US11626500B2 - Semiconductor device including gate oxide layer and manufacturing method thereof - Google Patents

Semiconductor device including gate oxide layer and manufacturing method thereof Download PDF

Info

Publication number
US11626500B2
US11626500B2 US17/369,985 US202117369985A US11626500B2 US 11626500 B2 US11626500 B2 US 11626500B2 US 202117369985 A US202117369985 A US 202117369985A US 11626500 B2 US11626500 B2 US 11626500B2
Authority
US
United States
Prior art keywords
oxide layer
gate oxide
source
layer
doped region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/369,985
Other versions
US20220376071A1 (en
Inventor
Ming-Hua Tsai
Jung Han
Ming-Chi Li
Chih-Mou Lin
Yu-Hsiang Hung
Yu-Hsiang Lin
Tzu-Lang Shih
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Assigned to UNITED MICROELECTRONICS CORP. reassignment UNITED MICROELECTRONICS CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUNG, YU-HSIANG, HAN, JUNG, LI, MING-CHI, LIN, CHIH-MOU, LIN, YU-HSIANG, SHIH, TZU-LANG, TSAI, MING-HUA
Publication of US20220376071A1 publication Critical patent/US20220376071A1/en
Priority to US18/078,057 priority Critical patent/US12057483B2/en
Priority to US18/115,780 priority patent/US20230207647A1/en
Application granted granted Critical
Publication of US11626500B2 publication Critical patent/US11626500B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823462MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly, to a semiconductor device including a gate oxide layer and a manufacturing method thereof.
  • transistors may be different from one another in structure for different operation voltages.
  • the transistors for relatively low operation voltage may be applied in core devices, input/output (I/O) devices, and so on.
  • the transistors capable of high voltage processing may be applied in high operation voltage environment such as CPU power supply, power management system, AC/DC converter, and high-power or high frequency (HF) band power amplifier.
  • HF high frequency
  • a semiconductor device and a manufacturing method thereof are provided in the present invention.
  • a gate oxide layer having a sloping sidewall is used to improve leakage current issue of the semiconductor device.
  • a semiconductor device includes a semiconductor substrate, a first gate oxide layer, a and first source/drain doped region.
  • the first gate oxide layer is disposed on the semiconductor substrate.
  • the first gate oxide layer includes a main portion and an edge portion, and the edge portion has a sloping sidewall.
  • the first source/drain doped region is disposed in the semiconductor substrate and located adjacent to the edge portion of the first gate oxide layer.
  • the first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.
  • a manufacturing method of a semiconductor device includes the following steps.
  • a first gate oxide layer is formed on a semiconductor substrate.
  • the first gate oxide layer includes a main portion and an edge portion, and the edge portion has a sloping sidewall.
  • a first source/drain doped region is formed in the semiconductor substrate, and the first source/drain doped region is disposed adjacent to the edge portion of the first gate oxide layer.
  • the first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.
  • FIG. 1 is a schematic drawing illustrating a semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic drawing illustrating a first transistor structure according to the first embodiment of the present invention.
  • FIGS. 3 - 10 are schematic drawings illustrating a manufacturing method of a semiconductor device according to an embodiment of the present invention, wherein FIG. 4 is a schematic drawing in a step subsequent to FIG. 3 , FIG. 5 is a schematic drawing in a step subsequent to FIG. 4 , FIG. 6 is a schematic drawing in a step subsequent to FIG. 5 , FIG. 7 is a schematic drawing in a step subsequent to FIG. 6 , FIG. 8 is a schematic drawing in a step subsequent to FIG. 7 , FIG. 9 is a schematic drawing in a step subsequent to FIG. 8 , and FIG. 10 is a schematic drawing in a step subsequent to FIG. 9 .
  • FIG. 11 is a schematic drawing illustrating a semiconductor device according to a second embodiment of the present invention.
  • on not only means “directly on” something but also includes the meaning of “on” something with an intermediate feature or a layer therebetween, and that “above” or “over” not only means the meaning of “above” or “over” something but can also include the meaning it is “above” or “over” something with no intermediate feature or layer therebetween (i.e., directly on something).
  • etch is used herein to describe the process of patterning a material layer so that at least a portion of the material layer after etching is retained.
  • etching a material layer
  • at least a portion of the material layer is retained after the end of the treatment.
  • the material layer is “removed”, substantially all the material layer is removed in the process.
  • “removal” is considered to be a broad term and may include etching.
  • forming or the term “disposing” are used hereinafter to describe the behavior of applying a layer of material to the substrate. Such terms are intended to describe any possible layer forming techniques including, but not limited to, thermal growth, sputtering, evaporation, chemical vapor deposition, epitaxial growth, electroplating, and the like.
  • FIG. 1 is a schematic drawing illustrating a semiconductor device 101 according to a first embodiment of the present invention
  • FIG. 2 is a schematic drawing illustrating a first transistor structure T 1 in this embodiment
  • FIG. 2 may be regarded as an enlarged diagram of the left half of FIG. 1
  • the semiconductor device 101 is provided in this embodiment, and the semiconductor device 101 includes a semiconductor substrate 10 , a first gate oxide layer 22 , a and first source/drain doped region 42 .
  • the first gate oxide layer 22 is disposed on the semiconductor substrate 10 .
  • the first gate oxide layer 22 includes a main portion 22 B and an edge portion 22 A, and the edge portion 22 A has a sloping sidewall SW.
  • the first source/drain doped region 42 is disposed in the semiconductor substrate 10 and located adjacent to the edge portion 22 A of the first gate oxide layer 22 .
  • the first source/drain doped region 42 includes a first portion 42 A and a second portion 42 B.
  • the second portion 42 B is connected with the first portion 42 A, and the first portion 42 A is disposed under the edge portion 22 A of the first gate oxide layer 22 in a vertical direction (such as a first direction D 1 sown in FIG. 1 ).
  • the process of forming the first source/drain doped region 42 may be influenced by the edge portion 22 A having the sloping sidewall SW for forming the first portion 42 A of the first source/drain doped region 42 correspondingly. Therefore, the range and the shape of the first source/drain doped region 42 may be controlled via the first gate oxide layer 22 having the sloping sidewall SW, and the electrical performance of the semiconductor device 101 may be improved accordingly.
  • the first direction D 1 described above may be regarded as a thickness direction of the semiconductor substrate 10 , and the semiconductor substrate 10 may have a top surface TS and a bottom surface BS opposite to the top surface TS in the first direction D 1 , and the first gate oxide layer 22 may be disposed at a side of the top surface TS, but not limited thereto.
  • Horizontal directions substantially orthogonal to the first direction D 1 (such as a second direction D 2 and a third direction D 3 shown in FIG. 1 ) may be substantially parallel with the top surface TS and/or the bottom surface BS of the semiconductor substrate 10 , but not limited thereto.
  • a distance between the bottom surface BS of the semiconductor substrate 10 and a relatively higher location and/or a relatively higher part in the vertical direction is greater than a distance between the bottom surface BS of the semiconductor substrate 10 and a relatively lower location and/or a relatively lower part in the first direction D 1 .
  • the bottom or a lower portion of each component may be closer to the bottom surface BS of the semiconductor substrate 10 in the first direction D 1 than the top or upper portion of this component.
  • Another component disposed above a specific component may be regarded as being relatively far from the bottom surface BS of the semiconductor substrate 10 in the first direction D 1 , and another component disposed under a specific component may be regarded as being relatively closer to the bottom surface BS of the semiconductor substrate 10 in the first direction D 1 , but not limited thereto.
  • the semiconductor substrate 10 may include a first region R 1 and a second region R 2 .
  • the first gate oxide layer 22 may be disposed on the first region R 1 of the semiconductor substrate 10
  • the first source/drain doped region 42 may be disposed in the first region R 1 of the semiconductor substrate 10 .
  • the semiconductor device 101 may further include a lightly doped source/drain region 12 , a first gate structure GS 1 , a first spacer structure S 1 , and a first metal silicide layer 52 .
  • the lightly doped source/drain region 12 may be disposed in the first region R 1 of the semiconductor substrate 10 and partly located under the first gate oxide layer 22 in the first direction D 1 , and the first source/drain doped region 42 may be disposed in the lightly doped source/drain region 12 .
  • the first gate structure GS 1 may be disposed on the main portion 22 B of the first gate oxide layer 22
  • the first spacer structure S 1 may be disposed on the main portion 22 B of the first gate oxide layer 22 and located on a sidewall of the first gate structure GS 1
  • at least a part of the first metal silicide layer 52 may be disposed in the second portion 42 B of the first source/drain doped region 42 .
  • the edge portion 22 A of the first gate oxide layer 22 may be located between the first spacer structure S 1 and the first metal silicide layer 52 in a first horizontal direction (such as the second direction D 2 described above), and the first portion 42 A of the first source/drain doped region 42 may be located between the first spacer structure S 1 and the first metal silicide layer 52 in second direction D 2 also.
  • the semiconductor device 101 may include two lightly doped source/drain regions 12 , two first source/drain doped regions 42 , and two first metal silicide layers 52 located at the two opposite sides of the first gate structure GS 1 in the first horizontal direction described above, respectively, for forming a first transistor structure T 1 sown in FIG. 1 , but not limited thereto.
  • the first transistor structure T 1 may include the lightly doped source/drain region 12 , the first source/drain doped region 42 , the first metal silicide layer 52 , the first gate oxide layer 22 , the first gate structure GS 1 , and the first spacer structure S 1 .
  • an impurity concentration of the first source/drain doped region 42 may be higher than an impurity concentration of the lightly doped source/drain region 12 .
  • the lightly doped source/drain region 12 may be an n-type lightly doped region and the first source/drain doped region 42 may be an n-type heavily doped region, but not limited thereto.
  • the lightly doped source/drain region 12 may be a p-type lightly doped region and the first source/drain doped region 42 may be a p-type heavily doped region.
  • the first portion 42 A of the first source/drain doped region 42 may be regarded as a protruding part of the first source/drain doped region 42 protruding towards the first gate structure GS 1 . Therefore, the first portion 42 A of the first source/drain doped region 42 may be located between the main portion 22 B of the first gate oxide layer 22 and the second portion 42 B of the first source/drain doped region 42 in the first horizontal direction (such as the second direction D 2 ), and a bottom surface BS 2 of the second portion 42 B of the first source/drain doped region 42 may be lower than a bottom surface BS 1 of the first portion 42 A of the first source/drain doped region 42 in the first direction D 1 .
  • a depth DP 2 of the second portion 42 B of the first source/drain doped region 42 in the first direction D 1 may be greater than a depth DP 1 of the first portion 42 A of the first source/drain doped region 42 in the first direction D 1 , and the impurity concentration of the first portion 42 A of the first source/drain doped region 42 may be substantially equal to the impurity concentration of the second portion 42 B of the first source/drain doped region 42 .
  • the depth in the first direction D 1 may be regarded as a length in the first direction D 1 , and the length of the first portion 42 A of the first source/drain doped region 42 in the first direction D 1 may be less than the length of the second portion 42 B of the first source/drain doped region 42 in the first direction D 1 accordingly, but not limited thereto.
  • the edge portion 22 A of the first gate oxide layer 22 may surround the main portion 22 B in the horizontal directions (such as the second direction D 2 or other horizontal direction orthogonal to the first direction D 1 ) and may be directly connected with the main portion 22 B, and a length L 2 of the main portion 22 B in the second direction D 2 may be greater than a length L 1 of the edge portion 22 A in the second direction D 2 .
  • a thickness of the main portion 22 B of the first gate oxide layer 22 located under the first gate structure GS 1 in the first direction D 1 may be greater than a thickness of the main portion 22 B of the first gate oxide layer 22 located under the first spacer structure S 1 in the first direction D 1 , and a top surface TS 2 of the first gate oxide layer 22 located under the first spacer structure S 1 may be lower than a top surface TS 1 of the first gate oxide layer 22 located under the first gate structure GS 1 in the first direction D 1 , but not limited thereto.
  • the sloping sidewall SW of the edge portion 22 A may be directly connected with the top surface TS 2 described above, and the edge portion 22 A of the first gate oxide layer 22 may be regarded as a region of the first gate oxide layer 22 without being located under the top surface TS 1 and the top surface TS 2 . Therefore, a thickness TK 3 of the edge portion 22 A of the first gate oxide layer 22 may be less than a thickness TK 1 of the main portion 22 B of the first gate oxide layer 22 , and the thickness TK 3 may be regarded as the maximum thickness of the edge portion 22 A, but not limited thereto.
  • the edge portion 22 A having the sloping sidewall SW may be used for forming the first portion 42 A of the first source/drain doped region 42 and enlarging a distance (such as a distance DS 1 shown in FIG. 1 ) between the first metal silicide layer 52 and the first gate structure GS 1 in the horizontal direction (such as the second direction D 2 ), the electrical field distribution between the first metal silicide layer 52 and the first gate structure GS 1 may be changed, and the leakage current (Ioff) of the first transistor structure T 1 may be reduced accordingly.
  • a distance such as a distance DS 1 shown in FIG. 1
  • the electrical field distribution between the first metal silicide layer 52 and the first gate structure GS 1 may be changed, and the leakage current (Ioff) of the first transistor structure T 1 may be reduced accordingly.
  • the distance between the first metal silicide layer 52 and the first gate structure GS 1 may be increased without apparently increasing the distance between the first source/drain doped region 42 and the first gate structure GS 1 in the horizontal direction by the edge portion 22 A having the sloping sidewall SW.
  • an included angle AG between the sloping sidewall SW of the edge portion 22 A of the first gate oxide layer 22 and the top surface TS of the semiconductor substrate 10 may be less than or equal to 45 degrees for avoiding that the length L 1 of the edge potion 22 A in the horizontal direction is too short and the effect of enlarging the distance between the first metal silicide layer 52 and the first gate structure GS 1 is affected accordingly, but not limited thereto.
  • the sloping sidewall SW of the edge portion 22 A of the first gate oxide layer 22 may include a concave surface sinking downwards, and the bottom surface BS 1 of the first portion 42 A of the first source/drain doped region 42 may include a curved surface disposed under and disposed corresponding to the sloping sidewall SW of the edge portion 22 A of the first gate oxide layer 22 in the first direction D 1 .
  • the shape of the interface between the first portion 42 A of the first source/drain doped region 42 and the lightly doped source/drain region 12 may be similar to the shape of the sloping sidewall SW of the edge portion 22 A of the first gate oxide layer 22 , but not limited thereto.
  • the semiconductor device 101 may further include an etching stop layer 62 and a dielectric layer 64 .
  • the etching stop layer 62 may be disposed on the first metal silicide layer 52 , the edge portion 22 A of the first gate oxide layer 22 , and the sidewall of the first spacer structure S 1
  • the dielectric layer 64 may be disposed on the etching stop layer 62 .
  • a length L 3 of the first spacer structure S 1 in the second direction D 2 may be less than the distance DS 1 between the first metal silicide layer 52 and the first gate structure GS 1 in the second direction D 2 because the first metal silicide layer 52 is separated from the first spacer structure S 1 .
  • the top surface TS 2 of the main portion 22 B of the first gate oxide layer 22 may be not completely covered by the first spacer structure S 12 because the shape and the area of the first source/drain doped region 42 is not mainly defined by the first spacer structure S 1 , but not limited thereto.
  • a distance DS 3 between the first metal silicide layer 52 and the first spacer structure S 1 in the second direction D 2 may be greater than the length L 1 of the edge portion 22 A of the first gate oxide layer 22 in the second direction D 2
  • the length L 2 of the main portion 22 B of the first gate oxide layer 22 in the second direction D 2 may be greater than the sum of the length of the first spacer structure S 1 in the second direction D 2 and the length of the first gate structure GS 1 in the second direction D 2
  • the etching stop layer 62 may directly contact a part of the top surface TS 2 and the sloping sidewall SW of the edge portion 22 A, but not limited thereto.
  • the semiconductor device 101 may further include a second transistor structure T 2 , and at least a part of the second transistor structure T 2 is disposed on the second region R 2 of the semiconductor substrate 10 .
  • the second transistor structure T 2 may include a second gate oxide layer 24 , a second gate structure GS 2 , a second spacer structure S 2 , a lightly doped source/drain region 14 , a second source/drain doped region 44 , and a second metal silicide layer 54 .
  • the second gate oxide layer 24 may be disposed on the second region R 2 of the semiconductor substrate 10 , and the thickness TK 1 of the first gate oxide layer 22 may be greater than a thickness TK 2 of the second gate oxide layer 24 .
  • the gate oxide layers with different thicknesses may be used to realize the relatively high voltage operation and the relatively low voltage operation, respectively. Therefore, the operating voltage of the first transistor structure T 1 may be higher than that of the second transistor structure T 2 , the first region R 1 may be regarded as a relatively high voltage transistor region, and the second region R 2 may be regarded as a relatively low voltage transistor region, but not limited thereto.
  • the second gate structure GS 2 may be disposed on the second gate oxide layer 24 , and the second spacer structure S 2 may be disposed on a sidewall of the second gate structure GS 2 and a sidewall of the second gate oxide layer 24 .
  • the lightly doped source/drain region 14 may be disposed in the second region R 2 of the semiconductor substrate 10 and a part of the lightly doped source/drain region 14 may be located under the second gate oxide layer 24 in the first direction D 1 .
  • the second source/drain doped region 44 may be disposed in the semiconductor substrate 10 and located in the lightly doped source/drain region 14 , and the second source/drain doped region 44 may be located adjacent to the second spacer structure S 2 .
  • the second silicide layer 54 may be disposed in the second source/drain doped region 44 , and the second metal silicide layer 54 may be directly connected with the second spacer structure S 2 . Therefore, the distance (such as the distance DS 1 described above) between the first metal silicide layer 52 and the first gate structure GS 1 in the first horizontal direction may be greater than a distance (such as a distance DS 2 shown in FIG. 1 ) between the second metal silicide layer 54 and the second gate structure GS 2 in a second horizontal direction. In some embodiments, the first horizontal direction and the second horizontal direction described above may be the same direction (such as the second direction D 2 ) or different horizontal directions.
  • the semiconductor device 101 may include two lightly doped source/drain regions 14 , two second source/drain doped regions 44 , and two second metal silicide layers 54 located at two opposite sides of the second gate structure GS 2 in the second horizontal direction described above, respectively.
  • the etching stop layer 62 and the dielectric layer 64 may be further disposed on the second region R 2 of the semiconductor substrate 10 and cover the second metal silicide layer 54 and the sidewall of the second spacer structure S 2 , and the second gate oxide layer 24 may be covered by the second gate structure GS 2 and the second spacer structure S 2 without directly contacting the etching stop layer 62 , but not limited thereto.
  • the semiconductor substrate 10 may include a silicon substrate, an epitaxial silicon substrate, a silicon germanium substrate, a silicon carbide substrate, a silicon-on-insulator (SOI) substrate, or a substrate made of other suitable semiconductor materials.
  • the lightly doped source/drain region 12 , the lightly doped source/drain region 14 , the first source/drain doped region 42 , and the second source/drain doped region 44 may respectively include a doped region formed in the semiconductor substrate 10 by performing a doping process (such as an implantation process).
  • the lightly doped source/drain region 12 and the lightly doped source/drain region 14 may be formed concurrently by the same process and have the same conductivity type, the same impurity, and/or similar impurity concentrations
  • the first source/drain doped region 42 and the second source/drain doped region 44 may be formed concurrently by the same process and have the same conductivity type, the same impurity, and/or similar impurity concentrations, but not limited thereto.
  • the impurities (or dopants) described above may include n-type impurities or p-type impurities.
  • n-type impurities may include phosphorus (P), arsenic (As), or other suitable n-type impurities
  • p-type impurities may include boron (B), gallium (Ga), or other suitable p-type impurities.
  • the first gate structure GS 1 may include a gate dielectric layer 70 and a first metal gate structure MG 1
  • the second gate structure GS 2 may include the gate dielectric layer 70 and a second metal gate structure MG 2 , but not limited thereto.
  • the gate dielectric layer 70 may include a high dielectric constant (high-k) dielectric material or other suitable dielectric materials
  • the first metal gate structure MG 1 and the second metal gate structure MG 2 may respectively include a metal gate structure formed with a work function layer (not illustrated) and a low electrical resistivity layer (not illustrated) stacked with each other, but not limited thereto.
  • the work function layer described above may include titanium nitride (TiN), titanium carbide (TiC), tantalum nitride (TaN), tantalum carbide (TaC), tungsten carbide (WC), titanium tri-aluminide (TiAl 3 ), aluminum titanium nitride (TiAlN), or other suitable electrically conductive work function materials.
  • the low electrical resistivity layer described above may include tungsten, aluminum, copper, titanium aluminide, titanium, or other suitable low electrical resistivity materials.
  • the first metal gate structure MG 1 and the second metal gate structure MG 2 may include the same work function layer stacked structure or different work function layer stacked structures according to the specifications of the first transistor structure T 1 and the second transistor structure T 2 .
  • first metal silicide layer 52 and the second metal silicide layer 54 may include cobalt-silicide, nickel-silicide, or other suitable metal silicide.
  • first spacer structure S 1 and the second spacer structure S 2 may respectively include a single layer or multiple layers of dielectric materials, such as silicon oxide, silicon nitride, silicon oxynitride, or other suitable dielectric materials.
  • the first spacer structure S 1 may include a spacer S 11 and a spacer S 12 disposed at an outer side of the spacer S 11 , wherein the material composition of the spacer S 12 may be different from the material composition of the spacer S 11 ; and the second spacer structure S 2 may include a spacer S 21 and a spacer S 22 disposed at an outer side of the spacer S 21 , and the material composition of the spacer S 22 may be different from the material composition of the spacer S 21 , but not limited thereto.
  • the spacer S 11 and the spacer S 21 may be formed concurrently by the same process and have the same material composition (such as silicon nitride), and the spacer S 12 and the spacer S 22 may be formed concurrently by the same process and have the same material composition (such as silicon oxide), but not limited thereto.
  • the etching stop layer 62 may include silicon nitride or other suitable insulation materials
  • the dielectric layer 64 may include silicon oxide or other dielectric materials different from the etching stop layer 62 .
  • FIGS. 3 - 10 are schematic drawings illustrating a manufacturing method of a semiconductor device according to an embodiment of the present invention, wherein FIG. 4 is a schematic drawing in a step subsequent to FIG. 3 , FIG. 5 is a schematic drawing in a step subsequent to FIG. 4 , FIG. 6 is a schematic drawing in a step subsequent to FIG. 5 , FIG. 7 is a schematic drawing in a step subsequent to FIG. 6 , FIG. 8 is a schematic drawing in a step subsequent to FIG. 7 , FIG. 9 is a schematic drawing in a step subsequent to FIG. 8 , FIG. 10 is a schematic drawing in a step subsequent to FIG. 9 , and FIG.
  • the manufacturing method of the semiconductor device 101 in this embodiment may include the following steps.
  • the first gate oxide layer 22 is formed on the semiconductor substrate 10 .
  • the first gate oxide layer 22 includes the main portion 22 B and the edge portion 22 A, and the edge portion 22 A may have the sloping sidewall SW.
  • the first source/drain doped region 42 is formed in the semiconductor substrate 10 , and the first source/drain doped region 42 is disposed adjacent to the edge portion 22 A of the first gate oxide layer 22 .
  • the first source/drain doped region 42 includes a first portion 42 A and a second portion 42 B.
  • the first portion 42 A is disposed under the edge portion 22 A of the first gate oxide layer 22 in a vertical direction (such as the first direction D 1 ), and the second portion 42 B is connected with the first portion 42 A.
  • the manufacturing method in this embodiment may include but is not limited to the following steps.
  • an oxide layer 20 may be formed globally on the semiconductor substrate 10 , and the oxide layer 20 may be formed on the first region R 1 and the second region R 2 accordingly.
  • the oxide layer 20 may be formed on the semiconductor substrate 10 by a thermal oxidation process, other suitable oxidation approaches, or other suitable film forming processes (such as deposition process).
  • the lightly doped source/drain region 12 may be formed in the first region R 1 of the semiconductor substrate 10 before the step of forming the oxide layer 20 , and the lightly doped source/drain region 12 may be formed in the first region R 1 of the semiconductor substrate 10 by a doping process, but not limited thereto. Subsequently, as shown in FIG. 3 and FIG. 4 , the oxide layer 20 formed on the second region R 2 and a part of the oxide layer 20 formed on the first region R 1 may be removed concurrently for forming the first gate oxide layer 22 on the first region R 1 and process simplification.
  • a mask layer (not illustrated) may be used to cover the area of the oxide layer 20 , which is going to remain, and the mask layer may be used as an etching mask for performing an etching process configured to remove the oxide layer 20 on the second region R 2 and the oxide layer 20 covering the region corresponding to the subsequent source/drain region on the first region R 1 .
  • the edge portion 22 A of the first gate oxide layer 22 formed by the etching process may have the sloping sidewall SW because of the etching property of the etching process.
  • the etching process described above may include a wet etching process or other suitable etching approaches capable of forming the required sloping sidewall SW.
  • the second gate oxide layer 24 may be formed on the second region R 2 , and the thickness of the first gate oxide layer 22 may be greater than the thickness of the second gate oxide layer 24 .
  • the second gate oxide layer 24 may be formed on the semiconductor substrate 10 by a thermal oxidation process or other suitable oxidation approaches, and the second gate oxide layer 24 may be partly formed on the first region R 1 accordingly, but not limited thereto. As shown in FIG. 5 and FIG.
  • a first dummy gate structure 30 A, a gate cap layer 32 A, and a gate cap layer 34 A may then be formed on the first gate oxide layer 22
  • a second dummy gate structure 30 , a gate cap layer 32 B, and a gate cap layer 34 B may be formed on the second gate oxide layer 24
  • the first dummy gate structure 30 A and the second dummy gate structure 30 B may be formed concurrently by the performing a patterning process to a material layer (such as a dummy gate material layer 30 ), and the material composition of the first dummy gate structure 30 A may be identical to that of the second dummy gate structure 30 B accordingly, but not limited thereto.
  • the dummy gate material layer 30 may include polysilicon or other suitable dummy gate materials.
  • the gate cap layer 32 A, the gate cap layer 34 A, the gate cap layer 32 B, and the gate cap layer 34 B may respectively include silicon oxide, silicon nitride, or other suitable insulation materials.
  • the material composition of the gate cap layer 32 A may be different from that of the gate cap layer 34 A, and the material composition of the gate cap layer 32 B may be different from that of the gate cap layer 34 B for providing required etching selectivity in the subsequent processes, but not limited thereto.
  • the gate cap layer 32 A and the gate cap layer 32 B may be formed concurrently by the performing a patterning process to a material layer (such as a cap layer 32 ), the gate cap layer 34 A and the gate cap layer 34 B may be formed concurrently by the performing a patterning process to a material layer (such as a cap layer 34 ), and the material composition of the cap layer 34 (such as silicon oxide) may be different from the material composition of the cap layer 32 (such as silicon nitride), but not limited thereto.
  • the spacer S 11 may be formed on sidewalls of the first dummy gate structure 30 A, the gate cap layer 32 A, and the gate cap layer 34 A, and the spacer S 21 may be formed on sidewalls of the second dummy gate structure 30 B, the gate cap layer 32 B, and the gate cap layer 34 B.
  • a part of the first gate oxide layer 22 may be removed by the steps of forming the first dummy gate structure 30 A, the gate cap layer 32 A, and/or the gate cap layer 34 A, and the top surface of the first gate oxide layer 22 located under the spacer S 11 may be slightly lower than the top surface of the first gate oxide layer 22 located under the first dummy gate structure 30 A in the first direction, but not limited thereto.
  • the second gate oxide layer 24 formed on the first region R 1 may be removed by the steps of forming the first dummy gate structure 30 A, the gate cap layer 32 A, the gate cap layer 34 A, and/or the spacer S 11 .
  • the lightly doped source/drain region 14 may be formed in the second region R 2 of the semiconductor substrate 10 by a doping process after the step of forming the spacer S 21 , but not limited thereto.
  • the spacer S 12 and a spacer S 13 may be formed at an outer side of the spacer S 11
  • the spacer S 22 and a spacer S 23 may be formed at an outer side of the spacer S 21 .
  • the spacer S 13 and the spacer S 23 may be formed concurrently by the same process and have the same material composition (such as silicon nitride), and the spacer S 12 , the spacer S 13 , the spacer S 22 , and the spacer S 23 may be formed concurrently by performing a patterning process to two spacer material layers (such as a silicon oxide layer and a silicon nitride layer) conformally formed on the semiconductor substrate 10 , the first gate oxide layer 22 , the spacer S 11 , the gate cap layer 34 A, the spacer S 21 , and the gate cap layer 34 B, and the spacer S 12 and the spacer S 22 may respectively have a L-shaped structure in a cross-sectional diagram, but not limited thereto.
  • two spacer material layers such as a silicon oxide layer and a silicon nitride layer
  • the spacer S 13 and the spacer S 23 may be removed concurrently by subsequent processes. Therefore, the spacer S 11 and the spacer S 12 may be regarded as the first spacer structure S 1 formed on sidewalls of the first dummy gate structure 30 A, the gate cap layer 32 A, and the gate cap layer 34 A, and the spacer S 21 and the spacer S 22 may be regarded as the second spacer structure S 2 formed on sidewalls of the second dummy gate structure 30 B the gate cap layer 32 B, and the gate cap layer 34 B, but not limited thereto.
  • the first spacer structure S 1 may be formed on the main portion 22 B of the first gate oxide layer 22 , and the top surface of the first gate oxide layer 22 located under the first spacer structure S 1 may be slightly lower than the top surface of the first gate oxide layer 22 located under the first dummy gate structure 30 A in the first direction D 1 , but not limited thereto.
  • the main portion 22 B and the edge portion 22 A of the first gate oxide layer 22 may be slightly etched by the processes (such as etching processes) of forming the spacers described above, but the edge portion 22 A of the first gate oxide layer 22 may have the sloping sidewall SW before the step of forming the first spacer structure S 1 and after the step of forming the first spacer structure S 1 .
  • the sloping sidewall SW of the edge portion 22 A of the first gate oxide layer 22 may be formed before the step of forming the first dummy gate structure 30 A and the step of forming the first spacer structure S 1 , and the edge portion 22 A of the first gate oxide layer 22 may still have the sloping sidewall SW after the first spacer structure S 1 and the spacer S 13 are formed.
  • the first source/drain doped region 42 and the second source/drain doped region 44 may be formed in the first region R 1 and the second region R 2 of the semiconductor substrate 10 , respectively.
  • the first source/drain doped region 42 and the second source/drain doped region 44 may be formed in the lightly doped source/drain region 12 and the lightly doped source/drain region 14 , respectively.
  • the impurity concentration of the first source/drain doped region 42 may be higher than that of the lightly doped source/drain region 12
  • the impurity concentration of the second source/drain doped region 44 may be higher than that of the lightly doped source/drain region 14 .
  • the second source/drain doped region 44 and the first source/drain doped region 42 may be formed concurrently by the some process (such as a doping process 90 ) for process simplification, but not limited thereto.
  • the doping process 90 may include an ion implantation process or other suitable doping approaches.
  • the shape of the first source/drain doped region 42 may be mainly influenced by the edge portion 22 A of the first gate oxide layer 22 and have the first portion 42 A and the second portion 42 B described above because the first gate oxide layer 22 is relatively thicker and the first spacer structure S 1 does not cover the edge portion 22 A.
  • the thickness of the edge portion 22 A of the first gate oxide layer 22 may be gradually decreased in a direction away from the first dummy gate structure 30 A because the edge portion 22 A of the first gate oxide layer 22 has the sloping sidewall SW.
  • the depth of the first portion 42 A of the first source/drain doped region 42 may be gradually increased in the direction away from the first dummy gate structure 30 A accordingly, and the depth of the second portion 42 B of the first source/drain doped region 42 may be greater than that of the first portion 42 A of the first source/drain doped region 42 because the second portion 42 B of the first source/drain doped region 42 does not overlap the first gate oxide layer 22 in the first direction D 1 .
  • the first metal silicide layer 52 and the second metal silicide layer 54 may be formed.
  • the first metal silicide layer 52 and the second metal silicide layer 54 may be formed concurrently by the same process and have the same material composition for process simplification, but not limited thereto.
  • a metal layer (not illustrated) may be formed globally, and the metal layer may directly contact the first source/drain doped region 42 and the second source/drain doped region 44 .
  • a thermal treatment may then be performed for reacting the metal layer with the first source/drain doped region 42 and the second source/drain doped region 44 and forming the first metal silicide layer 52 and the second metal silicide layer 54 accordingly, and the metal layer may be removed after the first metal silicide layer 52 and the second metal silicide layer 54 are formed.
  • the metal layer described above may include cobalt, nickel, or other suitable metal materials
  • the first metal silicide layer 52 and the second metal silicide layer 54 may include cobalt-silicide, nickel-silicide, or other silicide of the metal material of the metal layer.
  • the edge portion 22 A of the first gate oxide layer 22 may be located between the first spacer structure S 1 and the first metal silicide layer 52 in a horizontal direction (such as the second direction D 2 ), and the second metal silicide layer 54 may directly contact the second spacer structure S 2 . Therefore, a distance DS 4 between the first metal silicide layer 52 and the first dummy gate structure 30 A in the first horizontal direction (such as the second direction D 2 , but not limited thereto) may be greater than a distance DS 5 between the second metal silicide layer 54 and the second dummy gate structure 30 B in the second horizontal direction (such as the second direction D 2 , but not limited thereto).
  • the etching stop layer 62 and the dielectric layer 64 may be formed, and a planarization process may be performed for removing the gate cap layer 32 A, the gate cap layer 32 B, the gate cap layer 34 A, the gate cap layer 34 B, a part of the first spacer structure S 1 , a part of the second spacer structure S 2 , a part of the etching stop layer 62 , and a part of the dielectric layer 64 and exposing the first dummy gate structure 30 A and the second dummy gate structure 30 B.
  • the planarization process described above may include a chemical mechanical polishing (CMP) process, an etching back process, or other suitable planarization approaches.
  • CMP chemical mechanical polishing
  • the spacer S 13 and the spacer S 23 may be removed by the influence of other process before the step of forming the etching stop layer 62 , and the etching stop layer 62 may directly cover the first spacer structure S 1 and the second spacer structure S 2 accordingly, but not limited thereto.
  • the first dummy gate structure 30 A and the second dummy gate structure 30 B may be removed and the first gate structure GS 1 and the second gate structure GS 2 may be formed correspondingly for forming the semiconductor device 101 described above.
  • the manufacturing method of the semiconductor device 101 in this embodiment is not limited to the condition shown in FIGS. 3 - 10 described above, and other suitable manufacturing approaches may be used to form the semiconductor device 101 according to other design considerations.
  • FIG. 11 is a schematic drawing illustrating a semiconductor device 102 according to a second embodiment of the present invention.
  • the first metal silicide layer 52 may extend to be partly located in the first portion 42 A of the first source/drain doped region 42 , a part of the first metal silicide layer 52 may be located under the edge portion 22 A of the first gate oxide layer 22 and the sloping sidewall SW in the first direction D 1 , and the required distance DS 1 between the first metal silicide layer 52 and the first gate structure GS 1 may still exist for achieving the purpose of reducing the leakage current of the first transistor structure T 1 .
  • the gate oxide layer having the sloping sidewall may be used to improve the leakage current performance of the semiconductor device.
  • the first gate oxide layer having the sloping sidewall may be formed by the step of removing the oxide layer on the second region and/or the source/drain doped regions in the first region and the second region may be formed concurrently by the same process for process simplification and manufacturing cost reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A semiconductor device includes a semiconductor substrate, a first gate oxide layer, and a first source/drain doped region. The first gate oxide layer is disposed on the semiconductor substrate, and the first gate oxide layer includes a main portion and an edge portion having a sloping sidewall. The first source/drain doped region is disposed in the semiconductor substrate and located adjacent to the edge portion of the first gate oxide layer. The first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.

Description

BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly, to a semiconductor device including a gate oxide layer and a manufacturing method thereof.
2. Description of the Prior Art
In the integrated circuit, transistors may be different from one another in structure for different operation voltages. For example, the transistors for relatively low operation voltage may be applied in core devices, input/output (I/O) devices, and so on. The transistors capable of high voltage processing may be applied in high operation voltage environment such as CPU power supply, power management system, AC/DC converter, and high-power or high frequency (HF) band power amplifier. However, in order to form transistors corresponding to different operation voltages on the same wafer or chip, the processes are often complicated and the processes of different transistors may affect each other. Therefore, how to improve the operation performance of the semiconductor device and/or simplify the manufacturing processes of the semiconductor device through the design of structure and/or the design of process is a continuous issue for those in the related fields.
SUMMARY OF THE INVENTION
A semiconductor device and a manufacturing method thereof are provided in the present invention. A gate oxide layer having a sloping sidewall is used to improve leakage current issue of the semiconductor device.
According to an embodiment of the present invention, a semiconductor device is provided. The semiconductor device includes a semiconductor substrate, a first gate oxide layer, a and first source/drain doped region. The first gate oxide layer is disposed on the semiconductor substrate. The first gate oxide layer includes a main portion and an edge portion, and the edge portion has a sloping sidewall. The first source/drain doped region is disposed in the semiconductor substrate and located adjacent to the edge portion of the first gate oxide layer. The first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.
According to an embodiment of the present invention, a manufacturing method of a semiconductor device is provided. The manufacturing method includes the following steps. A first gate oxide layer is formed on a semiconductor substrate. The first gate oxide layer includes a main portion and an edge portion, and the edge portion has a sloping sidewall. A first source/drain doped region is formed in the semiconductor substrate, and the first source/drain doped region is disposed adjacent to the edge portion of the first gate oxide layer. The first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic drawing illustrating a semiconductor device according to a first embodiment of the present invention.
FIG. 2 is a schematic drawing illustrating a first transistor structure according to the first embodiment of the present invention.
FIGS. 3-10 are schematic drawings illustrating a manufacturing method of a semiconductor device according to an embodiment of the present invention, wherein FIG. 4 is a schematic drawing in a step subsequent to FIG. 3 , FIG. 5 is a schematic drawing in a step subsequent to FIG. 4 , FIG. 6 is a schematic drawing in a step subsequent to FIG. 5 , FIG. 7 is a schematic drawing in a step subsequent to FIG. 6 , FIG. 8 is a schematic drawing in a step subsequent to FIG. 7 , FIG. 9 is a schematic drawing in a step subsequent to FIG. 8 , and FIG. 10 is a schematic drawing in a step subsequent to FIG. 9 .
FIG. 11 is a schematic drawing illustrating a semiconductor device according to a second embodiment of the present invention.
DETAILED DESCRIPTION
The present invention has been particularly shown and described with respect to certain embodiments and specific features thereof. The embodiments set forth herein below are to be taken as illustrative rather than limiting. It should be readily apparent to those of ordinary skill in the art that various changes and modifications in form and detail may be made without departing from the spirit and scope of the present invention.
Before the further description of the preferred embodiment, the specific terms used throughout the text will be described below.
The terms “on,” “above,” and “over” used herein should be interpreted in the broadest manner such that “on” not only means “directly on” something but also includes the meaning of “on” something with an intermediate feature or a layer therebetween, and that “above” or “over” not only means the meaning of “above” or “over” something but can also include the meaning it is “above” or “over” something with no intermediate feature or layer therebetween (i.e., directly on something).
The ordinal numbers, such as “first”, “second”, etc., used in the description and the claims are used to modify the elements in the claims and do not themselves imply and represent that the claim has any previous ordinal number, do not represent the sequence of some claimed element and another claimed element, and do not represent the sequence of the manufacturing methods, unless an addition description is accompanied. The use of these ordinal numbers is only used to make a claimed element with a certain name clear from another claimed element with the same name.
The term “etch” is used herein to describe the process of patterning a material layer so that at least a portion of the material layer after etching is retained. When “etching” a material layer, at least a portion of the material layer is retained after the end of the treatment. In contrast, when the material layer is “removed”, substantially all the material layer is removed in the process. However, in some embodiments, “removal” is considered to be a broad term and may include etching.
The term “forming” or the term “disposing” are used hereinafter to describe the behavior of applying a layer of material to the substrate. Such terms are intended to describe any possible layer forming techniques including, but not limited to, thermal growth, sputtering, evaporation, chemical vapor deposition, epitaxial growth, electroplating, and the like.
Please refer to FIG. 1 and FIG. 2 . FIG. 1 is a schematic drawing illustrating a semiconductor device 101 according to a first embodiment of the present invention, FIG. 2 is a schematic drawing illustrating a first transistor structure T1 in this embodiment, and FIG. 2 may be regarded as an enlarged diagram of the left half of FIG. 1 . As shown in FIG. 1 and FIG. 2 , the semiconductor device 101 is provided in this embodiment, and the semiconductor device 101 includes a semiconductor substrate 10, a first gate oxide layer 22, a and first source/drain doped region 42. The first gate oxide layer 22 is disposed on the semiconductor substrate 10. The first gate oxide layer 22 includes a main portion 22B and an edge portion 22A, and the edge portion 22A has a sloping sidewall SW. The first source/drain doped region 42 is disposed in the semiconductor substrate 10 and located adjacent to the edge portion 22A of the first gate oxide layer 22. The first source/drain doped region 42 includes a first portion 42A and a second portion 42B. The second portion 42B is connected with the first portion 42A, and the first portion 42A is disposed under the edge portion 22A of the first gate oxide layer 22 in a vertical direction (such as a first direction D1 sown in FIG. 1 ). The process of forming the first source/drain doped region 42 may be influenced by the edge portion 22A having the sloping sidewall SW for forming the first portion 42A of the first source/drain doped region 42 correspondingly. Therefore, the range and the shape of the first source/drain doped region 42 may be controlled via the first gate oxide layer 22 having the sloping sidewall SW, and the electrical performance of the semiconductor device 101 may be improved accordingly.
In some embodiments, the first direction D1 described above may be regarded as a thickness direction of the semiconductor substrate 10, and the semiconductor substrate 10 may have a top surface TS and a bottom surface BS opposite to the top surface TS in the first direction D1, and the first gate oxide layer 22 may be disposed at a side of the top surface TS, but not limited thereto. Horizontal directions substantially orthogonal to the first direction D1 (such as a second direction D2 and a third direction D3 shown in FIG. 1 ) may be substantially parallel with the top surface TS and/or the bottom surface BS of the semiconductor substrate 10, but not limited thereto. Additionally, in this description, a distance between the bottom surface BS of the semiconductor substrate 10 and a relatively higher location and/or a relatively higher part in the vertical direction (such as the first direction D1) is greater than a distance between the bottom surface BS of the semiconductor substrate 10 and a relatively lower location and/or a relatively lower part in the first direction D1. The bottom or a lower portion of each component may be closer to the bottom surface BS of the semiconductor substrate 10 in the first direction D1 than the top or upper portion of this component. Another component disposed above a specific component may be regarded as being relatively far from the bottom surface BS of the semiconductor substrate 10 in the first direction D1, and another component disposed under a specific component may be regarded as being relatively closer to the bottom surface BS of the semiconductor substrate 10 in the first direction D1, but not limited thereto.
Specifically, in some embodiments, the semiconductor substrate 10 may include a first region R1 and a second region R2. The first gate oxide layer 22 may be disposed on the first region R1 of the semiconductor substrate 10, and the first source/drain doped region 42 may be disposed in the first region R1 of the semiconductor substrate 10. Additionally, in some embodiments, the semiconductor device 101 may further include a lightly doped source/drain region 12, a first gate structure GS1, a first spacer structure S1, and a first metal silicide layer 52. The lightly doped source/drain region 12 may be disposed in the first region R1 of the semiconductor substrate 10 and partly located under the first gate oxide layer 22 in the first direction D1, and the first source/drain doped region 42 may be disposed in the lightly doped source/drain region 12. The first gate structure GS1 may be disposed on the main portion 22B of the first gate oxide layer 22, the first spacer structure S1 may be disposed on the main portion 22B of the first gate oxide layer 22 and located on a sidewall of the first gate structure GS1, and at least a part of the first metal silicide layer 52 may be disposed in the second portion 42B of the first source/drain doped region 42. The edge portion 22A of the first gate oxide layer 22 may be located between the first spacer structure S1 and the first metal silicide layer 52 in a first horizontal direction (such as the second direction D2 described above), and the first portion 42A of the first source/drain doped region 42 may be located between the first spacer structure S1 and the first metal silicide layer 52 in second direction D2 also.
In some embodiments, the semiconductor device 101 may include two lightly doped source/drain regions 12, two first source/drain doped regions 42, and two first metal silicide layers 52 located at the two opposite sides of the first gate structure GS1 in the first horizontal direction described above, respectively, for forming a first transistor structure T1 sown in FIG. 1 , but not limited thereto. In other words, the first transistor structure T1 may include the lightly doped source/drain region 12, the first source/drain doped region 42, the first metal silicide layer 52, the first gate oxide layer 22, the first gate structure GS1, and the first spacer structure S1. In some embodiments, an impurity concentration of the first source/drain doped region 42 may be higher than an impurity concentration of the lightly doped source/drain region 12. For example, the lightly doped source/drain region 12 may be an n-type lightly doped region and the first source/drain doped region 42 may be an n-type heavily doped region, but not limited thereto. In some embodiments, the lightly doped source/drain region 12 may be a p-type lightly doped region and the first source/drain doped region 42 may be a p-type heavily doped region.
In some embodiments, the first portion 42A of the first source/drain doped region 42 may be regarded as a protruding part of the first source/drain doped region 42 protruding towards the first gate structure GS1. Therefore, the first portion 42A of the first source/drain doped region 42 may be located between the main portion 22B of the first gate oxide layer 22 and the second portion 42B of the first source/drain doped region 42 in the first horizontal direction (such as the second direction D2), and a bottom surface BS2 of the second portion 42B of the first source/drain doped region 42 may be lower than a bottom surface BS1 of the first portion 42A of the first source/drain doped region 42 in the first direction D1. In other words, a depth DP2 of the second portion 42B of the first source/drain doped region 42 in the first direction D1 may be greater than a depth DP1 of the first portion 42A of the first source/drain doped region 42 in the first direction D1, and the impurity concentration of the first portion 42A of the first source/drain doped region 42 may be substantially equal to the impurity concentration of the second portion 42B of the first source/drain doped region 42. In some embodiments, the depth in the first direction D1 may be regarded as a length in the first direction D1, and the length of the first portion 42A of the first source/drain doped region 42 in the first direction D1 may be less than the length of the second portion 42B of the first source/drain doped region 42 in the first direction D1 accordingly, but not limited thereto.
In some embodiments, the edge portion 22A of the first gate oxide layer 22 may surround the main portion 22B in the horizontal directions (such as the second direction D2 or other horizontal direction orthogonal to the first direction D1) and may be directly connected with the main portion 22B, and a length L2 of the main portion 22B in the second direction D2 may be greater than a length L1 of the edge portion 22A in the second direction D2. Additionally, in some embodiments, because of influence of manufacturing processes, a thickness of the main portion 22B of the first gate oxide layer 22 located under the first gate structure GS1 in the first direction D1 may be greater than a thickness of the main portion 22B of the first gate oxide layer 22 located under the first spacer structure S1 in the first direction D1, and a top surface TS2 of the first gate oxide layer 22 located under the first spacer structure S1 may be lower than a top surface TS1 of the first gate oxide layer 22 located under the first gate structure GS1 in the first direction D1, but not limited thereto. Additionally, in some embodiments, the sloping sidewall SW of the edge portion 22A may be directly connected with the top surface TS2 described above, and the edge portion 22A of the first gate oxide layer 22 may be regarded as a region of the first gate oxide layer 22 without being located under the top surface TS1 and the top surface TS2. Therefore, a thickness TK3 of the edge portion 22A of the first gate oxide layer 22 may be less than a thickness TK1 of the main portion 22B of the first gate oxide layer 22, and the thickness TK3 may be regarded as the maximum thickness of the edge portion 22A, but not limited thereto.
In some embodiments, the edge portion 22A having the sloping sidewall SW may be used for forming the first portion 42A of the first source/drain doped region 42 and enlarging a distance (such as a distance DS1 shown in FIG. 1 ) between the first metal silicide layer 52 and the first gate structure GS1 in the horizontal direction (such as the second direction D2), the electrical field distribution between the first metal silicide layer 52 and the first gate structure GS1 may be changed, and the leakage current (Ioff) of the first transistor structure T1 may be reduced accordingly. In other words, the distance between the first metal silicide layer 52 and the first gate structure GS1 may be increased without apparently increasing the distance between the first source/drain doped region 42 and the first gate structure GS1 in the horizontal direction by the edge portion 22A having the sloping sidewall SW. Additionally, in some embodiments, an included angle AG between the sloping sidewall SW of the edge portion 22A of the first gate oxide layer 22 and the top surface TS of the semiconductor substrate 10 may be less than or equal to 45 degrees for avoiding that the length L1 of the edge potion 22A in the horizontal direction is too short and the effect of enlarging the distance between the first metal silicide layer 52 and the first gate structure GS1 is affected accordingly, but not limited thereto. In some embodiments, because of the influence of the manufacturing processes, the sloping sidewall SW of the edge portion 22A of the first gate oxide layer 22 may include a concave surface sinking downwards, and the bottom surface BS1 of the first portion 42A of the first source/drain doped region 42 may include a curved surface disposed under and disposed corresponding to the sloping sidewall SW of the edge portion 22A of the first gate oxide layer 22 in the first direction D1. In other words, the shape of the interface between the first portion 42A of the first source/drain doped region 42 and the lightly doped source/drain region 12 may be similar to the shape of the sloping sidewall SW of the edge portion 22A of the first gate oxide layer 22, but not limited thereto.
In some embodiments, the semiconductor device 101 may further include an etching stop layer 62 and a dielectric layer 64. The etching stop layer 62 may be disposed on the first metal silicide layer 52, the edge portion 22A of the first gate oxide layer 22, and the sidewall of the first spacer structure S1, and the dielectric layer 64 may be disposed on the etching stop layer 62. In some embodiments, a length L3 of the first spacer structure S1 in the second direction D2 may be less than the distance DS1 between the first metal silicide layer 52 and the first gate structure GS1 in the second direction D2 because the first metal silicide layer 52 is separated from the first spacer structure S1. Additionally, in some embodiments, the top surface TS2 of the main portion 22B of the first gate oxide layer 22 may be not completely covered by the first spacer structure S12 because the shape and the area of the first source/drain doped region 42 is not mainly defined by the first spacer structure S1, but not limited thereto. In this situation, a distance DS3 between the first metal silicide layer 52 and the first spacer structure S1 in the second direction D2 may be greater than the length L1 of the edge portion 22A of the first gate oxide layer 22 in the second direction D2, the length L2 of the main portion 22B of the first gate oxide layer 22 in the second direction D2 may be greater than the sum of the length of the first spacer structure S1 in the second direction D2 and the length of the first gate structure GS1 in the second direction D2, and the etching stop layer 62 may directly contact a part of the top surface TS2 and the sloping sidewall SW of the edge portion 22A, but not limited thereto.
In some embodiments, the semiconductor device 101 may further include a second transistor structure T2, and at least a part of the second transistor structure T2 is disposed on the second region R2 of the semiconductor substrate 10. The second transistor structure T2 may include a second gate oxide layer 24, a second gate structure GS2, a second spacer structure S2, a lightly doped source/drain region 14, a second source/drain doped region 44, and a second metal silicide layer 54. The second gate oxide layer 24 may be disposed on the second region R2 of the semiconductor substrate 10, and the thickness TK1 of the first gate oxide layer 22 may be greater than a thickness TK2 of the second gate oxide layer 24. In some embodiments, the gate oxide layers with different thicknesses may be used to realize the relatively high voltage operation and the relatively low voltage operation, respectively. Therefore, the operating voltage of the first transistor structure T1 may be higher than that of the second transistor structure T2, the first region R1 may be regarded as a relatively high voltage transistor region, and the second region R2 may be regarded as a relatively low voltage transistor region, but not limited thereto. The second gate structure GS2 may be disposed on the second gate oxide layer 24, and the second spacer structure S2 may be disposed on a sidewall of the second gate structure GS2 and a sidewall of the second gate oxide layer 24. The lightly doped source/drain region 14 may be disposed in the second region R2 of the semiconductor substrate 10 and a part of the lightly doped source/drain region 14 may be located under the second gate oxide layer 24 in the first direction D1. The second source/drain doped region 44 may be disposed in the semiconductor substrate 10 and located in the lightly doped source/drain region 14, and the second source/drain doped region 44 may be located adjacent to the second spacer structure S2.
In some embodiments, at least a part of the second silicide layer 54 may be disposed in the second source/drain doped region 44, and the second metal silicide layer 54 may be directly connected with the second spacer structure S2. Therefore, the distance (such as the distance DS1 described above) between the first metal silicide layer 52 and the first gate structure GS1 in the first horizontal direction may be greater than a distance (such as a distance DS2 shown in FIG. 1 ) between the second metal silicide layer 54 and the second gate structure GS2 in a second horizontal direction. In some embodiments, the first horizontal direction and the second horizontal direction described above may be the same direction (such as the second direction D2) or different horizontal directions. In some embodiments, the semiconductor device 101 may include two lightly doped source/drain regions 14, two second source/drain doped regions 44, and two second metal silicide layers 54 located at two opposite sides of the second gate structure GS2 in the second horizontal direction described above, respectively. Additionally, in some embodiments, the etching stop layer 62 and the dielectric layer 64 may be further disposed on the second region R2 of the semiconductor substrate 10 and cover the second metal silicide layer 54 and the sidewall of the second spacer structure S2, and the second gate oxide layer 24 may be covered by the second gate structure GS2 and the second spacer structure S2 without directly contacting the etching stop layer 62, but not limited thereto.
In some embodiments, the semiconductor substrate 10 may include a silicon substrate, an epitaxial silicon substrate, a silicon germanium substrate, a silicon carbide substrate, a silicon-on-insulator (SOI) substrate, or a substrate made of other suitable semiconductor materials. The lightly doped source/drain region 12, the lightly doped source/drain region 14, the first source/drain doped region 42, and the second source/drain doped region 44 may respectively include a doped region formed in the semiconductor substrate 10 by performing a doping process (such as an implantation process). In some embodiments, the lightly doped source/drain region 12 and the lightly doped source/drain region 14 may be formed concurrently by the same process and have the same conductivity type, the same impurity, and/or similar impurity concentrations, and the first source/drain doped region 42 and the second source/drain doped region 44 may be formed concurrently by the same process and have the same conductivity type, the same impurity, and/or similar impurity concentrations, but not limited thereto. The impurities (or dopants) described above may include n-type impurities or p-type impurities. The n-type impurities may include phosphorus (P), arsenic (As), or other suitable n-type impurities, and then p-type impurities may include boron (B), gallium (Ga), or other suitable p-type impurities.
In some embodiments, the first gate structure GS1 may include a gate dielectric layer 70 and a first metal gate structure MG1, and the second gate structure GS2 may include the gate dielectric layer 70 and a second metal gate structure MG2, but not limited thereto. The gate dielectric layer 70 may include a high dielectric constant (high-k) dielectric material or other suitable dielectric materials, and the first metal gate structure MG1 and the second metal gate structure MG2 may respectively include a metal gate structure formed with a work function layer (not illustrated) and a low electrical resistivity layer (not illustrated) stacked with each other, but not limited thereto. The work function layer described above may include titanium nitride (TiN), titanium carbide (TiC), tantalum nitride (TaN), tantalum carbide (TaC), tungsten carbide (WC), titanium tri-aluminide (TiAl3), aluminum titanium nitride (TiAlN), or other suitable electrically conductive work function materials. The low electrical resistivity layer described above may include tungsten, aluminum, copper, titanium aluminide, titanium, or other suitable low electrical resistivity materials. In some embodiments, the first metal gate structure MG1 and the second metal gate structure MG2 may include the same work function layer stacked structure or different work function layer stacked structures according to the specifications of the first transistor structure T1 and the second transistor structure T2.
In some embodiments, the first metal silicide layer 52 and the second metal silicide layer 54 may include cobalt-silicide, nickel-silicide, or other suitable metal silicide. In addition, the first spacer structure S1 and the second spacer structure S2 may respectively include a single layer or multiple layers of dielectric materials, such as silicon oxide, silicon nitride, silicon oxynitride, or other suitable dielectric materials. For example, the first spacer structure S1 may include a spacer S11 and a spacer S12 disposed at an outer side of the spacer S11, wherein the material composition of the spacer S12 may be different from the material composition of the spacer S11; and the second spacer structure S2 may include a spacer S21 and a spacer S22 disposed at an outer side of the spacer S21, and the material composition of the spacer S22 may be different from the material composition of the spacer S21, but not limited thereto. In some embodiments, the spacer S11 and the spacer S21 may be formed concurrently by the same process and have the same material composition (such as silicon nitride), and the spacer S12 and the spacer S22 may be formed concurrently by the same process and have the same material composition (such as silicon oxide), but not limited thereto. Additionally, the etching stop layer 62 may include silicon nitride or other suitable insulation materials, and the dielectric layer 64 may include silicon oxide or other dielectric materials different from the etching stop layer 62.
Please refer to FIGS. 1-10 . FIGS. 3-10 are schematic drawings illustrating a manufacturing method of a semiconductor device according to an embodiment of the present invention, wherein FIG. 4 is a schematic drawing in a step subsequent to FIG. 3 , FIG. 5 is a schematic drawing in a step subsequent to FIG. 4 , FIG. 6 is a schematic drawing in a step subsequent to FIG. 5 , FIG. 7 is a schematic drawing in a step subsequent to FIG. 6 , FIG. 8 is a schematic drawing in a step subsequent to FIG. 7 , FIG. 9 is a schematic drawing in a step subsequent to FIG. 8 , FIG. 10 is a schematic drawing in a step subsequent to FIG. 9 , and FIG. 1 may be regarded as a schematic drawing in a step subsequent to FIG. 10 . As shown in FIG. 1 and FIG. 2 , the manufacturing method of the semiconductor device 101 in this embodiment may include the following steps. The first gate oxide layer 22 is formed on the semiconductor substrate 10. The first gate oxide layer 22 includes the main portion 22B and the edge portion 22A, and the edge portion 22A may have the sloping sidewall SW. The first source/drain doped region 42 is formed in the semiconductor substrate 10, and the first source/drain doped region 42 is disposed adjacent to the edge portion 22A of the first gate oxide layer 22. The first source/drain doped region 42 includes a first portion 42A and a second portion 42B. The first portion 42A is disposed under the edge portion 22A of the first gate oxide layer 22 in a vertical direction (such as the first direction D1), and the second portion 42B is connected with the first portion 42A.
Specifically, the manufacturing method in this embodiment may include but is not limited to the following steps. As shown in FIG. 3 , an oxide layer 20 may be formed globally on the semiconductor substrate 10, and the oxide layer 20 may be formed on the first region R1 and the second region R2 accordingly. In some embodiments, the oxide layer 20 may be formed on the semiconductor substrate 10 by a thermal oxidation process, other suitable oxidation approaches, or other suitable film forming processes (such as deposition process). Additionally, in some embodiments, the lightly doped source/drain region 12 may be formed in the first region R1 of the semiconductor substrate 10 before the step of forming the oxide layer 20, and the lightly doped source/drain region 12 may be formed in the first region R1 of the semiconductor substrate 10 by a doping process, but not limited thereto. Subsequently, as shown in FIG. 3 and FIG. 4 , the oxide layer 20 formed on the second region R2 and a part of the oxide layer 20 formed on the first region R1 may be removed concurrently for forming the first gate oxide layer 22 on the first region R1 and process simplification. In some embodiments, a mask layer (not illustrated) may be used to cover the area of the oxide layer 20, which is going to remain, and the mask layer may be used as an etching mask for performing an etching process configured to remove the oxide layer 20 on the second region R2 and the oxide layer 20 covering the region corresponding to the subsequent source/drain region on the first region R1. The edge portion 22A of the first gate oxide layer 22 formed by the etching process may have the sloping sidewall SW because of the etching property of the etching process. In some embodiments, the etching process described above may include a wet etching process or other suitable etching approaches capable of forming the required sloping sidewall SW.
Subsequently, as shown in FIGS. 3-5 , after the step of removing the oxide layer 20 on the second region R2, the second gate oxide layer 24 may be formed on the second region R2, and the thickness of the first gate oxide layer 22 may be greater than the thickness of the second gate oxide layer 24. In some embodiments, the second gate oxide layer 24 may be formed on the semiconductor substrate 10 by a thermal oxidation process or other suitable oxidation approaches, and the second gate oxide layer 24 may be partly formed on the first region R1 accordingly, but not limited thereto. As shown in FIG. 5 and FIG. 6 , a first dummy gate structure 30A, a gate cap layer 32A, and a gate cap layer 34A may then be formed on the first gate oxide layer 22, and a second dummy gate structure 30, a gate cap layer 32B, and a gate cap layer 34B may be formed on the second gate oxide layer 24. In some embodiments, the first dummy gate structure 30A and the second dummy gate structure 30B may be formed concurrently by the performing a patterning process to a material layer (such as a dummy gate material layer 30), and the material composition of the first dummy gate structure 30A may be identical to that of the second dummy gate structure 30B accordingly, but not limited thereto. The dummy gate material layer 30 may include polysilicon or other suitable dummy gate materials. In some embodiments, the gate cap layer 32A, the gate cap layer 34A, the gate cap layer 32B, and the gate cap layer 34B may respectively include silicon oxide, silicon nitride, or other suitable insulation materials. In addition, the material composition of the gate cap layer 32A may be different from that of the gate cap layer 34A, and the material composition of the gate cap layer 32B may be different from that of the gate cap layer 34B for providing required etching selectivity in the subsequent processes, but not limited thereto. For example, in some embodiments, the gate cap layer 32A and the gate cap layer 32B may be formed concurrently by the performing a patterning process to a material layer (such as a cap layer 32), the gate cap layer 34A and the gate cap layer 34B may be formed concurrently by the performing a patterning process to a material layer (such as a cap layer 34), and the material composition of the cap layer 34 (such as silicon oxide) may be different from the material composition of the cap layer 32 (such as silicon nitride), but not limited thereto.
Subsequently, the spacer S11 may be formed on sidewalls of the first dummy gate structure 30A, the gate cap layer 32A, and the gate cap layer 34A, and the spacer S21 may be formed on sidewalls of the second dummy gate structure 30B, the gate cap layer 32B, and the gate cap layer 34B. In some embodiments, a part of the first gate oxide layer 22 may be removed by the steps of forming the first dummy gate structure 30A, the gate cap layer 32A, and/or the gate cap layer 34A, and the top surface of the first gate oxide layer 22 located under the spacer S11 may be slightly lower than the top surface of the first gate oxide layer 22 located under the first dummy gate structure 30A in the first direction, but not limited thereto. Additionally, the second gate oxide layer 24 formed on the first region R1 may be removed by the steps of forming the first dummy gate structure 30A, the gate cap layer 32A, the gate cap layer 34A, and/or the spacer S11. In some embodiments, the lightly doped source/drain region 14 may be formed in the second region R2 of the semiconductor substrate 10 by a doping process after the step of forming the spacer S21, but not limited thereto.
As shown in FIG. 6 and FIG. 7 , after the step of forming the lightly doped source/drain region 14, the spacer S12 and a spacer S13 may be formed at an outer side of the spacer S11, and the spacer S22 and a spacer S23 may be formed at an outer side of the spacer S21. In some embodiments, the spacer S13 and the spacer S23 may be formed concurrently by the same process and have the same material composition (such as silicon nitride), and the spacer S12, the spacer S13, the spacer S22, and the spacer S23 may be formed concurrently by performing a patterning process to two spacer material layers (such as a silicon oxide layer and a silicon nitride layer) conformally formed on the semiconductor substrate 10, the first gate oxide layer 22, the spacer S11, the gate cap layer 34A, the spacer S21, and the gate cap layer 34B, and the spacer S12 and the spacer S22 may respectively have a L-shaped structure in a cross-sectional diagram, but not limited thereto.
Additionally, in some embodiments, the spacer S13 and the spacer S23 may be removed concurrently by subsequent processes. Therefore, the spacer S11 and the spacer S12 may be regarded as the first spacer structure S1 formed on sidewalls of the first dummy gate structure 30A, the gate cap layer 32A, and the gate cap layer 34A, and the spacer S21 and the spacer S22 may be regarded as the second spacer structure S2 formed on sidewalls of the second dummy gate structure 30B the gate cap layer 32B, and the gate cap layer 34B, but not limited thereto. In some embodiments, the first spacer structure S1 may be formed on the main portion 22B of the first gate oxide layer 22, and the top surface of the first gate oxide layer 22 located under the first spacer structure S1 may be slightly lower than the top surface of the first gate oxide layer 22 located under the first dummy gate structure 30A in the first direction D1, but not limited thereto. In some embodiments, the main portion 22B and the edge portion 22A of the first gate oxide layer 22 may be slightly etched by the processes (such as etching processes) of forming the spacers described above, but the edge portion 22A of the first gate oxide layer 22 may have the sloping sidewall SW before the step of forming the first spacer structure S1 and after the step of forming the first spacer structure S1. In other words, as shown in FIGS. 4-7 , in some embodiments, the sloping sidewall SW of the edge portion 22A of the first gate oxide layer 22 may be formed before the step of forming the first dummy gate structure 30A and the step of forming the first spacer structure S1, and the edge portion 22A of the first gate oxide layer 22 may still have the sloping sidewall SW after the first spacer structure S1 and the spacer S13 are formed.
Subsequently, as shown in FIG. 8 , the first source/drain doped region 42 and the second source/drain doped region 44 may be formed in the first region R1 and the second region R2 of the semiconductor substrate 10, respectively. In some embodiments, the first source/drain doped region 42 and the second source/drain doped region 44 may be formed in the lightly doped source/drain region 12 and the lightly doped source/drain region 14, respectively. The impurity concentration of the first source/drain doped region 42 may be higher than that of the lightly doped source/drain region 12, and the impurity concentration of the second source/drain doped region 44 may be higher than that of the lightly doped source/drain region 14. In some embodiments, the second source/drain doped region 44 and the first source/drain doped region 42 may be formed concurrently by the some process (such as a doping process 90) for process simplification, but not limited thereto. The doping process 90 may include an ion implantation process or other suitable doping approaches. In some embodiments, the shape of the first source/drain doped region 42 may be mainly influenced by the edge portion 22A of the first gate oxide layer 22 and have the first portion 42A and the second portion 42B described above because the first gate oxide layer 22 is relatively thicker and the first spacer structure S1 does not cover the edge portion 22A. For example, the thickness of the edge portion 22A of the first gate oxide layer 22 may be gradually decreased in a direction away from the first dummy gate structure 30A because the edge portion 22A of the first gate oxide layer 22 has the sloping sidewall SW. Comparatively, the depth of the first portion 42A of the first source/drain doped region 42 may be gradually increased in the direction away from the first dummy gate structure 30A accordingly, and the depth of the second portion 42B of the first source/drain doped region 42 may be greater than that of the first portion 42A of the first source/drain doped region 42 because the second portion 42B of the first source/drain doped region 42 does not overlap the first gate oxide layer 22 in the first direction D1.
Subsequently, as shown in FIG. 8 and FIG. 9 , the first metal silicide layer 52 and the second metal silicide layer 54 may be formed. In some embodiments, the first metal silicide layer 52 and the second metal silicide layer 54 may be formed concurrently by the same process and have the same material composition for process simplification, but not limited thereto. For example, a metal layer (not illustrated) may be formed globally, and the metal layer may directly contact the first source/drain doped region 42 and the second source/drain doped region 44. A thermal treatment may then be performed for reacting the metal layer with the first source/drain doped region 42 and the second source/drain doped region 44 and forming the first metal silicide layer 52 and the second metal silicide layer 54 accordingly, and the metal layer may be removed after the first metal silicide layer 52 and the second metal silicide layer 54 are formed. In some embodiments, the metal layer described above may include cobalt, nickel, or other suitable metal materials, and the first metal silicide layer 52 and the second metal silicide layer 54 may include cobalt-silicide, nickel-silicide, or other silicide of the metal material of the metal layer. In some embodiments, the edge portion 22A of the first gate oxide layer 22 may be located between the first spacer structure S1 and the first metal silicide layer 52 in a horizontal direction (such as the second direction D2), and the second metal silicide layer 54 may directly contact the second spacer structure S2. Therefore, a distance DS4 between the first metal silicide layer 52 and the first dummy gate structure 30A in the first horizontal direction (such as the second direction D2, but not limited thereto) may be greater than a distance DS5 between the second metal silicide layer 54 and the second dummy gate structure 30B in the second horizontal direction (such as the second direction D2, but not limited thereto).
Subsequently, as shown in FIG. 9 and FIG. 10 , the etching stop layer 62 and the dielectric layer 64 may be formed, and a planarization process may be performed for removing the gate cap layer 32A, the gate cap layer 32B, the gate cap layer 34A, the gate cap layer 34B, a part of the first spacer structure S1, a part of the second spacer structure S2, a part of the etching stop layer 62, and a part of the dielectric layer 64 and exposing the first dummy gate structure 30A and the second dummy gate structure 30B. The planarization process described above may include a chemical mechanical polishing (CMP) process, an etching back process, or other suitable planarization approaches. Additionally, in some embodiments, the spacer S13 and the spacer S23 may be removed by the influence of other process before the step of forming the etching stop layer 62, and the etching stop layer 62 may directly cover the first spacer structure S1 and the second spacer structure S2 accordingly, but not limited thereto. As shown in FIG. 10 and FIG. 1 , the first dummy gate structure 30A and the second dummy gate structure 30B may be removed and the first gate structure GS1 and the second gate structure GS2 may be formed correspondingly for forming the semiconductor device 101 described above. In addition, the manufacturing method of the semiconductor device 101 in this embodiment is not limited to the condition shown in FIGS. 3-10 described above, and other suitable manufacturing approaches may be used to form the semiconductor device 101 according to other design considerations.
The following description will detail the different embodiments of the present invention. To simplify the description, identical components in each of the following embodiments are marked with identical symbols. For making it easier to understand the differences between the embodiments, the following description will detail the dissimilarities among different embodiments and the identical features will not be redundantly described.
Please refer to FIG. 11 . FIG. 11 is a schematic drawing illustrating a semiconductor device 102 according to a second embodiment of the present invention. As shown in FIG. 11 , in some embodiments, the first metal silicide layer 52 may extend to be partly located in the first portion 42A of the first source/drain doped region 42, a part of the first metal silicide layer 52 may be located under the edge portion 22A of the first gate oxide layer 22 and the sloping sidewall SW in the first direction D1, and the required distance DS1 between the first metal silicide layer 52 and the first gate structure GS1 may still exist for achieving the purpose of reducing the leakage current of the first transistor structure T1.
To summarize the above descriptions, according to the semiconductor device and the manufacturing method thereof in the present invention, the gate oxide layer having the sloping sidewall may be used to improve the leakage current performance of the semiconductor device. In addition, the first gate oxide layer having the sloping sidewall may be formed by the step of removing the oxide layer on the second region and/or the source/drain doped regions in the first region and the second region may be formed concurrently by the same process for process simplification and manufacturing cost reduction.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims (9)

What is claimed is:
1. A semiconductor device, comprising:
a semiconductor substrate;
a first gate oxide layer disposed on the semiconductor substrate, wherein the first gate oxide layer comprises:
a main portion; and
an edge portion having a sloping sidewall;
a first source/drain doped region disposed in the semiconductor substrate and located adjacent to the edge portion of the first gate oxide layer, wherein the first source/drain doped region comprises:
a first portion disposed under the edge portion of the first gate oxide layer in a vertical direction; and
a second portion connected with the first portion; and
a lightly doped source/drain region disposed in the semiconductor substrate and partly located under the first gate oxide layer in the vertical direction, wherein the first source/drain doped region is disposed in the lightly doped source/drain region, and an impurity concentration of the first source/drain doped region is higher than an impurity concentration of the lightly doped source/drain region.
2. The semiconductor device according to claim 1, wherein a bottom surface of the first portion of the first source/drain doped region comprises a curved surface disposed under the sloping sidewall of the edge portion of the first gate oxide layer in the vertical direction.
3. The semiconductor device according to claim 1, wherein the sloping sidewall of the edge portion of the first gate oxide layer comprises a concave surface.
4. The semiconductor device according to claim 1, wherein the first portion of the first source/drain doped region is located between the main portion of the first gate oxide layer and the second portion of the first source/drain doped region in a horizontal direction, and a bottom surface of the second portion is lower than a bottom surface of the first portion in the vertical direction.
5. The semiconductor device according to claim 1, wherein a length of the first portion of the first source/drain doped region in the vertical direction is less than a length of the second portion of the first source/drain doped region in the vertical direction.
6. The semiconductor device according to claim 1, wherein an included angle between the sloping sidewall of the edge portion of the first gate oxide layer and a top surface of the semiconductor substrate is less than or equal to 45 degrees.
7. The semiconductor device according to claim 1, further comprising:
a first gate structure disposed on the main portion of the first gate oxide layer;
a first spacer structure disposed on the main portion of the first gate oxide layer and located on a sidewall of the first gate structure; and
a first metal silicide layer, wherein at least a part of the first metal silicide layer is disposed in the second portion of the first source/drain doped region, and the edge portion of the first gate oxide layer is located between the first spacer structure and the first metal silicide layer in a horizontal direction.
8. The semiconductor device according to claim 7, further comprising:
a second gate oxide layer disposed on the semiconductor substrate, wherein a thickness of the first gate oxide layer is greater than a thickness of the second gate oxide layer;
a second gate structure disposed on the second gate oxide layer;
a second spacer structure disposed on a sidewall of the second gate structure;
a second source/drain doped region disposed in the semiconductor substrate and located adjacent to the second spacer structure; and
a second metal silicide layer, wherein at least a part of the second silicide layer is disposed in the second source/drain doped region, and a first distance between the first metal silicide layer and the first gate structure in the horizontal direction is greater than a second distance between the second metal silicide layer and the second gate structure in the horizontal direction.
9. The semiconductor device according to claim 1, wherein a thickness of the edge portion of the first gate oxide layer is less than a thickness of the main portion of the first gate oxide layer.
US17/369,985 2021-05-21 2021-07-08 Semiconductor device including gate oxide layer and manufacturing method thereof Active 2041-07-20 US11626500B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/078,057 US12057483B2 (en) 2021-05-21 2022-12-08 Semiconductor device including gate oxide layer and manufacturing method thereof
US18/115,780 US20230207647A1 (en) 2021-05-21 2023-03-01 Semiconductor device including gate oxide layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110558119.0 2021-05-21
CN202110558119.0A CN115377181A (en) 2021-05-21 2021-05-21 Semiconductor device and method for manufacturing the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US18/078,057 Division US12057483B2 (en) 2021-05-21 2022-12-08 Semiconductor device including gate oxide layer and manufacturing method thereof
US18/115,780 Continuation US20230207647A1 (en) 2021-05-21 2023-03-01 Semiconductor device including gate oxide layer

Publications (2)

Publication Number Publication Date
US20220376071A1 US20220376071A1 (en) 2022-11-24
US11626500B2 true US11626500B2 (en) 2023-04-11

Family

ID=84059859

Family Applications (3)

Application Number Title Priority Date Filing Date
US17/369,985 Active 2041-07-20 US11626500B2 (en) 2021-05-21 2021-07-08 Semiconductor device including gate oxide layer and manufacturing method thereof
US18/078,057 Active 2041-07-11 US12057483B2 (en) 2021-05-21 2022-12-08 Semiconductor device including gate oxide layer and manufacturing method thereof
US18/115,780 Pending US20230207647A1 (en) 2021-05-21 2023-03-01 Semiconductor device including gate oxide layer

Family Applications After (2)

Application Number Title Priority Date Filing Date
US18/078,057 Active 2041-07-11 US12057483B2 (en) 2021-05-21 2022-12-08 Semiconductor device including gate oxide layer and manufacturing method thereof
US18/115,780 Pending US20230207647A1 (en) 2021-05-21 2023-03-01 Semiconductor device including gate oxide layer

Country Status (2)

Country Link
US (3) US11626500B2 (en)
CN (1) CN115377181A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116525544A (en) * 2022-01-20 2023-08-01 联华电子股份有限公司 Method for manufacturing semiconductor device
CN116632062A (en) * 2022-02-14 2023-08-22 联华电子股份有限公司 Medium voltage transistor and manufacturing method thereof
CN118173587A (en) * 2024-03-14 2024-06-11 深圳平湖实验室 Semiconductor device and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207995B1 (en) * 1999-02-23 2001-03-27 Advanced Micro Devices, Inc. High K integration of gate dielectric with integrated spacer formation for high speed CMOS
US7067365B1 (en) 2005-05-26 2006-06-27 United Microelectronics Corp. High-voltage metal-oxide-semiconductor devices and method of making the same
US20090039444A1 (en) * 2007-08-08 2009-02-12 Kabushiki Kaisha Toshiba Semiconductor device and method of fabricating the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994747A (en) 1998-02-13 1999-11-30 Texas Instruments-Acer Incorporated MOSFETs with recessed self-aligned silicide gradual S/D junction
US6555438B1 (en) 1998-02-19 2003-04-29 Shye-Lin Wu Method for fabricating MOSFETs with a recessed self-aligned silicide contact and extended source/drain junctions
US6455383B1 (en) * 2001-10-25 2002-09-24 Silicon-Based Technology Corp. Methods of fabricating scaled MOSFETs
US20040262683A1 (en) 2003-06-27 2004-12-30 Bohr Mark T. PMOS transistor strain optimization with raised junction regions
US8163619B2 (en) * 2009-03-27 2012-04-24 National Semiconductor Corporation Fabrication of semiconductor structure having asymmetric field-effect transistor with tailored pocket portion along source/drain zone
US9922881B2 (en) * 2016-01-12 2018-03-20 United Microelectronics Corp. Method for fabricating semiconductor device structure and product thereof
CN109801965B (en) * 2017-11-17 2022-06-14 联华电子股份有限公司 Transistor with double-layer spacer and forming method thereof
KR102274813B1 (en) 2020-02-27 2021-07-07 주식회사 키 파운드리 A Manufacturing Method of Semiconductor Device Using Gate-Through Implantation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207995B1 (en) * 1999-02-23 2001-03-27 Advanced Micro Devices, Inc. High K integration of gate dielectric with integrated spacer formation for high speed CMOS
US7067365B1 (en) 2005-05-26 2006-06-27 United Microelectronics Corp. High-voltage metal-oxide-semiconductor devices and method of making the same
US20090039444A1 (en) * 2007-08-08 2009-02-12 Kabushiki Kaisha Toshiba Semiconductor device and method of fabricating the same

Also Published As

Publication number Publication date
US20220376071A1 (en) 2022-11-24
US20230105690A1 (en) 2023-04-06
US12057483B2 (en) 2024-08-06
US20230207647A1 (en) 2023-06-29
CN115377181A (en) 2022-11-22

Similar Documents

Publication Publication Date Title
CN106328589B (en) FinFET channel on oxide substrate and related methods
US11626500B2 (en) Semiconductor device including gate oxide layer and manufacturing method thereof
CN103022102B (en) Multilayer for ultra-thin interface dielectric layer removes metal gate stacks part
US7316960B2 (en) Strain enhanced ultra shallow junction formation
US9472651B2 (en) Spacerless fin device with reduced parasitic resistance and capacitance and method to fabricate same
US20100258869A1 (en) Semiconductor device and manufacturing method thereof
US20120061774A1 (en) Semiconductor device and manufacturing method of the same
US11721770B2 (en) Manufacturing method of semiconductor device
US10741451B2 (en) FinFET having insulating layers between gate and source/drain contacts
US11152479B2 (en) Semiconductor device, method of making a semiconductor device, and processing system
US11495681B2 (en) Semiconductor device and manufacturing method thereof
EP3208836B1 (en) A method to improve hci performance for finfet
CN108122760B (en) Semiconductor structure and forming method thereof
US20230215913A1 (en) Manufacturing method of semiconductor device
US11817496B2 (en) High voltage semiconductor device
US20240355894A1 (en) Manufacturing method of semiconductor device
US10937882B2 (en) Semiconductor device including a field effect transistor
CN110957349B (en) Semiconductor device and method for manufacturing the same
US20230352348A1 (en) Structure and method of forming spacers on unfaceted raised source/drain regions
CN111146198B (en) Semiconductor structure and manufacturing method thereof
CN112397588A (en) Semiconductor structure and forming method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED MICROELECTRONICS CORP., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TSAI, MING-HUA;HAN, JUNG;LI, MING-CHI;AND OTHERS;SIGNING DATES FROM 20210630 TO 20210705;REEL/FRAME:056783/0696

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STCF Information on status: patent grant

Free format text: PATENTED CASE