US11529258B2 - Adjustable flow glaucoma shunts and associated systems and methods - Google Patents

Adjustable flow glaucoma shunts and associated systems and methods Download PDF

Info

Publication number
US11529258B2
US11529258B2 US17/606,661 US202117606661A US11529258B2 US 11529258 B2 US11529258 B2 US 11529258B2 US 202117606661 A US202117606661 A US 202117606661A US 11529258 B2 US11529258 B2 US 11529258B2
Authority
US
United States
Prior art keywords
flow control
drainage
relative
control element
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US17/606,661
Other languages
English (en)
Other versions
US20220142818A1 (en
Inventor
Robert Chang
Katherine Sapozhnikov
Claudio Argento
Tom Saul
Richard Lilly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shifamed Holdings LLC
Original Assignee
Shifamed Holdings LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shifamed Holdings LLC filed Critical Shifamed Holdings LLC
Priority to US17/606,661 priority Critical patent/US11529258B2/en
Assigned to SHIFAMED HOLDINGS, LLC reassignment SHIFAMED HOLDINGS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LILLY, RICHARD, ARGENTO, CLAUDIO, CHANG, ROBERT, SAPOZHNIKOV, Katherine, SAUL, TOM
Publication of US20220142818A1 publication Critical patent/US20220142818A1/en
Priority to US17/979,664 priority patent/US20230233378A1/en
Application granted granted Critical
Publication of US11529258B2 publication Critical patent/US11529258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00781Apparatus for modifying intraocular pressure, e.g. for glaucoma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0004Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable

Definitions

  • the present technology generally relates to implantable medical devices and, in particular, to intraocular shunting systems and associated methods for selectively controlling fluid flow between different portions of a patient's eye.
  • Glaucoma is a degenerative ocular condition involving damage to the optic nerve that can cause progressive and irreversible vision loss. Glaucoma is frequently associated with ocular hypertension, an increase in pressure within the eye, and may result from an increase in production of aqueous humor (“aqueous”) within the eye and/or a decrease in the rate of outflow of aqueous from within the eye into the blood stream. Aqueous is produced in the ciliary body at the boundary of the posterior and anterior chambers of the eye. It flows into the anterior chamber and eventually into the venous vessels of the eye. Glaucoma is typically caused by a failure in mechanisms that transport aqueous out of the eye and into the blood stream.
  • aqueous humor aqueous humor
  • FIG. 1 A is a simplified front view of an eye E with an implanted shunt
  • FIG. 1 B is an isometric view of the eye capsule of FIG. 1 A .
  • FIGS. 2 A- 2 C illustrate an adjustable shunt configured in accordance with embodiments of the present technology.
  • FIG. 3 A illustrates select features of the shunt shown in FIGS. 2 A- 2 C configured in accordance with embodiments of the present technology.
  • FIG. 3 B illustrates select features of the shunt shown in FIGS. 2 A- 2 C configured in accordance with embodiments of the present technology.
  • FIGS. 4 A and 4 B illustrate a drainage plate for use with an adjustable shunt configured in accordance with select embodiments of the present technology.
  • FIG. 4 C is a schematic illustration of an electrical circuit having parallel resistors.
  • FIGS. 5 A and 5 B illustrate a drainage plate for use with an adjustable shunt configured in accordance with select embodiments of the present technology.
  • FIG. 5 C is a schematic illustration of an electrical circuit having serial resistors.
  • FIG. 6 illustrates a shunt configured in accordance with select embodiments of the present technology.
  • the present technology is directed to systems, devices, and methods for treating glaucoma.
  • some embodiments provide shunts having a plurality of individually actuatable flow control elements that can control the flow of fluid through associated ports and/or channels in the shunt.
  • each individually actuatable flow control element can be actuated to substantially block and/or substantially unblock a corresponding port and/or channel, thereby inhibiting or permitting flow through the port and/or channel.
  • the shunts described herein can be manipulated into a variety of configurations that provide different drainage rates based on whether the ports and/or channels are blocked or unblocked, therefore providing a titratable glaucoma therapy for draining aqueous from the anterior chamber of the eye.
  • the flow control elements can be non-invasively adjusted after the shunt is implanted in the eye to allow for post-implant adjustments.
  • the shunting systems include ports and/or drainage channels that are configured to provide a different therapy level relative to other ports and/or drainage channels of the system.
  • a first port and/or channel may be associated with a first drainage rate and/or first fluid resistance
  • a second port and/or channel may be associated with a second drainage rate and/or second fluid resistance
  • a third port and/or channel may be associated with a third drainage rate and/or third fluid resistance.
  • this can be accomplished by having ports and/or drainage channels having different dimensions (e.g., diameters, cross-section areas, lengths, etc.).
  • the ports and channels are arranged as parallel fluid resistors relative to a primary drainage lumen.
  • the inflow ports and channels are arranged as serial fluid resistors relative to the primary drainage lumen.
  • each individual port may be associated with a discrete and different relative resistance and/or flow.
  • a first port may enable a flow of 1X
  • a second port may enable a flow of 2X
  • a third port may enable a flow of 3X.
  • any combination of ports can be opened (e.g., unblocked) or closed (e.g., blocked, interfered with, etc.) to provide additional discrete relative resistances and/or drainage rates that differ from the discrete relative resistances and flows associated with each individual port.
  • both the second and third ports can be opened to provide a flow of 5X.
  • the relative dimensions of the ports and/or channels can be selected to specifically provide the greatest number of discrete therapy levels.
  • a ratio between the first drainage rate, second drainage rate, and third drainage rate can be about 1:2:4.
  • a ratio between the first resistance, the second resistance, and the third resistance can be about 4:2:1. Without being bound theory, this is expected to increase the number of discrete therapy levels the systems can provide, which in turn is expected to enable a healthcare to specifically tailor the therapy level to a particular patient's needs.
  • each individual inflow port may still be associated with a discrete resistance and/or drainage rate.
  • the systems cannot be manipulated to achieve a plurality of combined resistances and/or flow rates different than the discrete resistances and/or drainage rates provided by each individual port.
  • any of the embodiments herein, including those referred to as “glaucoma shunts” or “glaucoma devices” may nevertheless be used and/or modified to treat other diseases or conditions, including other diseases or conditions of the eye or other body regions.
  • the systems described herein can be used to treat diseases characterized by increased pressure and/or fluid build-up, including but not limited to heart failure (e.g., heart failure with preserved ejection fraction, heart failure with reduced ejection fraction, etc.), pulmonary failure, renal failure, hydrocephalus, and the like.
  • heart failure e.g., heart failure with preserved ejection fraction, heart failure with reduced ejection fraction, etc.
  • pulmonary failure pulmonary failure
  • renal failure e.g., pulmonary failure, renal failure, hydrocephalus, and the like.
  • the systems described herein may be applied equally to shunting other fluid, such as blood or cerebrospinal fluid, between the first body region and the second body region.
  • Glaucoma refers to a group of eye diseases associated with damage to the optic nerve which eventually results in vision loss and blindness.
  • glaucoma is a degenerative ocular condition characterized by an increase in pressure within the eye resulting from an increase in production of aqueous within the eye and/or a decrease in the rate of outflow of aqueous from within the eye into the blood stream. The increased pressure leads to injury of the optic nerve over time.
  • patients often do not present with symptoms of increased intraocular pressure until the onset of glaucoma. As such, patients typically must be closely monitored once increased pressure is identified even if they are not symptomatic. The monitoring continues over the course of the disease so clinicians can intervene early to stem progression of the disease.
  • Surgical or minimally invasive approaches primarily attempt to increase the outflow of aqueous from the anterior chamber to the blood stream either by the creation of alternative fluid paths or the augmentation of the natural paths for aqueous outflow.
  • FIGS. 1 A and 1 B illustrate a human eye E and suitable location(s) in which a shunt may be implanted within the eye E in accordance with embodiments of the present technology. More specifically, FIG. 1 A is a simplified front view of the eye E with an implanted shunt 100 , and FIG. 1 B is an isometric view of the eye E and the shunt 100 of FIG. 1 A .
  • the eye E includes a number of muscles to control its movement, including a superior rectus SR, inferior rectus IR, lateral rectus LR, medial rectus MR, superior oblique SO, and inferior oblique IO.
  • the eye E also includes an iris, pupil, and limbus.
  • the shunt 100 can have a drainage element 105 (e.g., a drainage tube) positioned such that an inflow portion 101 is positioned in an anterior chamber of the eye E, and an outflow portion 102 is positioned at a different location within the eye E, such as a bleb space.
  • the shunt 100 can be implanted in a variety of orientations.
  • the drainage element 105 may extend in a superior, inferior, medial, and/or lateral direction from the anterior chamber.
  • the outflow portion 102 can be placed in a number of different suitable outflow locations (e.g., between the choroid and the sclera, between the conjunctiva and the sclera, etc.).
  • Outflow resistance can change over time for a variety of reasons, e.g., as the outflow location goes through its healing process after surgical implantation of a shunt (e.g., shunt 100 ) or further blockage in the drainage network from the anterior chamber through the trabecular meshwork, Schlemm's canal, the collector channels, and eventually into the vein and the body's circulatory system.
  • a clinician may desire to modify the shunt after implantation to either increase or decrease the outflow resistance in response to such changes or for other clinical reasons. For example, in many procedures the shunt is modified at implantation to temporarily increase its outflow resistance.
  • the modification to the shunt is reversed, thereby decreasing the outflow resistance.
  • the clinician may implant the shunt and after subsequent monitoring of intraocular pressure determine a modification of the drainage rate through the shunt is desired.
  • Such modifications can be invasive, time-consuming, and/or expensive for patients. If such a procedure is not followed, however, there is a high likelihood of creating hypotony (excessively low eye pressure), which can result in further complications, including damage to the optic nerve.
  • intraocular shunting systems configured in accordance with embodiments of the present technology allow the clinician to selectively adjust the flow of fluid through the shunt after implantation without additional invasive surgical procedures.
  • the shunts described herein can be implanted having a first drainage rate and subsequently remotely adjusted to achieve a second, different drainage rate. The adjustment can be based on the needs of the individual patient. For example, the shunt may be implanted at a first lower flow rate and subsequently adjusted to a second higher flow rate as clinically necessary.
  • the shunts described herein can be delivered using either ab interno or ab externo implant techniques, and can be delivered via needles.
  • the needles can have a variety of shapes and configurations to accommodate the various shapes of the shunts described herein. Details of the implant procedure, the implant devices, and bleb formation are described in greater detail in International Patent Application No.
  • the flow control assemblies are configured to introduce features that selectively impede or attenuate fluid flow through the shunt during operation. In this way, the flow control assemblies can incrementally or continuously change the flow resistance through the shunt to selectively regulate pressure and/or flow.
  • the flow control assemblies configured in accordance with the present technology can accordingly adjust the level of interference or compression between a number of different positions, and accommodate a multitude of variables (e.g., TOP, aqueous production rate, native aqueous outflow resistance, and/or native aqueous outflow rate) to precisely regulate flow rate through the shunt.
  • the disclosed flow control assemblies can be operated using energy. This feature allows such devices to be implanted in the patient and then modified/adjusted over time without further invasive surgeries or procedures for the patient. Further, because the devices disclosed herein may be actuated via energy from an external energy source (e.g., a laser), such devices do not require any additional power to maintain a desired orientation or position. Rather, the actuators/fluid resistors disclosed herein can maintain a desired position/orientation without power. This can significantly increase the usable lifetime of such devices and enable such devices to be effective long after the initial implantation procedure.
  • an external energy source e.g., a laser
  • FIGS. 2 A- 2 C illustrate an adjustable shunt 200 (“shunt 200 ”) configured in accordance with embodiments of the present technology.
  • the shunt 200 includes a drainage element or tube 202 having a first end portion 204 and a second end portion 206 opposite the first end portion 204 .
  • the drainage element 202 can have a plurality of inflow ports or apertures (referred to herein as ports 208 —shown in FIG. 2 B ) at or adjacent to the first end portion 204 and an outflow aperture 207 at or adjacent the second end portion 206 .
  • the ports 208 can be arranged and/or configured such that they provide the equivalent of a set of parallel fluid resistors accessing a primary lumen of the device.
  • the primary lumen can extend through the drainage element 202 to fluidly connect the plurality of ports 208 and the outflow aperture 207 .
  • the shunt 200 can also be referred to as a parallel resistor.
  • the drainage element 202 can be relatively flat such that its height is less than its width (e.g., the drainage element 202 has an oval, rectangular, or “D-shaped” cross sectional shape).
  • the drainage element 202 may have an outer diameter (e.g., height) of about 1000 microns ( ⁇ m) or less, about 400 ⁇ m or less, or about 300 ⁇ m or less.
  • the drainage element 202 can have an outer diameter value that is between any of the aforementioned values of outer diameter.
  • the drainage element may have an inner diameter of about 800 ⁇ m or less, about 300 ⁇ m or less, or about 200 ⁇ m or less.
  • the drainage element 202 can have an inner diameter value that is between any of the aforementioned values of inner diameter.
  • the drainage element 202 can have a length that is about 2 mm, about 2.5 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm, about 15 mm, or about 20 mm.
  • the drainage element 202 can have a length that is between any of the aforementioned values of length.
  • the drainage element 202 can be substantially cylindrical. Without wishing to be bound by theory, having a relatively flat profile is expected to advantageously reduce interference with native tissue while providing increased stability of the shunt 200 .
  • the shunt 200 can include a flow control mechanism 210 positioned at the first end portion 204 of the drainage element 202 .
  • the first end portion 204 can reside within an anterior chamber and the second end portion 206 can reside in a desired outflow location (e.g., a bleb space, such as those described in International Patent Application No. PCT/US20/41152, previously incorporated by reference herein).
  • the flow control mechanism 210 is located within the anterior chamber.
  • the first end portion 204 can reside within the desired outflow location and the second end portion 206 can reside within the anterior chamber (e.g., fluid would flow from the outflow aperture 207 to the ports 208 ).
  • the flow control mechanism 210 is positioned outside of the anterior chamber (e.g., in the bleb space). Regardless of the orientation of the shunt 200 , the shunt 200 is configured to drain aqueous from the anterior chamber when the shunt 200 is implanted in the eye.
  • the shunt 200 may optionally have additional features that help secure the shunt 200 in place when implanted in the eye.
  • the shunt 200 can include arms, anchors, plates, or other suitable features (not shown) that can secure the shunt 200 to native tissue.
  • the shunt 200 may also include an outer membrane or cover (e.g., a transparent and/or biocompatible membrane) that encases some or all of the shunt 200 .
  • the flow control mechanism 210 includes a plurality of flow control elements 211 a - d arranged along the length of the drainage element 202 .
  • Individual flow control elements 211 a - d can interface with a corresponding individual port 208 , and each flow control element 211 a - d can be individually actuatable.
  • the shunt 200 can be manipulated into any number of configurations with all ( FIG. 2 C ), some, or none ( FIG. 2 B ) of the ports 208 blocked or substantially blocked. The more ports 208 that are unblocked or otherwise accessible, the more fluid is able to drain via the drainage element 202 . As described in detail with respect to FIGS.
  • the ports 208 can have the same or different dimensions.
  • the ports 208 are generally regularly spaced apart (e.g., spaced about 1 mm apart).
  • the ports 208 are spaced to have varied distances between adjacent ports 208 .
  • at least two adjacent ports 208 can have a spacing distance that is different than a spacing distance between other ports 208 of the plurality of ports 208 .
  • Each flow control element 211 a - d includes a pair of anchors 212 (e.g., the first flow control element 211 a includes a first anchor 212 a and second anchor 212 b ) spaced apart along a length of the drainage element 202 .
  • adjacent flow control elements 211 a - d may share an anchor.
  • the second anchor 212 b anchors both the first flow control element 211 a and the second flow control element 211 b .
  • the anchors 212 are secured to the drainage element 202 such that at least one of the ports 208 is positioned generally between each pair of anchors.
  • the anchors 212 can be secured to the drainage element 202 or other structure such that they do not move when the flow control elements 211 a - d are actuated.
  • the anchors 212 may wrap around a circumference of the drainage element 202 and be secured thereto via a friction fit or other suitable attachment mechanism.
  • the anchors 212 do not wrap around the full circumference of the drainage element but nevertheless secure the flow control mechanism 210 to the drainage element 202 (e.g., via welding, gluing, or other suitable adhesion techniques).
  • Each individual flow control element 211 a - d further includes a moveable gating element (e.g., flow control element 211 a includes a gating element 216 a , flow control element 211 b includes a gating element 216 b , etc., collectively referred to herein as gating element 216 ), a first actuation element (e.g., flow control element 211 a includes a first actuation element 214 a ) extending between a first anchor (e.g., the first anchor 212 a ) and the corresponding gating element 216 (e.g., gating element 216 a ), and a second actuation element (e.g., flow control element 211 b includes a second actuation element 214 b ) extending between a second anchor (e.g., the second anchor 212 b ) and the corresponding gating element 216 .
  • a moveable gating element e.g.
  • Each gating element 216 a - d is configured to interface with (e.g., at least partially block or otherwise form a substantial or full fluid seal with) a corresponding port 208 .
  • the actuation elements can be selectively activated to selectively move the corresponding gating element 216 between one or more positions blocking (or partially blocking) the corresponding port 208 and one or more positions unblocking (or at partially unblocking) the corresponding port 208 .
  • the gating element 216 a of the first flow control element 211 a can be moved between a first open position permitting fluid to flow into the drainage element 202 via the corresponding port 208 and a first closed position substantially preventing fluid from flowing into the drainage element 202 via the corresponding port 208
  • the gating element 216 b of the second flow control element 211 b can be moved between a second open position permitting fluid to flow into the drainage element 202 via the corresponding port 208 , and a second closed position substantially preventing fluid from flowing into the drainage element 202 via the corresponding port 208
  • the gating element 216 c of the third flow control element 211 c can be moved between a third open position permitting fluid to flow into the drainage element 202 via the corresponding port 208 , and a third closed position substantially preventing fluid from flowing into the drainage element 202 via the corresponding port 208
  • the gating element can also be described as not interfering with and/or imparting a first fluid resistance through the outlet when in the open position and interfering with and/or imparting a second fluid resistance greater than the first fluid resistance when in the closed position.
  • the gating elements 216 can be moved by actuating the actuation elements 214 .
  • actuating the second actuation element 214 a can move the gating element 216 a in a first direction
  • actuating the first actuation element 114 b can move the gating element 216 a in a second direction generally opposite the first direction.
  • the actuation elements can be composed at least partially of a shape memory material (e.g., a shape memory alloy) or other suitable material that is configured to change shape upon application of energy.
  • the actuation elements are composed of nitinol.
  • the actuation elements can be transitionable at least between a first material phase or state (e.g., a martensitic state, a R-phase, a composite state between martensitic and R-phase, etc.) and a second material phase or state (e.g., an austenitic state, an R-phase state, a composite state between austenitic and R-phase, etc.).
  • a first material phase or state e.g., a martensitic state, a R-phase, a composite state between martensitic and R-phase, etc.
  • a second material phase or state e.g., an austenitic state, an R-phase state, a composite state between austenitic and R-phase, etc.
  • the actuation element or select region thereof may be deformable (e.g., plastic, malleable, compressible, expandable, etc.).
  • the actuation element or select region thereof may have a preference toward a specific preferred geometry (e.g., original geometry, manufactured or fabricated geometry, heat set geometry, etc.).
  • the actuation elements can be individually and/or selectively transitioned between the first material state and the second material state by applying energy (e.g., heat, light, etc.) to the actuation element to heat the actuation element above a transition temperature (e.g., a phase transition temperature). If the actuation element is deformed relative to its preferred geometry, the transition from the first material state to the second material state can induce a dimensional change in the actuation element. In some embodiments, the dimensional change is an expansion.
  • the dimensional change is a contraction (e.g., compression).
  • the energy is applied from an energy source positioned external to the eye (e.g., a laser), which can enable a user to non-invasively adjust the shunt.
  • the flow control element 211 a (e.g., the first actuation element 214 a or the second actuation element 214 b ) can be actuated to move (e.g., translate) the gating element 216 a along the axial length of the drainage element 202 between the first anchor 212 a and the second anchor 212 b .
  • This movement of the gating element 216 a can cause it to block (e.g., partially or fully block) and/or unblock (e.g., partially or fully unblock) the associated port 208 .
  • first actuation element 214 a is compressed relative to its preferred geometry
  • heating the first actuation element 214 a above its transition temperature can cause the first actuation element 214 a to expand and/or stiffen (thereby expanding in length).
  • the first anchor 212 a and the second anchor 212 b are secured in place (e.g., they do not move relative to the drainage element 202 )
  • the first actuation element 214 a pushes the gating element 216 a away from the first anchor 212 a as it expands (and toward the second anchor 212 b ).
  • heating the second actuation element 214 b causes the second actuation element 214 b to expand, which pushes the gating element 216 a away from the second anchor 212 b and back towards the first anchor 212 a .
  • this can cause the gating element 216 a to block the port 208 , thereby preventing flow into (or out of) the port 208 .
  • first actuation element 214 a and/or the second actuation element 214 b can be selectively targeted to block and/or unblock the port 208 .
  • first actuation element 214 a and/or the second actuation element 214 b can be actuated to partially block or partially unblock the port 208 , rather than completely blocking and/or unblocking the port 208 .
  • the actuation elements are configured to retain or substantially retain their shape following application of energy. For example, if energy is applied to the first actuation element 214 a to transition the first flow control element 211 a from the configuration shown in FIG. 2 C to the configuration shown in FIG. 2 B , the first flow control element 211 a can retain the configuration shown in FIG. 2 B until further energy is applied to the first flow control element 211 a . Accordingly, once the first flow control element 211 a is actuated to unblock the corresponding port 208 , the corresponding port 208 remains unblocked until further energy is applied to the first flow control element 211 a (e.g., by application of energy to the second actuation element 214 b ). In other embodiments, the actuation elements may exhibit a (e.g., partial) recoil effect, in which the energized actuation element recoils towards an original shape once the application of energy is terminated.
  • the shunt 200 can be set such that, at body temperature, all, some, or none of the ports 208 are blocked by the corresponding gating elements 216 . Accordingly, in some embodiments the shunt 200 can have a base configuration in which all, some, or none of the ports 208 are blocked by the corresponding gating elements 216 .
  • the drainage of aqueous through the shunt 200 can be selectively controlled by selectively blocking and/or unblocking the ports 208 using the flow control elements 211 a - d .
  • the flow control elements 211 a - d can be actuated such that any combination of ports 208 are blocked or unblocked to provide multiple different therapy levels.
  • each port 208 may be configured to provide a different level of therapy (e.g., resistance) relative to each other when the shunt 200 is exposed to a given pressure.
  • FIG. 3 A illustrates an embodiment of the shunt 200 having four ports 208 a - d (e.g., apertures), with each port 208 a - d having different dimensions.
  • each of the ports 208 a - d can have a different diameter that corresponds to a different relative flow rate and/or resistance.
  • the port 208 a has a first diameter
  • the port 208 b has a second diameter greater than the first diameter
  • the port 208 c has a third diameter greater than the second diameter
  • the port 208 d has a fourth diameter greater than the third diameter.
  • the diameter of the ports 208 a - d can range between about 4 microns to about 16 microns, from between about 8 microns to about 22 microns, from between about 15 microns to about 60 microns, or from between about 25 microns to about 100 microns, although in other embodiments the diameters of some or all of the ports 208 a - d may fall outside the foregoing ranges.
  • Each of the ports 208 a - d can correspond to an individual flow control element 211 a - d (omitted in FIG. 3 A for clarity). Accordingly, each of the ports 208 a - d can be selectively blocked or unblocked by actuating the corresponding flow control element 211 a - d , as described above with respect to FIGS. 2 A- 2 C .
  • the flow control elements 211 a - d can be actuated such that one or more of the port(s) 208 a - d (i) have a first fluid flow cross-section providing a first level of therapy (e.g., when the ports 208 a - d are completely open and accessible), or (ii) have a second fluid flow cross-section providing a second level of therapy less than the first level of therapy (e.g., when the port(s) 208 a - d are at least partially covered by the corresponding flow control elements 211 a - d ).
  • any combination of ports 208 a - d can be blocked and any combination of ports 208 a - d can be unblocked based on the positioning of the corresponding flow control element 211 a - d.
  • Each of the ports 208 a - d can be associated with a desired fluid flow and/or drainage rate relative to other ports 208 a - c (e.g., when operating under a given pressure).
  • the relative drainage rates provided through each individual port 208 a - d increases by a common value from the port 208 a to the port 208 d under a given pressure.
  • the port 208 a may be associated with a relative drainage rate of about X
  • the port 208 b may be associated with a relative drainage rate of about 2X
  • the port 208 c may be associated with a relative drainage rate of about 3X
  • the port 208 d may be associated with a relative drainage rate of about 4X.
  • the ratio of relative flow rates for the ports 208 a - d is 1:2:3:4.
  • the flow control elements 211 a - d can be manipulated to achieve any drainage rate between about X (only the port 208 a is unblocked) and about 10X (all of the ports 208 a - d are unblocked).
  • the corresponding flow control elements can be manipulated to achieve any drainage rate between about X (only the port 208 a is unblocked) and about 6X (all of the ports 208 a - c are unblocked).
  • Table 1 below reflects the relative drainage rate (flow) and associated resistance values for embodiments in which a ratio of the relative flow rates for the ports 208 a - d is 1:2:3:4.
  • the relative drainage rates through the respective ports 208 a - d do not increase by a common value from the port 208 a to the port 208 d , but rather are selectively sized to achieve a greater number of discrete possible drainage rates (e.g., to avoid overlapping values).
  • the port 208 a may be associated with a relative drainage rate of about X
  • the port 208 b may be associated with a relative drainage rate of about 2X
  • the port 208 c may be associated with a relative drainage rate of about 4X.
  • the ratios of relative flow rates for the ports 208 a - c is 1:2:4.
  • the ports 208 a - c can be selectively blocked and unblocked by the corresponding flow control elements 311 a - c to achieve a variety of desired drainage rates. For example, if only the port 208 a is unblocked, the drainage rate is about X, if only the port 208 b is unblocked, the drainage rate is about 2X, if both the port 208 a and 208 b are unblocked, the drainage rate is about 3X, if only the port 208 c is unblocked, the drainage rate is about 4X, if the port 208 a and 208 c are unblocked, the drainage rate is about 5X, if the port 208 b and 208 c are unblocked, the drainage rate is about 6X, and if ports 208 a , 208 b , and 208 c are all unblocked, the drainage rate is about 7X.
  • a shunt with three ports having a relative drainage ratio of 1:2:3 can provide six discrete potential drainage rates
  • a shunt with three ports with a relative drainage ratio of 1:2:4 can provide at least seven different potential drainage rates. Accordingly, by varying the dimensions of the ports 208 as described above, a greater number of relative drainage rates can be accomplished with fewer number of ports 208 . In embodiments having four ports 208 , the port 208 d can have a relative drainage rate of about 8X to further increase the number of unique drainage rates possible (e.g., the ratio of relative flow rates for the ports 208 a - d is 1:2:4:8).
  • a user can therefore select which ports 208 are blocked and which ports 208 are unblocked to achieve any of the desired drainage rates.
  • Table 2 below reflects the relative drainage rate (flow) and associated resistance values for embodiments in which a ratio of the relative flow rates for the ports 208 a - d is 1:2:4:8.
  • the ratios of relative flow rates for the ports 208 a - c can be values other than 1:2:4:8 or 1:2:3:4.
  • the ratio can be 1:1:1:1, 1:1:2:2, 1:1:1:2, etc.
  • the ratio may be random (e.g., 1:6:2:3, 4:2:5:1, etc.).
  • the foregoing flow characteristics can also be described in terms of the resistances provided by each individual port 208 a - d .
  • the port 208 a when unblocked or otherwise accessible, can have a first resistance, the port 208 b can have a second resistance less than the first resistance, the port 208 c can have a third resistance less than the second resistance, and the port 208 d can have a fourth resistance less than the third resistance.
  • the resistances can have a predetermined ratio. In some embodiments, for example, the ratio of the resistance provided port 208 a to the port 208 b to the port 208 c to the port 208 d can be 4:3:2:1, 8:4:2:1, 1:1:1:1, or other ratios.
  • Table 3 below reflects the relative resistance and associated flow for embodiments in which a ratio of the relative resistances for the ports 208 a - d is 4:3:2:1.
  • Table 4 below reflects the relative resistance and associated flow for embodiments in which a ratio of the relative resistances for the ports 208 a - d is 1:2:4:8.
  • the shunt 200 and other shunts described herein can have two, three, four, five, six, seven, eight, or more ports 208 , each with a corresponding flow control element 211 .
  • Increasing the number of ports 208 generally increases the number of different drainage rates that can be implemented because as the number of ports 208 increases, the number of unique combinations of blocked and/unblocked ports increases as well.
  • the ports 208 can also be selectively sized to provide the greatest number of potential therapy levels.
  • the ratio of the relative flow rates for the ports can be about 1:2 and/or the ratio of the relative resistances for the ports can be about 2:1 (e.g., producing a total of four discrete therapy levels). In other embodiments with two ports, the ratio of the relative flow rates is about 1:1 and/or the ratio of the relative resistances is about 1:1. In embodiments with three ports, the ratio of the relative flow rates for the ports can be about 1:2:4 and/or the ratio of the relative resistances for the ports can be about 4:2:1 (e.g., producing a total of eight discrete therapy levels).
  • the ratio of the relative flow rates is about 1:1:1 or about 1:2:3, and/or the ratio of the relative resistances is about 1:1:1 or about 3:2:1.
  • the ratio of the relative flow rates for the ports can be about 1:2:4:8 and/or the ratio of the relative resistances for the ports can be about 8:4:2:1 (producing a total of sixteen discrete therapy levels).
  • the ratio of the relative flow rates is about 1:1:1:1 or about 1:2:3:4, and/or the ratio of the relative resistances is about 1:1:1:1 or about 4:3:2:1.
  • the ratio of the relative flow rates for the ports can be about 1:2:4:8:16 and/or the ratio of the relative resistances for the ports can be about 16:8:4:2:1 (producing a total of thirty-two discrete therapy levels). In other embodiments with five ports, the ratio of the relative flow rates is about 1:1:1:1:1 or about 1:2:3:4:5, and/or the ratio of the relative resistances is about 1:1:1:1:1 or about 5:4:3:2:1.
  • FIG. 3 B illustrates another embodiment of the shunt 200 in which the number of ports 208 (e.g., apertures) corresponding to each flow control element 211 a - d varies but a dimension of each port 208 is the same or at least generally the same.
  • the drainage element 202 can have one port 208 corresponding to the first flow control element 211 a , two ports 208 corresponding to the second flow control element 211 b , four ports 208 corresponding to the third flow control element 211 c , and eight ports 208 corresponding to the fourth flow control element 211 d .
  • the ports 208 corresponding to the first flow control element 211 a can provide a relative drainage rate of X
  • the ports 208 corresponding to the second flow control element 211 b can provide a relative drainage rate of about 2X
  • the ports 208 corresponding to the third flow control element 211 c can provide a relative drainage rate of about 4X
  • the ports 208 corresponding to the flow control element 211 d can provide a relative drainage rate of about 8X (e.g., the ratio of the relative flow rates between ports 208 remain 1:2:4:8).
  • each of the flow control elements 211 a - d can be individually actuated to block and/unblock the corresponding ports 208 .
  • providing ports that facilitate the foregoing drainage rates increases the number of possible drainage rates while decreasing the number of flow control elements needed.
  • the number of ports 208 corresponding to each flow control elements 211 a - d increases by one.
  • the ports 208 do not have the same dimensions.
  • the shunt 200 may include a plurality of discrete and fluidly isolated lumens or channels associated with individual ports 208 .
  • the therapy level e.g., drainage rate, resistance, etc.
  • the shunt 200 can still include different size ports 208 ( FIG. 3 A ) or different numbers of ports 208 ( FIG.
  • one aperture means the corresponding lumen has a first resistance
  • two apertures means the corresponding lumen has a second resistance less than the first resistance
  • the gating elements 216 can be manipulated such that the ports 208 a - d occupy one or more positions between fully open or fully closed. This can further increase the number of discrete therapy levels that the shunt 200 can provide. In yet other embodiments, the gating elements 216 may permit some fluid to leak through the ports 208 a - d even in the closed positions (e.g., the gating elements 216 do not form a perfect fluid seal with the ports 208 a - d when in the closed position).
  • FIGS. 4 A and 4 B illustrate select features of a shunt 400 having a drainage plate 440 configured in accordance with select embodiments of the present technology. More specifically, FIG. 4 A is a partially isometric view of the plate 440 and FIG. 4 B is a partially schematic top down view of the plate 440 .
  • the plate 440 includes a plurality of inflow ports 408 that permit fluid to flow into a plurality of corresponding channels 422 .
  • the channels 422 empty into a lumen 405 via a plurality of outflow ports 409 .
  • the plurality of inflow ports 408 and/or channels 422 are arranged as parallel fluid resistors, and can therefore exhibit similar flow characteristics as those described above with respect to the shunt 200 ( FIGS. 2 A- 3 B ).
  • the lumen 405 can direct fluid toward a desired outflow location (e.g., a bleb space) and/or an elongated drainage element (not shown).
  • the shunt 400 can include a flow control mechanism (not shown) operably coupled to the drainage plate 440 to control the flow of fluid through the channels 422 .
  • the flow control mechanism includes a plurality of individually actuatable flow control elements associated with individual inflow ports 408 and channels 422 .
  • a flow control mechanism generally similar to the flow control mechanism 210 described with respect to FIGS. 2 A- 2 C can be disposed over the plate 440 such that flow control elements 211 a - d interface with the inflow ports 408 .
  • aspects of the flow control mechanism 210 may be slightly modified to account for the different structure of the shunt 400 .
  • the anchoring elements may not extend around the entirety of the shunt, but rather may be secured to an upper surface of the plate 440 (e.g., via welding, gluing or other suitable adhesives).
  • the flow control mechanism can be positioned such that individual flow control elements (e.g., flow control elements 211 a - d of FIGS. 2 A- 2 C ) are positioned to control the flow of fluid through individual ports 408 .
  • the flow control elements 211 a - d FIGS. 2 B and 2 C
  • other suitable flow control elements configured to at least partially block and/or unblock the flow of fluid through the channels 422 can be used.
  • the channels 422 may each have the same or about the same flow resistance.
  • opening additional channels 422 is expected to result in a stepwise increase in the drainage rate
  • blocking additional channels 422 is expected to result in a stepwise decrease in the drainage rate.
  • moving from a single open channel 422 to two open channels 422 is expected to generally double the drainage rate
  • moving from two open channels 422 to three open channels 422 is expected to generally increase the drainage rate by 50 percent.
  • the total number of unique resistances and thus flow rates that can be achieved is not maximized, since the resistance and flow when only a first lumen is unblocked is the same as the resistance and flow when only a second lumen in unblocked.
  • the channels 422 may have different resistances and thus different relative drainage rates.
  • each individual channel 422 may be associated with a desired drainage rate and/or resistance relative to one another.
  • a first channel may be associated with a drainage rate of about X
  • a second channel may be associated with a drainage rate of about 2X
  • a third channel may be associated with a drainage rate of about 4X, and so on.
  • a greater number of drainage rates can be accomplished with fewer channels 422 when each channel 422 is associated with a different drainage rate.
  • Flow resistance through the channels 422 can be varied based on, for example, a length of the channel and/or a diameter of the channel.
  • the length of the channel is generally proportional to the resistance of the channel, whereas the diameter of the channel is generally inversely proportional to the resistance of the channel.
  • each individual channel 422 may have a unique length, diameter, or length and diameter combination that gives it a certain resistance. Individual channels 422 can then be selectively opened (or closed) to achieve a desired flow rate.
  • FIG. 4 C is a schematic illustration of an electrical circuit 650 having a plurality of resistors R 1-4 in parallel.
  • Each resistor R 1-4 is analogous to an individual port or channel of a parallel resistor shunt (e.g., ports 208 a - d of the shunt 200 , ports 408 of the shunt 400 , or channels 422 of the shunt 400 ).
  • a plurality of switches S 1-4 can complete or break the circuit through each individual resistor R 1-4 .
  • each individual port being transitionable between an open (e.g., blocked) and closed (e.g., unblocked) state.
  • More than one switch S 1-4 being closed to complete the circuit 450 affects current flow through the circuit 450 in a similar manner as more than one port being open in a parallel resistor shunt.
  • the current could alternatively flow through the circuit 450 in a second direction opposite the first direction, similar to how the parallel resistor shunts described herein can operate with fluid flowing in either direction through the shunt.
  • FIGS. 5 A and 5 B illustrate features of a shunt 500 having a drainage plate 540 and configured to act as a serial fluid resistor. More specifically, FIG. 5 A is a top down partially isometric view of the drainage plate 540 , and FIG. 5 B is a bottom up partially isometric view of the drainage plate 540 . Unlike the drainage plate 440 ( FIG. 4 A ), the drainage plate 540 includes a single inflow port 508 allowing fluid to flow into a channel 522 .
  • the channel 522 includes a plurality of outflow ports 509 that allows fluid to flow out of the channel 522 and into a lumen (e.g., the lumen 405 described with respect to FIGS. 4 A and 4 B ) that directs fluid toward a desired outflow location (e.g., a bleb space) and/or an elongated drainage element (not shown).
  • the plurality of outflow ports 509 can be arranged in series along a length of the channel 522 , and/or can be fluidly coupled to the channel 522 by a plurality of conduits extending from the channel 522 .
  • the orientation of the drainage plate 540 can be reversed, such that fluid flows in the opposite direction (e.g., from the plurality of outflow ports 509 to the single inflow port 508 ).
  • the shunt 500 can include a flow control mechanism (not shown) operably coupled to the drainage plate 540 to control the flow of fluid out of the outflow ports 509 and into the lumen.
  • the flow control mechanism can include a plurality of individually actuatable flow control elements associated with individual outflow ports 509 .
  • a flow control mechanism generally similar to the flow control mechanism 210 ( FIGS. 2 A- 2 C ) described herein can be disposed on the plate 540 such that the flow control elements 211 a - d interface with the outflow ports 509 .
  • the plate 540 may be at least partially transmissive (e.g., transparent) to at least some forms of energy, such as laser energy having select wavelengths (e.g., between about 500 nm and about 600 nm, etc.).
  • other suitable flow control elements configured to at least partially block and/or unblock the flow of fluid through the outflow ports 509 can be used.
  • the plate 540 is configured to act as a serial resister.
  • the resistance is provided by the channel 522 (rather than the inflow port 508 and/or the outflow ports 509 ) and is based on the distance between the inflow port 508 and the closest open outflow port 509 .
  • the resistance to flow is the greatest (e.g., by virtue of the fluid having to travel the greatest distance through the channel 522 ).
  • the resistance is the least (e.g., by virtue of the fluid having to travel the shortest distance through the channel 522 ).
  • the channels/apertures behave as if they are in series, and thus the number of discrete resistances and drainage rates is generally equal to the number of outflow apertures 509 .
  • FIG. 5 C is a schematic illustration of an electrical circuit 550 having a four resistors R a-d in series.
  • Each resistor R a-d is analogous to an individual port of a serial resistor shunt (e.g., ports 509 of the shunt 500 ).
  • a plurality of switches Sa-d can complete or break the circuit. This is analogous to each individual port being transitionable between an open (e.g., blocked) and closed (e.g., unblocked) state.
  • More than one switch Sa-d being closed to complete the circuit 550 affects current flow through the circuit 550 in a similar manner as more than one port being open in a serial resistor shunt. Although shown as having a current flowing through the circuit 650 in a first direction, the current could alternatively flow through the circuit 650 in a second direction opposite the first direction, similar to how the serial resistor shunts described herein can operate with fluid flowing in either direction through the shunt.
  • FIG. 6 is an isometric view of a shunt 600 configured in accordance with select embodiments of the present technology.
  • the shunt 600 includes an elongated tube 602 having a first end portion 604 and a second end portion 606 .
  • the first end portion 604 is connected to a plate 640 .
  • the plate 640 can be generally similar to the plates 440 and/or 540 described above with respect to FIGS. 4 A and 4 B , and FIGS. 5 A and 5 B , respectively.
  • the first end portion 604 can be fluidly coupled to an interior of the plate 640 (e.g., the lumen 405 — FIG. 4 A ) and configured to receive fluid therefrom.
  • the second end portion 606 can include one or more ports (not shown).
  • the first end portion 604 and the plate 640 can reside within an anterior chamber and the second end portion 606 can reside in a desired outflow location (e.g., a bleb space). In other embodiments, the first end portion 604 and the plate 640 can reside within the desired outflow location and the second end portion 606 can reside within the anterior chamber. Regardless of the orientation of the shunt 600 , the shunt 600 is configured to drain aqueous from the anterior chamber when the shunt 600 is implanted in the eye. In some embodiments, the plate 640 may at least partially secure the shunt 600 in a desired position. The shunt 600 may optionally have additional features that help secure the shunt 600 in place when implanted in the eye. For example, the shunt 600 can include arms, anchors, plates, or other suitable features that secure the shunt 600 to native tissue.
  • the present technology further includes methods of shunting fluids through the shunting systems and shunts described herein (e.g., to drain aqueous from the anterior chamber for treating glaucoma).
  • the methods can incorporate any of the techniques described above, including, for example, selectively actuating one or more flow control elements to open and/or close one or more ports (e.g. inflow ports) on a shunt to achieve a target resistance and/or flow.
  • the methods may also include selectively actuating one or more flow control elements to open and/or close one or more ports until a target intraocular pressure is attained.
  • the ports can all be simultaneously unblocked to provide the lowest resistance and highest flow for a given pressure. This may be done in a healthcare provider's office to quickly reduce intraocular pressure. Once a target intraocular pressure is achieved, some or all of the ports can be closed to provide a flow and resistance more suitable for chronic therapy.
  • adjustable shunts such as those provided herein may be able to safely provide higher flow and lower resistance than conventional static (e.g., non-adjustable) shunts.
  • conventional static shunts generally do not provide high flow or low resistance in order to avoid inducing hypotony.
  • the shunts of the present technology can provide high flow and low resistance (e.g., by opening all the ports) that, if left unchanged for a prolonged period, could lead to hypotony.
  • a healthcare provider can adjust the shunt to lower flow and increase resistance.
  • One expected advantage of this is that a healthcare provider can more quickly reduce intraocular pressure in the patient.
  • a system for draining fluid comprising:
  • the drainage element has a first channel fluidly coupled to the first port, a second channel fluidly coupled to the second port, and a third channel fluidly coupled to the third port.
  • first channel has a first cross sectional area
  • second channel has a second cross sectional area greater than the first cross sectional area
  • third channel has a third cross sectional area greater than the second cross sectional area
  • a system for draining fluid comprising:
  • the drainage element includes (i) a first lumen extending between the first inflow port and the second end region, and (ii) a second lumen extending between the second inflow port and the second end region, and wherein the first lumen is configured to provide a different resistance to fluid flow than the second lumen.
  • the drainage element further comprises a fourth inflow port, and wherein when the fourth inflow port is unblocked and the first, second, and third inflow ports are blocked, the system is configured to provide a fourth relative drainage rate through the drainage rate, and wherein a ratio between the first, second, third, and fourth relative drainage rates is about 1:2:4:8.
  • An adjustable shunt comprising:
  • first drainage rate, the second drainage rate, and the third drainage rate are predetermined relative drainage rates, and wherein the first drainage rate is about X, the second drainage rate is about 2X, and the third drainage rate is about 4X.
  • the adjustable shunt of example 34 wherein, when more than one inflow port is open, the shunt is configured to provide a fourth relative drainage rate that is different than the first drainage rate, the second drainage rate, and the third drainage rate.
  • a method of treating glaucoma comprising:
  • actuating at least one of the individually actuatable flow control elements comprises applying energy to at least one of the individually actuatable flow control elements.
  • An adjustable shunt comprising:
  • the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.”
  • the terms “connected,” “coupled,” or any variant thereof means any connection or coupling, either direct or indirect, between two or more elements; the coupling of connection between the elements can be physical, logical, or a combination thereof.
  • the words “herein,” “above,” “below,” and words of similar import when used in this application, shall refer to this application as a whole and not to any particular portions of this application.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)
  • Safety Valves (AREA)
  • Fluid-Pressure Circuits (AREA)
US17/606,661 2020-01-23 2021-01-22 Adjustable flow glaucoma shunts and associated systems and methods Active US11529258B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/606,661 US11529258B2 (en) 2020-01-23 2021-01-22 Adjustable flow glaucoma shunts and associated systems and methods
US17/979,664 US20230233378A1 (en) 2020-01-23 2022-11-02 Adjustable flow glaucoma shunts and associated systems and methods

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202062965117P 2020-01-23 2020-01-23
US17/606,661 US11529258B2 (en) 2020-01-23 2021-01-22 Adjustable flow glaucoma shunts and associated systems and methods
PCT/US2021/014774 WO2021151007A1 (fr) 2020-01-23 2021-01-22 Shunts de glaucome à débit réglable et systèmes et méthodes associés

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/014774 A-371-Of-International WO2021151007A1 (fr) 2020-01-23 2021-01-22 Shunts de glaucome à débit réglable et systèmes et méthodes associés

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/979,664 Continuation US20230233378A1 (en) 2020-01-23 2022-11-02 Adjustable flow glaucoma shunts and associated systems and methods

Publications (2)

Publication Number Publication Date
US20220142818A1 US20220142818A1 (en) 2022-05-12
US11529258B2 true US11529258B2 (en) 2022-12-20

Family

ID=76992657

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/606,661 Active US11529258B2 (en) 2020-01-23 2021-01-22 Adjustable flow glaucoma shunts and associated systems and methods
US17/979,664 Pending US20230233378A1 (en) 2020-01-23 2022-11-02 Adjustable flow glaucoma shunts and associated systems and methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/979,664 Pending US20230233378A1 (en) 2020-01-23 2022-11-02 Adjustable flow glaucoma shunts and associated systems and methods

Country Status (7)

Country Link
US (2) US11529258B2 (fr)
EP (1) EP4093350A4 (fr)
JP (1) JP2023511420A (fr)
CN (1) CN115379818A (fr)
AU (1) AU2021209698A1 (fr)
CA (1) CA3165037A1 (fr)
WO (1) WO2021151007A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11596550B2 (en) 2020-04-16 2023-03-07 Shifamed Holdings, Llc Adjustable glaucoma treatment devices and associated systems and methods
US11737920B2 (en) 2020-02-18 2023-08-29 Shifamed Holdings, Llc Adjustable flow glaucoma shunts having non-linearly arranged flow control elements, and associated systems and methods
US11766355B2 (en) 2020-03-19 2023-09-26 Shifamed Holdings, Llc Intraocular shunts with low-profile actuation elements and associated systems and methods
US11865283B2 (en) 2021-01-22 2024-01-09 Shifamed Holdings, Llc Adjustable shunting systems with plate assemblies, and associated systems and methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022552284A (ja) 2019-10-10 2022-12-15 シファメド・ホールディングス・エルエルシー 流量調整可能な緑内障用シャントならびに関連システム及び方法
AU2021209698A1 (en) 2020-01-23 2022-08-04 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and associated systems and methods
AU2021219845A1 (en) 2020-02-14 2022-09-01 Shifamed Holdings, Llc Shunting systems with rotation-based flow control assemblies, and associated systems and methods
WO2023107486A1 (fr) * 2021-12-06 2023-06-15 Shifamed Holdings, Llc Systèmes de dérivation réglables, et systèmes, dispositifs et procédés associés
WO2024030949A1 (fr) * 2022-08-03 2024-02-08 Shifamed Holdings, Llc Systèmes de dérivation réglables comprenant des ensembles d'actionnement, et dispositifs et procédés associés
CN115796082B (zh) * 2023-01-13 2023-06-06 张家港市欧凯医疗器械有限公司 一种双j型导管内径引流数据分析方法及系统

Citations (226)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401107A (en) 1982-04-20 1983-08-30 Haber Terry M Intestinal control valve
US4595390A (en) 1983-07-21 1986-06-17 Salomon Hakim Magnetically-adjustable cerebrospinal fluid shunt valve
US5070697A (en) 1988-04-12 1991-12-10 Koni Actuator with memory metal and a shock absorber provided with this actuator
US5123906A (en) 1991-06-20 1992-06-23 Kelman Charles D Surgical toroidal snare
WO1992019294A1 (fr) 1991-05-08 1992-11-12 Prywes Arnold S Valve de derivation chirurgicale et systemes d'administration d'agents therapeutiques
US5300020A (en) 1991-05-31 1994-04-05 Medflex Corporation Surgically implantable device for glaucoma relief
US6077299A (en) 1998-06-22 2000-06-20 Eyetronic, Llc Non-invasively adjustable valve implant for the drainage of aqueous humor in glaucoma
US6203513B1 (en) 1997-11-20 2001-03-20 Optonol Ltd. Flow regulating implant, method of manufacture, and delivery device
US6261256B1 (en) 1996-12-20 2001-07-17 Abdul Mateen Ahmed Pocket medical valve & method
US20010011585A1 (en) 1998-07-10 2001-08-09 David Cassidy Heat exchanger useable in wearable fluid heater
US6450984B1 (en) 1999-04-26 2002-09-17 Gmp Vision Solutions, Inc. Shunt device and method for treating glaucoma
US20020177891A1 (en) 2001-04-26 2002-11-28 Parodi Juan Carlos Endoluminal device and method for fabricating same
US20020193725A1 (en) 2000-02-24 2002-12-19 Odrich Steven A. Injectable glaucoma device
US6508779B1 (en) 1995-05-05 2003-01-21 John Suson Adjustable flow rate glaucoma shunt and method of using same
EP1292256A1 (fr) 2000-06-19 2003-03-19 Glaukos Corporation Derivation trabeculaire tuteuree et procedes de derivation
DE10217061A1 (de) 2001-05-25 2003-03-27 Siemens Ag Durchflusseinsteller für strömende Medien
US20030127090A1 (en) 2001-11-14 2003-07-10 Emphasys Medical, Inc. Active pump bronchial implant devices and methods of use thereof
US20030163079A1 (en) 2002-02-25 2003-08-28 Burnett Daniel Rogers Vesicular shunt for the drainage of excess fluid
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
US6666841B2 (en) 2001-05-02 2003-12-23 Glaukos Corporation Bifurcatable trabecular shunt for glaucoma treatment
US20040010219A1 (en) 2002-07-10 2004-01-15 Mccusker Daniel Shunt valve locking mechanism
US6789447B1 (en) 1998-11-23 2004-09-14 Frederick L. Zinck Reversible ratchet head assembly
WO2004081613A2 (fr) 2003-03-06 2004-09-23 Shadduck John H Lentille optique adaptative et procede de fabrication
US20040254520A1 (en) 2001-04-07 2004-12-16 Eric Porteous Coil implant for glaucoma treatment
US20050049578A1 (en) 2000-04-14 2005-03-03 Hosheng Tu Implantable ocular pump to reduce intraocular pressure
US7025740B2 (en) 2003-04-22 2006-04-11 Ahmed A Mateen Device for treating glaucoma & method of manufacture
US20060155300A1 (en) 2002-09-17 2006-07-13 Iscience Surgical, Inc. Apparatus and method for surgical bypass of aqueous humor
EP1737531A2 (fr) 2004-04-23 2007-01-03 Gmp Vision Solutions, Inc. Dispositif de dérivation à demeure et procédés servant à traiter le glaucome
US20070010837A1 (en) 2005-07-07 2007-01-11 Don Tanaka Magnetic frame for connecting hollow bodies
WO2007011302A1 (fr) 2005-07-18 2007-01-25 Phacotreat Ab Dispositif chirurgical d’élimination de tissus oculaires indésirables
EP1765234A2 (fr) 2004-06-25 2007-03-28 Optonol Ltd. Implants de regulation de flux
US20070078371A1 (en) 2003-02-14 2007-04-05 Regents Of The University Of Minnesota Bypass for glaucoma drainage device
US20070088432A1 (en) 1999-04-26 2007-04-19 Kenneth Solovay Indwelling shunt device and methods for treating glaucoma
US7207965B2 (en) 2003-06-16 2007-04-24 Solx, Inc. Shunt for the treatment of glaucoma
US7354416B2 (en) 2003-02-18 2008-04-08 Hugo Quiroz-Mercado Methods and devices for draining fluids and lowering intraocular pressure
US7364564B2 (en) 2004-03-02 2008-04-29 Becton, Dickinson And Company Implant having MEMS flow module with movable, flow-controlling baffle
US20080119891A1 (en) 2006-08-09 2008-05-22 Coherex Medical, Inc. Methods, systems and devices for reducing the size of an internal tissue opening
US20080228127A1 (en) 2006-11-10 2008-09-18 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US7458953B2 (en) 2006-06-20 2008-12-02 Gholam A. Peyman Ocular drainage device
US20090036818A1 (en) 2002-05-29 2009-02-05 University Of Saskatchewan Shunt and Method Treatment of Glaucoma
US20090243956A1 (en) 2008-04-01 2009-10-01 Cardiometrix, Inc. Enhanced implantable helical antenna system and method
US20090326517A1 (en) 2008-06-27 2009-12-31 Toralf Bork Fluidic capillary chip for regulating drug flow rates of infusion pumps
US7717872B2 (en) 2005-09-28 2010-05-18 Rajesh Kumar Shetty Fluid shunting apparatus and methods
US20100234791A1 (en) 2006-05-01 2010-09-16 Glaukos Corporation Dual drainage pathway shunt device
US20100241077A1 (en) 2009-03-17 2010-09-23 Roche Diagnostics International Ag Cannula Assemblies And Ambulatory Infusion Systems With Pressure Sensors Made Of Stacked Coplanar Layers
WO2010111528A2 (fr) 2009-03-26 2010-09-30 Abbott Medical Optics Inc. Dérivations assurant la prise en charge de l'écoulement de l'humeur aqueuse, utilisées pour le traitement du glaucome et caractérisées par des performances chirurgicales améliorées
US20110105986A1 (en) 2009-09-21 2011-05-05 Ben Bronstein Uveoscleral drainage device
US8012134B2 (en) 2003-04-23 2011-09-06 Interrad Medical, Inc. Dialysis valve and method
DE102010015447A1 (de) 2010-04-17 2011-10-20 FG-INNOVATION UG (haftungsbeschränkt) Aktuator zur Erzeugung von Stellbewegungen
EP2389138A1 (fr) 2008-12-05 2011-11-30 Ivantis, INC. Procédés et appareils de placement d'implants oculaires dans l'oeil
US20120065570A1 (en) 2010-09-11 2012-03-15 Yeung Jeffrey E Disc shunt delivery with stepped needle
US20120089073A1 (en) 2010-10-12 2012-04-12 Cunningham Jr Emmett T Glaucoma drainage device and uses thereof
US8206440B2 (en) 2007-01-08 2012-06-26 Consejo Nacional De Investigaciones Cientificas Y Technicas Implantable ocular microapparatus to ameliorate glaucoma or an ocular overpressure causing disease
US8298240B2 (en) 2006-04-06 2012-10-30 Synthes (Usa) Remotely adjustable tissue displacement device
US8308701B2 (en) 2010-11-15 2012-11-13 Aquesys, Inc. Methods for deploying intraocular shunts
US20130150773A1 (en) 2011-12-07 2013-06-13 Oded M. Nissan Glaucoma Active Pressure Regulation Shunt
US20130150776A1 (en) 2011-12-12 2013-06-13 Sebastian Böhm Glaucoma Drainage Devices Including Vario-Stable Valves and Associated Systems and Methods
US20130158381A1 (en) 2011-12-15 2013-06-20 Matthew J.A. Rickard External Pressure Measurement System and Method for an Intraocular Implant
US20130197621A1 (en) 2010-08-12 2013-08-01 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US20130199646A1 (en) 2012-02-07 2013-08-08 Karlsruher Institut Fuer Technologie Valve plug
US20130205923A1 (en) 2011-08-24 2013-08-15 Marko Brammer Module unit and fluid analysis unit
US20130211312A1 (en) 2012-02-14 2013-08-15 Michael L. Gelvin Prefilled Ocular Implants and Methods
US8540659B2 (en) 2000-05-19 2013-09-24 Michael S. Berlin Delivery system and method of use for the eye
US20130267887A1 (en) 2010-09-21 2013-10-10 The Regents Of The University Of Colorado Aqueous humor micro-bypass shunts
US8579848B2 (en) 2011-12-09 2013-11-12 Alcon Research, Ltd. Active drainage systems with pressure-driven valves and electronically-driven pump
US8585629B2 (en) 2010-11-15 2013-11-19 Aquesys, Inc. Systems for deploying intraocular shunts
US20130317412A1 (en) 2012-05-23 2013-11-28 Bruno Dacquay Flow Control For Treating A Medical Condition
US20130338564A1 (en) 2011-12-12 2013-12-19 Alcon Research, Ltd. Glaucoma drainage devices including vario-stable valves and associated systems and methods
EP2677981A1 (fr) 2011-02-23 2014-01-01 Grieshaber Ophthalmic Research Foundaton Implant pour le traitement du glaucome
US20140046439A1 (en) 2012-08-13 2014-02-13 Cesario P. Dos Santos Implantable mems device and method
US8663303B2 (en) 2010-11-15 2014-03-04 Aquesys, Inc. Methods for deploying an intraocular shunt from a deployment device and into an eye
US20140081195A1 (en) * 2012-09-17 2014-03-20 Transcend Medical, Inc. Expanding ocular implant devices and methods
US8721702B2 (en) 2010-11-15 2014-05-13 Aquesys, Inc. Intraocular shunt deployment devices
US8753305B2 (en) 2011-12-06 2014-06-17 Alcon Research, Ltd. Bubble-driven IOP control system
US8758290B2 (en) 2010-11-15 2014-06-24 Aquesys, Inc. Devices and methods for implanting a shunt in the suprachoroidal space
US8765210B2 (en) 2011-12-08 2014-07-01 Aquesys, Inc. Systems and methods for making gelatin shunts
US8801766B2 (en) 2010-11-15 2014-08-12 Aquesys, Inc. Devices for deploying intraocular shunts
JP5576427B2 (ja) 2004-08-09 2014-08-20 バロノヴァ,インク. 幽門係留デバイスおよび方法
WO2014130574A1 (fr) 2013-02-19 2014-08-28 Aquesys, Inc. Décharge de pression d'écoulement réglable
US8828070B2 (en) 2010-11-15 2014-09-09 Aquesys, Inc. Devices for deploying intraocular shunts
US8852256B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for intraocular shunt placement
US8852137B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for implanting a soft gel shunt in the suprachoroidal space
US8852136B2 (en) 2011-12-08 2014-10-07 Aquesys, Inc. Methods for placing a shunt into the intra-scleral space
US20140309611A1 (en) 2007-02-27 2014-10-16 Deka Research & Development Blood treatment systems and methods
US8882781B2 (en) 2002-03-15 2014-11-11 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US20150011926A1 (en) 2006-06-30 2015-01-08 Aquesys, Inc. Intraocular devices
US20150034217A1 (en) 2011-12-23 2015-02-05 Cook Medical Technologies Llc Hybrid balloon-expandable/self-expanding prosthesis for deployment in a body vessel and method of making
US20150045716A1 (en) 2013-08-06 2015-02-12 Manuel Humberto Gallardo Inzunza Intraocular pressure compensating and regulating valve
US8974511B2 (en) 2010-11-15 2015-03-10 Aquesys, Inc. Methods for treating closed angle glaucoma
US9017276B2 (en) 2010-11-15 2015-04-28 Aquesys, Inc. Shunt placement through the sclera
US20150142049A1 (en) 2013-11-21 2015-05-21 Edwards Lifesciences Corporation Sealing devices, related delivery apparatuses, and uses thereof
US9095411B2 (en) 2010-11-15 2015-08-04 Aquesys, Inc. Devices for deploying intraocular shunts
US20150230843A1 (en) 2011-09-22 2015-08-20 Mx Orthopedics, Corp. Controlling the unloading stress of nitinol devices and/or other shape memory material devices
US9125723B2 (en) 2013-02-19 2015-09-08 Aquesys, Inc. Adjustable glaucoma implant
US20150313603A1 (en) 2014-05-01 2015-11-05 Cook Medical Technologies Llc Implantable medical device with twisted element
US9226851B2 (en) 2013-08-24 2016-01-05 Novartis Ag MEMS check valve chip and methods
EP2999430A1 (fr) 2013-05-21 2016-03-30 Transcend Medical, Inc. Dispositif d'implant oculaire favorisant l'écoulement et méthodes
AU2014201621B2 (en) 2006-11-10 2016-03-31 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US20160151179A1 (en) 2013-06-21 2016-06-02 Universite Joseph Fourier Stent spacer
US9375347B2 (en) 2007-11-23 2016-06-28 Ecole Polytechnique Federale De Lausanne (Epfl) Non-invasively adjustable drainage device
US20160220794A1 (en) 2013-09-16 2016-08-04 Sophysa Adjustable drainage valve
US20160256318A1 (en) 2010-11-15 2016-09-08 Aquesys, Inc. Intraocular shunt placement in the suprachoroidal space
WO2016149425A1 (fr) 2015-03-16 2016-09-22 Da Silva Curiel Jeannette M A Procédé et appareil pour insérer un implant dans la cornée de l'œil
US20160354245A1 (en) 2015-06-03 2016-12-08 Aquesys, Inc. Ab externo intraocular shunt placement
US20170027582A1 (en) 2015-07-27 2017-02-02 Boston Scientific Scimed, Inc. Devices for manipulating tissue and related methods
US9585789B2 (en) 2007-07-17 2017-03-07 Novartis Ag Ocular implant with hydrogel expansion capabilities
US9585790B2 (en) 2013-11-14 2017-03-07 Aquesys, Inc. Intraocular shunt inserter
US20170071791A1 (en) 2014-03-10 2017-03-16 Tel Hashomer Medical Research Infrastructure And Services Ltd. Toroidal glaucoma drainage device
US20170087016A1 (en) 2015-09-30 2017-03-30 Camras Vision, Inc. Method and apparatus for reducing intraocular pressure
US9610195B2 (en) 2013-02-27 2017-04-04 Aquesys, Inc. Intraocular shunt implantation methods and devices
US9636254B2 (en) 2006-06-30 2017-05-02 Aquesys, Inc. Systems for reducing pressure in an organ
US9655778B2 (en) 2015-07-13 2017-05-23 Thomas D. Tyler Position responsive flow adjusting implantable device and method
US9655779B2 (en) 2011-01-14 2017-05-23 Ecole Polytechnique Federale De Lausanne (Epfl) Apparatus and methods for treating excess intraocular fluid
US9757276B2 (en) 2011-11-11 2017-09-12 Opr Group Ltd. Ocular implant with intraocular fluid pressure regulation
AU2016201445B2 (en) 2006-01-17 2017-10-26 Alcon Inc. Glaucoma treatment device
US20170312125A1 (en) 2014-09-17 2017-11-02 Iantech, Inc. Devices and methods for cutting lenticular tissue
US9808373B2 (en) 2013-06-28 2017-11-07 Aquesys, Inc. Intraocular shunt implantation
US20170348150A1 (en) 2016-06-02 2017-12-07 Aquesys, Inc. Intraocular drug delivery
US20170348149A1 (en) 2016-06-06 2017-12-07 École Polytechnique Fédérale de Lausanne Apparatus for treating excess intraocular fluid
US20180014828A1 (en) 2016-07-12 2018-01-18 Arthrex, Inc. Shape memory alloy sutures and prosthesis
US20180028361A1 (en) 2009-02-13 2018-02-01 Dose Medical Corporation Uveoscleral drug delivery implant and methods for implanting the same
US20180092775A1 (en) 2006-01-17 2018-04-05 Novartis Ag Glaucoma Treatment Device
EP3313335A1 (fr) 2015-06-26 2018-05-02 Innfocus, Inc. Système de placement de dispositif contre le glaucome et procédé de placement trans-conjonctival
EP3329884A1 (fr) 2012-01-12 2018-06-06 Innfocus, Inc. Dispositif implantable pour le traitement du glaucome
US20180206878A1 (en) 2017-01-09 2018-07-26 United States Endoscopy Group, Inc. Endoscopic snare device
US20180250166A1 (en) 2017-03-03 2018-09-06 Rowiak Gmbh Glaucoma drainage implant
US10080682B2 (en) 2011-12-08 2018-09-25 Aquesys, Inc. Intrascleral shunt placement
CN108743016A (zh) 2018-06-29 2018-11-06 北京诺康达医药科技股份有限公司 一种结构可变的青光眼微型分流装置
US10154924B2 (en) 2013-01-28 2018-12-18 Novartis Ag Schlemm's canal devices and method for improving fluid flow
WO2018229766A1 (fr) 2017-06-13 2018-12-20 Eyemed Technologies Ltd Système de lentille intraoculaire
US10159600B2 (en) 2013-02-19 2018-12-25 Aquesys, Inc. Adjustable intraocular flow regulation
US20190000673A1 (en) 2015-07-22 2019-01-03 Glaukos Corporation Ocular implants for reduction of intraocular pressure and methods for implanting same
WO2019018807A1 (fr) 2017-07-20 2019-01-24 Shifamed Holdings, Llc Dérivations de glaucome à écoulement réglable et leurs méthodes de fabrication et d'utilisation
US20190038462A1 (en) 2015-12-24 2019-02-07 Istar Medical Ocular Implant Systems
US20190046356A1 (en) 2017-08-08 2019-02-14 Daniel Laroche Methods Materials Assemblies Apparatuses and Implants for Surgical Reduction of Intraocular Pressure to Suprachoidal Space Ab Externo and Subconjunctival Space
US20190060118A1 (en) 2015-09-16 2019-02-28 Prasis Medical, Inc. Shunt for Vascular Flow Enhancement
US10231871B2 (en) 2013-03-15 2019-03-19 Orasis Medical, Inc. Enhancement of aqueous flow
US10238536B2 (en) 2012-10-11 2019-03-26 The Regents Of The University Of Colorado, A Body Corporate Ocular filtration devices, systems and methods
US20190121278A1 (en) 2017-10-20 2019-04-25 Canon Kabushiki Kaisha Driving force transmitting device, sheet feeding apparatus and image forming apparatus
DE102017124885A1 (de) 2017-10-24 2019-04-25 Memetis Gmbh Fernsteuerbare Kupplung insbesondere Modellbahnkupplungen
US20190133826A1 (en) 2017-11-08 2019-05-09 Aquesys, Inc. Manually adjustable intraocular flow regulation
US10285853B2 (en) 2013-03-15 2019-05-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US20190142632A1 (en) 2012-03-20 2019-05-16 Sight Sciences, Inc. Ocular delivery systems and methods
WO2019094004A1 (fr) 2017-11-08 2019-05-16 Aquesys, Inc. Régulation d'écoulement intraoculaire à réglage manuel
US10322267B2 (en) 2013-03-15 2019-06-18 Carlos A. Hakim Externally programmable valve assembly
US10335030B2 (en) * 2017-03-21 2019-07-02 Rakan Elias Jamil Alhourani Rakan's adjustable glaucoma valve and shunt with intraocular pressure indicator and rasha's posterior—anterior chamber shunt
US10342703B2 (en) 2014-02-25 2019-07-09 Universitaet Rostock Glaucoma drainage implant
US10363168B2 (en) 2011-06-14 2019-07-30 Ivantis, Inc. Ocular implants for delivery into the eye
EP3518846A1 (fr) 2016-09-30 2019-08-07 Ferentini, Gabriele Ubaldo Dispositif de drainage et procédé de drainage de l'humeur aqueuse du globe oculaire
US20190247231A1 (en) 2016-11-02 2019-08-15 Liqid Medical Proprietary Limited A shunt system, shunt and method for treating an ocular disorder
WO2019165053A1 (fr) 2018-02-21 2019-08-29 Camras Vision, Inc. Systèmes et procédés pour réduire la pression intraoculaire
US10405903B1 (en) 2012-05-04 2019-09-10 Xtraverse, LLC Fasteners with shape changing zigzag structures and methods using same
US20190274881A1 (en) 2018-03-09 2019-09-12 Aquesys, Inc. Intraocular shunt inserter
US20190274882A1 (en) 2018-03-09 2019-09-12 Aquesys, Inc. Intraocular shunt inserter
WO2019172940A1 (fr) 2018-03-09 2019-09-12 Aquesys, Inc. Dispositif d'insertion d'un shunt intraoculaire
US20190307608A1 (en) 2018-04-06 2019-10-10 Purdue Research Foundation Drainage devices having self-clearing and flow resistance control capabilities, and microactuators for use therewith
US20190344057A1 (en) 2018-05-14 2019-11-14 Massachusetts Institute Of Technology Nanofluidic peristaltic pumps and methods of use
DE102018112065A1 (de) 2018-05-18 2019-11-21 Memetis Gmbh Ventil mit Aktuator aus einer Formgedächtnislegierung in flacher Geometrie
US20190358086A1 (en) 2014-08-29 2019-11-28 Camras Vision Inc. Device and method for reducing intraocular pressure
US10492948B2 (en) 2008-11-05 2019-12-03 Johnson & Johnson Surgical Vision, Inc. Glaucoma drainage shunts and methods of use
US20190374384A1 (en) 2017-02-22 2019-12-12 Board Of Regents, The University Of Texas System A novel flexible microfluidic meshwork for glaucoma surgery
WO2020022391A1 (fr) 2018-07-25 2020-01-30 株式会社デンソー TRANCHE DE SiC ET PROCÉDÉ DE FABRICATION DE TRANCHE DE SiC
US20200085620A1 (en) 2008-03-05 2020-03-19 Ivantis, Inc. Methods and apparatus for treating glaucoma
US20200121504A1 (en) 2004-12-16 2020-04-23 iScience lnterventional Corporation Ophthalmic implant for treatment of glaucoma
US20200121503A1 (en) 2006-06-26 2020-04-23 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
EP3659495A1 (fr) 2011-09-13 2020-06-03 Dose Medical Corporation Capteur physiologique intraoculaire
US20200170839A1 (en) 2017-08-03 2020-06-04 Carl Zeiss Meditec Ag Apparatus for influencing an intraocular pressure
US20200179171A1 (en) 2013-03-15 2020-06-11 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
EP3666236A1 (fr) 2018-12-12 2020-06-17 AJL Ophthalmic, S.A. Dispositif d'implant pour glaucome
US20200214891A1 (en) 2011-01-14 2020-07-09 Ecole Polytechnique Federale De Lausanne (Epfl) Apparatus and methods for treating excess intraocular fluid
WO2020150663A1 (fr) 2019-01-18 2020-07-23 Shifamed Holdings, Llc Dérivations de glaucome à écoulement réglable et leurs méthodes de fabrication et d'utilisation
US20200229980A1 (en) 2013-02-19 2020-07-23 Aquesys, Inc. Intraocular shunt implantation methods and devices
US20200229982A1 (en) 2017-07-20 2020-07-23 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
EP3687374A1 (fr) 2017-09-29 2020-08-05 Glaukos Corporation Capteur physiologique intraoculaire
US10758412B2 (en) 2014-07-01 2020-09-01 Mario Eduardo Miranda Velasquez One piece flat device of for the drainage of aqueous humor from the eye
US20200276050A1 (en) 2017-09-11 2020-09-03 Oregon Health & Science University Glaucoma tube implant with modulated flow
US20200306086A1 (en) 2015-03-16 2020-10-01 Jeannette M. A. da Silva Curiel Method and apparatus for inserting an implant in the cornea of the eye
DE102019204846A1 (de) 2019-04-04 2020-10-08 Memetis Gmbh Aktuator-Vorrichtung
WO2020215068A1 (fr) 2019-04-19 2020-10-22 Elt Sight, Inc. Traitement combiné utilisant la tle
EP3730104A1 (fr) 2017-12-20 2020-10-28 Microt Inc. Dispositif d'implant pour maladie oculaire, destiné à réguler la pression intraoculaire
US20200345549A1 (en) 2019-04-30 2020-11-05 Taiwan Fiber Optics, Inc. Shunt for draining ocular fluid
EP3735947A1 (fr) 2009-01-28 2020-11-11 Alcon Inc. Système d'implantation pour un implant oculaire
WO2020231993A1 (fr) 2019-05-13 2020-11-19 Verily Life Sciences Llc Soupape de dérivation de biofluide avec gaine et dispositif de surveillance
WO2020247365A1 (fr) 2019-06-03 2020-12-10 Innfocus, Inc. Polymères gonflables sans dégradation en tant que matériaux pour dispositifs biomédicaux
WO2020261184A1 (fr) 2019-06-26 2020-12-30 Imvalv S.A. Système d'implant de drainage pour glaucome avec capteur de pression et valve, et unité de lecture externe
WO2021007296A1 (fr) 2019-07-08 2021-01-14 Shifamed Holdings, Llc Systèmes de traitement avec dérivations d'écoulement réglables et capteurs, et dispositifs et procédés associés
WO2021007294A1 (fr) 2019-07-08 2021-01-14 Shifamed Holdings, Llc Dispositifs de formation de bulle minimalement invasifs et méthodes d'utilisation de tels dispositifs
WO2021004312A1 (fr) 2019-07-08 2021-01-14 中原工学院 Procédé de mesure intelligente de trajectoire de véhicule basé sur un système de vision stéréoscopique binoculaire
US20210015665A1 (en) 2018-03-07 2021-01-21 Carl Zeiss Meditec Ag Shunt implant
US20210030590A1 (en) 2018-02-22 2021-02-04 Ivantis, Inc. Ocular implant and delivery system
US20210038158A1 (en) 2013-03-13 2021-02-11 Glaukos Corporation Intraocular physiological sensor
EP3773377A1 (fr) 2018-04-03 2021-02-17 Jack Chu Nouveau dispositif oculaire et procédé de traitement du glaucome
WO2021028703A1 (fr) 2019-08-14 2021-02-18 Cambridge Mechatronics Limited Dispositifs et procédés de commande
US20210069486A1 (en) 2016-08-12 2021-03-11 Carlos A. Hakim Externally programable magnetic valve assembly and controller
US10952897B1 (en) 2015-05-06 2021-03-23 S. Gregory Smith Eye implant devices and method and device for implanting such devices for treatment of glaucoma
US10960074B2 (en) 2009-02-25 2021-03-30 John Berdahl Process for treating glaucoma
WO2021072317A1 (fr) 2019-10-10 2021-04-15 Shifamed Holdings, Llc Shunts de glaucome à écoulement ajustable et systèmes et procédés associés
US20210106462A1 (en) 2018-05-04 2021-04-15 University Of Florida Research Foundation, Inc. Glaucoma drainage implant venting assembly
WO2021068078A1 (fr) 2019-10-11 2021-04-15 Sekhavat Houfar Dérivations de glaucome et méthodes d'utilisation associées
WO2021072315A1 (fr) 2019-10-10 2021-04-15 Shifamed Holdings, Llc Shunts de glaucome à débit réglable et systèmes et méthodes associés
US20210137736A1 (en) 2017-06-16 2021-05-13 Massachusetts Institute Of Technology Modular glaucoma implant
US20210161713A1 (en) 2018-04-03 2021-06-03 UCL Business Ltd. Drainage device and methods
WO2021113730A1 (fr) 2019-12-06 2021-06-10 Radiance Therapeutics, Inc. Méthodes, systèmes et compositions pour obtenir une pression intraoculaire saine après une opération de filtration du glaucome et une extraction de la cataracte combinées
US11039954B2 (en) 2019-03-21 2021-06-22 Microoptx Inc. Implantable ocular drug delivery devices and methods
US20210196516A1 (en) 2019-06-14 2021-07-01 Iantrek, Inc. Implantable biologic stent and system for biologic material shaping, preparation, and intraocular stenting for increased aqueous outflow and lowering of intraocular pressure
US20210205132A1 (en) 2010-11-15 2021-07-08 Aquesys, Inc. Methods for implanting intraocular shunts
EP3846748A1 (fr) 2018-09-06 2021-07-14 Ecole Polytechnique Federale De Lausanne (EPFL) EPFL-TTO Appareil pour traiter un excès de liquide intraoculaire comportant une membrane élastique
EP3846747A1 (fr) 2018-09-04 2021-07-14 University Hospitals Health System Inc. Dispositif oculaire destiné au traitement du glaucome et procédé de chirurgie minimalement invasive associé du glaucome
WO2021142255A1 (fr) 2020-01-08 2021-07-15 Radiance Therapeutics, Inc. Procédés, systèmes et compositions permettant de maintenir le fonctionnement de bulles de drainage associées à des corps étrangers
US20210212858A1 (en) 2018-08-31 2021-07-15 New World Medical, Inc. Ocular implants, ocular core assemblies and methods for making ocular implants
US11065154B1 (en) 2011-10-06 2021-07-20 William Eric Sponsel Bleb drainage device, ophthalmic product and methods
WO2021151007A1 (fr) 2020-01-23 2021-07-29 Shifamed Holdings, Llc Shunts de glaucome à débit réglable et systèmes et méthodes associés
US11083624B2 (en) 2015-06-25 2021-08-10 The Regents Of The University Of Michigan Magnetoelastic implantable actuation device and method
WO2021163566A1 (fr) 2020-02-14 2021-08-19 Shifamed Holdings, Llc Systèmes de dérivation avec ensembles de régulation de débit par rotation, et systèmes et méthodes associés
WO2021168130A1 (fr) 2020-02-18 2021-08-26 Shifamed Holdings, Llc Shunts de glaucome à écoulement réglable ayant des éléments de commande d'écoulement disposés de manière non linéaire, et systèmes et procédés associés
EP3870120A1 (fr) 2018-10-25 2021-09-01 AMO Groningen B.V. Dérivations de glaucome à commande bleb
WO2021174298A1 (fr) 2020-03-04 2021-09-10 Western Sydney Local Health District Implant oculaire et son procédé de fabrication
WO2021176332A1 (fr) 2020-03-06 2021-09-10 Ecole Polytechnique De Lausanne (Epfl) Appareil permettant de traiter un excès de liquide intraoculaire comportant une membrane élastique
US11122975B2 (en) 2017-05-12 2021-09-21 California Institute Of Technology Implantable extracompartmental pressure sensor
WO2021188952A1 (fr) 2020-03-19 2021-09-23 Shifamed Holdings, Llc Dérivations intraoculaires à éléments d'actionnement extra-plats et systèmes et procédés associés
US20210298948A1 (en) 2009-05-18 2021-09-30 Dose Medical Corporation Drug eluting ocular implant with internal plug
US20210315806A1 (en) 2014-05-29 2021-10-14 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
WO2021212007A2 (fr) 2020-04-16 2021-10-21 Shifamed Holdings, Llc Dispositifs réglables de traitement de glaucome, ainsi que systèmes et méthodes associés
US20210330499A1 (en) 2012-04-18 2021-10-28 Ivantis, Inc. Ocular implants for delivery into an anterior chamber of the eye
US11166847B2 (en) 2010-02-05 2021-11-09 Sight Sciences, Inc. Intraocular implants and related kits and methods
WO2021230887A1 (fr) 2020-05-15 2021-11-18 Eyeflow, Inc. Procédé et appareil de pose d'implant dans la voie classique d'écoulement de l'humeur aqueuse d'un œil de mammifère

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433701A (en) * 1994-12-21 1995-07-18 Rubinstein; Mark H. Apparatus for reducing ocular pressure

Patent Citations (324)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401107A (en) 1982-04-20 1983-08-30 Haber Terry M Intestinal control valve
US4595390A (en) 1983-07-21 1986-06-17 Salomon Hakim Magnetically-adjustable cerebrospinal fluid shunt valve
US5070697A (en) 1988-04-12 1991-12-10 Koni Actuator with memory metal and a shock absorber provided with this actuator
WO1992019294A1 (fr) 1991-05-08 1992-11-12 Prywes Arnold S Valve de derivation chirurgicale et systemes d'administration d'agents therapeutiques
US5300020A (en) 1991-05-31 1994-04-05 Medflex Corporation Surgically implantable device for glaucoma relief
US5123906A (en) 1991-06-20 1992-06-23 Kelman Charles D Surgical toroidal snare
US6508779B1 (en) 1995-05-05 2003-01-21 John Suson Adjustable flow rate glaucoma shunt and method of using same
US6261256B1 (en) 1996-12-20 2001-07-17 Abdul Mateen Ahmed Pocket medical valve & method
US20080125691A1 (en) * 1997-11-20 2008-05-29 Optonol Ltd. Flow regulating implants
US6203513B1 (en) 1997-11-20 2001-03-20 Optonol Ltd. Flow regulating implant, method of manufacture, and delivery device
US6077299A (en) 1998-06-22 2000-06-20 Eyetronic, Llc Non-invasively adjustable valve implant for the drainage of aqueous humor in glaucoma
US20010011585A1 (en) 1998-07-10 2001-08-09 David Cassidy Heat exchanger useable in wearable fluid heater
US6789447B1 (en) 1998-11-23 2004-09-14 Frederick L. Zinck Reversible ratchet head assembly
US6450984B1 (en) 1999-04-26 2002-09-17 Gmp Vision Solutions, Inc. Shunt device and method for treating glaucoma
US20070088432A1 (en) 1999-04-26 2007-04-19 Kenneth Solovay Indwelling shunt device and methods for treating glaucoma
US6626858B2 (en) 1999-04-26 2003-09-30 Gmp Vision Solutions, Inc. Shunt device and method for treating glaucoma
US20020193725A1 (en) 2000-02-24 2002-12-19 Odrich Steven A. Injectable glaucoma device
US20050049578A1 (en) 2000-04-14 2005-03-03 Hosheng Tu Implantable ocular pump to reduce intraocular pressure
US6736791B1 (en) 2000-04-14 2004-05-18 Glaukos Corporation Glaucoma treatment device
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
US8540659B2 (en) 2000-05-19 2013-09-24 Michael S. Berlin Delivery system and method of use for the eye
EP1292256A1 (fr) 2000-06-19 2003-03-19 Glaukos Corporation Derivation trabeculaire tuteuree et procedes de derivation
US20040254520A1 (en) 2001-04-07 2004-12-16 Eric Porteous Coil implant for glaucoma treatment
US20020177891A1 (en) 2001-04-26 2002-11-28 Parodi Juan Carlos Endoluminal device and method for fabricating same
US6666841B2 (en) 2001-05-02 2003-12-23 Glaukos Corporation Bifurcatable trabecular shunt for glaucoma treatment
DE10217061A1 (de) 2001-05-25 2003-03-27 Siemens Ag Durchflusseinsteller für strömende Medien
US20030127090A1 (en) 2001-11-14 2003-07-10 Emphasys Medical, Inc. Active pump bronchial implant devices and methods of use thereof
US20030163079A1 (en) 2002-02-25 2003-08-28 Burnett Daniel Rogers Vesicular shunt for the drainage of excess fluid
US8882781B2 (en) 2002-03-15 2014-11-11 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US7947008B2 (en) 2002-05-29 2011-05-24 University Of Saskatchewan Shunt and method treatment of glaucoma
US20090036818A1 (en) 2002-05-29 2009-02-05 University Of Saskatchewan Shunt and Method Treatment of Glaucoma
US20040010219A1 (en) 2002-07-10 2004-01-15 Mccusker Daniel Shunt valve locking mechanism
US20060155300A1 (en) 2002-09-17 2006-07-13 Iscience Surgical, Inc. Apparatus and method for surgical bypass of aqueous humor
US7699882B2 (en) 2002-09-17 2010-04-20 Iscience Interventional Corporation Apparatus and method for surgical bypass of aqueous humor
US20070078371A1 (en) 2003-02-14 2007-04-05 Regents Of The University Of Minnesota Bypass for glaucoma drainage device
US7354416B2 (en) 2003-02-18 2008-04-08 Hugo Quiroz-Mercado Methods and devices for draining fluids and lowering intraocular pressure
WO2004081613A2 (fr) 2003-03-06 2004-09-23 Shadduck John H Lentille optique adaptative et procede de fabrication
US7025740B2 (en) 2003-04-22 2006-04-11 Ahmed A Mateen Device for treating glaucoma & method of manufacture
US8012134B2 (en) 2003-04-23 2011-09-06 Interrad Medical, Inc. Dialysis valve and method
US7207965B2 (en) 2003-06-16 2007-04-24 Solx, Inc. Shunt for the treatment of glaucoma
US7364564B2 (en) 2004-03-02 2008-04-29 Becton, Dickinson And Company Implant having MEMS flow module with movable, flow-controlling baffle
EP1737531A2 (fr) 2004-04-23 2007-01-03 Gmp Vision Solutions, Inc. Dispositif de dérivation à demeure et procédés servant à traiter le glaucome
US20080077071A1 (en) 2004-06-25 2008-03-27 Optonol Ltd. Flow Regulating Implants
EP1765234A2 (fr) 2004-06-25 2007-03-28 Optonol Ltd. Implants de regulation de flux
JP5576427B2 (ja) 2004-08-09 2014-08-20 バロノヴァ,インク. 幽門係留デバイスおよび方法
US20200121504A1 (en) 2004-12-16 2020-04-23 iScience lnterventional Corporation Ophthalmic implant for treatment of glaucoma
US20070010837A1 (en) 2005-07-07 2007-01-11 Don Tanaka Magnetic frame for connecting hollow bodies
WO2007011302A1 (fr) 2005-07-18 2007-01-25 Phacotreat Ab Dispositif chirurgical d’élimination de tissus oculaires indésirables
US7717872B2 (en) 2005-09-28 2010-05-18 Rajesh Kumar Shetty Fluid shunting apparatus and methods
US20180092775A1 (en) 2006-01-17 2018-04-05 Novartis Ag Glaucoma Treatment Device
AU2016201445B2 (en) 2006-01-17 2017-10-26 Alcon Inc. Glaucoma treatment device
AU2018200325A1 (en) 2006-01-17 2018-02-08 Alcon Inc. Glaucoma treatment device
US8298240B2 (en) 2006-04-06 2012-10-30 Synthes (Usa) Remotely adjustable tissue displacement device
US20100234791A1 (en) 2006-05-01 2010-09-16 Glaukos Corporation Dual drainage pathway shunt device
US7458953B2 (en) 2006-06-20 2008-12-02 Gholam A. Peyman Ocular drainage device
US20200121503A1 (en) 2006-06-26 2020-04-23 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US20150011926A1 (en) 2006-06-30 2015-01-08 Aquesys, Inc. Intraocular devices
US9636254B2 (en) 2006-06-30 2017-05-02 Aquesys, Inc. Systems for reducing pressure in an organ
US10085884B2 (en) 2006-06-30 2018-10-02 Aquesys, Inc. Intraocular devices
US20080119891A1 (en) 2006-08-09 2008-05-22 Coherex Medical, Inc. Methods, systems and devices for reducing the size of an internal tissue opening
AU2014201621B2 (en) 2006-11-10 2016-03-31 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US8506515B2 (en) 2006-11-10 2013-08-13 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US20080228127A1 (en) 2006-11-10 2008-09-18 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US8206440B2 (en) 2007-01-08 2012-06-26 Consejo Nacional De Investigaciones Cientificas Y Technicas Implantable ocular microapparatus to ameliorate glaucoma or an ocular overpressure causing disease
US20140309611A1 (en) 2007-02-27 2014-10-16 Deka Research & Development Blood treatment systems and methods
US9585789B2 (en) 2007-07-17 2017-03-07 Novartis Ag Ocular implant with hydrogel expansion capabilities
US9375347B2 (en) 2007-11-23 2016-06-28 Ecole Polytechnique Federale De Lausanne (Epfl) Non-invasively adjustable drainage device
US20160287439A1 (en) 2007-11-23 2016-10-06 Ecole Polytechnique Federale De Lausanne (Epfl) Non-invasively adjustable drainage device
US20200085620A1 (en) 2008-03-05 2020-03-19 Ivantis, Inc. Methods and apparatus for treating glaucoma
US20090243956A1 (en) 2008-04-01 2009-10-01 Cardiometrix, Inc. Enhanced implantable helical antenna system and method
US20090326517A1 (en) 2008-06-27 2009-12-31 Toralf Bork Fluidic capillary chip for regulating drug flow rates of infusion pumps
US10492948B2 (en) 2008-11-05 2019-12-03 Johnson & Johnson Surgical Vision, Inc. Glaucoma drainage shunts and methods of use
EP2389138A1 (fr) 2008-12-05 2011-11-30 Ivantis, INC. Procédés et appareils de placement d'implants oculaires dans l'oeil
EP3735947A1 (fr) 2009-01-28 2020-11-11 Alcon Inc. Système d'implantation pour un implant oculaire
US20180028361A1 (en) 2009-02-13 2018-02-01 Dose Medical Corporation Uveoscleral drug delivery implant and methods for implanting the same
US10960074B2 (en) 2009-02-25 2021-03-30 John Berdahl Process for treating glaucoma
US20100241077A1 (en) 2009-03-17 2010-09-23 Roche Diagnostics International Ag Cannula Assemblies And Ambulatory Infusion Systems With Pressure Sensors Made Of Stacked Coplanar Layers
WO2010111528A2 (fr) 2009-03-26 2010-09-30 Abbott Medical Optics Inc. Dérivations assurant la prise en charge de l'écoulement de l'humeur aqueuse, utilisées pour le traitement du glaucome et caractérisées par des performances chirurgicales améliorées
US20210298948A1 (en) 2009-05-18 2021-09-30 Dose Medical Corporation Drug eluting ocular implant with internal plug
US20130131577A1 (en) 2009-09-21 2013-05-23 Ben Bronstein Uveoscleral drainage device
US20110105986A1 (en) 2009-09-21 2011-05-05 Ben Bronstein Uveoscleral drainage device
US11166847B2 (en) 2010-02-05 2021-11-09 Sight Sciences, Inc. Intraocular implants and related kits and methods
DE102010015447A1 (de) 2010-04-17 2011-10-20 FG-INNOVATION UG (haftungsbeschränkt) Aktuator zur Erzeugung von Stellbewegungen
US20130197621A1 (en) 2010-08-12 2013-08-01 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US20120065570A1 (en) 2010-09-11 2012-03-15 Yeung Jeffrey E Disc shunt delivery with stepped needle
US20130267887A1 (en) 2010-09-21 2013-10-10 The Regents Of The University Of Colorado Aqueous humor micro-bypass shunts
US20120089073A1 (en) 2010-10-12 2012-04-12 Cunningham Jr Emmett T Glaucoma drainage device and uses thereof
US8915877B2 (en) 2010-10-12 2014-12-23 Emmett T. Cunningham, JR. Glaucoma drainage device and uses thereof
US9877866B2 (en) 2010-11-15 2018-01-30 Aquesys, Inc. Intraocular shunt placement
JP2018130580A (ja) 2010-11-15 2018-08-23 アクエシス・インコーポレイテッドAqueSys, Inc. 眼内シャント配置装置
US8852137B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for implanting a soft gel shunt in the suprachoroidal space
US8585629B2 (en) 2010-11-15 2013-11-19 Aquesys, Inc. Systems for deploying intraocular shunts
US8828070B2 (en) 2010-11-15 2014-09-09 Aquesys, Inc. Devices for deploying intraocular shunts
US9693901B2 (en) 2010-11-15 2017-07-04 Aquesys, Inc. Shunt placement through the sclera
US8801766B2 (en) 2010-11-15 2014-08-12 Aquesys, Inc. Devices for deploying intraocular shunts
US9980854B2 (en) 2010-11-15 2018-05-29 Aquesys, Inc. Shunt placement through the sclera
US20180147089A1 (en) 2010-11-15 2018-05-31 Aquesys, Inc. Intraocular shunt placement
US20210205132A1 (en) 2010-11-15 2021-07-08 Aquesys, Inc. Methods for implanting intraocular shunts
US8974511B2 (en) 2010-11-15 2015-03-10 Aquesys, Inc. Methods for treating closed angle glaucoma
US9017276B2 (en) 2010-11-15 2015-04-28 Aquesys, Inc. Shunt placement through the sclera
US10004638B2 (en) 2010-11-15 2018-06-26 Aquesys, Inc. Intraocular shunt delivery
US8663303B2 (en) 2010-11-15 2014-03-04 Aquesys, Inc. Methods for deploying an intraocular shunt from a deployment device and into an eye
US9095411B2 (en) 2010-11-15 2015-08-04 Aquesys, Inc. Devices for deploying intraocular shunts
US8852256B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for intraocular shunt placement
US8721702B2 (en) 2010-11-15 2014-05-13 Aquesys, Inc. Intraocular shunt deployment devices
PT2640455T (pt) 2010-11-15 2019-05-30 Aquesys Inc Dispositivos de implantação de um shunt intraocular
US10307293B2 (en) 2010-11-15 2019-06-04 Aquesys, Inc. Methods for intraocular shunt placement
US9192516B2 (en) 2010-11-15 2015-11-24 Aquesys, Inc. Intraocular shunt placement
TR201906873T4 (tr) 2010-11-15 2019-06-21 Aquesys Inc İntraoküler şant yerleştirme cihazları.
US20190240069A1 (en) 2010-11-15 2019-08-08 Aquesys, Inc. Methods for implanting intraocular shunts
US9283116B2 (en) 2010-11-15 2016-03-15 Aquesys, Inc. Intraocular shunt deployment device
US8308701B2 (en) 2010-11-15 2012-11-13 Aquesys, Inc. Methods for deploying intraocular shunts
HUE043303T2 (hu) 2010-11-15 2019-08-28 Aquesys Inc Intraokuláris söntöt telepítõ eszközök
US9326891B2 (en) 2010-11-15 2016-05-03 Aquesys, Inc. Methods for deploying intraocular shunts
ES2725550T3 (es) 2010-11-15 2019-09-24 Aquesys Inc Dispositivos de despliegue de derivación intraocular
US8758290B2 (en) 2010-11-15 2014-06-24 Aquesys, Inc. Devices and methods for implanting a shunt in the suprachoroidal space
US9393153B2 (en) 2010-11-15 2016-07-19 Aquesys, Inc. Methods for intraocular shunt placement
PL2640455T3 (pl) 2010-11-15 2019-08-30 Aquesys, Inc. Urządzenia wszczepiające zastawkę wewnątrzgałkową
US20160256318A1 (en) 2010-11-15 2016-09-08 Aquesys, Inc. Intraocular shunt placement in the suprachoroidal space
US20160256320A1 (en) 2010-11-15 2016-09-08 Aquesys, Inc. Intraocular shunt placement in the suprachoroidal space
US20160256317A1 (en) 2010-11-15 2016-09-08 Aquesys, Inc. Methods for implanting intraocular shunts
US20160256319A1 (en) 2010-11-15 2016-09-08 Aquesys, Inc. Intraocular shunt placement in the suprachoroidal space
US20200214891A1 (en) 2011-01-14 2020-07-09 Ecole Polytechnique Federale De Lausanne (Epfl) Apparatus and methods for treating excess intraocular fluid
US9655779B2 (en) 2011-01-14 2017-05-23 Ecole Polytechnique Federale De Lausanne (Epfl) Apparatus and methods for treating excess intraocular fluid
EP2677981A1 (fr) 2011-02-23 2014-01-01 Grieshaber Ophthalmic Research Foundaton Implant pour le traitement du glaucome
US10363168B2 (en) 2011-06-14 2019-07-30 Ivantis, Inc. Ocular implants for delivery into the eye
US20130205923A1 (en) 2011-08-24 2013-08-15 Marko Brammer Module unit and fluid analysis unit
EP3659495A1 (fr) 2011-09-13 2020-06-03 Dose Medical Corporation Capteur physiologique intraoculaire
US20150230843A1 (en) 2011-09-22 2015-08-20 Mx Orthopedics, Corp. Controlling the unloading stress of nitinol devices and/or other shape memory material devices
US11065154B1 (en) 2011-10-06 2021-07-20 William Eric Sponsel Bleb drainage device, ophthalmic product and methods
US9757276B2 (en) 2011-11-11 2017-09-12 Opr Group Ltd. Ocular implant with intraocular fluid pressure regulation
US8753305B2 (en) 2011-12-06 2014-06-17 Alcon Research, Ltd. Bubble-driven IOP control system
US20130150773A1 (en) 2011-12-07 2013-06-13 Oded M. Nissan Glaucoma Active Pressure Regulation Shunt
US8771220B2 (en) 2011-12-07 2014-07-08 Alcon Research, Ltd. Glaucoma active pressure regulation shunt
US8852136B2 (en) 2011-12-08 2014-10-07 Aquesys, Inc. Methods for placing a shunt into the intra-scleral space
US9271869B2 (en) 2011-12-08 2016-03-01 Aquesys, Inc. Intrascleral shunt placement
US9095413B2 (en) 2011-12-08 2015-08-04 Aquesys, Inc. Intraocular shunt manufacture
US9592154B2 (en) 2011-12-08 2017-03-14 Aquesys, Inc. Intraocular shunt manufacture
US20190021907A1 (en) 2011-12-08 2019-01-24 Aquesys, Inc. Intrascleral shunt placement
US9883969B2 (en) 2011-12-08 2018-02-06 Aquesys, Inc. Intrascleral shunt placement
US8765210B2 (en) 2011-12-08 2014-07-01 Aquesys, Inc. Systems and methods for making gelatin shunts
US10314743B2 (en) 2011-12-08 2019-06-11 Aquesys, Inc. Intraocular shunt manufacture
US10080682B2 (en) 2011-12-08 2018-09-25 Aquesys, Inc. Intrascleral shunt placement
US9113994B2 (en) 2011-12-08 2015-08-25 Aquesys, Inc. Intraocular shunt manufacture
US8579848B2 (en) 2011-12-09 2013-11-12 Alcon Research, Ltd. Active drainage systems with pressure-driven valves and electronically-driven pump
US20130150776A1 (en) 2011-12-12 2013-06-13 Sebastian Böhm Glaucoma Drainage Devices Including Vario-Stable Valves and Associated Systems and Methods
US20130338564A1 (en) 2011-12-12 2013-12-19 Alcon Research, Ltd. Glaucoma drainage devices including vario-stable valves and associated systems and methods
US20130158381A1 (en) 2011-12-15 2013-06-20 Matthew J.A. Rickard External Pressure Measurement System and Method for an Intraocular Implant
US20150034217A1 (en) 2011-12-23 2015-02-05 Cook Medical Technologies Llc Hybrid balloon-expandable/self-expanding prosthesis for deployment in a body vessel and method of making
EP3329884A1 (fr) 2012-01-12 2018-06-06 Innfocus, Inc. Dispositif implantable pour le traitement du glaucome
US20130199646A1 (en) 2012-02-07 2013-08-08 Karlsruher Institut Fuer Technologie Valve plug
US9555410B2 (en) 2012-02-07 2017-01-31 Buerkert Werke Gmbh Valve plug
US20130211312A1 (en) 2012-02-14 2013-08-15 Michael L. Gelvin Prefilled Ocular Implants and Methods
US20190142632A1 (en) 2012-03-20 2019-05-16 Sight Sciences, Inc. Ocular delivery systems and methods
US20210330499A1 (en) 2012-04-18 2021-10-28 Ivantis, Inc. Ocular implants for delivery into an anterior chamber of the eye
US10405903B1 (en) 2012-05-04 2019-09-10 Xtraverse, LLC Fasteners with shape changing zigzag structures and methods using same
US20130317412A1 (en) 2012-05-23 2013-11-28 Bruno Dacquay Flow Control For Treating A Medical Condition
US20140046439A1 (en) 2012-08-13 2014-02-13 Cesario P. Dos Santos Implantable mems device and method
US20140081195A1 (en) * 2012-09-17 2014-03-20 Transcend Medical, Inc. Expanding ocular implant devices and methods
US10238536B2 (en) 2012-10-11 2019-03-26 The Regents Of The University Of Colorado, A Body Corporate Ocular filtration devices, systems and methods
US10154924B2 (en) 2013-01-28 2018-12-18 Novartis Ag Schlemm's canal devices and method for improving fluid flow
US10195078B2 (en) 2013-02-19 2019-02-05 Aquesys, Inc. Adjustable intraocular flow regulation
US10159600B2 (en) 2013-02-19 2018-12-25 Aquesys, Inc. Adjustable intraocular flow regulation
US10195079B2 (en) 2013-02-19 2019-02-05 Aquesys, Inc. Adjustable intraocular implant
WO2014130574A1 (fr) 2013-02-19 2014-08-28 Aquesys, Inc. Décharge de pression d'écoulement réglable
US20200229980A1 (en) 2013-02-19 2020-07-23 Aquesys, Inc. Intraocular shunt implantation methods and devices
US9125723B2 (en) 2013-02-19 2015-09-08 Aquesys, Inc. Adjustable glaucoma implant
US20190167475A1 (en) 2013-02-19 2019-06-06 Aquesys, Inc. Adjustable intraocular implant
US9610195B2 (en) 2013-02-27 2017-04-04 Aquesys, Inc. Intraocular shunt implantation methods and devices
US20170172799A1 (en) 2013-02-27 2017-06-22 Aquesys, Inc. Intraocular shunt implantation methods and devices
US10524959B2 (en) 2013-02-27 2020-01-07 Aquesys, Inc. Intraocular shunt implantation methods and devices
US20210038158A1 (en) 2013-03-13 2021-02-11 Glaukos Corporation Intraocular physiological sensor
US10231871B2 (en) 2013-03-15 2019-03-19 Orasis Medical, Inc. Enhancement of aqueous flow
US10322267B2 (en) 2013-03-15 2019-06-18 Carlos A. Hakim Externally programmable valve assembly
US20200179171A1 (en) 2013-03-15 2020-06-11 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US10285853B2 (en) 2013-03-15 2019-05-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
EP2999430A1 (fr) 2013-05-21 2016-03-30 Transcend Medical, Inc. Dispositif d'implant oculaire favorisant l'écoulement et méthodes
US20160151179A1 (en) 2013-06-21 2016-06-02 Universite Joseph Fourier Stent spacer
US9808373B2 (en) 2013-06-28 2017-11-07 Aquesys, Inc. Intraocular shunt implantation
US10369048B2 (en) 2013-06-28 2019-08-06 Aquesys, Inc. Intraocular shunt implantation
US20190350758A1 (en) 2013-06-28 2019-11-21 Aquesys, Inc. Intraocular shunt implantation
US9693900B2 (en) 2013-08-06 2017-07-04 Manuel Humberto Gallardo Inzunza Intraocular pressure compensating and regulating valve
US20150045716A1 (en) 2013-08-06 2015-02-12 Manuel Humberto Gallardo Inzunza Intraocular pressure compensating and regulating valve
US9226851B2 (en) 2013-08-24 2016-01-05 Novartis Ag MEMS check valve chip and methods
US20160220794A1 (en) 2013-09-16 2016-08-04 Sophysa Adjustable drainage valve
US20170172798A1 (en) 2013-11-14 2017-06-22 Aquesys, Inc. Intraocular shunt inserter
US9585790B2 (en) 2013-11-14 2017-03-07 Aquesys, Inc. Intraocular shunt inserter
US20200246188A1 (en) 2013-11-14 2020-08-06 Aquesys, Inc. Intraocular shunt insertion techniques
US20170172797A1 (en) 2013-11-14 2017-06-22 Aquesys, Inc. Intraocular shunt insertion techniques
JP2019205934A (ja) 2013-11-14 2019-12-05 アクエシス, インコーポレイテッド 眼内シャントインサーター
US20150142049A1 (en) 2013-11-21 2015-05-21 Edwards Lifesciences Corporation Sealing devices, related delivery apparatuses, and uses thereof
US10342703B2 (en) 2014-02-25 2019-07-09 Universitaet Rostock Glaucoma drainage implant
US20170071791A1 (en) 2014-03-10 2017-03-16 Tel Hashomer Medical Research Infrastructure And Services Ltd. Toroidal glaucoma drainage device
US20150313603A1 (en) 2014-05-01 2015-11-05 Cook Medical Technologies Llc Implantable medical device with twisted element
US20210315806A1 (en) 2014-05-29 2021-10-14 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
US10758412B2 (en) 2014-07-01 2020-09-01 Mario Eduardo Miranda Velasquez One piece flat device of for the drainage of aqueous humor from the eye
US20190358086A1 (en) 2014-08-29 2019-11-28 Camras Vision Inc. Device and method for reducing intraocular pressure
US20170312125A1 (en) 2014-09-17 2017-11-02 Iantech, Inc. Devices and methods for cutting lenticular tissue
US20200306086A1 (en) 2015-03-16 2020-10-01 Jeannette M. A. da Silva Curiel Method and apparatus for inserting an implant in the cornea of the eye
WO2016149425A1 (fr) 2015-03-16 2016-09-22 Da Silva Curiel Jeannette M A Procédé et appareil pour insérer un implant dans la cornée de l'œil
US10952897B1 (en) 2015-05-06 2021-03-23 S. Gregory Smith Eye implant devices and method and device for implanting such devices for treatment of glaucoma
US20200069469A1 (en) 2015-06-03 2020-03-05 Aquesys, Inc. Ab externo intraocular shunt placement
US20160354244A1 (en) 2015-06-03 2016-12-08 Aquesys, Inc. Ab externo intraocular shunt placement
RU2687764C1 (ru) 2015-06-03 2019-05-16 Эквисис, Инк. Размещение ав externo внутриглазного шунта
CA2987953A1 (fr) 2015-06-03 2016-12-08 Aquesys, Inc. Mise en place de shunt intraoculaire ab externo
JP2018519892A (ja) 2015-06-03 2018-07-26 アクエシス, インコーポレイテッド Ab externo(眼外から眼内へ)の眼内シャント配置
JP2020049361A (ja) 2015-06-03 2020-04-02 アクエシス, インコーポレイテッド Ab externo(眼外から眼内へ)の眼内シャント配置
US20160354245A1 (en) 2015-06-03 2016-12-08 Aquesys, Inc. Ab externo intraocular shunt placement
KR20180015684A (ko) 2015-06-03 2018-02-13 아큐시스, 인코포레이티드 안구내 션트의 외부 배치
WO2016196841A1 (fr) 2015-06-03 2016-12-08 Aquesys, Inc. Mise en place de shunt intraoculaire ab externo
US10463537B2 (en) 2015-06-03 2019-11-05 Aquesys Inc. Ab externo intraocular shunt placement
KR20200021551A (ko) 2015-06-03 2020-02-28 아큐시스, 인코포레이티드 안구내 션트의 외부 배치
AU2020201818A1 (en) 2015-06-03 2020-04-02 Aquesys, Inc. Ab externo intraocular shunt placement
EP3302381A1 (fr) 2015-06-03 2018-04-11 Aquesys, Inc. Mise en place de shunt intraoculaire ab externo
BR112017025859A2 (pt) 2015-06-03 2018-08-14 Aquesys, Inc. colocação de shunt intraocular ab externo
ZA201708295B (en) 2015-06-03 2020-05-27 Aquesys Inc Ab externo intraocular shunt placement
HK1252748A1 (zh) 2015-06-03 2019-05-31 Aquesys Inc 外路眼內分流器放置
US10470927B2 (en) 2015-06-03 2019-11-12 Aquesys, Inc. AB externo intraocular shunt placement
US11083624B2 (en) 2015-06-25 2021-08-10 The Regents Of The University Of Michigan Magnetoelastic implantable actuation device and method
EP3313335A1 (fr) 2015-06-26 2018-05-02 Innfocus, Inc. Système de placement de dispositif contre le glaucome et procédé de placement trans-conjonctival
US9655778B2 (en) 2015-07-13 2017-05-23 Thomas D. Tyler Position responsive flow adjusting implantable device and method
US20190000673A1 (en) 2015-07-22 2019-01-03 Glaukos Corporation Ocular implants for reduction of intraocular pressure and methods for implanting same
US20170027582A1 (en) 2015-07-27 2017-02-02 Boston Scientific Scimed, Inc. Devices for manipulating tissue and related methods
US20190060118A1 (en) 2015-09-16 2019-02-28 Prasis Medical, Inc. Shunt for Vascular Flow Enhancement
US10524958B2 (en) 2015-09-30 2020-01-07 Alievio, Inc. Method and apparatus for reducing intraocular pressure
US20170087016A1 (en) 2015-09-30 2017-03-30 Camras Vision, Inc. Method and apparatus for reducing intraocular pressure
US20190038462A1 (en) 2015-12-24 2019-02-07 Istar Medical Ocular Implant Systems
JP2019517366A (ja) 2016-06-02 2019-06-24 アクシス、インコーポレイテッド 眼内薬物送達
US20200261271A1 (en) 2016-06-02 2020-08-20 Aquesys, Inc. Intraocular drug delivery
AU2017274654A1 (en) 2016-06-02 2018-12-20 Aquesys, Inc. Intraocular drug delivery
RU2018142990A (ru) 2016-06-02 2020-06-05 Эквисис, Инк. Внутриглазная доставка лекарственных препаратов
KR20190019966A (ko) 2016-06-02 2019-02-27 아큐시스, 인코포레이티드 안구내 약물 전달
US20170348150A1 (en) 2016-06-02 2017-12-07 Aquesys, Inc. Intraocular drug delivery
US20170348149A1 (en) 2016-06-06 2017-12-07 École Polytechnique Fédérale de Lausanne Apparatus for treating excess intraocular fluid
US10596035B2 (en) 2016-06-06 2020-03-24 Ecole Polytechnique Federale De Lausanne (Epfl) Apparatus for treating excess intraocular fluid
US20180014828A1 (en) 2016-07-12 2018-01-18 Arthrex, Inc. Shape memory alloy sutures and prosthesis
US20210069486A1 (en) 2016-08-12 2021-03-11 Carlos A. Hakim Externally programable magnetic valve assembly and controller
EP3518846A1 (fr) 2016-09-30 2019-08-07 Ferentini, Gabriele Ubaldo Dispositif de drainage et procédé de drainage de l'humeur aqueuse du globe oculaire
US20190247231A1 (en) 2016-11-02 2019-08-15 Liqid Medical Proprietary Limited A shunt system, shunt and method for treating an ocular disorder
US20180206878A1 (en) 2017-01-09 2018-07-26 United States Endoscopy Group, Inc. Endoscopic snare device
US20190374384A1 (en) 2017-02-22 2019-12-12 Board Of Regents, The University Of Texas System A novel flexible microfluidic meshwork for glaucoma surgery
US10912675B2 (en) 2017-03-03 2021-02-09 Rowiak Gmbh Glaucoma drainage implant
US20180250166A1 (en) 2017-03-03 2018-09-06 Rowiak Gmbh Glaucoma drainage implant
US10335030B2 (en) * 2017-03-21 2019-07-02 Rakan Elias Jamil Alhourani Rakan's adjustable glaucoma valve and shunt with intraocular pressure indicator and rasha's posterior—anterior chamber shunt
US11122975B2 (en) 2017-05-12 2021-09-21 California Institute Of Technology Implantable extracompartmental pressure sensor
WO2018229766A1 (fr) 2017-06-13 2018-12-20 Eyemed Technologies Ltd Système de lentille intraoculaire
US20210137736A1 (en) 2017-06-16 2021-05-13 Massachusetts Institute Of Technology Modular glaucoma implant
US20220160546A1 (en) 2017-07-20 2022-05-26 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US11166848B2 (en) 2017-07-20 2021-11-09 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US20220160545A1 (en) 2017-07-20 2022-05-26 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US11166849B2 (en) 2017-07-20 2021-11-09 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US20200229981A1 (en) 2017-07-20 2020-07-23 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US20200229977A1 (en) 2017-07-20 2020-07-23 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US20200229982A1 (en) 2017-07-20 2020-07-23 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US11058581B2 (en) 2017-07-20 2021-07-13 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
WO2019018807A1 (fr) 2017-07-20 2019-01-24 Shifamed Holdings, Llc Dérivations de glaucome à écoulement réglable et leurs méthodes de fabrication et d'utilisation
US20200170839A1 (en) 2017-08-03 2020-06-04 Carl Zeiss Meditec Ag Apparatus for influencing an intraocular pressure
US20190046356A1 (en) 2017-08-08 2019-02-14 Daniel Laroche Methods Materials Assemblies Apparatuses and Implants for Surgical Reduction of Intraocular Pressure to Suprachoidal Space Ab Externo and Subconjunctival Space
US20200276050A1 (en) 2017-09-11 2020-09-03 Oregon Health & Science University Glaucoma tube implant with modulated flow
EP3687374A1 (fr) 2017-09-29 2020-08-05 Glaukos Corporation Capteur physiologique intraoculaire
US20190121278A1 (en) 2017-10-20 2019-04-25 Canon Kabushiki Kaisha Driving force transmitting device, sheet feeding apparatus and image forming apparatus
DE102017124885A1 (de) 2017-10-24 2019-04-25 Memetis Gmbh Fernsteuerbare Kupplung insbesondere Modellbahnkupplungen
CA3080713A1 (fr) 2017-11-08 2019-05-16 Aquesys, Inc. Regulation d'ecoulement intraoculaire a reglage manuel
KR20200059305A (ko) 2017-11-08 2020-05-28 아큐시스, 인코포레이티드 수동으로 조정가능한 안내 유동 조절
BR112020008969A2 (pt) 2017-11-08 2020-10-20 Aquesys, Inc. regulação de fluxo intraocular manualmente ajustável
EP3706653A1 (fr) 2017-11-08 2020-09-16 Aquesys, Inc. Régulation d'écoulement intraoculaire à réglage manuel
CN111405875A (zh) 2017-11-08 2020-07-10 阿奎西斯公司 手动可调的眼内流动调整
US20190133826A1 (en) 2017-11-08 2019-05-09 Aquesys, Inc. Manually adjustable intraocular flow regulation
WO2019094004A1 (fr) 2017-11-08 2019-05-16 Aquesys, Inc. Régulation d'écoulement intraoculaire à réglage manuel
AU2017439185A1 (en) 2017-11-08 2020-05-14 Aquesys, Inc. Manually adjustable intraocular flow regulation
EP3730104A1 (fr) 2017-12-20 2020-10-28 Microt Inc. Dispositif d'implant pour maladie oculaire, destiné à réguler la pression intraoculaire
WO2019165053A1 (fr) 2018-02-21 2019-08-29 Camras Vision, Inc. Systèmes et procédés pour réduire la pression intraoculaire
US20210030590A1 (en) 2018-02-22 2021-02-04 Ivantis, Inc. Ocular implant and delivery system
US20210015665A1 (en) 2018-03-07 2021-01-21 Carl Zeiss Meditec Ag Shunt implant
AU2018412569A1 (en) 2018-03-09 2020-10-01 Aquesys, Inc. Intraocular shunt inserter
CO2020011460A2 (es) 2018-03-09 2020-11-10 Aquesys Inc Insertador de derivación intraocular.
US20190274882A1 (en) 2018-03-09 2019-09-12 Aquesys, Inc. Intraocular shunt inserter
WO2019172940A1 (fr) 2018-03-09 2019-09-12 Aquesys, Inc. Dispositif d'insertion d'un shunt intraoculaire
CA3093160A1 (fr) 2018-03-09 2019-09-12 Aquesys, Inc. Dispositif d'insertion d'un shunt intraoculaire
US20190274881A1 (en) 2018-03-09 2019-09-12 Aquesys, Inc. Intraocular shunt inserter
EP3773377A1 (fr) 2018-04-03 2021-02-17 Jack Chu Nouveau dispositif oculaire et procédé de traitement du glaucome
US20210161713A1 (en) 2018-04-03 2021-06-03 UCL Business Ltd. Drainage device and methods
US20190307608A1 (en) 2018-04-06 2019-10-10 Purdue Research Foundation Drainage devices having self-clearing and flow resistance control capabilities, and microactuators for use therewith
US20210106462A1 (en) 2018-05-04 2021-04-15 University Of Florida Research Foundation, Inc. Glaucoma drainage implant venting assembly
US20190344057A1 (en) 2018-05-14 2019-11-14 Massachusetts Institute Of Technology Nanofluidic peristaltic pumps and methods of use
DE102018112065A1 (de) 2018-05-18 2019-11-21 Memetis Gmbh Ventil mit Aktuator aus einer Formgedächtnislegierung in flacher Geometrie
US20190353269A1 (en) 2018-05-18 2019-11-21 Memetis Gmbh Valve having an actuator made of a shape memory alloy, with a flat geometry
CN108743016A (zh) 2018-06-29 2018-11-06 北京诺康达医药科技股份有限公司 一种结构可变的青光眼微型分流装置
WO2020022391A1 (fr) 2018-07-25 2020-01-30 株式会社デンソー TRANCHE DE SiC ET PROCÉDÉ DE FABRICATION DE TRANCHE DE SiC
US20210212858A1 (en) 2018-08-31 2021-07-15 New World Medical, Inc. Ocular implants, ocular core assemblies and methods for making ocular implants
EP3846747A1 (fr) 2018-09-04 2021-07-14 University Hospitals Health System Inc. Dispositif oculaire destiné au traitement du glaucome et procédé de chirurgie minimalement invasive associé du glaucome
EP3846748A1 (fr) 2018-09-06 2021-07-14 Ecole Polytechnique Federale De Lausanne (EPFL) EPFL-TTO Appareil pour traiter un excès de liquide intraoculaire comportant une membrane élastique
EP3870120A1 (fr) 2018-10-25 2021-09-01 AMO Groningen B.V. Dérivations de glaucome à commande bleb
EP3666236A1 (fr) 2018-12-12 2020-06-17 AJL Ophthalmic, S.A. Dispositif d'implant pour glaucome
US20220087865A1 (en) 2019-01-18 2022-03-24 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
WO2020150663A1 (fr) 2019-01-18 2020-07-23 Shifamed Holdings, Llc Dérivations de glaucome à écoulement réglable et leurs méthodes de fabrication et d'utilisation
US11039954B2 (en) 2019-03-21 2021-06-22 Microoptx Inc. Implantable ocular drug delivery devices and methods
DE102019204846A1 (de) 2019-04-04 2020-10-08 Memetis Gmbh Aktuator-Vorrichtung
WO2020215068A1 (fr) 2019-04-19 2020-10-22 Elt Sight, Inc. Traitement combiné utilisant la tle
US20200345549A1 (en) 2019-04-30 2020-11-05 Taiwan Fiber Optics, Inc. Shunt for draining ocular fluid
WO2020231993A1 (fr) 2019-05-13 2020-11-19 Verily Life Sciences Llc Soupape de dérivation de biofluide avec gaine et dispositif de surveillance
WO2020247365A1 (fr) 2019-06-03 2020-12-10 Innfocus, Inc. Polymères gonflables sans dégradation en tant que matériaux pour dispositifs biomédicaux
US20210196516A1 (en) 2019-06-14 2021-07-01 Iantrek, Inc. Implantable biologic stent and system for biologic material shaping, preparation, and intraocular stenting for increased aqueous outflow and lowering of intraocular pressure
WO2020261184A1 (fr) 2019-06-26 2020-12-30 Imvalv S.A. Système d'implant de drainage pour glaucome avec capteur de pression et valve, et unité de lecture externe
WO2021004312A1 (fr) 2019-07-08 2021-01-14 中原工学院 Procédé de mesure intelligente de trajectoire de véhicule basé sur un système de vision stéréoscopique binoculaire
WO2021007294A1 (fr) 2019-07-08 2021-01-14 Shifamed Holdings, Llc Dispositifs de formation de bulle minimalement invasifs et méthodes d'utilisation de tels dispositifs
WO2021007296A1 (fr) 2019-07-08 2021-01-14 Shifamed Holdings, Llc Systèmes de traitement avec dérivations d'écoulement réglables et capteurs, et dispositifs et procédés associés
WO2021028703A1 (fr) 2019-08-14 2021-02-18 Cambridge Mechatronics Limited Dispositifs et procédés de commande
WO2021072317A1 (fr) 2019-10-10 2021-04-15 Shifamed Holdings, Llc Shunts de glaucome à écoulement ajustable et systèmes et procédés associés
WO2021072315A1 (fr) 2019-10-10 2021-04-15 Shifamed Holdings, Llc Shunts de glaucome à débit réglable et systèmes et méthodes associés
WO2021068078A1 (fr) 2019-10-11 2021-04-15 Sekhavat Houfar Dérivations de glaucome et méthodes d'utilisation associées
WO2021113730A1 (fr) 2019-12-06 2021-06-10 Radiance Therapeutics, Inc. Méthodes, systèmes et compositions pour obtenir une pression intraoculaire saine après une opération de filtration du glaucome et une extraction de la cataracte combinées
WO2021142255A1 (fr) 2020-01-08 2021-07-15 Radiance Therapeutics, Inc. Procédés, systèmes et compositions permettant de maintenir le fonctionnement de bulles de drainage associées à des corps étrangers
WO2021151007A1 (fr) 2020-01-23 2021-07-29 Shifamed Holdings, Llc Shunts de glaucome à débit réglable et systèmes et méthodes associés
US11291585B2 (en) 2020-02-14 2022-04-05 Shifamed Holdings, Llc Shunting systems with rotation-based flow control assemblies, and associated systems and methods
US20210251806A1 (en) 2020-02-14 2021-08-19 Shifamed Holdings, Llc Shunting systems with rotation-based flow control assemblies, and associated systems and methods
WO2021163566A1 (fr) 2020-02-14 2021-08-19 Shifamed Holdings, Llc Systèmes de dérivation avec ensembles de régulation de débit par rotation, et systèmes et méthodes associés
WO2021168130A1 (fr) 2020-02-18 2021-08-26 Shifamed Holdings, Llc Shunts de glaucome à écoulement réglable ayant des éléments de commande d'écoulement disposés de manière non linéaire, et systèmes et procédés associés
WO2021174298A1 (fr) 2020-03-04 2021-09-10 Western Sydney Local Health District Implant oculaire et son procédé de fabrication
WO2021176332A1 (fr) 2020-03-06 2021-09-10 Ecole Polytechnique De Lausanne (Epfl) Appareil permettant de traiter un excès de liquide intraoculaire comportant une membrane élastique
WO2021188952A1 (fr) 2020-03-19 2021-09-23 Shifamed Holdings, Llc Dérivations intraoculaires à éléments d'actionnement extra-plats et systèmes et procédés associés
WO2021212007A2 (fr) 2020-04-16 2021-10-21 Shifamed Holdings, Llc Dispositifs réglables de traitement de glaucome, ainsi que systèmes et méthodes associés
US20220202613A1 (en) 2020-04-16 2022-06-30 Shifamed Holdings, Llc Adjustable glaucoma treatment devices and associated systems and methods
WO2021230887A1 (fr) 2020-05-15 2021-11-18 Eyeflow, Inc. Procédé et appareil de pose d'implant dans la voie classique d'écoulement de l'humeur aqueuse d'un œil de mammifère

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
International Search Report and Written Opinion received for International PCT Application No. PCT/US2021/014774, filed on Jan. 22, 2021; Applicant: Shifamed Holdings, LLC; dated May 12, 2021, 10 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US18/43158, filed on Jul. 20, 2018, Applicant: Shifamed Holdings, LLC, dated Nov. 23, 2018, 12 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US20/14186, filed on Jan. 17, 2020, Applicant: Shifamed Holdings, LLC, dated Jun. 4, 2020, 13 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US20/41152, filed on Jul. 8, 2020, Applicant: Shifamed Holdings, LLC, dated Oct. 28, 2020, 13 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US20/41159, filed on Jul. 8, 2020, Applicant: Shifamed Holdings, LLC, dated Oct. 28, 2020, 13 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US20/55141, filed on Oct. 9, 2020, Applicant: Shifamed Holdings, LLC, dated Jan. 29, 2021, 11 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US20/55144, filed on Oct. 9, 2020, Applicant: Shifamed Holdings, LLC, dated Feb. 1, 2021, 16 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US21/17962, filed on Feb. 12, 2021, Applicant: Shifamed Holdings, LLC, dated Jun. 7, 2021, 12 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US21/18601, filed on Feb. 18, 2021, Applicant: Shifamed Holdings, LLC, dated Jul. 19, 2021, 12 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US21/23238, filed on Mar. 19, 2021, Applicant: Shifamed Holdings, LLC, dated Jul. 8, 2021, 10 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US21/27742, filed on Apr. 16, 2021, Applicant: Shifamed Holdings, LLC, dated Oct. 7, 2021, 13 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US21/49140, filed on Sep. 3, 2021, Applicant: Shifamed Holdings, LLC, dated Dec. 7, 2021, 22 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US21/55258, filed on Oct. 15, 2021, Applicant: Shifamed Holdings, LLC, dated Feb. 28, 2022, 18 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US22/13336, filed on Jan. 21, 2022, Applicant: Shifamed Holdings, LLC, dated Apr. 11, 2022, 9 pages.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11737920B2 (en) 2020-02-18 2023-08-29 Shifamed Holdings, Llc Adjustable flow glaucoma shunts having non-linearly arranged flow control elements, and associated systems and methods
US11766355B2 (en) 2020-03-19 2023-09-26 Shifamed Holdings, Llc Intraocular shunts with low-profile actuation elements and associated systems and methods
US11596550B2 (en) 2020-04-16 2023-03-07 Shifamed Holdings, Llc Adjustable glaucoma treatment devices and associated systems and methods
US11865283B2 (en) 2021-01-22 2024-01-09 Shifamed Holdings, Llc Adjustable shunting systems with plate assemblies, and associated systems and methods

Also Published As

Publication number Publication date
WO2021151007A1 (fr) 2021-07-29
JP2023511420A (ja) 2023-03-17
CA3165037A1 (fr) 2021-07-29
US20230233378A1 (en) 2023-07-27
US20220142818A1 (en) 2022-05-12
CN115379818A (zh) 2022-11-22
EP4093350A4 (fr) 2024-02-28
AU2021209698A1 (en) 2022-08-04
EP4093350A1 (fr) 2022-11-30

Similar Documents

Publication Publication Date Title
US11529258B2 (en) Adjustable flow glaucoma shunts and associated systems and methods
US11517477B2 (en) Adjustable flow glaucoma shunts and associated systems and methods
CN109328049B (zh) 用于治疗过多眼内流体的设备
US11737920B2 (en) Adjustable flow glaucoma shunts having non-linearly arranged flow control elements, and associated systems and methods
US20230381021A1 (en) Intraocular shunts with low-profile actuation elements and associated systems and methods
US20220087865A1 (en) Adjustable flow glaucoma shunts and methods for making and using same
US20220387217A1 (en) Adjustable flow glaucoma shunts and associated systems and methods
US20220387216A1 (en) Shunting systems with rotation-based flow control assemblies, and associated systems and methods
US8771220B2 (en) Glaucoma active pressure regulation shunt
US11596550B2 (en) Adjustable glaucoma treatment devices and associated systems and methods
US20230263663A1 (en) Shunting systems with rotation-based flow control assemblies, and associated systems and methods

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: SHIFAMED HOLDINGS, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAUL, TOM;ARGENTO, CLAUDIO;LILLY, RICHARD;AND OTHERS;SIGNING DATES FROM 20200211 TO 20200328;REEL/FRAME:058700/0392

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE