote receiver.
- the pressure sensor for example, may be provided as a MEMS based pressure sensor on printed circuit board 1205 and/or in TPMS unit 1215 .
- sensor elements 1201 a and 1201 b may be provided on a dielectric sensor substrate 1219 , and the housing material and a material of the dielectric sensor substrate may be different. Moreover, at least a portion of the dielectric sensor substrate 1219 may be between the printed circuit board 1205 and at least one of the first and second sensor elements 1201 a and/or 1201 b . As discussed with respect to FIGS. 4 and 5 , first and second leads may extend through the housing material, wherein the first lead provides electrical coupling between the first sensor element 1201 a and the printed circuit board 1205 , and wherein the second lead provides electrical coupling between the second sensor element 1201 b and the printed circuit board 1205 .
- the terms “comprise”, “comprising”, “comprises”, “include”, “including”, “includes”, “have”, “has”, “having”, or variants thereof are open-ended, and include one or more stated features, integers, elements, steps, components or functions but does not preclude the presence or addition of one or more other features, integers, elements, steps, components, functions or groups thereof.
- the common abbreviation “e.g.”, which derives from the Latin phrase “exempli gratia,” may be used to introduce or specify a general example or examples of a previously mentioned item, and is not intended to be limiting of such item.
- the common abbreviation “i.e.”, which derives from the Latin phrase “id est,” may be used to specify a particular item from a more general recitation.
- top when an upper part of a drawing is referred to as a “top” and a lower part of a drawing is referred to as a “bottom” for the sake of convenience, in practice, the “top” may also be called a “bottom” and the “bottom” may also be a “top” without departing from the teachings of the inventive concept (e.g., if the structure is rotate 180 degrees relative to the orientation of the figure).
- Example embodiments are described herein with reference to block diagrams and/or flowchart illustrations of computer-implemented methods, apparatus (systems and/or devices) and/or computer program products. It is understood that a block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented by computer program instructions that are performed by one or more computer circuits.
- These computer program instructions may be provided to a processor circuit of a general purpose computer circuit, special purpose computer circuit, and/or other programmable data processing circuit to produce a machine, such that the instructions, which execute via the processor of the computer and/or other programmable data processing apparatus, transform and control transistors, values stored in memory locations, and other hardware components within such circuitry to implement the functions/acts specified in the block diagrams and/or flowchart block or blocks, and thereby create means (functionality) and/or structure for implementing the functions/acts specified in the block diagrams and/or flowchart block(s).
- inventions of present inventive concepts may be embodied in hardware and/or in software (including firmware, resident software, micro-code, etc.) that runs on a processor (also referred to as a controller) such as a digital signal processor, which may collectively be referred to as “circuitry,” “a module” or variants thereof.
- a processor also referred to as a controller
- a digital signal processor such as a digital signal processor
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Tires In General (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/252,869 US11673436B2 (en) | 2018-06-29 | 2019-06-25 | Structures and methods providing tread sensor integration |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862691948P | 2018-06-29 | 2018-06-29 | |
PCT/US2019/038872 WO2020005863A1 (en) | 2018-06-29 | 2019-06-25 | Structures and methods providing tread sensor integration |
US17/252,869 US11673436B2 (en) | 2018-06-29 | 2019-06-25 | Structures and methods providing tread sensor integration |
Publications (2)
Publication Number | Publication Date |
---|---|
US20210114419A1 US20210114419A1 (en) | 2021-04-22 |
US11673436B2 true US11673436B2 (en) | 2023-06-13 |
Family
ID=68986824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/252,869 Active 2039-07-25 US11673436B2 (en) | 2018-06-29 | 2019-06-25 | Structures and methods providing tread sensor integration |
Country Status (3)
Country | Link |
---|---|
US (1) | US11673436B2 (en) |
EP (1) | EP3814152A4 (en) |
WO (1) | WO2020005863A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020005863A1 (en) | 2018-06-29 | 2020-01-02 | Tyrata, Inc. | Structures and methods providing tread sensor integration |
US11614317B2 (en) | 2019-06-21 | 2023-03-28 | Tyrata, Inc. | Methods providing enhanced material thickness sensing with capacitive sensors using inductance-generated resonance and related devices |
NO346332B1 (en) * | 2020-02-18 | 2022-06-07 | Fyster As | Method and device for detecting wear of a tire |
US20240157736A1 (en) * | 2022-11-15 | 2024-05-16 | The Goodyear Tire & Rubber Company | Inclusion of a sensor in a tire |
Citations (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4847556A (en) | 1986-09-08 | 1989-07-11 | Langley Lawrence W | Eddy current clearance transducing system |
KR19990054760A (en) | 1997-12-26 | 1999-07-15 | 전주범 | Automatic detection of wear state of car tires |
US5942893A (en) | 1996-07-16 | 1999-08-24 | General Dynamics Advanced Technology Systems | Shielded eddy current sensor for enhanced sensitivity |
KR20000001076A (en) | 1998-06-08 | 2000-01-15 | 황헌 | Control apparatus of mushroom classifying system and method thereof |
US6087930A (en) | 1994-02-22 | 2000-07-11 | Computer Methods Corporation | Active integrated circuit transponder and sensor apparatus for transmitting vehicle tire parameter data |
FR2841826B1 (en) | 2002-07-04 | 2005-04-08 | Bosch Gmbh Robert | WHEEL AND PNEUMATIC ASSEMBLY FOR A MOTOR VEHICLE WITH WEAR INDICATOR, WEAR AND TIRE INDICATOR DEVICE FOR SUCH AN ASSEMBLY |
US6883962B2 (en) | 2000-03-17 | 2005-04-26 | Bridgestone Corporation | Tire wear forecasting method and apparatus |
KR20050043455A (en) | 2003-11-06 | 2005-05-11 | 한국타이어 주식회사 | Tread sample wear testing apparatus |
US6959592B2 (en) | 1999-12-22 | 2005-11-01 | Pirelli Pneumatici S.P.A. | Method and system for monitoring the deformations of a tire in motion |
US6963273B2 (en) | 2003-10-09 | 2005-11-08 | Michelin Recherche Et Technique S.A. | Thermal monitoring system for a tire |
KR100784278B1 (en) | 2006-11-20 | 2007-12-12 | 한국타이어 주식회사 | One-side wear valuation method using surface temperature measuring of tire tread |
US20080065290A1 (en) * | 2000-09-08 | 2008-03-13 | Automotive Technologies International, Inc. | Component Monitoring System |
WO2008061770A1 (en) | 2006-11-22 | 2008-05-29 | Kt Projektentwicklungs Gmbh | Device for measuring the tread depth of motor vehicle tyres |
US7404319B2 (en) | 2001-10-02 | 2008-07-29 | Michelin Recherche Et Technique S.A. | Method and device for the continuous measurement of the wear of a tire |
US20090000370A1 (en) | 2007-06-29 | 2009-01-01 | Robert Edward Lionetti | Tread depth sensing device and method for measuring same |
JP4206952B2 (en) | 2004-03-30 | 2009-01-14 | 能美防災株式会社 | Tire damage detection system |
EP1394503B1 (en) | 2002-08-29 | 2009-08-12 | MAHA Maschinenbau Haldenwang GmbH & Co. KG | Measuring device for profile depth |
US20090222165A1 (en) | 2008-02-15 | 2009-09-03 | Bayer Materialscience Ag | Industrial truck having a device for the wear reduction of wheels with cushion tires |
US20090261962A1 (en) | 2006-08-21 | 2009-10-22 | Thomas Buck | Tire Sensor Module and Method for its Manufacture |
DE102009034334A1 (en) | 2008-08-27 | 2010-03-11 | Continental Teves Ag & Co. Ohg | Wheel module e.g. tire module, for detecting tire condition variable in tire pressure monitoring system for motor vehicle, has electrically conductive connection provided between electrical or electronic components |
KR20100048133A (en) | 2008-10-30 | 2010-05-11 | 한국타이어 주식회사 | Method for evaluating tire surface wear |
US7775115B2 (en) | 2007-03-14 | 2010-08-17 | Infineon Technologies Ag | Sensor component and method for producing a sensor component |
US7814781B2 (en) | 2008-03-17 | 2010-10-19 | Infineon Technologies, Ag | Active and adaptive tire systems |
US8047068B2 (en) | 2008-08-01 | 2011-11-01 | Schrader Electronics, Inc. | Snap-in tire valve |
JP4905167B2 (en) | 2007-02-07 | 2012-03-28 | 横浜ゴム株式会社 | Tire uneven shape measuring device, tire uneven shape determining system, tire uneven shape measuring method, and tire uneven shape determining method |
CN102745025A (en) | 2012-03-13 | 2012-10-24 | 浙江吉利汽车研究院有限公司 | Vehicle tire monitoring apparatus and method thereof |
CN202641277U (en) | 2012-06-26 | 2013-01-02 | 江南大学 | Automobile tread temperature measuring and early-warning device |
US20130311130A1 (en) | 2011-02-14 | 2013-11-21 | The Secretary Of State For Business Innovation And Skills | Proximity sensor system |
DE202014007378U1 (en) | 2014-09-16 | 2014-09-29 | Maha Maschinenbau Haldenwang Gmbh & Co. Kg | Non-contact profile depth measuring device for motor vehicle tires |
US8868291B2 (en) | 2006-10-27 | 2014-10-21 | International Electronics Machines Corp. | Infrared data-based object evaluation |
JP2014227125A (en) | 2013-05-24 | 2014-12-08 | 太平洋工業株式会社 | Tire wear detection device |
KR101469714B1 (en) | 2013-07-03 | 2014-12-12 | 동의대학교 산학협력단 | System for checking tire uneven wear and method of the same |
TWM497599U (en) | 2014-08-05 | 2015-03-21 | Taipei Chengshih University Of Science & Technology | Tire thread inspection device |
US9029779B2 (en) | 2010-06-15 | 2015-05-12 | Michelin Recherche Et Technique S.A. | Tire surface anomaly detection |
TW201527141A (en) | 2014-01-15 | 2015-07-16 | Reduce Carbon Energy Develop Co Ltd | Tire tread pattern detection device |
US9085205B2 (en) | 2012-12-21 | 2015-07-21 | Continental Automotive Systems, Inc. | Tire tread temperature sensor and diagnostics for in-vehicle display |
TWM506723U (en) | 2014-10-20 | 2015-08-11 | Yong-Qing Lin | Tire tread pattern detection and warning system |
KR20150100438A (en) | 2014-02-25 | 2015-09-02 | 아주자동차대학 산학협력단 | Tire wear measurement system |
CN204632090U (en) | 2015-05-29 | 2015-09-09 | 北京信伦联创科技有限公司 | A kind of hand-held tire checking terminal for tyre managing |
KR101556354B1 (en) | 2015-03-02 | 2015-10-01 | 주식회사 다인 | Method for providing tire defect information using a portable terminal |
CN105082888A (en) | 2014-05-06 | 2015-11-25 | 低碳动能开发股份有限公司 | Tire thread detecting device |
US20160025585A1 (en) | 2012-12-21 | 2016-01-28 | Egil Dammen | Improved pressure sensor comprising a hermetic casing |
CN105445043A (en) | 2015-12-11 | 2016-03-30 | 山东永泰集团有限公司 | Tyre performance detection system |
US20160161243A1 (en) | 2013-07-26 | 2016-06-09 | Compagnie Generale Des Etablissements Michelin | System for measuring the thickness of a liner layer of a tire |
US9395275B2 (en) | 2012-09-27 | 2016-07-19 | Pirelli Tyre S.P.A. | Method for controlling the manufacturing of tyres for wheels of vehicles |
TWI562909B (en) | 2015-09-11 | 2016-12-21 | ||
CN106248402A (en) | 2016-09-29 | 2016-12-21 | 上海热像机电科技股份有限公司 | A kind of tire detecting system based on infrared thermal imaging technique and method |
CN106290452A (en) | 2016-08-25 | 2017-01-04 | 青岛励赫化工科技有限公司 | Conductive adhesive tape successional detection device in a kind of detection tire |
US20170124784A1 (en) | 2014-06-19 | 2017-05-04 | Neomatix Ltd. | System and method for multiple feature detection and analysis of a rotating tire |
US20170174014A1 (en) | 2015-12-22 | 2017-06-22 | Schrader Electronics Limited | Advanced Tire Monitoring System |
TWM547490U (en) | 2017-05-16 | 2017-08-21 | Nat Taichung Univ Of Science And Tech | Lane tire tread detection mechanism |
US20170254634A1 (en) * | 2016-03-07 | 2017-09-07 | Duke University | Non-Invasive Thickness Measurement Using Resonant Frequency Shift |
CN206504877U (en) | 2017-01-05 | 2017-09-19 | 福建慧舟信息科技有限公司 | A kind of tire wear monitor |
US20170301103A1 (en) | 2016-04-19 | 2017-10-19 | Butler Engineering And Marketing S.P.A. | Device and method for the analysis and detection of geometrical features of an object |
US20170307349A1 (en) | 2016-04-20 | 2017-10-26 | Duke University | Non-Invasive Thickness Measurement Using Capacitance Measurement |
EP3243671A1 (en) | 2016-05-11 | 2017-11-15 | Conti Temic microelectronic GmbH | Method and apparatus for classifying a tyre |
JP6231302B2 (en) | 2013-06-12 | 2017-11-15 | 株式会社ブリヂストン | Inspection assistance device |
US20170343337A1 (en) | 2016-05-26 | 2017-11-30 | Baumer Electric Ag | Sensor device for measuring a surface |
TWM558440U (en) | 2017-12-05 | 2018-04-11 | Point Virgule Marketing Inc | Tread depth measuring system |
GB2555604A (en) | 2016-11-03 | 2018-05-09 | Pre Chasm Res Ltd | Vehicle inspection methods and apparatus |
CN108088634A (en) | 2017-12-31 | 2018-05-29 | 广东驷泰麟科技有限公司 | Tire safety uses detection device |
US10068322B2 (en) | 2013-12-22 | 2018-09-04 | Analogic Corporation | Inspection system |
CN207881647U (en) | 2018-01-17 | 2018-09-18 | 厦门日上运通物联网有限公司 | A kind of pattern depth intelligent device for measuring |
KR101905127B1 (en) | 2017-01-19 | 2018-10-05 | 주식회사 인더핸즈 | 3d modeling based tire inspection system |
EP3265327B1 (en) | 2014-10-20 | 2018-10-10 | Pre-Chasm Research Limited | System for vehicle tyre inspection |
US10113855B2 (en) | 2013-06-20 | 2018-10-30 | Compagnie Generale Des Etablissements Michelin | System for determining the thickness of a layer of rubber for a tire |
CN108717027A (en) | 2018-05-30 | 2018-10-30 | 重庆沐信润喆网络科技有限公司 | A kind of automation degree of tire abrasion test device |
JP6416769B2 (en) | 2013-09-18 | 2018-10-31 | 株式会社シーパーツ | Tire management system, tire data collection device, and tire data collection method. |
WO2019191246A1 (en) | 2018-03-30 | 2019-10-03 | Tyrata, Inc. | Structures and methods providing sensor-package integration |
WO2019221879A1 (en) | 2018-05-14 | 2019-11-21 | Tyrata, Inc. | Structures and methods providing tire sensor alignment |
WO2019241118A1 (en) | 2018-06-12 | 2019-12-19 | Tyrata, Inc. | Methods of measuring tire tread thickness using dual sensors and/or differential measurement and related monitoring systems |
WO2019241368A1 (en) | 2018-06-14 | 2019-12-19 | Tyrata, Inc. | Methods of measuring and/or mapping tire tread thickness from outside the tire and related devices/systems |
WO2020005863A1 (en) | 2018-06-29 | 2020-01-02 | Tyrata, Inc. | Structures and methods providing tread sensor integration |
WO2020086698A1 (en) | 2018-10-25 | 2020-04-30 | Tyrata, Inc. | Methods and systems used to measure tire treads |
WO2020154145A1 (en) | 2019-01-22 | 2020-07-30 | Tyrata, Inc. | Tire structures including magnets and/or magnetically conductive material and related tire assemblies and tread monitoring systems |
-
2019
- 2019-06-25 WO PCT/US2019/038872 patent/WO2020005863A1/en active Application Filing
- 2019-06-25 EP EP19826219.8A patent/EP3814152A4/en active Pending
- 2019-06-25 US US17/252,869 patent/US11673436B2/en active Active
Patent Citations (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4847556A (en) | 1986-09-08 | 1989-07-11 | Langley Lawrence W | Eddy current clearance transducing system |
US6087930A (en) | 1994-02-22 | 2000-07-11 | Computer Methods Corporation | Active integrated circuit transponder and sensor apparatus for transmitting vehicle tire parameter data |
US5942893A (en) | 1996-07-16 | 1999-08-24 | General Dynamics Advanced Technology Systems | Shielded eddy current sensor for enhanced sensitivity |
KR19990054760A (en) | 1997-12-26 | 1999-07-15 | 전주범 | Automatic detection of wear state of car tires |
KR20000001076A (en) | 1998-06-08 | 2000-01-15 | 황헌 | Control apparatus of mushroom classifying system and method thereof |
US6959592B2 (en) | 1999-12-22 | 2005-11-01 | Pirelli Pneumatici S.P.A. | Method and system for monitoring the deformations of a tire in motion |
US6883962B2 (en) | 2000-03-17 | 2005-04-26 | Bridgestone Corporation | Tire wear forecasting method and apparatus |
US20080065290A1 (en) * | 2000-09-08 | 2008-03-13 | Automotive Technologies International, Inc. | Component Monitoring System |
US7404319B2 (en) | 2001-10-02 | 2008-07-29 | Michelin Recherche Et Technique S.A. | Method and device for the continuous measurement of the wear of a tire |
FR2841826B1 (en) | 2002-07-04 | 2005-04-08 | Bosch Gmbh Robert | WHEEL AND PNEUMATIC ASSEMBLY FOR A MOTOR VEHICLE WITH WEAR INDICATOR, WEAR AND TIRE INDICATOR DEVICE FOR SUCH AN ASSEMBLY |
EP1394503B1 (en) | 2002-08-29 | 2009-08-12 | MAHA Maschinenbau Haldenwang GmbH & Co. KG | Measuring device for profile depth |
US6963273B2 (en) | 2003-10-09 | 2005-11-08 | Michelin Recherche Et Technique S.A. | Thermal monitoring system for a tire |
KR20050043455A (en) | 2003-11-06 | 2005-05-11 | 한국타이어 주식회사 | Tread sample wear testing apparatus |
JP4206952B2 (en) | 2004-03-30 | 2009-01-14 | 能美防災株式会社 | Tire damage detection system |
US20090261962A1 (en) | 2006-08-21 | 2009-10-22 | Thomas Buck | Tire Sensor Module and Method for its Manufacture |
US8868291B2 (en) | 2006-10-27 | 2014-10-21 | International Electronics Machines Corp. | Infrared data-based object evaluation |
KR100784278B1 (en) | 2006-11-20 | 2007-12-12 | 한국타이어 주식회사 | One-side wear valuation method using surface temperature measuring of tire tread |
WO2008061770A1 (en) | 2006-11-22 | 2008-05-29 | Kt Projektentwicklungs Gmbh | Device for measuring the tread depth of motor vehicle tyres |
JP4905167B2 (en) | 2007-02-07 | 2012-03-28 | 横浜ゴム株式会社 | Tire uneven shape measuring device, tire uneven shape determining system, tire uneven shape measuring method, and tire uneven shape determining method |
US7775115B2 (en) | 2007-03-14 | 2010-08-17 | Infineon Technologies Ag | Sensor component and method for producing a sensor component |
US20090000370A1 (en) | 2007-06-29 | 2009-01-01 | Robert Edward Lionetti | Tread depth sensing device and method for measuring same |
US7578180B2 (en) | 2007-06-29 | 2009-08-25 | The Goodyear Tire & Rubber Company | Tread depth sensing device and method for measuring same |
US20090222165A1 (en) | 2008-02-15 | 2009-09-03 | Bayer Materialscience Ag | Industrial truck having a device for the wear reduction of wheels with cushion tires |
US7814781B2 (en) | 2008-03-17 | 2010-10-19 | Infineon Technologies, Ag | Active and adaptive tire systems |
US8047068B2 (en) | 2008-08-01 | 2011-11-01 | Schrader Electronics, Inc. | Snap-in tire valve |
DE102009034334A1 (en) | 2008-08-27 | 2010-03-11 | Continental Teves Ag & Co. Ohg | Wheel module e.g. tire module, for detecting tire condition variable in tire pressure monitoring system for motor vehicle, has electrically conductive connection provided between electrical or electronic components |
KR20100048133A (en) | 2008-10-30 | 2010-05-11 | 한국타이어 주식회사 | Method for evaluating tire surface wear |
US9029779B2 (en) | 2010-06-15 | 2015-05-12 | Michelin Recherche Et Technique S.A. | Tire surface anomaly detection |
US20130311130A1 (en) | 2011-02-14 | 2013-11-21 | The Secretary Of State For Business Innovation And Skills | Proximity sensor system |
CN102745025A (en) | 2012-03-13 | 2012-10-24 | 浙江吉利汽车研究院有限公司 | Vehicle tire monitoring apparatus and method thereof |
CN202641277U (en) | 2012-06-26 | 2013-01-02 | 江南大学 | Automobile tread temperature measuring and early-warning device |
US9395275B2 (en) | 2012-09-27 | 2016-07-19 | Pirelli Tyre S.P.A. | Method for controlling the manufacturing of tyres for wheels of vehicles |
US20160025585A1 (en) | 2012-12-21 | 2016-01-28 | Egil Dammen | Improved pressure sensor comprising a hermetic casing |
US9085205B2 (en) | 2012-12-21 | 2015-07-21 | Continental Automotive Systems, Inc. | Tire tread temperature sensor and diagnostics for in-vehicle display |
JP2014227125A (en) | 2013-05-24 | 2014-12-08 | 太平洋工業株式会社 | Tire wear detection device |
JP6231302B2 (en) | 2013-06-12 | 2017-11-15 | 株式会社ブリヂストン | Inspection assistance device |
US10113855B2 (en) | 2013-06-20 | 2018-10-30 | Compagnie Generale Des Etablissements Michelin | System for determining the thickness of a layer of rubber for a tire |
KR101469714B1 (en) | 2013-07-03 | 2014-12-12 | 동의대학교 산학협력단 | System for checking tire uneven wear and method of the same |
US20160161243A1 (en) | 2013-07-26 | 2016-06-09 | Compagnie Generale Des Etablissements Michelin | System for measuring the thickness of a liner layer of a tire |
JP6416769B2 (en) | 2013-09-18 | 2018-10-31 | 株式会社シーパーツ | Tire management system, tire data collection device, and tire data collection method. |
US10068322B2 (en) | 2013-12-22 | 2018-09-04 | Analogic Corporation | Inspection system |
TW201527141A (en) | 2014-01-15 | 2015-07-16 | Reduce Carbon Energy Develop Co Ltd | Tire tread pattern detection device |
KR20150100438A (en) | 2014-02-25 | 2015-09-02 | 아주자동차대학 산학협력단 | Tire wear measurement system |
CN105082888A (en) | 2014-05-06 | 2015-11-25 | 低碳动能开发股份有限公司 | Tire thread detecting device |
US20170124784A1 (en) | 2014-06-19 | 2017-05-04 | Neomatix Ltd. | System and method for multiple feature detection and analysis of a rotating tire |
TWM497599U (en) | 2014-08-05 | 2015-03-21 | Taipei Chengshih University Of Science & Technology | Tire thread inspection device |
DE202014007378U1 (en) | 2014-09-16 | 2014-09-29 | Maha Maschinenbau Haldenwang Gmbh & Co. Kg | Non-contact profile depth measuring device for motor vehicle tires |
TWM506723U (en) | 2014-10-20 | 2015-08-11 | Yong-Qing Lin | Tire tread pattern detection and warning system |
EP3265327B1 (en) | 2014-10-20 | 2018-10-10 | Pre-Chasm Research Limited | System for vehicle tyre inspection |
KR101556354B1 (en) | 2015-03-02 | 2015-10-01 | 주식회사 다인 | Method for providing tire defect information using a portable terminal |
CN204632090U (en) | 2015-05-29 | 2015-09-09 | 北京信伦联创科技有限公司 | A kind of hand-held tire checking terminal for tyre managing |
TWI562909B (en) | 2015-09-11 | 2016-12-21 | ||
CN105445043A (en) | 2015-12-11 | 2016-03-30 | 山东永泰集团有限公司 | Tyre performance detection system |
US20170174014A1 (en) | 2015-12-22 | 2017-06-22 | Schrader Electronics Limited | Advanced Tire Monitoring System |
US9797703B2 (en) | 2016-03-07 | 2017-10-24 | Duke University | Non-invasive thickness measurement using resonant frequency shift |
US20170254634A1 (en) * | 2016-03-07 | 2017-09-07 | Duke University | Non-Invasive Thickness Measurement Using Resonant Frequency Shift |
US20170301103A1 (en) | 2016-04-19 | 2017-10-19 | Butler Engineering And Marketing S.P.A. | Device and method for the analysis and detection of geometrical features of an object |
US20170307349A1 (en) | 2016-04-20 | 2017-10-26 | Duke University | Non-Invasive Thickness Measurement Using Capacitance Measurement |
EP3243671A1 (en) | 2016-05-11 | 2017-11-15 | Conti Temic microelectronic GmbH | Method and apparatus for classifying a tyre |
US20170343337A1 (en) | 2016-05-26 | 2017-11-30 | Baumer Electric Ag | Sensor device for measuring a surface |
CN106290452A (en) | 2016-08-25 | 2017-01-04 | 青岛励赫化工科技有限公司 | Conductive adhesive tape successional detection device in a kind of detection tire |
CN106248402A (en) | 2016-09-29 | 2016-12-21 | 上海热像机电科技股份有限公司 | A kind of tire detecting system based on infrared thermal imaging technique and method |
GB2555604A (en) | 2016-11-03 | 2018-05-09 | Pre Chasm Res Ltd | Vehicle inspection methods and apparatus |
CN206504877U (en) | 2017-01-05 | 2017-09-19 | 福建慧舟信息科技有限公司 | A kind of tire wear monitor |
KR101905127B1 (en) | 2017-01-19 | 2018-10-05 | 주식회사 인더핸즈 | 3d modeling based tire inspection system |
TWM547490U (en) | 2017-05-16 | 2017-08-21 | Nat Taichung Univ Of Science And Tech | Lane tire tread detection mechanism |
TWM558440U (en) | 2017-12-05 | 2018-04-11 | Point Virgule Marketing Inc | Tread depth measuring system |
CN108088634A (en) | 2017-12-31 | 2018-05-29 | 广东驷泰麟科技有限公司 | Tire safety uses detection device |
CN207881647U (en) | 2018-01-17 | 2018-09-18 | 厦门日上运通物联网有限公司 | A kind of pattern depth intelligent device for measuring |
WO2019191246A1 (en) | 2018-03-30 | 2019-10-03 | Tyrata, Inc. | Structures and methods providing sensor-package integration |
WO2019221879A1 (en) | 2018-05-14 | 2019-11-21 | Tyrata, Inc. | Structures and methods providing tire sensor alignment |
CN108717027A (en) | 2018-05-30 | 2018-10-30 | 重庆沐信润喆网络科技有限公司 | A kind of automation degree of tire abrasion test device |
WO2019241118A1 (en) | 2018-06-12 | 2019-12-19 | Tyrata, Inc. | Methods of measuring tire tread thickness using dual sensors and/or differential measurement and related monitoring systems |
WO2019241368A1 (en) | 2018-06-14 | 2019-12-19 | Tyrata, Inc. | Methods of measuring and/or mapping tire tread thickness from outside the tire and related devices/systems |
WO2020005863A1 (en) | 2018-06-29 | 2020-01-02 | Tyrata, Inc. | Structures and methods providing tread sensor integration |
WO2020086698A1 (en) | 2018-10-25 | 2020-04-30 | Tyrata, Inc. | Methods and systems used to measure tire treads |
WO2020154145A1 (en) | 2019-01-22 | 2020-07-30 | Tyrata, Inc. | Tire structures including magnets and/or magnetically conductive material and related tire assemblies and tread monitoring systems |
Non-Patent Citations (2)
Title |
---|
European Search Report for European Patent Application No. 19826219.8, dated Sep. 22, 2021, 7 pages. |
International Search Report and Written Opinion of the International Searching Authority, PCT/US2019/038872, dated Sep. 11, 2019, 8 pages. |
Also Published As
Publication number | Publication date |
---|---|
EP3814152A1 (en) | 2021-05-05 |
EP3814152A4 (en) | 2021-10-20 |
WO2020005863A1 (en) | 2020-01-02 |
US20210114419A1 (en) | 2021-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11673436B2 (en) | Structures and methods providing tread sensor integration | |
US7775115B2 (en) | Sensor component and method for producing a sensor component | |
US6031459A (en) | Wireless communication devices, radio frequency identification devices, and methods of forming wireless communication devices and radio frequency identification devices | |
CN106024772B (en) | Proximity and ranging sensor | |
US6534711B1 (en) | Encapsulation package and method of packaging an electronic circuit module | |
EP1078559B1 (en) | Encapsulation package and method of packaging an electronic circuit module | |
US7391325B2 (en) | Multifunctional multichip system for wireless sensing | |
US9933286B2 (en) | Sensor and method for producing a sensor | |
US8988207B2 (en) | Information acquiring device | |
US20150117681A1 (en) | Acoustic Assembly and Method of Manufacturing The Same | |
US7474039B2 (en) | Electronic module including piezoelectric device | |
US7474814B2 (en) | Optical device, optical connector, electronic device, and electronic equipment | |
WO2019241118A1 (en) | Methods of measuring tire tread thickness using dual sensors and/or differential measurement and related monitoring systems | |
US20080236307A1 (en) | Sensor apparatus | |
CN109428142B (en) | Waveguide coupling structure, high-frequency radar module and filling level radar | |
SG179365A1 (en) | Device for use as dual-sided sensor package | |
US11538774B2 (en) | Wireless transmission module and manufacturing method | |
WO2019221879A1 (en) | Structures and methods providing tire sensor alignment | |
WO2019191246A1 (en) | Structures and methods providing sensor-package integration | |
KR102420287B1 (en) | Packaged devices with integrated antennas | |
CN111585003B (en) | IC packaging radio frequency structure and manufacturing method thereof | |
KR101559154B1 (en) | Pressure sensor package and manufacturing method thereof | |
CN207066666U (en) | Sensor | |
KR101696638B1 (en) | Sensor package and method of manufacturing same | |
KR102437886B1 (en) | Communication module package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TYRATA, INC., NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOESTER, DAVID ALAN;SUMMERS III, JAMES BARTON;SIGNING DATES FROM 20190710 TO 20190715;REEL/FRAME:054667/0838 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: BRIDGESTONE AMERICAS, INC., TENNESSEE Free format text: SECURITY INTEREST;ASSIGNOR:TYRATA, INC.;REEL/FRAME:059128/0947 Effective date: 20220218 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: BRIDGESTONE AMERICAS, INC., TENNESSEE Free format text: ASSET PURCHASE AGREEMENT;ASSIGNOR:TYRATA, INC.;REEL/FRAME:065761/0257 Effective date: 20231031 |