US20200261271A1 - Intraocular drug delivery - Google Patents

Intraocular drug delivery Download PDF

Info

Publication number
US20200261271A1
US20200261271A1 US16/868,498 US202016868498A US2020261271A1 US 20200261271 A1 US20200261271 A1 US 20200261271A1 US 202016868498 A US202016868498 A US 202016868498A US 2020261271 A1 US2020261271 A1 US 2020261271A1
Authority
US
United States
Prior art keywords
implant
eye
injector
drug
anterior chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/868,498
Inventor
Christopher Horvath
Laszlo O. Romoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquesys Inc
Original Assignee
Aquesys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquesys Inc filed Critical Aquesys Inc
Priority to US16/868,498 priority Critical patent/US20200261271A1/en
Publication of US20200261271A1 publication Critical patent/US20200261271A1/en
Assigned to AQUESYS, INC. reassignment AQUESYS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HORVATH, CHRISTOPHER, ROMODA, LASZLO O.
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00781Apparatus for modifying intraocular pressure, e.g. for glaucoma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • A61F9/0017Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • A61K9/0051Ocular inserts, ocular implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • A61F2250/0068Means for introducing or releasing pharmaceutical products into the body the pharmaceutical product being in a reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea

Definitions

  • the present disclosure generally relates to delivering an intraocular implant into an eye, and more specifically, to methods and devices for ab externo implantation of a drug-eluting intraocular implant or a shunt without the creation of a scleral slit or conjunctival dissection.
  • Glaucoma is a disease of the eye that affects millions of people. Glaucoma is associated with an increase in intraocular pressure resulting either from a failure of a drainage system of an eye to adequately remove aqueous humor from an anterior chamber of the eye or overproduction of aqueous humor by a ciliary body in the eye. Build-up of aqueous humor and resulting intraocular pressure may result in irreversible damage to the optic nerve and the retina, which may lead to irreversible retinal damage and blindness.
  • Glaucoma may be treated in a number of different ways.
  • One manner of treatment involves delivery of drugs such as beta-blockers or prostaglandins to the eye to either reduce production of aqueous humor or increase flow of aqueous humor from an anterior chamber of the eye.
  • Another treatment typically used to treat glaucoma involves a glaucoma filtration surgery. The procedure involves placing a shunt in the eye to relieve intraocular pressure by creating a pathway for draining aqueous humor from the anterior chamber of the eye.
  • the shunt is typically positioned in the eye such that it creates a drainage pathway between the anterior chamber of the eye and a region of lower pressure. Such fluid flow pathways allow for aqueous humor to exit the anterior chamber.
  • IOP intraocular pressure
  • an intraocular shunt is positioned in the eye to drain fluid from the anterior chamber to locations such as the sub-Tenon's space, the subconjunctival space, the episcleral vein, the suprachoroidal space, Schlemm's canal, and the intrascleral space.
  • Implants may be implanted using an ab externo approach (entering through the conjunctiva and inwards through the sclera) or an ab interno approach (entering through the cornea, across the anterior chamber, through the trabecular meshwork and sclera).
  • ab interno approach entering through the cornea, across the anterior chamber, through the trabecular meshwork and sclera
  • various manual and automated deployment devices for implanting an intraocular implant have been described. Most deployment devices are coupled to a hollow needle which holds the intraocular implant. Whether an ab externo approach or an ab interno approach is used, the needle is inserted into the eye to deploy the intraocular implant into the eye. See, for example, U.S. Pat. No. 6,544,249, U.S. Patent Application Publication No. 2008/0108933, and U.S. Pat. No. 6,007,511, the entireties of which are incorporated herein by reference.
  • a distal end of a deployment device or injector is used to make a scleral flap or slit to access the eye.
  • the conjunctiva can be dissected or pulled away from the sclera to expose the sclera. In some instances, this can allow the surgeon to cut and separate a small flap of the sclera away from the underlying sclera.
  • a needle can then be inserted into the eye below the scleral flap to access the anterior angle of the eye. The needle is then withdrawn, leaving a scleral slit behind.
  • a silicone tube with sufficient stiffness is manually pushed through the scleral slit from the outside so that the distal tube ends distal to the trabecular meshwork in the anterior chamber of the eye.
  • the scleral flap can be repositioned over the proximal end of the tube and sutures can be used to re-secure the flap and conjunctiva.
  • the proximal end of the tube can be positioned to exit the sclera, lay on top of it, and be connected to a plate that is fixated by sutures to the outside scleral surface (and within a pocket underlying the conjunctiva) far away (>10 mm) from the limbus.
  • Some of the problems associated with this surgery include the necessity to cauterize to avoid significant bleeding and the large size of the remaining silicone tube and plate. Due to the obtrusive nature of the silicone tube and plate, these can eventually cause the conjunctiva to erode, requiring a scleral graft to be placed over the silicone tube and plate.
  • the present disclosure provides various new methods and device concepts for an ab externo implantation of a drug-eluting intraocular implant or a drug-eluting intraocular shunt without the creation of a scleral slit or conjunctival dissection. It is contemplated that although particular embodiments may be disclosed or shown in the context of an intraocular shunt, the various approaches described herein can be modified to provide an implant that does not permit flow through the implant (e.g., a plug), or an implant that provides a flow path (e.g., a shunt).
  • the present disclosure provides ab externo methods that can be used to safely position and anchor a drug-eluting implant into the eye.
  • ab externo some embodiments disclosed herein can also be performed via ab interno needle placement.
  • the positioning of the implant or shunt can be revised from an ab externo method (e.g., reversing the position of the ends of the implant if the implant is tapered or comprises anti-migration engagement features).
  • the methods disclosed herein can be implemented either ab interno or ab externo and result in placement or anchoring of an implant within the sclera.
  • the methods can therefore be performed to provide treatment with a drug or pharmaceutical, such as by implanting an intraocular implant that has been coated, packed, layered, and/or impregnated with a pharmaceutical and/or biological agent, by treating the eye topically with a pharmaceutical and/or biological agent, and/or by injecting a pharmaceutical and/or biological agent into the anterior chamber and/or a target outflow region, including any target outflow regions discussed or referenced herein, prior to or after releasing a implant from the device.
  • a drug or pharmaceutical such as by implanting an intraocular implant that has been coated, packed, layered, and/or impregnated with a pharmaceutical and/or biological agent, by treating the eye topically with a pharmaceutical and/or biological agent, and/or by injecting a pharmaceutical and/or biological agent into the anterior chamber and/or a target outflow region, including any target outflow regions discussed or referenced herein, prior to or after releasing a implant from the device.
  • Suitable agents that can be used in some embodiments disclosed herein may include, for example, any of those disclosed in the following U.S. Pat. Nos. 8,785,394; 8,062,657; 7,799,336; 7,790,183; 7,033,605; 6,719,991; 6,558,686; 6,162,487; 5,902,283; 5,853,745; and 5,624,704; and U.S. Patent Publication No. 2008/0108933; the content of each of these references is incorporated by reference herein its entirety.
  • suitable agents include antimitotic pharmaceuticals such as Mitomycin-C or 5-Fluorouracil, anti-VEGF (such as Lucintes, Macugen, Avastin, VEGF, or steroids), anticoagulants, antimetabolites, antimicrobial agents, angiogenesis inhibitors, steroids, anti-inflammatories, antibiotics, antiseptics, disinfectants, brimonidine, timolol, prostaglandin analogs (such as travoprost, latanoprost, and tafluprost), prostamides (such as bimatoprost), cyclosporin, pilocarpine, corticosteroids and other steroid derivatives (such as hydrocortisone, dexamethasone, beclomethasone dipropionate, triamcinolone, triamcinolone acetate, cortisol benzoate), or other agents or combinations thereof, for treating conditions of the eye, such as glaucoma, dry eye, allergy, or conjunc
  • One of the aims is to create a simple and safe procedure that can be performed in an office setting.
  • the methods provided by some embodiments can use an implant injector or deployment device similar in operation to the XEN Injector produced by Applicant. Further, the methods can be implemented using the injector by itself or by using the injector in combination with one or more injector placement devices, such as those disclosed in U.S. Patent Application Nos. 61/170,338, filed on Jun. 3, 2015, 62/279,585, filed on Jan. 15, 2016, U.S. Patent Application Publication No. 2016/0354244, filed on Jun. 2, 2016, and U.S. Patent Application Publication No. 2016/0354245, filed on Jun. 2, 2016, titled Ab Externo Intraocular Shunt Placement, the entirety of each of which is incorporated herein by reference.
  • ab externo procedures are provided herein that enable a portion of an intraocular implant or an outflow end of a shunt to be deployed under/into any of a variety of outflow regions without making a scleral flap or otherwise requiring a conjunctival dissection.
  • the outflow end of the shunt can be positioned in target outflow regions including the subconjunctival space or over-Tenon's space (between Tenon's and conjunctiva), the suprascleral or sub-Tenon's space (between Tenon's and sclera), the intra-Tenon's space (between layers of Tenon's capsule, or in the intra-Tenon's adhesion space), the choroidal and suprachoroidal space, the intrascleral space (between layers of sclera), Schlemm's canal, the vitreous space, the episcleral vein, or the supraciliary space.
  • target outflow regions including the subconjunctival space or over-Tenon's space (between Tenon's and conjunctiva), the suprascleral or sub-Tenon's space (between Tenon's and sclera), the intra-Tenon's space (between layers of Tenon's capsule, or in the intra-Tenon'
  • the Tenon adhesions remain intact, just as they would for an ab interno approach.
  • a needle of a shunt injector can pierce conjunctiva, sclera, and in some embodiments, Tenon's capsule, as it is advanced into the eye to position the shunt within the eye without creating a scleral flap or conjunctival dissection.
  • the shunt can provide fluid communication between the anterior chamber and a desired target outflow region.
  • some embodiments therefore provide methods and devices that place an intraocular shunt ab externo into the eye without requiring a low gauge silicone tube or diffusion plate attached to the tube, as used in the prior art.
  • a higher gauge needle and intraocular shunt can be placed without causing significant trauma to the eye.
  • the shunt can be inserted through the target outflow region and ejected from the needle such that an inflow end of the shunt resides in the anterior chamber of the eye and an outflow end of the needle resides in the target outflow region.
  • some embodiments can be performed using an intraocular implant placement device to facilitate positioning and maintaining an orientation of the implant relative to one or more aspects of the eye, as disclosed in copending U.S. Patent Application Nos. 61/170,338, filed on Jun. 3, 2015, 62/279,585, filed on Jan. 15, 2016, U.S. Patent Application Publication No. 2016/0354244, filed on Jun. 2, 2016, and U.S. Patent Application Publication No. 2016/0354245, filed on Jun. 2, 2016, titled Ab Externo Intraocular Shunt Placement, the entirety of each of which is incorporated herein by reference.
  • the intraocular implant placement device can optionally comprise one or more structures that can facilitate positioning of the intraocular implant placement device onto or around the eye.
  • the intraocular implant placement device can comprise one or more features that can secure the implant placement device relative to the eye once a desired position has been achieved.
  • such features can be selectively activated once the implant placement device is in a desired position.
  • Such features can include vacuum suction and/or surface friction elements (such as ridges, micro-hooks, or other such elements that can increase the surface contact and/or friction between the implant placement device and the eye).
  • suction and mechanical engagement can be used alone or together to enable the implant placement device to be coupled to or removably affixed to the eye.
  • FIG. 1 is a cross-sectional diagram of the general anatomy of an eye and an intraocular implant therein.
  • FIGS. 2-5 illustrate intraocular implants, according to some embodiments.
  • FIG. 6 illustrates a cross-sectional view of an intraocular implant, according to some embodiments.
  • FIGS. 7-10 illustrate a procedure for placing an intraocular implant into an eye using an implant injector, according to some embodiments.
  • FIGS. 11-13 illustrate an intraocular implant positioned in the intrascleral space of an eye, according to some embodiments.
  • FIG. 14 illustrates a placement device for use with an intraocular implant injector, according to some embodiments.
  • FIGS. 15 and 16 illustrate a procedure for placing an intraocular implant into an eye using an implant injector and the placement device shown in FIG. 14 , according to some embodiments.
  • the present application discloses ab externo approaches and devices for positioning an intraocular implant with one end (e.g., a fluid entry end of a shunt) placed into a first region, such as the anterior chamber, and the other end placed preferably into a second region, such as the intrascleral space, without creating a conjunctival cutdown (dissection).
  • one end e.g., a fluid entry end of a shunt
  • a first region such as the anterior chamber
  • the other end placed preferably into a second region, such as the intrascleral space, without creating a conjunctival cutdown (dissection).
  • second regions include the sub-Tenon's space (between Tenon's and sclera), the intra-Tenon's space (between layers of Tenon's capsule, or in the intra-Tenon's adhesion space), the over-Tenon's space (between Tenon's and conjunctiva), the choroidal and suprachoroidal space, the subconjunctival space, Schlemm's canal, the vitreous space, the episcleral vein, the supraciliary space, or the suprascleral space.
  • Other possible first regions include the choroidal space or the vitreous space.
  • the implant injector can be configured to allow an intraocular shunt, such as a gel shunt (e.g., supported by a needle or shaft of the injector) to be positioned or oriented at a desired angle (“entrance angle”) relative to a surface of the eye prior to implantation in order to allow the shunt outflow end to be positioned in a desired target outflow region, such as the intrascleral, suprachoroidal, or vitreous space.
  • the injector can be manually positionable relative to the surface of the eye to allow the surgeon to adjust the entrance angle to any of a variety of angles before injecting the shunt into the eye.
  • an intraocular implant can be injected into any of the nasal quadrants of the eye using an ab externo procedure.
  • the intraocular implant can be injected in the nasal superior, nasal inferior, temporal superior, or temporal inferior quadrants.
  • an intraocular implant can be more easily placed in every quadrant of the eye because the injector needle no longer has to traverse the entire anterior chamber (compared to ab interno approaches).
  • ab externo procedures are disclosed herein that enable a surgeon to quickly and accurately place a distal end of an intraocular implant into any quadrant of the eye and position a proximal end of the intraocular implant into one of a variety of regions without creating a scleral flap or conjunctival dissection.
  • FIG. 1 illustrates a detail view of an eye with an intraocular implant 100 therein.
  • An anterior aspect of the anterior chamber 1 of the eye is the cornea 2
  • a posterior aspect of the anterior chamber 1 of the eye is the iris 4 .
  • Beneath the iris 4 is the lens 5 .
  • the anterior chamber 1 is filled with aqueous humor 3 .
  • the aqueous humor 3 drains into a space(s) deep to the conjunctiva 7 through the trabecular meshwork of the sclera 8 .
  • the aqueous humor is drained from the space(s) deep to the conjunctiva 7 through a venous drainage system (not shown).
  • FIG. 1 also illustrates a drug-eluting intraocular implant 100 having a distal or first portion 102 in the anterior chamber 1 and a proximal or second portion 104 in the intrascleral space 66 .
  • the conjunctiva 7 attaches to the sclera 8 at the limbus 9 .
  • Deep to the conjunctiva 7 is Tenon's capsule 10 .
  • Tenon's capsule 10 comprises two layers (i.e., superficial and deep layers) and an intra-Tenon's adhesion space 11 that extends between the superficial and deep layers of Tenon's capsule 10 .
  • the intra-Tenon's adhesion space 11 surrounds the eye circumferentially.
  • the intra-Tenon's adhesion space 11 can extend around the eye posterior to the limbus 9 .
  • FIG. 1 In the view of FIG. 1 , deep to the intra-Tenon's adhesion space 11 is a rectus muscle 20 .
  • the eye has four rectus muscles (superior, inferior, lateral, and medial) that attach to sclera via a rectus tendon.
  • FIG. 1 illustrates that the rectus muscle 20 attaches to the sclera 8 via a rectus tendon 22 .
  • the rectus tendon 22 is shown inserting onto the sclera 8 .
  • Tenon's capsule 10 and the intra-Tenon's adhesion space 11 is illustrated extending anteriorly relative to and superficial to the rectus muscle 20 . As also shown, posterior to the rectus tendon, Tenon's capsule 10 and the intra-Tenon's adhesion space 11 also extend deep to and around the rectus muscle 20 . In this region, there is a reflection of Tenon's capsule 10 and the intra-Tenon's adhesion space 11 from the rectus muscle 20 onto the globe or sclera 8 . Thus, Tenon's capsule 10 and the intra-Tenon's adhesion space 11 envelop or encapsulate the rectus muscle 20 .
  • FIG. 1 illustrates that in some locations, Tenon's capsule 10 , and thus, the intra-Tenon's adhesion space 11 , surrounds a rectus muscle 20 .
  • the intra-Tenon's adhesion space 11 can be accessed from the anterior chamber 1 .
  • Tenon's capsule 10 and the intra-Tenon's adhesion space 11 surround the eye circumferentially.
  • FIG. 1 also illustrates the drainage channels of the eye, including Schlemm's canal 30 and the trabecular meshwork 32 , which extend through the sclera 8 . Further, deep to the sclera 8 , the ciliary body 34 is also shown. The ciliary body 34 transitions posteriorly to the choroid 40 . Deep to the limbus 9 is a scleral spur 36 . The scleral spur 36 extends circumferentially within the anterior chamber 1 of the eye. Further, the scleral spur 36 is disposed anteriorly to the anterior chamber angle 38 .
  • anterior chamber angle tissue can refer to the eye tissue in the region extending along and/or including one or more of the cornea 2 , the sclera 8 , Schlemm's canal 30 , the trabecular meshwork 32 , the ciliary body 34 , the iris 4 , or the scleral spur 36 .
  • the space between the conjunctiva 7 and Tenon's capsule 10 or the intra-Tenon's adhesion space 11 is referred to herein as subconjunctival space 60 (here shown as a potential space).
  • the space between the sclera 8 and Tenon's capsule 10 or the intra-Tenon's adhesion space 11 is referred to herein as suprascleral space 61 (here shown as a potential space).
  • the space between a deep layer or surface 62 and a superficial layer or surface 64 of Tenon's capsule 10 is referred to herein as the intra-Tenon's adhesion space 11 .
  • intrascleral space 66 (here shown as a potential space).
  • supraciliary space 68 (here shown as a potential space).
  • suprachoroidal space 70 (here shown as a potential space).
  • the supraciliary space 68 can be continuous with the suprachoroidal space 70 .
  • FIGS. 2-6 illustrate various embodiments of a drug-eluting intraocular implant 100 .
  • a drug-eluting intraocular implant 100 can comprise one or more pharmaceutical and/or biological agents, e.g., drugs, biologics, pharmaceuticals, and/or other chemicals.
  • a drug can be selected to regulate the body's response to the implantation of the implant and a subsequent healing process.
  • the drug can be carried by the intraocular implant 100 for eluting or delivery to target location(s).
  • the intraocular implant 100 can comprise one or multiple drug-eluting portions, which can each be formed to provide different dissolving times and/or have different drugs embedded therein. Accordingly, in some embodiments, two or more drugs can be delivered simultaneously on independent release timings.
  • a drug can be integrated into only one of the ends of the intraocular implant 100 to provide a single drug-eluting end which can be placed into the anterior chamber or location of lower pressure.
  • a first portion or a first end can be drug-eluting.
  • the drug-eluting portion can also be formed along an intermediate portion of the intraocular implant. Accordingly, embodiments can provide a targeted drug release inside the anterior chamber, inside the sclera, and/or in the subconjunctival space or other target location, depending on the location and configuration of the drug-eluting portion(s).
  • the intraocular implant 100 can be impregnated, packed, or coated with a drug.
  • the drug may coat and/or impregnate an entire exterior of an intraocular implant, an entire interior of the intraocular implant, or both.
  • a drug may coat and/or impregnate a portion of an exterior of the intraocular implant, a portion of an interior of the intraocular implant, or both.
  • the intraocular implant itself can be partially or completely dissolvable.
  • the formed intraocular implant will be impregnated with the biologics, pharmaceuticals, drugs, or other chemicals.
  • a time-release or controlled-release drug can be provided by means of an impregnated portion or coating to provide a desired dissolution rate.
  • Such drug-eluting portion(s) of the intraocular implant can provide a drug delivery, even without aqueous flow.
  • FIGS. 2-6 illustrate embodiments of an intraocular implant 100 having an elongate body with a first end 106 and a second end 108 opposite the first end 106 .
  • the length of the intraocular implant 100 between the first and second ends 106 , 108 can be any length sufficient to provide a quantity of drug or a passageway between a target location of a first portion 102 of the implant and a target location of a second portion 104 of the implant.
  • a length of the intraocular implant 100 may be selected so that the first portion 102 is within the anterior chamber 1 , and the second portion 104 is within the intrascleral space 66 .
  • the length of the intraocular implant 100 is selected so that the first portion 102 is not visible to the patient.
  • the length can be selected so that the first portion 102 does not extend into the anterior chamber 1 .
  • the first portion 102 does not extend more than 4 mm into the anterior chamber 1 .
  • the length of the intraocular implant 100 is between approximately 2 to 8 mm with a total length of approximately 6 mm, in most cases being preferred.
  • the diameter of the outer surface of the intraocular implant 100 can be any diameter that permits the implant to be retained and deployed from an implant injector needle. Accordingly, the outer diameter of the intraocular implant 100 corresponds to an inner diameter, or gauge, of the needle. In some embodiments, a 30 gauge needle having a thin wall is used. In a preferred embodiment, a 27 gauge needle is used with an intraocular implant 100 that can have an outer diameter of approximately 250-260 micrometers. In some embodiments, a 25 gauge needle is used with an intraocular implant 100 that can have an outer diameter of approximately 300-350 micrometers. In some embodiments, a 23 gauge needle is used. In some embodiments, a 20 gauge needle is used with an intraocular implant 100 that can have an outer diameter of approximately 600-700 micrometers.
  • the intraocular implant 100 can comprise one or more rigid and/or flexible materials.
  • the implant can comprise a soft biocompatible material, such as a soft polymer material and/or a gelatin material.
  • the body of the intraocular implant 100 can comprise only a resilient or flexible material, such as a gelatin or another similar material.
  • the intraocular implant 100 can comprise only a rigid material, such as steel or another similar material.
  • the intraocular implant 100 can comprise a combination of materials.
  • the intraocular implant 100 can comprise a rigid material having a portion coated with a flexible material.
  • the flexible material is less erosive to eye tissue surrounding or engaged against the implant.
  • the flexible material can also reduce and/or avoid degradation and or irritation to the eye.
  • the material of the intraocular implant can be capable of swelling or expanding. When the material swells or expands within the eye, the intraocular implant can be secured or anchored within the eye, thus reducing the likelihood of movement or implant migration within the eye.
  • the implant 100 or at least a portion of the outer surface of the intraocular implant 100 may swell within the intrascleral space 66 , thus reducing migration of the intraocular implant 100 toward the interior chamber 1 .
  • the implant 100 can comprise a swellable polymer or gelatin material that enables the implant to expand within the eye after implantation, thereby tending to engage and anchor the implant within the eye relative to the sclera.
  • the intraocular implant 100 can be a rigid material having a portion of an outer surface coated with a flexible material that can expand within the eye to restrict movement or migration of the implant. In another aspect, the intraocular implant 100 can comprise only the flexible material.
  • the intraocular implant 100 can be partially or completely dissolvable as the drug is released or eluted. In some embodiments, the intraocular implant 100 reduces in size as the drug is released into the eye. In some embodiments, the drug releases from a portion of the intraocular implant 100 , such as the first and/or the second portion 102 , 104 . In some embodiments, a length of the intraocular implant 100 reduces as the drug releases from a portion or an end of the body. In some embodiments, the drug releases along a gradient so that more of the drug is released at a portion or an end of the intraocular implant relative to another portion or end of the intraocular implant.
  • the flexible material selected for the intraocular implant 100 can be a gelatin or other similar material.
  • a gelatin used for making the implant can be a gelatin Type B from bovine skin.
  • a preferred gelatin is PB Leiner gelatin from bovine skin, Type B, 225 Bloom, USP.
  • Another material that may be used in the making of the implant is a gelatin Type A from porcine skin, also available from Sigma Chemical. Such gelatin is available is available from Sigma Chemical Company of St. Louis, Mo. under Code G-9382.
  • Still other suitable gelatins include bovine bone gelatin, porcine bone gelatin and human-derived gelatins.
  • microfistula implant may be made of hydroxypropyl methycellulose (HPMC), collagen, polylactic acid, polylglycolic acid, hyaluronic acid and glycosaminoglycans.
  • the delivery of the implant can be performed by wetting an inside the needle of the intraocular implant injector with a balanced salt solution (e.g., Dulbecco's Phosphate Buffered Saline), a steroid, or other drug prior to implantation.
  • a balanced salt solution e.g., Dulbecco's Phosphate Buffered Saline
  • a steroid e.g., a steroid
  • a steroid e.g., steroid
  • a steroid e.g., steroid
  • an amount of a basic salt solution (BSS), a viscoelastic, an antimetabolite, a drug-eluting solution, water, and/or a combination thereof can be optionally injected through the needle, and in some embodiments, through the implant, into a target space to create a primed space for outflow and to deliver a drug, such as an antifibrotic to that new drainage space.
  • BSS basic salt solution
  • the intraocular implant 100 material can be cross-linked.
  • cross-linking can increase the inter- and intramolecular binding of the gelatin substrate. Any means for cross-linking the gelatin may be used.
  • the formed gelatin implants can be treated with a solution of a cross-linking agent such as, but not limited to, glutaraldehyde.
  • a cross-linking agent such as, but not limited to, glutaraldehyde.
  • Other suitable compounds for cross-linking include 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC).
  • EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
  • Cross-linking by radiation such as gamma or electron beam (e-beam) may be alternatively employed.
  • FIG. 2 illustrates an embodiment of an intraocular implant 100 having a cylindrical shaped body with a solid cross-section between a portion of the length between a first end 106 and a second end 108 .
  • the intraocular implant 100 can comprise a rigid material, a resilient or flexible material, or any combination thereof.
  • the cylindrical shaped body can be a rigid material such as surgical steal coated with a flexible material to reduce and/or avoid erosion of the eye or migration of the implant.
  • the intraocular implant 100 can be entirely comprised a flexible material such as a gelatin.
  • the flexible material can be impregnated with a drug configured to be eluted from the intraocular implant 100 to the eye.
  • FIG. 3 illustrates an embodiment of an intraocular implant 100 having a cylindrical shaped body with a hollow cross-section between a portion of the length between a first end 106 and a second end 108 .
  • an inner surface of the implant defines a cavity that can retain a drug.
  • a passage 110 extends through the outer surface and is in fluid communication with the cavity.
  • the intraocular implant 100 can have a first passage 110 extending through a first end 106 of a first portion 102 , and a second passage extending through a second end 108 of a second portion 104 to define a flow path between the first and second ends 106 , 108 .
  • the first end 106 can receive fluid into the flow path from an anterior chamber of an eye and the second end 108 can direct the fluid to a location of lower pressure with respect to the anterior chamber 1 .
  • Some locations of lower pressure include the intrascleral space, intra-Tenon's space, the subconjunctival space, the episcleral vein, the subarachnoid space, and Schlemm's canal.
  • the passage extends through an outer surface of the body, between the first and second ends 106 , 108 .
  • the passage can be an aperture or slit through the first and/or second portions 102 , 104 .
  • the inner diameter and/or the length of the intraocular implant 100 can be varied in order to regulate the flow rate through implant.
  • the inner surface of the implant defines a variable inner diameter that increases along the length between the first and second ends 106 , 108 .
  • the inner diameter continuously increases along the length of the implant.
  • the inner diameter remains constant along portions of the length of the implant.
  • the cavity of the intraocular implant 100 can packed, plugged, or filled with a drug to be eluted to the eye.
  • the cavity is coated with the drug to form a flow path or lumen.
  • the drug can then be eluted into a fluid that enters the flow path of the cavity.
  • the lumen can become enlarge and the surface area of the drug that interacts with the fluid flow can increase.
  • the intraocular implant 100 is a shunt that comprises a flow path through the first and second ends 106 , 108 and the cavity.
  • a cross-section of the cavity can be entirely filled with a drug so that no flow is permitted through cavity.
  • the cavity can be filled with a drug so that after the drug begins to elude a flow path opens and flow through both the first and second ends 106 , 108 is permitted like a shunt.
  • the cavity can be coated with a drug so that a flow path is formed and the intraocular implant 100 functions as shunt to permit a fluid flow through the first and second ends 106 , 108 .
  • the intraocular implant 100 can comprise a rigid material, a flexible material, or any combination thereof.
  • a rigid material can define a cylindrical shape body having one or more passage.
  • all or a portion of the rigid material such as surgical steal is coated with a resilient or flexible material to reduce and/or avoid erosion of the eye or migration of the implant.
  • the intraocular implant 100 can be entirely comprised a flexible material such as a gelatin.
  • the flexible material can be impregnated with a drug configured to be eluted from the intraocular implant 100 to the eye.
  • an embodiment of an intraocular implant 100 having an outer surface with a more than one cross-sectional width.
  • the intraocular implant 100 can have a first portion 102 proximate to a first end 106 , and a second portion 104 proximate to a second end 108 opposing the first end 106 .
  • the second portion 104 can have a cross-sectional width that is greater than the first portion 102 .
  • the outer surface of the intraocular implant 100 can have a cross-sectional width that tapers from the second portion 104 toward the first portion 102 .
  • the outer surface can taper at a consistent slope between the first and second portions.
  • the outer surface can comprise one or more ridges or steps so that a cross-sectional width of the outer surface is greater at the second portion 104 than the first portion 102 .
  • the tapered outer surface can reduce and/or prevent movement or migration of the intraocular implant 100 within the eye.
  • the intraocular implant 100 is positioned within an eye so that the first portion 102 is positioned within the interior chamber 1 and the second portion 104 is within the intrascleral space 66 , the second portion 104 is held or retained within intrascleral space 66 and movement of the intraocular implant 100 toward the interior chamber 1 is reduced and/or avoided.
  • a portion of the intraocular implant 100 can be coated, layered, and/or impregnated with one or more drugs that can be eluted from the implant.
  • the intraocular implant 100 comprises one or more passage in fluid communication with a cavity. The cavity can be filled or coated with a drug such that the drug is released from a passage.
  • the intraocular implant 100 comprises a flow path or lumen extending through a first portion 102 and/or second portion 104 , the drug being eluted to a fluid permitted through the flow path.
  • the methods can be performed to provide treatment with a drug or pharmaceutical, such as by implanting an intraocular implant that has been coated, layered, packed, and/or impregnated with a pharmaceutical and/or biological agent, by treating the eye topically with a pharmaceutical and/or biological agent, and/or by injecting a pharmaceutical and/or biological agent into the anterior chamber and/or a target outflow region, including any target outflow regions discussed or referenced herein, prior to or after releasing a implant from the device.
  • Suitable agents that can be used in some embodiments disclosed herein may include, for example, any of those disclosed in the following U.S. Pat. Nos.
  • Suitable agents include antimitotic pharmaceuticals such as Mitomycin-C or 5-Fluorouracil, anti-VEGF (such as Lucintes, Macugen, Avastin, VEGF or steroids), anticoagulants, antimetabolites, angiogenesis inhibitors, steroids, anti-inflammatories, antibiotics, antiseptics, disinfectants, brimonidine, timolol, prostaglandin analogs (such as travoprost, latanoprost, and tafluprost), prostamides (such as bimatoprost), cyclosporin, pilocarpine, corticosteroids and other steroid derivatives (such as hydrocortisone, dexamethasone, beclomethasone dipropionate, triamcinolone, triamcinolone acetate, cortisol benzoate), or other agents or combinations thereof, for treating conditions of the eye, such as glaucoma, dry eye, allergy, or conjunctivitis, to name
  • an embodiment of an intraocular implant 100 comprising one or more protrusion 112 extending from an outer surface to reduce and/or avoid movement or migration of the intraocular implant 100 within the eye.
  • the protrusion 112 can be a convex or concave portion of the outer surface of the intraocular implant 100 .
  • the protrusion 112 is a portion of the outer surface of the implant that extends outward from a longitudinal axis of the implant.
  • the protrusion 112 can comprise a barb, a ridge, a lip, or other similar features configured to engage a portion of the eye and reduce and/or avoid movement of the intraocular implant 100 within the eye.
  • the intraocular implant 100 comprises a protrusion 112 extending from the outer surface of a second portion 104 to reduce and/or avoid movement toward the anterior chamber of the eye.
  • the intraocular implant 100 when the intraocular implant 100 is positioned within an eye so that the first portion 102 is positioned within the interior chamber 1 and the second portion 104 is within the intrascleral space 66 , movement of the intraocular implant 100 toward the interior chamber 1 is reduced and/or avoided by engagement of the protrusion 112 against the sclera or other eye tissue.
  • the intraocular implant 100 comprises protrusions 112 extending from the outer surface at the first and second portions 102 , 104 .
  • FIG. 6 illustrates an embodiment of an intraocular implant 100 comprising a cylindrically shaped housing having a first end 106 , a second end 108 opposite the first end 106 , and an inner surface defining a cavity 114 .
  • a first end 106 comprises an opening defining a passage 110 extending from the outer surface to the cavity 114 .
  • the cavity 114 comprises a drug 116 configured to be released through the passage 110 .
  • the passage comprises a membrane 118 , a mesh material, or other similar material that permits a fluid or a drug to move through the passage at a specified rate.
  • the passage 110 is a portion of the intraocular implant 100 comprising a porous material.
  • the intraocular implant 100 can comprise an elongate body 120 having a coating 122 on an outer surface.
  • the coating 122 can be a flexible material to reduce and/or avoid movement and/or erosion to the surrounding eye tissue.
  • the coating 122 is impregnated with a drug to regulate the body's response to the implantation of the implant and the subsequent healing process.
  • controlled release or “time-release” may refer to the release of an agent such as a drug from a composition or dosage form in which the agent is released according to a desired profile over an extended period of time.
  • agent such as a drug from a composition or dosage form in which the agent is released according to a desired profile over an extended period of time.
  • release can effect delivery of an active over an extended period of time, defined herein as being between about 60 minutes and about 2, 4, 6, 8 or even 12 hours.
  • Controlled release profiles may include, for example, sustained release, prolonged release, pulsatile release, and delayed release profiles.
  • Controlled release may also be defined functionally as the release of over 80 to 90 percent (%) of the active ingredient after about 60 minutes and about 2, 4, 6 or even 8 hours.
  • Controlled release may also be defined as making the active ingredient available to the patient or subject regardless of uptake, as some actives may never be absorbed by the animal.
  • controlled release compositions may permit delivery of an agent to a subject over an extended period of time according to a predetermined profile.
  • Such release rates can provide therapeutically effective levels of agent for an extended period of time and thereby provide a longer period of pharmacologic or diagnostic response as compared to conventional rapid release dosage forms.
  • Such longer periods of response may provide many benefits that are not achieved with the corresponding short acting, immediate release preparations.
  • a variety of injectors or systems known in the art may be used to perform the methods disclosed herein.
  • deployment into the eye of an intraocular implant 100 can be achieved using a hollow needle or shaft configured to hold the implant, as described herein.
  • the needle can be coupled to an injector or be a part of the injector itself.
  • Some of the methods disclosed herein enable a surgeon to use an injector in a “freehand” procedure (i.e., without using docking, securement, or coupling devices) to inject an implant into the eye.
  • some of the methods disclosed herein also enable a surgeon to use a “guiding” injector placement device.
  • the placement device can be temporarily affixed or secured to the eye or to the inserter itself during the procedure.
  • Such injector placement devices can be retrofitted to existing injectors or incorporated into injector designs.
  • injectors that are suitable for placing shunts according to some embodiments include, but are not limited to, injectors described in U.S. Pat. Nos. 6,007,511, 6,544,249, U.S. Patent Publication No. 2008/0108933, U.S. Pat. No. 8,663,303, U.S. Patent Application Publication No. 2012/0123434, filed on Nov. 15, 2010, U.S. Pat. No. 8,721,702, filed on Nov. 15, 2010, U.S. Pat. No. 9,585,790, filed on Nov. 13, 2014, and U.S. patent application Ser. No. 62/170,338, filed on Jun. 3, 2015, the entire contents of each of which is incorporated by reference herein.
  • the injector can use one, two, or more actuation mechanisms, including buttons, sliders, rotational components, and combinations thereof.
  • an injector can be configured to include two buttons, a button and a slider, two sliders, and/or rotational components.
  • the advancement or withdrawal of a component of the injector can be done either through actuation of a button and/or a slider, and may be manual or use an energy stored mechanism (e.g., spring loaded actuation, electrical motor, or magnetic movement).
  • a drug-eluting intraocular implant implementing any of the features discussed or referenced herein can be implanted into any area of the eye to achieve release of a drug to a target area, and in some instances, create a fluid flow path from a target area.
  • the implant can be deployed with a distal or first end in the anterior chamber, and a proximal or second end in the intrascleral space, with the ability to deliver drugs at either or both ends or along an intermediate portion thereof.
  • Some methods can be implemented such that multiple implants, with the same or different drugs and with the same or different release timings, can be implanted in different places (e.g., the subconjunctival space, the suprachoroidal space, the anterior chamber, etc.).
  • FIGS. 7-10 illustrate steps of a procedure for ab externo implantation of an intraocular implant, according to some embodiments.
  • FIG. 7 illustrates an initial step of ab externo insertion of a needle of an implant injector 200 into an eye.
  • the needle 202 can be configured to retain an intraocular implant 100 .
  • the intraocular implant 100 is positioned within a portion of the needle proximal to a distal end 204 .
  • the intraocular implant 100 can be retained proximal to the distal end 204 by a pusher rod 206 retained within the needle.
  • the needle 202 is advanced into the eye to pierce the conjunctiva 7 , the Tenon capsule 10 , and the sclera 8 .
  • the conjunctiva 7 and the Tenon capsule 10 are pushed down or compressed toward the sclera 8 .
  • the intraocular implant 100 and the pusher rod 206 may travel forward with the needle 202 .
  • the intraocular implant 100 and the pusher rod 206 may travel forward with the needle 202 and penetrate conjunctiva 7 , the Tenon capsule 10 , and the sclera 8 of the eye until reaching a target or final position for the intraocular implant 100 .
  • the intraocular implant 100 is in a final position when a distal portion of the implant (e.g., first portion 102 ) is within the anterior chamber 1 , and a proximal portion of the implant (e.g., second portion 104 ) is within the intrascleral space 66 .
  • the intraocular implant 100 is in a final position when the first portion 102 extends 0.2-0.4 mm into the anterior chamber 1 .
  • the intraocular implant 100 is in a final position when the second portion 104 is within the intrascleral space 66 and a second end 108 of the implant does not extend into the subconjunctival space 60 or the suprascleral space 61 .
  • a distal portion of the implant e.g., first portion 102
  • the implant can be advanced by the actuation of the pusher rod 206 until reaching a position as illustrated in FIG. 8 .
  • the needle 202 can be partially retracted while position of intraocular implant 100 is maintained by the pusher rod 206 .
  • the position of intraocular implant 100 can be maintained by the pusher rod 206 until the distal end 204 of the needle 202 is proximally of the second portion 104 of the implant.
  • the pusher rod 206 can be retracted and the needle 202 withdrawn, as shown in FIG. 10 .
  • FIGS. 11-13 illustrate aspects of a final position of the intraocular implant 100 having a second portion 104 positioned within the intrascleral space 66 .
  • FIG. 11 illustrates the intraocular implant 100 with a first end 106 within the anterior chamber 1 , and a second end 108 aligned with a superficial wall of the sclera 8 .
  • the portion of the sclera 8 pierced by the needle may not heal (e.g., remain separated).
  • the final position of the intraocular implant 100 illustrated in FIG. 11 permits a drug to be released from the second portion 104 of the implant toward the subconjunctival space 60 or the suprascleral space 61 .
  • the final position of the intraocular implant 100 illustrated in FIG. 11 permits a fluid flow through the implant.
  • FIG. 12 illustrates the intraocular implant 100 with a first end 106 within the anterior chamber 1 , and a second end 108 spaced from the superficial wall of the sclera 8 by approximately 0.25-0.5 mm.
  • opposing surfaces of the portion of the sclera 8 pierced by the needle 202 can move toward each other and may heal.
  • the final position of the intraocular implant 100 illustrated in FIG. 12 permits a drug to be released from the second portion 104 of the implant and through the portion of the sclera 8 pierced by the needle 202 toward the subconjunctival space 60 or the suprascleral space 61 .
  • the portion of the sclera 8 pierced by the needle 202 permits a fluid flow through the implant and/or regulated flow permitted through implant.
  • FIG. 13 illustrates the intraocular implant 100 with a first end 106 within the anterior chamber 1 , and a second end 108 spaced from the superficial wall of the sclera 8 by approximately 0.75 mm.
  • opposing surfaces of the portion of the sclera 8 pierced by the needle 202 can move toward each other and permit the sclera to heal.
  • the final position of the intraocular implant 100 illustrated in FIG. 1 permits a drug to be released from the second portion 104 of the implant and through the portion of the sclera 8 pierced by the needle 202 toward the subconjunctival space 60 or the suprascleral space 61 .
  • the portion of the sclera 8 pierced by the needle 202 does not permit a fluid flow through implant or portion of the sclera 8 pierced by the needle 202 .
  • FIGS. 14-16 illustrate embodiments of an intraocular implant injector 200 and a placement device 300 .
  • an intraocular implant injector 200 can be provided in which a placement device 300 and the injector are formed unitarily, coupled with each other, or otherwise formed from a single, continuous housing or material to form a single handheld unit.
  • the placement device 300 can be removably coupled to the injector 200 .
  • the placement device 300 can be prepared for use with an injector 200 , and in some embodiments, as a retrofit to an existing injector.
  • FIG. 14 illustrates an embodiment of an intraocular implant placement device 300 comprising a body having proximal and distal portions.
  • a needle support component 302 extends from a proximal portion toward a distal portion of the placement device 300 .
  • a distal portion of the placement device 300 can comprise one or more eye-contacting surfaces 304 to facilitate alignment of a needle or injector relative to an eye.
  • the needle support component 302 can accommodate, mate with, or otherwise engage or support a needle 202 and/or a portion of an injector 200 .
  • the needle support component 302 can comprise a port 306 , such as an elongate aperture, lumen, or bore that defines a needle axis 308 extending from the proximal portion toward the distal portion of the placement device 300 .
  • a needle 202 , sleeve 208 , and/or other portion of an injector 200 can be fitted into the shaft 306 from the proximal portion.
  • an inner profile of the needle support component 302 can closely match an outer profile of the needle 202 , sleeve 208 , or other portion of the injector 200 .
  • the eye-contacting surface 304 can be configured for engagement against an external surface of the eye 93 and can comprise at least one surface configured to mate against the eye 93 .
  • the surface can comprise a concave or arcuate surface that approximates the external surface of the eye in order to position the placement device 300 against the eye 93 .
  • the eye-contacting surface can be configured to facilitate alignment of the placement device 300 with one or more indicia of the eye 93 , such as the cornea, the corneal limbus 96 , and the pupil.
  • the eye-contacting surface 304 can comprise a horizontal radius and a vertical radius.
  • the vertical radius 310 can be oriented normal relative to the visual axis 95 (pupillary or optical axis) of the eye 93 .
  • the horizontal upper edge 312 of the placement device 300 that can be aligned with the corneal limbus 96 to facilitate alignment of the placement device 300 relative to the visual axis 95 of the eye 93 .
  • the vertical radius 310 can facilitate alignment of the placement device 300 so that the needle axis 94 intersects the final position of the intraocular implant 100 .
  • the vertical radius 310 can comprise an angle of between about 10 and 60 degrees, between about 20 and 50 degrees, between about 25 and 45 degrees, between about 30 and 40 degrees, or about 35 degrees from horizontal.
  • a needle 202 , sleeve 208 , or other portion of the injector 200 is permitted to extend through the needle support component 302 from the proximal portion toward the distal portion of the placement device 300 .
  • the needle 202 does not extend beyond the distal portion of the placement device 300 .
  • the needle 202 can be advanced toward an injection configuration. In moving toward the injection configuration, the needle 202 can be advanced toward the eye 93 such that the needle 202 extends beyond the distal portion of the placement device 300 and into the eye 93 .
  • a shunt can be released into the eye using any of the procedures for releasing a shunt from any of the inserters disclosed or referred to herein.
  • the placement device 300 can be configured with a longitudinal length so that a distal end of the needle 202 cannot extend a further than predetermined distance beyond the eye-contacting surface 304 .
  • the predetermined distance that the needle 202 is permitted to extend beyond the distal portion can be configured to correspond to the maximum distance the implant carried within the needle 202 is to be placed in the eye 93 .
  • the length of the needle 202 extending beyond the eye-contacting surface 304 can be approximately equal to the distance between the conjunctiva 7 and the anterior chamber 1 .
  • a length of the placement device 300 along the longitudinal needle axis 308 is configured or selected to limit advancement of the needle 202 through the eye-contacting surface 304 .
  • the placement device 300 can comprise a longitudinal restriction to restrict the needle 202 from travelling further than a predetermined distance beyond the distal portion of the placement device 300 .
  • the longitudinal restriction can comprise a shoulder that contacts a portion of the needle 202 , sleeve 208 , or other portion of the injector 200 during movement of the needle toward the injection configuration.
  • the placement device 300 can comprise a shoulder positioned within the lumen of the needle support component 302 .
  • the needle 202 , sleeve 208 , or other portion of the injector 200 moving through the needle support component 302 can be stopped by a shoulder so that the needle 202 advances only to the specified or predetermined distance beyond the distal portion.
  • all or at least a portion of the placement device 300 can be transparent.
  • a distal portion of the placement device 300 can be transparent to facilitate visual alignment with an indicium of the eye, monitoring the position of the needle 202 , sleeve 208 , or other portion of the injector 200 , or to otherwise facilitate alignment of the placement device 300 with the eye 93 .
  • the distal portion can comprise a longer cross-sectional width than a proximal portion of the placement device 300 .
  • the distal portion comprises a tapering cross-sectional width.
  • the devices and/or methods disclosed herein can provide treatment with a drug or pharmaceutical, such as by implanting an intraocular implant that has been coated, packed, layered, and/or impregnated with a pharmaceutical and/or biological agent, by treating the eye topically with a pharmaceutical and/or biological agent, and/or by injecting a pharmaceutical and/or biological agent into the anterior chamber and/or a target outflow region, including any target outflow regions discussed or referenced herein, prior to or after releasing a implant from the device.
  • a drug or pharmaceutical such as by implanting an intraocular implant that has been coated, packed, layered, and/or impregnated with a pharmaceutical and/or biological agent, by treating the eye topically with a pharmaceutical and/or biological agent, and/or by injecting a pharmaceutical and/or biological agent into the anterior chamber and/or a target outflow region, including any target outflow regions discussed or referenced herein, prior to or after releasing a implant from the device.
  • the pharmaceutical and/or biological agent can include an immunosuppressive agent is selected from the group consisting of dexamethasone, cyclosporin A, azathioprine, brequinar, gusperimus, 6-mercaptopurine, mizoribine, rapamycin, tacrolimus (FK-506), folic acid analogs (e.g., denopterin, edatrexate, methotrexate, piritrexim, pteropterin, Tomudex®, trimetrexate), purine analogs (e.g., cladribine, fludarabine, 6-mercaptopurine, thiamiprine, thiaguanine), pyrimidine analogs (e.g., ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, doxifluridine, emitefur, enocitabine, floxuridine, fluorouracil, gemcitabine, t
  • the pharmaceutical and/or biological agent can include one or more additional therapeutic agents, such as antibiotics or anti-inflammatory agents, such as antibacterial antibiotics, synthetic antibacterials, antifungal antibiotics, synthetic antifungals, antineoplastics, anti-inflammatory agents, and/or antimicrobial agents.
  • antibiotics or anti-inflammatory agents such as antibacterial antibiotics, synthetic antibacterials, antifungal antibiotics, synthetic antifungals, antineoplastics, anti-inflammatory agents, and/or antimicrobial agents.
  • Antibacterial antibiotics can include aminoglycosides (e.g., amikacin, apramycin, arbekacin, bambermycins, butirosin, dibekacin, dihydrostreptomycin, fortimicin(s), gentamicin, isepamicin, kanamycin, micronomicin, neomycin, neomycin undecylenate, netilmicin, paromomycin, ribostamycin, sisomicin, spectinomycin, streptomycin, tobramycin, trospectomycin), amphenicols (e.g., azidamfenicol, chloramphenicol, florfenicol, thiamphenicol), ansamycins (e.g., rifamide, rifampin, rifamycin sv, rifapentine, rifaximin), ⁇ -lactams (e.g., carbacephems (e.g
  • Synthetic antibacterials can include 2,4-Diaminopyrimidines (e.g., brodimoprim, tetroxoprim, trimethoprim), nitrofurans (e.g., furaltadone, furazolium chloride, nifuradene, nifuratel, nifurfoline, nifurpirinol, nifurprazine, nifurtoinol, nitrofurantoin), quinolones and analogs (e.g., cinoxacin, ciprofloxacin, clinafloxacin, difloxacin, enoxacin, fleroxacin, flumequine, grepafloxacin, lomefloxacin, miloxacin, nadifloxacin, nalidixic acid, norfloxacin, ofloxacin, oxolinic acid, pazufloxacin, pefloxacin, pipemidic acid,
  • Antifungal antibiotics can include polyenes (e.g., amphotericin b, candicidin, dermostatin, filipin, fungichromin, hachimycin, hamycin, lucensomycin, mepartricin, natamycin, nystatin, pecilocin, perimycin), others (e.g., azaserine, griseofulvin, oligomycins, neomycin undecylenate, pyrrolnitrin, siccanin, tubercidin, viridin).
  • polyenes e.g., amphotericin b, candicidin, dermostatin, filipin, fungichromin, hachimycin, hamycin, lucensomycin, mepartricin, natamycin, nystatin, pecilocin, perimycin
  • others e.g., azaserine, griseofulvin, oligomycins, neo
  • Synthetic antifungals can include allylamines (e.g., butenafine, naftifine, terbinafine), imidazoles (e.g., bifonazole, butoconazole, chlordantoin, chlormidazole, cloconazole, clotrimazole, econazole, enilconazole, fenticonazole, flutrimazole, isoconazole, ketoconazole, lanoconazole, miconazole, omoconazole, oxiconazole nitrate, sertaconazole, sulconazole, tioconazole), thiocarbamates (e.g., tolciclate, tolindate, tolnaftate), triazoles (e.g., fluconazole, itraconazole, saperconazole, terconazole) others (e.g., acrisorcin, amorolfine, biphen
  • Antineoplastics can include antibiotics and analogs (e.g., aclacinomycins, actinomycin fl, anthramycin, azaserine, bleomycins, cactinomycin, carubicin, carzinophilin, chromomycins, dactinomycin, daunorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin, epirubicin, idarubicin, menogaril, mitomycins, mycophenolic acid, nogalamycin, olivomycines, peplomycin, pirarubicin, plicamycin, porfiromycin, puromycin, streptonigrin, streptozocin, tubercidin, zinostatin, zorubicin), antimetabolites (e.g., aclacinomycins, actinomycin fl, anthramycin, azaserine, bleomycins, c
  • folic acid analogs e.g., denopterin, edatrexate, methotrexate, piritrexim, pteropterin, Tomudex®, trimetrexate
  • purine analogs e.g., cladribine, fludarabine, 6-mercaptopurine, thiamiprine, thioguanine
  • pyrimidine analogs e.g., ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, doxifluridine, emitefur, enocitabine, floxuridine, fluorouracil, gemcitabine, tagafur).
  • Anti-inflammatory agents include steroidal and non-steroidal anti-inflammatory agents.
  • Steroidal anti-inflammatory agents can include 21-acetoxypregnenolone, alclometasone, algestone, amcinonide, beclomethasone, betamethasone, budesonide, chloroprednisone, clobetasol, clobetasone, clocortolone, cloprednol, corticosterone, cortisone, cortivazol, deflazacort, desonide, desoximetasone, dexamethasone, diflorasone, diflucortolone, difluprednate, enoxolone, fluazacort, flucloronide, flumethasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin butyl, fluocortolone, fluorometholone, fluperolone acetate, flupred
  • Non-steroidal anti-inflammatory agents can include aminoarylcarboxylic acid derivatives (e.g., enfenamic acid, etofenamate, flufenamic acid, isonixin, meclofenamic acid, mefenamic acid, niflumic acid, talniflumate, terofenamate, tolfenamic acid), arylacetic acid derivatives (e.g., aceclofenac, acemetacin, alclofenac, amfenac, amtolmetin guacil, bromfenac, bufexamac, cinmetacin, clopirac, diclofenac sodium, etodolac, felbinac, fenclozic acid, fentiazac, glucametacin, ibufenac, indomethacin, isofezolac, isoxepac, lonazolac, metiazinic acid, mofezo
  • Antimicrobial agents can include antibiotics, antiseptics, disinfectants, and/or other synthetic moieties, and combinations thereof, that are soluble in organic solvents such as alcohols, ketones, ethers, aldehydes, acetonitrile, acetic acid, formic acid, methylene chloride and chloroform.
  • An intraocular implant for delivery of a drug to an eye, the implant comprising: an elongate body configured to be advanced into the eye through conjunctiva and sclera of the eye, the elongate body comprising a longitudinal length such that upon placement within the eye, a first portion of the implant is within an anterior chamber of the eye, and a second portion of the implant is within an intrascleral space of the eye; and a drug deliverable from the implant to the eye.
  • Clause 4 The implant of any of the preceding Clauses, wherein the resilient material is impregnated with the drug, the drug configured to be released from the implant to the eye.
  • Clause 5 The implant of any of the preceding Clauses, wherein the elongate body comprises a first passage in communication with a cavity within the elongate body, the cavity comprising the drug, wherein the drug is configured to be released from the cavity through the first passage.
  • Clause 6 The implant of any of the preceding Clauses, wherein the first passage comprises a membrane configured to permit release of the drug from the implant at a predetermined rate.
  • Clause 7 The implant of any of the preceding Clauses, wherein the first passage comprises a slit through the elongate body between the first and second portions of the implant.
  • Clause 8 The implant of any of the preceding Clauses, wherein the first passage extends through the first portion, and a second passage, in communication with the cavity, extends through the second portion, wherein the drug is configured to be released from the cavity through at least one of the first and second passages.
  • Clause 9 The implant of any of the preceding Clauses, wherein the first and second passages comprise a membrane configured to permit release of the drug from the implant at a predetermined rate.
  • Clause 10 The implant of any of the preceding Clauses, wherein an outer surface of the elongate body is tapered to reduce and/or avoid migration of the elongate body deep to the sclera, the elongate body having a cross-sectional width at the first portion that is less than a cross-sectional width at the second portion.
  • Clause 12 The implant of Clause 11, wherein the protrusion is proximate to the second portion of the elongate body.
  • Clause 13 The implant of Clause 11, wherein the protrusion comprises a barb.
  • Clause 14 The implant of Clause 11, wherein the protrusion comprises a ridge.
  • Clause 15 The implant of any of the preceding Clauses, wherein the elongate body comprises a longitudinal length defining a lumen extending through the first and second portions, the drug is retained within the lumen and configured to be released from the implant to the eye.
  • Clause 16 The implant of any of the preceding Clauses, wherein the lumen is obstructed by the drug to permit fluid flow through the lumen after the drug is sufficiently released from the implant to define a passage between the first and second portions.
  • Clause 17 The implant of any of the preceding Clauses, wherein the lumen is coated with the drug to permit drug elution via fluid flow through the lumen.
  • An intraocular implant for delivery of a drug to an eye, the implant comprising: an elongate body configured to be advanced within a needle through a conjunctiva, a Tenon capsule, and a sclera of the eye, the elongate body comprising a tapered outer surface to reduce and/or avoid migration of the elongate body deep to the sclera, the elongate body having a cross-sectional width at a first portion that is less than a cross-sectional width at a second portion; and a drug deliverable from the implant to the eye.
  • Clause 20 The implant of any of the preceding Clauses, wherein the elongate body comprises a rigid material coated on an outer surface with a resilient material, the resilient material configured to engage against the eye to reduce and/or avoid migration of implant.
  • Clause 21 The implant of any of the preceding Clauses, wherein the resilient material is impregnated with the drug, the drug configured to be released from the implant to the eye.
  • Clause 22 The implant of any of the preceding Clauses, wherein the first portion comprises a first passage in communication with a cavity within the elongate body, the cavity comprising the drug, wherein the drug is configured to be released from the cavity through the first passage.
  • Clause 23 The implant of any of the preceding Clauses, wherein the first passage comprises a membrane configured to permit release of the drug from the implant at a predetermined rate.
  • Clause 24 The implant of any of the preceding Clauses, wherein the first passage extends through the first portion, and a second passage, in communication with the cavity, extends through the second portion, wherein the drug is configured to be released from the cavity through at least one of the first and second passages.
  • An ab externo method of placing an intraocular implant into an eye comprising the steps of: advancing a needle, in which the implant is disposed, into the eye through conjunctiva and sclera of the eye, the implant comprising a drug deliverable to the eye; and releasing the intraocular implant to anchor the implant within an intrascleral space of the eye.
  • Clause 26 The method of the preceding Clause, wherein when released, a proximal end of the implant is positioned within the sclera.
  • Clause 27 The method of any of the preceding Clauses, wherein the releasing comprises positioning a first portion of the implant within an anterior chamber of the eye and a second portion of the implant within the intrascleral space.
  • Clause 28 The method of any of the preceding Clauses, wherein the advancing comprises advancing the needle through Tenon's capsule.
  • Clause 30 The method of any of the preceding Clauses, comprising positioning a bevel of the needle within an anterior chamber of the eye while advancing the pusher rod to advance a first portion of the implant through the bevel of the needle while permitting a second portion of the implant to remain within the needle.
  • Clause 31 The method of any of the preceding Clauses, further comprising withdrawing the needle relative to the pusher rod while maintaining the pusher rod stationary relative to the eye to retain the first portion of the implant within the anterior chamber of the eye.
  • Clause 32 The method of any of the preceding Clauses, positioning a bevel of the needle within an anterior chamber of the eye.
  • Clause 33 The method of any of the preceding Clauses, wherein the positioning comprises orienting a longitudinal axis of the needle at an angle relative to a visual axis of the eye to facilitate placement of a second portion of the implant deep to a superficial layer of the sclera and a first portion of the implant within the anterior chamber of the eye.
  • Clause 34 The method of Clause 33, wherein the angle is between about 10 degrees and about 60 degrees.
  • Clause 35 The method of Clause 33, wherein the angle is between about 20 degrees and about 50 degrees.
  • Clause 36 The method of Clause 33, wherein the angle is between about 25 degrees and about 40 degrees.
  • Clause 37 The method of Clause 33, wherein the angle is between about 30 degrees and about 35 degrees.
  • Clause 38 The method of Clause 33, wherein the angle is about 30 degrees.
  • Clause 39 The method of any of the preceding Clauses, wherein upon release, a first end of the implant is positioned within an anterior chamber of the eye and a second end of the implant is positioned at least about 0.25-0.5 mm deep to a superficial wall of the sclera.
  • Clause 40 The method of any of the preceding Clauses, wherein upon release, a proximal end of the implant is positioned at least about 0.25-0.5 mm deep to a superficial wall of the sclera.
  • Clause 41 The method of any of the preceding Clauses, wherein upon release, a first end of the implant is positioned within the anterior chamber and a second end of the implant is positioned at least about 0.5-0.75 mm deep to a superficial wall of the sclera.
  • Clause 42 The method of any of the preceding Clauses, wherein upon release, a proximal end of the implant is positioned at least about 0.5-0.75 mm deep to a superficial wall of the sclera.
  • Clause 43 The method of any of the preceding Clauses, further comprising the step of contacting a sleeve, coupled to the needle, against an external surface of the eye, to restrict further longitudinal advancement of the needle into the eye.
  • Clause 44 The method of any of the preceding Clauses, wherein the releasing comprises releasing the intraocular implant to anchor a first portion of the implant deep to the sclera and a second portion of the implant within an intrascleral space of the eye.
  • Clause 45 The method of any of the preceding Clauses, wherein the positioning comprises positioning the second portion of the implant between layers of the sclera.
  • Clause 46 The method of any of the preceding Clauses, comprising positioning a bevel of the needle within an anterior chamber of the eye and an outflow portion of the implant within the anterior chamber.
  • Clause 47 The method of any of the preceding Clauses, comprising positioning a bevel of the needle within a choroidal space of the eye and an outflow portion of the implant within the choroidal space.
  • Clause 48 The method of any of the preceding Clauses, comprising positioning a bevel of the needle within a vitreous space of the eye and an outflow portion of the implant within the vitreous space.
  • Clause 49 The method of any of the preceding Clauses, wherein the implant comprises a tapered cross-sectional profile, the releasing comprising anchoring the implant by positioning a larger cross-sectional profile first end portion of the implant superficially within the sclera and a smaller cross-sectional profile second end portion deep to the first end portion.
  • Clause 50 The method of any of the preceding Clauses, wherein the implant comprises a conical shape in which the first end portion of the implant has a larger cross-sectional profile than the second end portion.
  • Clause 51 The method of any of the preceding Clauses, wherein the implant comprises at least one engagement protrusion disposed along a proximal, outer region of the implant, the releasing comprising anchoring the implant by positioning the engagement protrusion between layers of sclera.
  • Clause 52 The method of any of the preceding Clauses, wherein the at least one engagement protrusion comprises a hook, ridge, barb, spike, wing, or bump.
  • Clause 53 The method of any of the preceding Clauses, wherein the implant comprises an intraocular shunt.
  • Clause 54 The method of any of the preceding Clauses, further comprising positioning a proximal end of the implant within a target outflow region and a distal end of the implant within an anterior chamber of the eye.
  • Clause 55 The method of any of the preceding Clauses, wherein the implant comprises an intraocular shunt and the drug coats the shunt or fills a lumen of the shunt.
  • Clause 56 The method of any of the preceding Clauses, wherein the implant comprises a soft biocompatible material.
  • Clause 58 The method of any of the preceding Clauses, wherein the implant comprises a gelatin material.
  • An intraocular implant placement device for placing an intraocular implant into an eye, the device comprising: a body comprising proximal and distal portions and a longitudinal needle axis extending between the proximal and distal portions, the proximal portion configured to couple with an intraocular implant injector to permit a needle of the implant injector to extend along the longitudinal needle axis, and the distal portion comprising an eye-contacting surface configured to engage the eye to permit a clinician to align the placement device relative to an indicium of the eye thereby aligning the needle relative to the eye.
  • Clause 60 The placement device of the preceding Clause, wherein a length of the body along the longitudinal needle axis is selected to limit advancement of the needle through the eye-contacting surface.
  • Clause 61 The placement device of any of the preceding Clauses, wherein the body obstructs advancement of the needle distal to the eye-contacting surface beyond a predetermined length.
  • Clause 62 The placement device of any of the preceding Clauses, wherein the eye-contacting surface comprises at least one arcuate surface for alignment of the placement device relative to an indicium of the eye and alignment of the longitudinal needle axis to the eye.
  • Clause 64 The placement device of any of the preceding Clauses, wherein the distal portion flares outwardly.
  • Clause 65 The placement device of any of the preceding Clauses, wherein the eye-contacting surface extends from an arcuate edge of the distal portion, the arcuate edge being positionable adjacent to a corneal limbus of the eye for aligning the placement device relative to the eye.
  • Clause 66 The placement device of any of the preceding Clauses, wherein the eye-contacting surface extends proximally from a distal end of the body.
  • Clause 69 The placement device of any of the preceding Clauses, wherein the body surrounds at least a portion of the needle.
  • Clause 70 The placement device of any of the preceding Clauses, wherein the body comprises an elongate shaft and a needle port extending therethrough.
  • Clause 72 The placement device of any of the preceding Clauses, wherein the longitudinal needle axis extends through the eye-contacting surface.
  • Clause 76 The placement device of any of the preceding Clauses, wherein a portion of the body is transparent to facilitate visualization of the needle or an indicium of the eye.
  • any of the clauses herein may depend from any one of the independent clauses or any one of the dependent clauses.
  • any of the clauses e.g., dependent or independent clauses
  • a claim may include some or all of the words (e.g., steps, operations, means or components) recited in a clause, a sentence, a phrase or a paragraph.
  • a claim may include some or all of the words recited in one or more clauses, sentences, phrases or paragraphs.
  • some of the words in each of the clauses, sentences, phrases or paragraphs may be removed.
  • additional words or elements may be added to a clause, a sentence, a phrase or a paragraph.
  • the subject technology may be implemented without utilizing some of the components, elements, functions or operations described herein. In one aspect, the subject technology may be implemented utilizing additional components, elements, functions or operations.
  • the phrase “at least one of” preceding a series of items, with the term “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item).
  • the phrase “at least one of” does not require selection of at least one of each item listed; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items.
  • phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
  • top should be understood as referring to an arbitrary frame of reference, rather than to the ordinary gravitational frame of reference.
  • a top surface, a bottom surface, a front surface, and a rear surface may extend upwardly, downwardly, diagonally, or horizontally in a gravitational frame of reference.
  • the terms “about,” “substantially,” and “approximately” may provide an industry-accepted tolerance for their corresponding terms and/or relativity between items, such as from less than one percent to 10 percent.

Abstract

An ab externo method of placing an intraocular implant into an eye can include advancing a needle, in which the implant is disposed, into the eye through sclera of the eye. The implant can include a drug deliverable to the eye. The implant can thereafter be released to be anchored in the eye and elute the drug to the eye.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/613,018, filed on Jun. 2, 2017, which claims the benefit of and priority to U.S. Provisional Application No. 62/344,899, filed on Jun. 2, 2016, the entirety of each of which is incorporated herein by reference.
  • BACKGROUND Field
  • The present disclosure generally relates to delivering an intraocular implant into an eye, and more specifically, to methods and devices for ab externo implantation of a drug-eluting intraocular implant or a shunt without the creation of a scleral slit or conjunctival dissection.
  • Description of the Related Art
  • Glaucoma is a disease of the eye that affects millions of people. Glaucoma is associated with an increase in intraocular pressure resulting either from a failure of a drainage system of an eye to adequately remove aqueous humor from an anterior chamber of the eye or overproduction of aqueous humor by a ciliary body in the eye. Build-up of aqueous humor and resulting intraocular pressure may result in irreversible damage to the optic nerve and the retina, which may lead to irreversible retinal damage and blindness.
  • Glaucoma may be treated in a number of different ways. One manner of treatment involves delivery of drugs such as beta-blockers or prostaglandins to the eye to either reduce production of aqueous humor or increase flow of aqueous humor from an anterior chamber of the eye. Another treatment typically used to treat glaucoma involves a glaucoma filtration surgery. The procedure involves placing a shunt in the eye to relieve intraocular pressure by creating a pathway for draining aqueous humor from the anterior chamber of the eye. The shunt is typically positioned in the eye such that it creates a drainage pathway between the anterior chamber of the eye and a region of lower pressure. Such fluid flow pathways allow for aqueous humor to exit the anterior chamber.
  • The importance of lowering intraocular pressure (IOP) in delaying glaucomatous progression has been well documented. When conventional drug therapy fails, or is not tolerated, surgical intervention is warranted. There are various surgical filtration methods for lowering intraocular pressure by creating a fluid flow-path between the anterior chamber and the subconjunctival tissue. In one particular method, an intraocular shunt is positioned in the eye to drain fluid from the anterior chamber to locations such as the sub-Tenon's space, the subconjunctival space, the episcleral vein, the suprachoroidal space, Schlemm's canal, and the intrascleral space.
  • Methods of implanting intraocular implants are known in the art. Implants may be implanted using an ab externo approach (entering through the conjunctiva and inwards through the sclera) or an ab interno approach (entering through the cornea, across the anterior chamber, through the trabecular meshwork and sclera). Further, various manual and automated deployment devices for implanting an intraocular implant have been described. Most deployment devices are coupled to a hollow needle which holds the intraocular implant. Whether an ab externo approach or an ab interno approach is used, the needle is inserted into the eye to deploy the intraocular implant into the eye. See, for example, U.S. Pat. No. 6,544,249, U.S. Patent Application Publication No. 2008/0108933, and U.S. Pat. No. 6,007,511, the entireties of which are incorporated herein by reference.
  • SUMMARY
  • Traditional ab externo approaches are shown for example in U.S. Pat. No. 8,109,896 to Nissan et al., U.S. Pat. No. 8,075,511 to Tu et al., and U.S. Pat. No. 7,879,001 to Haffner et al., the content of each of which is incorporated by reference herein in its entirety.
  • In such traditional surgeries, a distal end of a deployment device or injector is used to make a scleral flap or slit to access the eye. The conjunctiva can be dissected or pulled away from the sclera to expose the sclera. In some instances, this can allow the surgeon to cut and separate a small flap of the sclera away from the underlying sclera. A needle can then be inserted into the eye below the scleral flap to access the anterior angle of the eye. The needle is then withdrawn, leaving a scleral slit behind.
  • Thereafter, a silicone tube with sufficient stiffness is manually pushed through the scleral slit from the outside so that the distal tube ends distal to the trabecular meshwork in the anterior chamber of the eye. In some instances, the scleral flap can be repositioned over the proximal end of the tube and sutures can be used to re-secure the flap and conjunctiva. In other instances where only the conjunctiva is dissected, the proximal end of the tube can be positioned to exit the sclera, lay on top of it, and be connected to a plate that is fixated by sutures to the outside scleral surface (and within a pocket underlying the conjunctiva) far away (>10 mm) from the limbus.
  • Some of the problems associated with this surgery include the necessity to cauterize to avoid significant bleeding and the large size of the remaining silicone tube and plate. Due to the obtrusive nature of the silicone tube and plate, these can eventually cause the conjunctiva to erode, requiring a scleral graft to be placed over the silicone tube and plate.
  • The present disclosure provides various new methods and device concepts for an ab externo implantation of a drug-eluting intraocular implant or a drug-eluting intraocular shunt without the creation of a scleral slit or conjunctival dissection. It is contemplated that although particular embodiments may be disclosed or shown in the context of an intraocular shunt, the various approaches described herein can be modified to provide an implant that does not permit flow through the implant (e.g., a plug), or an implant that provides a flow path (e.g., a shunt).
  • In accordance with some embodiments, the present disclosure provides ab externo methods that can be used to safely position and anchor a drug-eluting implant into the eye. However, although some embodiments are presented as ab externo, some embodiments disclosed herein can also be performed via ab interno needle placement. In such embodiments, the positioning of the implant or shunt can be revised from an ab externo method (e.g., reversing the position of the ends of the implant if the implant is tapered or comprises anti-migration engagement features). Accordingly, the methods disclosed herein can be implemented either ab interno or ab externo and result in placement or anchoring of an implant within the sclera.
  • Accordingly to some embodiments, the methods can therefore be performed to provide treatment with a drug or pharmaceutical, such as by implanting an intraocular implant that has been coated, packed, layered, and/or impregnated with a pharmaceutical and/or biological agent, by treating the eye topically with a pharmaceutical and/or biological agent, and/or by injecting a pharmaceutical and/or biological agent into the anterior chamber and/or a target outflow region, including any target outflow regions discussed or referenced herein, prior to or after releasing a implant from the device.
  • Suitable agents that can be used in some embodiments disclosed herein may include, for example, any of those disclosed in the following U.S. Pat. Nos. 8,785,394; 8,062,657; 7,799,336; 7,790,183; 7,033,605; 6,719,991; 6,558,686; 6,162,487; 5,902,283; 5,853,745; and 5,624,704; and U.S. Patent Publication No. 2008/0108933; the content of each of these references is incorporated by reference herein its entirety. Examples of suitable agents include antimitotic pharmaceuticals such as Mitomycin-C or 5-Fluorouracil, anti-VEGF (such as Lucintes, Macugen, Avastin, VEGF, or steroids), anticoagulants, antimetabolites, antimicrobial agents, angiogenesis inhibitors, steroids, anti-inflammatories, antibiotics, antiseptics, disinfectants, brimonidine, timolol, prostaglandin analogs (such as travoprost, latanoprost, and tafluprost), prostamides (such as bimatoprost), cyclosporin, pilocarpine, corticosteroids and other steroid derivatives (such as hydrocortisone, dexamethasone, beclomethasone dipropionate, triamcinolone, triamcinolone acetate, cortisol benzoate), or other agents or combinations thereof, for treating conditions of the eye, such as glaucoma, dry eye, allergy, or conjunctivitis, to name a few.
  • One of the aims is to create a simple and safe procedure that can be performed in an office setting. The methods provided by some embodiments can use an implant injector or deployment device similar in operation to the XEN Injector produced by Applicant. Further, the methods can be implemented using the injector by itself or by using the injector in combination with one or more injector placement devices, such as those disclosed in U.S. Patent Application Nos. 61/170,338, filed on Jun. 3, 2015, 62/279,585, filed on Jan. 15, 2016, U.S. Patent Application Publication No. 2016/0354244, filed on Jun. 2, 2016, and U.S. Patent Application Publication No. 2016/0354245, filed on Jun. 2, 2016, titled Ab Externo Intraocular Shunt Placement, the entirety of each of which is incorporated herein by reference.
  • According to some embodiments, ab externo procedures are provided herein that enable a portion of an intraocular implant or an outflow end of a shunt to be deployed under/into any of a variety of outflow regions without making a scleral flap or otherwise requiring a conjunctival dissection. Thus, the outflow end of the shunt can be positioned in target outflow regions including the subconjunctival space or over-Tenon's space (between Tenon's and conjunctiva), the suprascleral or sub-Tenon's space (between Tenon's and sclera), the intra-Tenon's space (between layers of Tenon's capsule, or in the intra-Tenon's adhesion space), the choroidal and suprachoroidal space, the intrascleral space (between layers of sclera), Schlemm's canal, the vitreous space, the episcleral vein, or the supraciliary space. Further, in accordance with some embodiments in which the outflow end of the shunt is placed in the intra-Tenon's adhesion space, the Tenon adhesions remain intact, just as they would for an ab interno approach. Thus, a needle of a shunt injector can pierce conjunctiva, sclera, and in some embodiments, Tenon's capsule, as it is advanced into the eye to position the shunt within the eye without creating a scleral flap or conjunctival dissection. For example, the shunt can provide fluid communication between the anterior chamber and a desired target outflow region.
  • Advantageously, some embodiments therefore provide methods and devices that place an intraocular shunt ab externo into the eye without requiring a low gauge silicone tube or diffusion plate attached to the tube, as used in the prior art. Instead, according to some embodiments, a higher gauge needle and intraocular shunt can be placed without causing significant trauma to the eye. The shunt can be inserted through the target outflow region and ejected from the needle such that an inflow end of the shunt resides in the anterior chamber of the eye and an outflow end of the needle resides in the target outflow region.
  • Moreover, as noted above, some embodiments can be performed using an intraocular implant placement device to facilitate positioning and maintaining an orientation of the implant relative to one or more aspects of the eye, as disclosed in copending U.S. Patent Application Nos. 61/170,338, filed on Jun. 3, 2015, 62/279,585, filed on Jan. 15, 2016, U.S. Patent Application Publication No. 2016/0354244, filed on Jun. 2, 2016, and U.S. Patent Application Publication No. 2016/0354245, filed on Jun. 2, 2016, titled Ab Externo Intraocular Shunt Placement, the entirety of each of which is incorporated herein by reference. The intraocular implant placement device can optionally comprise one or more structures that can facilitate positioning of the intraocular implant placement device onto or around the eye. Optionally, the intraocular implant placement device can comprise one or more features that can secure the implant placement device relative to the eye once a desired position has been achieved. In some embodiments, such features can be selectively activated once the implant placement device is in a desired position. Such features can include vacuum suction and/or surface friction elements (such as ridges, micro-hooks, or other such elements that can increase the surface contact and/or friction between the implant placement device and the eye). In some embodiments, suction and mechanical engagement can be used alone or together to enable the implant placement device to be coupled to or removably affixed to the eye.
  • Additional features and advantages of the subject technology will be set forth in the description below, and in part will be apparent from the description, or may be learned by practice of the subject technology. The advantages of the subject technology will be realized and attained by the structure particularly pointed out in the written description and embodiments hereof as well as the appended drawings.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the subject technology.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various features of illustrative embodiments of the inventions are described below with reference to the drawings. The illustrated embodiments are intended to illustrate, but not to limit, the inventions. The drawings contain the following figures:
  • FIG. 1 is a cross-sectional diagram of the general anatomy of an eye and an intraocular implant therein.
  • FIGS. 2-5 illustrate intraocular implants, according to some embodiments.
  • FIG. 6 illustrates a cross-sectional view of an intraocular implant, according to some embodiments.
  • FIGS. 7-10 illustrate a procedure for placing an intraocular implant into an eye using an implant injector, according to some embodiments.
  • FIGS. 11-13 illustrate an intraocular implant positioned in the intrascleral space of an eye, according to some embodiments.
  • FIG. 14 illustrates a placement device for use with an intraocular implant injector, according to some embodiments.
  • FIGS. 15 and 16 illustrate a procedure for placing an intraocular implant into an eye using an implant injector and the placement device shown in FIG. 14, according to some embodiments.
  • DETAILED DESCRIPTION
  • In the following detailed description, numerous specific details are set forth to provide a full understanding of the subject technology. It should be understood that the subject technology may be practiced without some of these specific details. In other instances, well-known structures and techniques have not been shown in detail so as not to obscure the subject technology.
  • Further, while the present description sets forth specific details of various embodiments, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting. Additionally, it is contemplated that although particular embodiments may be disclosed or shown in the context of ab externo procedures, such embodiments can be used in ab interno procedures. For example, although various ab externo approaches are discussed herein, any embodiment of the implant placement devices and methods described herein can be modified to provide an ab interno procedure (i.e. entering through the cornea, across the anterior chamber toward a target location) such that an outflow region of the shunt is positioned with the location of a bleb. Furthermore, various applications of such embodiments and modifications thereto, which may occur to those who are skilled in the art, are also encompassed by the general concepts described herein.
  • The present application discloses ab externo approaches and devices for positioning an intraocular implant with one end (e.g., a fluid entry end of a shunt) placed into a first region, such as the anterior chamber, and the other end placed preferably into a second region, such as the intrascleral space, without creating a conjunctival cutdown (dissection). Other possible second regions include the sub-Tenon's space (between Tenon's and sclera), the intra-Tenon's space (between layers of Tenon's capsule, or in the intra-Tenon's adhesion space), the over-Tenon's space (between Tenon's and conjunctiva), the choroidal and suprachoroidal space, the subconjunctival space, Schlemm's canal, the vitreous space, the episcleral vein, the supraciliary space, or the suprascleral space. Other possible first regions include the choroidal space or the vitreous space.
  • In some embodiments of the methods and devices disclosed herein, the implant injector can be configured to allow an intraocular shunt, such as a gel shunt (e.g., supported by a needle or shaft of the injector) to be positioned or oriented at a desired angle (“entrance angle”) relative to a surface of the eye prior to implantation in order to allow the shunt outflow end to be positioned in a desired target outflow region, such as the intrascleral, suprachoroidal, or vitreous space. For example, the injector can be manually positionable relative to the surface of the eye to allow the surgeon to adjust the entrance angle to any of a variety of angles before injecting the shunt into the eye.
  • Additionally, according to some embodiments, an intraocular implant can be injected into any of the nasal quadrants of the eye using an ab externo procedure. For example, the intraocular implant can be injected in the nasal superior, nasal inferior, temporal superior, or temporal inferior quadrants.
  • Advantageously, using some embodiments of this procedure, an intraocular implant can be more easily placed in every quadrant of the eye because the injector needle no longer has to traverse the entire anterior chamber (compared to ab interno approaches). Thus, ab externo procedures are disclosed herein that enable a surgeon to quickly and accurately place a distal end of an intraocular implant into any quadrant of the eye and position a proximal end of the intraocular implant into one of a variety of regions without creating a scleral flap or conjunctival dissection.
  • FIG. 1 illustrates a detail view of an eye with an intraocular implant 100 therein. An anterior aspect of the anterior chamber 1 of the eye is the cornea 2, and a posterior aspect of the anterior chamber 1 of the eye is the iris 4. Beneath the iris 4 is the lens 5. The anterior chamber 1 is filled with aqueous humor 3. The aqueous humor 3 drains into a space(s) deep to the conjunctiva 7 through the trabecular meshwork of the sclera 8. The aqueous humor is drained from the space(s) deep to the conjunctiva 7 through a venous drainage system (not shown). FIG. 1 also illustrates a drug-eluting intraocular implant 100 having a distal or first portion 102 in the anterior chamber 1 and a proximal or second portion 104 in the intrascleral space 66.
  • As shown, the conjunctiva 7 attaches to the sclera 8 at the limbus 9. Deep to the conjunctiva 7 is Tenon's capsule 10. Tenon's capsule 10 comprises two layers (i.e., superficial and deep layers) and an intra-Tenon's adhesion space 11 that extends between the superficial and deep layers of Tenon's capsule 10. The intra-Tenon's adhesion space 11 surrounds the eye circumferentially. The intra-Tenon's adhesion space 11 can extend around the eye posterior to the limbus 9.
  • In the view of FIG. 1, deep to the intra-Tenon's adhesion space 11 is a rectus muscle 20. The eye has four rectus muscles (superior, inferior, lateral, and medial) that attach to sclera via a rectus tendon. FIG. 1 illustrates that the rectus muscle 20 attaches to the sclera 8 via a rectus tendon 22. For illustration purposes, the rectus tendon 22 is shown inserting onto the sclera 8. In some cases, there may not be a clear insertion point of the rectus tendon 22 onto the sclera 8, but there will be a gradual transition between the rectus tendon 22 and the intra-Tenon's adhesion space 11.
  • Additionally, as illustrated in FIG. 1, Tenon's capsule 10 and the intra-Tenon's adhesion space 11 is illustrated extending anteriorly relative to and superficial to the rectus muscle 20. As also shown, posterior to the rectus tendon, Tenon's capsule 10 and the intra-Tenon's adhesion space 11 also extend deep to and around the rectus muscle 20. In this region, there is a reflection of Tenon's capsule 10 and the intra-Tenon's adhesion space 11 from the rectus muscle 20 onto the globe or sclera 8. Thus, Tenon's capsule 10 and the intra-Tenon's adhesion space 11 envelop or encapsulate the rectus muscle 20.
  • FIG. 1 illustrates that in some locations, Tenon's capsule 10, and thus, the intra-Tenon's adhesion space 11, surrounds a rectus muscle 20. According to some embodiments of the methods disclosed herein, the intra-Tenon's adhesion space 11 can be accessed from the anterior chamber 1. Tenon's capsule 10 and the intra-Tenon's adhesion space 11 surround the eye circumferentially.
  • FIG. 1 also illustrates the drainage channels of the eye, including Schlemm's canal 30 and the trabecular meshwork 32, which extend through the sclera 8. Further, deep to the sclera 8, the ciliary body 34 is also shown. The ciliary body 34 transitions posteriorly to the choroid 40. Deep to the limbus 9 is a scleral spur 36. The scleral spur 36 extends circumferentially within the anterior chamber 1 of the eye. Further, the scleral spur 36 is disposed anteriorly to the anterior chamber angle 38. Furthermore, “anterior chamber angle tissue” can refer to the eye tissue in the region extending along and/or including one or more of the cornea 2, the sclera 8, Schlemm's canal 30, the trabecular meshwork 32, the ciliary body 34, the iris 4, or the scleral spur 36.
  • Accordingly, for definitional purposes, the space between the conjunctiva 7 and Tenon's capsule 10 or the intra-Tenon's adhesion space 11 is referred to herein as subconjunctival space 60 (here shown as a potential space). The space between the sclera 8 and Tenon's capsule 10 or the intra-Tenon's adhesion space 11 is referred to herein as suprascleral space 61 (here shown as a potential space). Further, the space between a deep layer or surface 62 and a superficial layer or surface 64 of Tenon's capsule 10 is referred to herein as the intra-Tenon's adhesion space 11. Additionally, the space within the sclera 8 (i.e., between the superficial and deep layers or surfaces of the sclera 8) is referred to herein as intrascleral space 66 (here shown as a potential space). The space between the sclera 8 and the ciliary body 34 is referred to herein as supraciliary space 68 (here shown as a potential space). Finally, the space between the sclera 8 and the choroid 40 is referred to as suprachoroidal space 70 (here shown as a potential space). The supraciliary space 68 can be continuous with the suprachoroidal space 70.
  • FIGS. 2-6 illustrate various embodiments of a drug-eluting intraocular implant 100. Although embodiments are described herein as drug-eluting, a drug-eluting intraocular implant 100 can comprise one or more pharmaceutical and/or biological agents, e.g., drugs, biologics, pharmaceuticals, and/or other chemicals. For example, a drug can be selected to regulate the body's response to the implantation of the implant and a subsequent healing process. The drug can be carried by the intraocular implant 100 for eluting or delivery to target location(s).
  • In some embodiments, the intraocular implant 100 can comprise one or multiple drug-eluting portions, which can each be formed to provide different dissolving times and/or have different drugs embedded therein. Accordingly, in some embodiments, two or more drugs can be delivered simultaneously on independent release timings. For example, a drug can be integrated into only one of the ends of the intraocular implant 100 to provide a single drug-eluting end which can be placed into the anterior chamber or location of lower pressure. For example, a first portion or a first end can be drug-eluting. Further, other than being formed along an end of the intraocular implant, the drug-eluting portion can also be formed along an intermediate portion of the intraocular implant. Accordingly, embodiments can provide a targeted drug release inside the anterior chamber, inside the sclera, and/or in the subconjunctival space or other target location, depending on the location and configuration of the drug-eluting portion(s).
  • The intraocular implant 100 can be impregnated, packed, or coated with a drug. In some embodiments, the drug may coat and/or impregnate an entire exterior of an intraocular implant, an entire interior of the intraocular implant, or both. Alternatively, a drug may coat and/or impregnate a portion of an exterior of the intraocular implant, a portion of an interior of the intraocular implant, or both. In some embodiments in which the drug is impregnated into the intraocular implant 100, the intraocular implant itself can be partially or completely dissolvable. By including the biologics, pharmaceuticals, drugs, or other chemicals in the liquid gelatin, the formed intraocular implant will be impregnated with the biologics, pharmaceuticals, drugs, or other chemicals. In some embodiments, a time-release or controlled-release drug can be provided by means of an impregnated portion or coating to provide a desired dissolution rate. Such drug-eluting portion(s) of the intraocular implant can provide a drug delivery, even without aqueous flow.
  • FIGS. 2-6 illustrate embodiments of an intraocular implant 100 having an elongate body with a first end 106 and a second end 108 opposite the first end 106. The length of the intraocular implant 100 between the first and second ends 106, 108 can be any length sufficient to provide a quantity of drug or a passageway between a target location of a first portion 102 of the implant and a target location of a second portion 104 of the implant. For example, a length of the intraocular implant 100 may be selected so that the first portion 102 is within the anterior chamber 1, and the second portion 104 is within the intrascleral space 66. In some embodiments, the length of the intraocular implant 100 is selected so that the first portion 102 is not visible to the patient. For example, the length can be selected so that the first portion 102 does not extend into the anterior chamber 1. Preferably, the first portion 102 does not extend more than 4 mm into the anterior chamber 1. Typically, the length of the intraocular implant 100 is between approximately 2 to 8 mm with a total length of approximately 6 mm, in most cases being preferred.
  • The diameter of the outer surface of the intraocular implant 100 can be any diameter that permits the implant to be retained and deployed from an implant injector needle. Accordingly, the outer diameter of the intraocular implant 100 corresponds to an inner diameter, or gauge, of the needle. In some embodiments, a 30 gauge needle having a thin wall is used. In a preferred embodiment, a 27 gauge needle is used with an intraocular implant 100 that can have an outer diameter of approximately 250-260 micrometers. In some embodiments, a 25 gauge needle is used with an intraocular implant 100 that can have an outer diameter of approximately 300-350 micrometers. In some embodiments, a 23 gauge needle is used. In some embodiments, a 20 gauge needle is used with an intraocular implant 100 that can have an outer diameter of approximately 600-700 micrometers.
  • The intraocular implant 100 can comprise one or more rigid and/or flexible materials. For example, the implant can comprise a soft biocompatible material, such as a soft polymer material and/or a gelatin material. Further, in some embodiments, the body of the intraocular implant 100 can comprise only a resilient or flexible material, such as a gelatin or another similar material. In some embodiments, the intraocular implant 100 can comprise only a rigid material, such as steel or another similar material. In some embodiments, the intraocular implant 100 can comprise a combination of materials. For example, the intraocular implant 100 can comprise a rigid material having a portion coated with a flexible material.
  • The flexible material is less erosive to eye tissue surrounding or engaged against the implant. The flexible material can also reduce and/or avoid degradation and or irritation to the eye. Further, the material of the intraocular implant can be capable of swelling or expanding. When the material swells or expands within the eye, the intraocular implant can be secured or anchored within the eye, thus reducing the likelihood of movement or implant migration within the eye. In some embodiments, the implant 100 or at least a portion of the outer surface of the intraocular implant 100 may swell within the intrascleral space 66, thus reducing migration of the intraocular implant 100 toward the interior chamber 1. For example, the implant 100 can comprise a swellable polymer or gelatin material that enables the implant to expand within the eye after implantation, thereby tending to engage and anchor the implant within the eye relative to the sclera.
  • The intraocular implant 100 can be a rigid material having a portion of an outer surface coated with a flexible material that can expand within the eye to restrict movement or migration of the implant. In another aspect, the intraocular implant 100 can comprise only the flexible material.
  • The intraocular implant 100 can be partially or completely dissolvable as the drug is released or eluted. In some embodiments, the intraocular implant 100 reduces in size as the drug is released into the eye. In some embodiments, the drug releases from a portion of the intraocular implant 100, such as the first and/or the second portion 102, 104. In some embodiments, a length of the intraocular implant 100 reduces as the drug releases from a portion or an end of the body. In some embodiments, the drug releases along a gradient so that more of the drug is released at a portion or an end of the intraocular implant relative to another portion or end of the intraocular implant.
  • In some embodiments, the flexible material selected for the intraocular implant 100 can be a gelatin or other similar material. For example, a gelatin used for making the implant can be a gelatin Type B from bovine skin. A preferred gelatin is PB Leiner gelatin from bovine skin, Type B, 225 Bloom, USP. Another material that may be used in the making of the implant is a gelatin Type A from porcine skin, also available from Sigma Chemical. Such gelatin is available is available from Sigma Chemical Company of St. Louis, Mo. under Code G-9382. Still other suitable gelatins include bovine bone gelatin, porcine bone gelatin and human-derived gelatins. In addition to gelatins, microfistula implant may be made of hydroxypropyl methycellulose (HPMC), collagen, polylactic acid, polylglycolic acid, hyaluronic acid and glycosaminoglycans.
  • If a gelatin implant is used, the delivery of the implant can be performed by wetting an inside the needle of the intraocular implant injector with a balanced salt solution (e.g., Dulbecco's Phosphate Buffered Saline), a steroid, or other drug prior to implantation. Such priming ensures that the implant remains flexible before implantation. Further, an amount of a basic salt solution (BSS), a viscoelastic, an antimetabolite, a drug-eluting solution, water, and/or a combination thereof can be optionally injected through the needle, and in some embodiments, through the implant, into a target space to create a primed space for outflow and to deliver a drug, such as an antifibrotic to that new drainage space.
  • The intraocular implant 100 material can be cross-linked. For example, when a gelatin is used, cross-linking can increase the inter- and intramolecular binding of the gelatin substrate. Any means for cross-linking the gelatin may be used. In some embodiments, the formed gelatin implants can be treated with a solution of a cross-linking agent such as, but not limited to, glutaraldehyde. Other suitable compounds for cross-linking include 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). Cross-linking by radiation, such as gamma or electron beam (e-beam) may be alternatively employed.
  • Aspects related to embodiments of drug delivery implants are discussed in co-pending U.S. Patent Application Publication No. 2012/0197175, filed on Dec. 8, 2008, U.S. Patent Application Publication No. 2014/0236066, filed on Feb. 19, 2013, the entireties of each of which is incorporated herein by reference.
  • FIG. 2 illustrates an embodiment of an intraocular implant 100 having a cylindrical shaped body with a solid cross-section between a portion of the length between a first end 106 and a second end 108. The intraocular implant 100 can comprise a rigid material, a resilient or flexible material, or any combination thereof. For example, the cylindrical shaped body can be a rigid material such as surgical steal coated with a flexible material to reduce and/or avoid erosion of the eye or migration of the implant. In some embodiments, the intraocular implant 100 can be entirely comprised a flexible material such as a gelatin. In some embodiments, the flexible material can be impregnated with a drug configured to be eluted from the intraocular implant 100 to the eye.
  • FIG. 3 illustrates an embodiment of an intraocular implant 100 having a cylindrical shaped body with a hollow cross-section between a portion of the length between a first end 106 and a second end 108. In some embodiments, an inner surface of the implant defines a cavity that can retain a drug. In some embodiments, a passage 110 extends through the outer surface and is in fluid communication with the cavity. The intraocular implant 100 can have a first passage 110 extending through a first end 106 of a first portion 102, and a second passage extending through a second end 108 of a second portion 104 to define a flow path between the first and second ends 106, 108. The first end 106 can receive fluid into the flow path from an anterior chamber of an eye and the second end 108 can direct the fluid to a location of lower pressure with respect to the anterior chamber 1. Some locations of lower pressure include the intrascleral space, intra-Tenon's space, the subconjunctival space, the episcleral vein, the subarachnoid space, and Schlemm's canal.
  • In some embodiments, the passage extends through an outer surface of the body, between the first and second ends 106, 108. For example, the passage can be an aperture or slit through the first and/or second portions 102, 104.
  • In some embodiments, the inner diameter and/or the length of the intraocular implant 100 can be varied in order to regulate the flow rate through implant. In some embodiments, the inner surface of the implant defines a variable inner diameter that increases along the length between the first and second ends 106, 108. In some embodiments, the inner diameter continuously increases along the length of the implant. In some embodiments, the inner diameter remains constant along portions of the length of the implant.
  • In some embodiments, the cavity of the intraocular implant 100 can packed, plugged, or filled with a drug to be eluted to the eye. In some embodiments, the cavity is coated with the drug to form a flow path or lumen. The drug can then be eluted into a fluid that enters the flow path of the cavity. As the drug is eluted, the lumen can become enlarge and the surface area of the drug that interacts with the fluid flow can increase. In some embodiments, the intraocular implant 100 is a shunt that comprises a flow path through the first and second ends 106, 108 and the cavity. IN an example, a cross-section of the cavity can be entirely filled with a drug so that no flow is permitted through cavity. In another example, the cavity can be filled with a drug so that after the drug begins to elude a flow path opens and flow through both the first and second ends 106, 108 is permitted like a shunt. In some embodiments, the cavity can be coated with a drug so that a flow path is formed and the intraocular implant 100 functions as shunt to permit a fluid flow through the first and second ends 106, 108.
  • Still referring to FIG. 3, the intraocular implant 100 can comprise a rigid material, a flexible material, or any combination thereof. For example, a rigid material can define a cylindrical shape body having one or more passage. In some embodiments, all or a portion of the rigid material such as surgical steal is coated with a resilient or flexible material to reduce and/or avoid erosion of the eye or migration of the implant. In some embodiments, the intraocular implant 100 can be entirely comprised a flexible material such as a gelatin. In some embodiments, the flexible material can be impregnated with a drug configured to be eluted from the intraocular implant 100 to the eye.
  • Referring to FIG. 4, an embodiment of an intraocular implant 100 is illustrated having an outer surface with a more than one cross-sectional width. The intraocular implant 100 can have a first portion 102 proximate to a first end 106, and a second portion 104 proximate to a second end 108 opposing the first end 106. The second portion 104 can have a cross-sectional width that is greater than the first portion 102. For example, the outer surface of the intraocular implant 100 can have a cross-sectional width that tapers from the second portion 104 toward the first portion 102. Further, the outer surface can taper at a consistent slope between the first and second portions. In some embodiments, the outer surface can comprise one or more ridges or steps so that a cross-sectional width of the outer surface is greater at the second portion 104 than the first portion 102.
  • The tapered outer surface can reduce and/or prevent movement or migration of the intraocular implant 100 within the eye. For example when the intraocular implant 100 is positioned within an eye so that the first portion 102 is positioned within the interior chamber 1 and the second portion 104 is within the intrascleral space 66, the second portion 104 is held or retained within intrascleral space 66 and movement of the intraocular implant 100 toward the interior chamber 1 is reduced and/or avoided.
  • In some embodiments, a portion of the intraocular implant 100 can be coated, layered, and/or impregnated with one or more drugs that can be eluted from the implant. In some embodiments, the intraocular implant 100 comprises one or more passage in fluid communication with a cavity. The cavity can be filled or coated with a drug such that the drug is released from a passage. In some embodiments, the intraocular implant 100 comprises a flow path or lumen extending through a first portion 102 and/or second portion 104, the drug being eluted to a fluid permitted through the flow path.
  • As noted above, the methods can be performed to provide treatment with a drug or pharmaceutical, such as by implanting an intraocular implant that has been coated, layered, packed, and/or impregnated with a pharmaceutical and/or biological agent, by treating the eye topically with a pharmaceutical and/or biological agent, and/or by injecting a pharmaceutical and/or biological agent into the anterior chamber and/or a target outflow region, including any target outflow regions discussed or referenced herein, prior to or after releasing a implant from the device. Suitable agents that can be used in some embodiments disclosed herein may include, for example, any of those disclosed in the following U.S. Pat. Nos. 8,785,394; 8,062,657; 7,799,336; 7,790,183; 7,033,605; 6,719,991; 6,558,686; 6,162,487; 5,902,283; 5,853,745; and 5,624,704; and U.S. Patent Publication No. 2008/0108933; the content of each of these references is incorporated by reference herein its entirety. Examples of suitable agents include antimitotic pharmaceuticals such as Mitomycin-C or 5-Fluorouracil, anti-VEGF (such as Lucintes, Macugen, Avastin, VEGF or steroids), anticoagulants, antimetabolites, angiogenesis inhibitors, steroids, anti-inflammatories, antibiotics, antiseptics, disinfectants, brimonidine, timolol, prostaglandin analogs (such as travoprost, latanoprost, and tafluprost), prostamides (such as bimatoprost), cyclosporin, pilocarpine, corticosteroids and other steroid derivatives (such as hydrocortisone, dexamethasone, beclomethasone dipropionate, triamcinolone, triamcinolone acetate, cortisol benzoate), or other agents or combinations thereof, for treating conditions of the eye, such as glaucoma, dry eye, allergy, or conjunctivitis, to name a few. Additional agents are provided further below.
  • Referring to FIG. 5, an embodiment of an intraocular implant 100 is illustrated comprising one or more protrusion 112 extending from an outer surface to reduce and/or avoid movement or migration of the intraocular implant 100 within the eye. The protrusion 112 can be a convex or concave portion of the outer surface of the intraocular implant 100. In an example, the protrusion 112 is a portion of the outer surface of the implant that extends outward from a longitudinal axis of the implant. In some embodiments, the protrusion 112 can comprise a barb, a ridge, a lip, or other similar features configured to engage a portion of the eye and reduce and/or avoid movement of the intraocular implant 100 within the eye.
  • In some embodiments, the intraocular implant 100 comprises a protrusion 112 extending from the outer surface of a second portion 104 to reduce and/or avoid movement toward the anterior chamber of the eye. For example, when the intraocular implant 100 is positioned within an eye so that the first portion 102 is positioned within the interior chamber 1 and the second portion 104 is within the intrascleral space 66, movement of the intraocular implant 100 toward the interior chamber 1 is reduced and/or avoided by engagement of the protrusion 112 against the sclera or other eye tissue. In some embodiments, the intraocular implant 100 comprises protrusions 112 extending from the outer surface at the first and second portions 102, 104.
  • FIG. 6 illustrates an embodiment of an intraocular implant 100 comprising a cylindrically shaped housing having a first end 106, a second end 108 opposite the first end 106, and an inner surface defining a cavity 114. A first end 106 comprises an opening defining a passage 110 extending from the outer surface to the cavity 114. In some embodiments, the cavity 114 comprises a drug 116 configured to be released through the passage 110. In some embodiments, the passage comprises a membrane 118, a mesh material, or other similar material that permits a fluid or a drug to move through the passage at a specified rate. In some embodiments, the passage 110 is a portion of the intraocular implant 100 comprising a porous material.
  • The intraocular implant 100 can comprise an elongate body 120 having a coating 122 on an outer surface. The coating 122 can be a flexible material to reduce and/or avoid movement and/or erosion to the surrounding eye tissue. In some embodiments, the coating 122 is impregnated with a drug to regulate the body's response to the implantation of the implant and the subsequent healing process.
  • As used herein, “controlled release” or “time-release” may refer to the release of an agent such as a drug from a composition or dosage form in which the agent is released according to a desired profile over an extended period of time. For example, such release can effect delivery of an active over an extended period of time, defined herein as being between about 60 minutes and about 2, 4, 6, 8 or even 12 hours. Controlled release profiles may include, for example, sustained release, prolonged release, pulsatile release, and delayed release profiles. Controlled release may also be defined functionally as the release of over 80 to 90 percent (%) of the active ingredient after about 60 minutes and about 2, 4, 6 or even 8 hours. Controlled release may also be defined as making the active ingredient available to the patient or subject regardless of uptake, as some actives may never be absorbed by the animal.
  • In contrast to immediate release compositions, controlled release compositions may permit delivery of an agent to a subject over an extended period of time according to a predetermined profile. Such release rates can provide therapeutically effective levels of agent for an extended period of time and thereby provide a longer period of pharmacologic or diagnostic response as compared to conventional rapid release dosage forms. Such longer periods of response may provide many benefits that are not achieved with the corresponding short acting, immediate release preparations.
  • In accordance with some embodiments, a variety of injectors or systems known in the art may be used to perform the methods disclosed herein. In some embodiments, deployment into the eye of an intraocular implant 100 can be achieved using a hollow needle or shaft configured to hold the implant, as described herein. The needle can be coupled to an injector or be a part of the injector itself. Some of the methods disclosed herein enable a surgeon to use an injector in a “freehand” procedure (i.e., without using docking, securement, or coupling devices) to inject an implant into the eye. However, some of the methods disclosed herein also enable a surgeon to use a “guiding” injector placement device. Optionally, the placement device can be temporarily affixed or secured to the eye or to the inserter itself during the procedure. Such injector placement devices can be retrofitted to existing injectors or incorporated into injector designs.
  • Some injectors that are suitable for placing shunts according to some embodiments include, but are not limited to, injectors described in U.S. Pat. Nos. 6,007,511, 6,544,249, U.S. Patent Publication No. 2008/0108933, U.S. Pat. No. 8,663,303, U.S. Patent Application Publication No. 2012/0123434, filed on Nov. 15, 2010, U.S. Pat. No. 8,721,702, filed on Nov. 15, 2010, U.S. Pat. No. 9,585,790, filed on Nov. 13, 2014, and U.S. patent application Ser. No. 62/170,338, filed on Jun. 3, 2015, the entire contents of each of which is incorporated by reference herein.
  • Furthermore, in accordance with some embodiments, the injector can use one, two, or more actuation mechanisms, including buttons, sliders, rotational components, and combinations thereof. For example, an injector can be configured to include two buttons, a button and a slider, two sliders, and/or rotational components. The advancement or withdrawal of a component of the injector (such as a plunger rod, needle, sleeve, or other component) can be done either through actuation of a button and/or a slider, and may be manual or use an energy stored mechanism (e.g., spring loaded actuation, electrical motor, or magnetic movement).
  • A drug-eluting intraocular implant implementing any of the features discussed or referenced herein can be implanted into any area of the eye to achieve release of a drug to a target area, and in some instances, create a fluid flow path from a target area. For example, the implant can be deployed with a distal or first end in the anterior chamber, and a proximal or second end in the intrascleral space, with the ability to deliver drugs at either or both ends or along an intermediate portion thereof. Some methods can be implemented such that multiple implants, with the same or different drugs and with the same or different release timings, can be implanted in different places (e.g., the subconjunctival space, the suprachoroidal space, the anterior chamber, etc.). Other methods and procedures can be performed to incorporate any of the implants discussed or referenced herein. Further, additional procedures for delivering drug-eluting plugs or shunts within the eye can be performed using one or more of the systems or devices disclosed herein. For example, the present disclosure can be used in combination with any of the shunts, plugs, or methods disclosed in U.S. Patent Application Publication No. 2016/0354244, filed on Jun. 2, 2016, and U.S. Patent Application Publication No. 2016/0354245, filed on Jun. 2, 2016, the entirety of each of which is incorporated herein by reference.
  • FIGS. 7-10 illustrate steps of a procedure for ab externo implantation of an intraocular implant, according to some embodiments. FIG. 7 illustrates an initial step of ab externo insertion of a needle of an implant injector 200 into an eye. The needle 202 can be configured to retain an intraocular implant 100. In some embodiments, the intraocular implant 100 is positioned within a portion of the needle proximal to a distal end 204. The intraocular implant 100 can be retained proximal to the distal end 204 by a pusher rod 206 retained within the needle.
  • To insert the intraocular implant in an eye, the needle 202 is advanced into the eye to pierce the conjunctiva 7, the Tenon capsule 10, and the sclera 8. In some instances, as the needle penetrates the eye and is advanced through the conjunctiva 7 toward the anterior chamber 1, the conjunctiva 7 and the Tenon capsule 10 are pushed down or compressed toward the sclera 8.
  • The intraocular implant 100 and the pusher rod 206 may travel forward with the needle 202. For example, as shown in FIG. 7, the intraocular implant 100 and the pusher rod 206 may travel forward with the needle 202 and penetrate conjunctiva 7, the Tenon capsule 10, and the sclera 8 of the eye until reaching a target or final position for the intraocular implant 100. In some embodiments, the intraocular implant 100 is in a final position when a distal portion of the implant (e.g., first portion 102) is within the anterior chamber 1, and a proximal portion of the implant (e.g., second portion 104) is within the intrascleral space 66. In some embodiments, the intraocular implant 100 is in a final position when the first portion 102 extends 0.2-0.4 mm into the anterior chamber 1. Preferably, the intraocular implant 100 is in a final position when the second portion 104 is within the intrascleral space 66 and a second end 108 of the implant does not extend into the subconjunctival space 60 or the suprascleral space 61. In some embodiments, a distal portion of the implant (e.g., first portion 102) is positioned in a choroidal space or a vitreous space in a final position.
  • In some embodiments where the intraocular implant 100 is not positioned proximal to a distal end 204 of the needle 202 during or after advancement of the injector 200 into the eye, the implant can be advanced by the actuation of the pusher rod 206 until reaching a position as illustrated in FIG. 8.
  • Referring to FIG. 9, once the intraocular implant 100 is in its final position, the needle 202 can be partially retracted while position of intraocular implant 100 is maintained by the pusher rod 206. In some embodiments, the position of intraocular implant 100 can be maintained by the pusher rod 206 until the distal end 204 of the needle 202 is proximally of the second portion 104 of the implant. Once the needle 202 is near the second portion 104 of the implant, the pusher rod 206 can be retracted and the needle 202 withdrawn, as shown in FIG. 10.
  • FIGS. 11-13 illustrate aspects of a final position of the intraocular implant 100 having a second portion 104 positioned within the intrascleral space 66. FIG. 11 illustrates the intraocular implant 100 with a first end 106 within the anterior chamber 1, and a second end 108 aligned with a superficial wall of the sclera 8. In this embodiment, the portion of the sclera 8 pierced by the needle may not heal (e.g., remain separated). In some embodiments, the final position of the intraocular implant 100 illustrated in FIG. 11 permits a drug to be released from the second portion 104 of the implant toward the subconjunctival space 60 or the suprascleral space 61. In some embodiments, the final position of the intraocular implant 100 illustrated in FIG. 11 permits a fluid flow through the implant.
  • FIG. 12 illustrates the intraocular implant 100 with a first end 106 within the anterior chamber 1, and a second end 108 spaced from the superficial wall of the sclera 8 by approximately 0.25-0.5 mm. In this embodiment, opposing surfaces of the portion of the sclera 8 pierced by the needle 202 can move toward each other and may heal. In some embodiments, the final position of the intraocular implant 100 illustrated in FIG. 12 permits a drug to be released from the second portion 104 of the implant and through the portion of the sclera 8 pierced by the needle 202 toward the subconjunctival space 60 or the suprascleral space 61. In some embodiments, the portion of the sclera 8 pierced by the needle 202 permits a fluid flow through the implant and/or regulated flow permitted through implant.
  • FIG. 13 illustrates the intraocular implant 100 with a first end 106 within the anterior chamber 1, and a second end 108 spaced from the superficial wall of the sclera 8 by approximately 0.75 mm. In this embodiment, opposing surfaces of the portion of the sclera 8 pierced by the needle 202 can move toward each other and permit the sclera to heal. In some embodiments, the final position of the intraocular implant 100 illustrated in FIG. 1 permits a drug to be released from the second portion 104 of the implant and through the portion of the sclera 8 pierced by the needle 202 toward the subconjunctival space 60 or the suprascleral space 61. In some embodiments, the portion of the sclera 8 pierced by the needle 202 does not permit a fluid flow through implant or portion of the sclera 8 pierced by the needle 202.
  • FIGS. 14-16 illustrate embodiments of an intraocular implant injector 200 and a placement device 300. In some embodiments, an intraocular implant injector 200 can be provided in which a placement device 300 and the injector are formed unitarily, coupled with each other, or otherwise formed from a single, continuous housing or material to form a single handheld unit. Otherwise, the placement device 300 can be removably coupled to the injector 200. For example, the placement device 300 can be prepared for use with an injector 200, and in some embodiments, as a retrofit to an existing injector.
  • FIG. 14 illustrates an embodiment of an intraocular implant placement device 300 comprising a body having proximal and distal portions. A needle support component 302 extends from a proximal portion toward a distal portion of the placement device 300. A distal portion of the placement device 300 can comprise one or more eye-contacting surfaces 304 to facilitate alignment of a needle or injector relative to an eye.
  • As shown in FIGS. 14-16, the needle support component 302 can accommodate, mate with, or otherwise engage or support a needle 202 and/or a portion of an injector 200. The needle support component 302 can comprise a port 306, such as an elongate aperture, lumen, or bore that defines a needle axis 308 extending from the proximal portion toward the distal portion of the placement device 300. A needle 202, sleeve 208, and/or other portion of an injector 200 can be fitted into the shaft 306 from the proximal portion. In some embodiments, an inner profile of the needle support component 302 can closely match an outer profile of the needle 202, sleeve 208, or other portion of the injector 200.
  • The eye-contacting surface 304 can be configured for engagement against an external surface of the eye 93 and can comprise at least one surface configured to mate against the eye 93. For example, the surface can comprise a concave or arcuate surface that approximates the external surface of the eye in order to position the placement device 300 against the eye 93. The eye-contacting surface can be configured to facilitate alignment of the placement device 300 with one or more indicia of the eye 93, such as the cornea, the corneal limbus 96, and the pupil.
  • In some embodiments, the eye-contacting surface 304 can comprise a horizontal radius and a vertical radius. In accordance with some embodiments, when the eye-contacting surface 304 is engaged against the external surface of the eye 93, the vertical radius 310 can be oriented normal relative to the visual axis 95 (pupillary or optical axis) of the eye 93.
  • In some embodiments, the horizontal upper edge 312 of the placement device 300 that can be aligned with the corneal limbus 96 to facilitate alignment of the placement device 300 relative to the visual axis 95 of the eye 93. In some embodiments, the vertical radius 310 can facilitate alignment of the placement device 300 so that the needle axis 94 intersects the final position of the intraocular implant 100. In some embodiments, the vertical radius 310 can comprise an angle of between about 10 and 60 degrees, between about 20 and 50 degrees, between about 25 and 45 degrees, between about 30 and 40 degrees, or about 35 degrees from horizontal.
  • Referring to FIG. 15, a needle 202, sleeve 208, or other portion of the injector 200 is permitted to extend through the needle support component 302 from the proximal portion toward the distal portion of the placement device 300. In this pre-injection configuration, the needle 202 does not extend beyond the distal portion of the placement device 300. However, referring to FIG. 16, with the eye-contacting surface 304 engaged against an external surface of the eye 93, the needle 202 can be advanced toward an injection configuration. In moving toward the injection configuration, the needle 202 can be advanced toward the eye 93 such that the needle 202 extends beyond the distal portion of the placement device 300 and into the eye 93. Thereafter, a shunt can be released into the eye using any of the procedures for releasing a shunt from any of the inserters disclosed or referred to herein.
  • In some embodiments, the placement device 300 can be configured with a longitudinal length so that a distal end of the needle 202 cannot extend a further than predetermined distance beyond the eye-contacting surface 304. The predetermined distance that the needle 202 is permitted to extend beyond the distal portion can be configured to correspond to the maximum distance the implant carried within the needle 202 is to be placed in the eye 93. For example, in the injection configuration, the length of the needle 202 extending beyond the eye-contacting surface 304 can be approximately equal to the distance between the conjunctiva 7 and the anterior chamber 1. In some embodiments, a length of the placement device 300 along the longitudinal needle axis 308 is configured or selected to limit advancement of the needle 202 through the eye-contacting surface 304.
  • In some embodiments, the placement device 300 can comprise a longitudinal restriction to restrict the needle 202 from travelling further than a predetermined distance beyond the distal portion of the placement device 300. In some embodiments, the longitudinal restriction can comprise a shoulder that contacts a portion of the needle 202, sleeve 208, or other portion of the injector 200 during movement of the needle toward the injection configuration. For example, the placement device 300 can comprise a shoulder positioned within the lumen of the needle support component 302. Thus, the needle 202, sleeve 208, or other portion of the injector 200 moving through the needle support component 302 can be stopped by a shoulder so that the needle 202 advances only to the specified or predetermined distance beyond the distal portion.
  • In some embodiments, all or at least a portion of the placement device 300 can be transparent. For example, a distal portion of the placement device 300 can be transparent to facilitate visual alignment with an indicium of the eye, monitoring the position of the needle 202, sleeve 208, or other portion of the injector 200, or to otherwise facilitate alignment of the placement device 300 with the eye 93. In some embodiments, the distal portion can comprise a longer cross-sectional width than a proximal portion of the placement device 300. In some embodiments, the distal portion comprises a tapering cross-sectional width.
  • Pharmaceutical and Biological Agents
  • As discussed above, the devices and/or methods disclosed herein can provide treatment with a drug or pharmaceutical, such as by implanting an intraocular implant that has been coated, packed, layered, and/or impregnated with a pharmaceutical and/or biological agent, by treating the eye topically with a pharmaceutical and/or biological agent, and/or by injecting a pharmaceutical and/or biological agent into the anterior chamber and/or a target outflow region, including any target outflow regions discussed or referenced herein, prior to or after releasing a implant from the device. In some embodiments, the pharmaceutical and/or biological agent can include an immunosuppressive agent is selected from the group consisting of dexamethasone, cyclosporin A, azathioprine, brequinar, gusperimus, 6-mercaptopurine, mizoribine, rapamycin, tacrolimus (FK-506), folic acid analogs (e.g., denopterin, edatrexate, methotrexate, piritrexim, pteropterin, Tomudex®, trimetrexate), purine analogs (e.g., cladribine, fludarabine, 6-mercaptopurine, thiamiprine, thiaguanine), pyrimidine analogs (e.g., ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, doxifluridine, emitefur, enocitabine, floxuridine, fluorouracil, gemcitabine, tegafur) fluocinolone, triaminolone, anecortave acetate, fluorometholone, medrysone, and prednislone. In a preferred embodiment, the immunosuppressive agent is dexamethasone. In another preferred embodiment, the immunosuppressive agent is cyclosporin A. In another embodiment, the bioerodible implant comprises more than one immunosuppressive agent.
  • In some embodiments, the pharmaceutical and/or biological agent can include one or more additional therapeutic agents, such as antibiotics or anti-inflammatory agents, such as antibacterial antibiotics, synthetic antibacterials, antifungal antibiotics, synthetic antifungals, antineoplastics, anti-inflammatory agents, and/or antimicrobial agents.
  • Antibacterial antibiotics can include aminoglycosides (e.g., amikacin, apramycin, arbekacin, bambermycins, butirosin, dibekacin, dihydrostreptomycin, fortimicin(s), gentamicin, isepamicin, kanamycin, micronomicin, neomycin, neomycin undecylenate, netilmicin, paromomycin, ribostamycin, sisomicin, spectinomycin, streptomycin, tobramycin, trospectomycin), amphenicols (e.g., azidamfenicol, chloramphenicol, florfenicol, thiamphenicol), ansamycins (e.g., rifamide, rifampin, rifamycin sv, rifapentine, rifaximin), β-lactams (e.g., carbacephems (e.g., loracarbef), carbapenems (e.g., biapenem, imipenem, meropenem, panipenem), cephalosporins (e.g., cefaclor, cefadroxil, cefamandole, cefatrizine, cefazedone, cefazolin, cefcapene pivoxil, cefclidin, cefdinir, cefditoren, cefepime, cefetamet, cefixime, cefinenoxime, cefodizime, cefonicid, cefoperazone, ceforanide, cefotaxime, cefotiam, cefozopran, cefpimizole, cefpiramide, cefpirome, cefpodoxime proxetil, cefprozil, cefroxadine, cefsulodin, ceftazidime, cefteram, ceftezole, ceftibuten, ceftizoxime, ceftriaxone, cefuroxime, cefuzonam, cephacetrile sodium, cephalexin, cephaloglycin, cephaloridine, cephalosporin, cephalothin, cephapirin sodium, cephradine, pivcefalexin), cephamycins (e.g., cefbuperazone, cefinetazole, cefminox, cefotetan, cefoxitin), monobactams (e.g., aztreonam, carumonam, tigemonam), oxacephems, flomoxef, moxalactam), penicillins (e.g., amdinocillin, amdinocillin pivoxil, amoxicillin, ampicillin, apalcillin, aspoxicillin, azidocillin, azlocillin, bacampicillin, benzylpenicillinic acid, benzylpenicillin sodium, carbenicillin, carindacillin, clometocillin, cloxacillin, cyclacillin, dicloxacillin, epicillin, fenbenicillin, floxacillin, hetacillin, lenampicillin, metampicillin, methicillin sodium, mezlocillin, nafcillin sodium, oxacillin, penamecillin, penethamate hydriodide, penicillin g benethamine, penicillin g benzathine, penicillin g benzhydrylamine, penicillin g calcium, penicillin g hydrabamine, penicillin g potassium, penicillin g procaine, penicillin n, penicillin o, penicillin v, penicillin v benzathine, penicillin v hydrabamine, penimepicycline, phenethicillin potassium, piperacillin, pivampicillin, propicillin, quinacillin, sulbenicillin, sultamicillin, talampicillin, temocillin, ticarcillin), other (e.g., ritipenem), lincosamides (e.g., clindamycin, lincomycin), macrolides (e.g., azithromycin, carbomycin, clarithromycin, dirithromycin, erythromycin, erythromycin acistrate, erythromycin estolate, erythromycin glucoheptonate, erythromycin lactobionate, erythromycin propionate, erythromycin stearate, josamycin, leucomycins, midecamycins, miokamycin, oleandomycin, primycin, rokitamycin, rosaramicin, roxithromycin, spiramycin, troleandomycin), polypeptides (e.g., amphomycin, bacitracin, capreomycin, colistin, enduracidin, enviomycin, fusafungine, gramicidin s, gramicidin(s), mikamycin, polymyxin, pristinamycin, ristocetin, teicoplanin, thiostrepton, tuberactinomycin, tyrocidine, tyrothricin, vancomycin, viomycin, virginiamycin, zinc bacitracin), tetracyclines (e.g., apicycline, chlortetracycline, clomocycline, demeclocycline, doxycycline, guamecycline, lymecycline, meclocycline, methacycline, minocycline, oxytetracycline, penimepicycline, pipacycline, rolitetracycline, sancycline, tetracycline), and others (e.g., cycloserine, mupirocin, tuberin).
  • Synthetic antibacterials can include 2,4-Diaminopyrimidines (e.g., brodimoprim, tetroxoprim, trimethoprim), nitrofurans (e.g., furaltadone, furazolium chloride, nifuradene, nifuratel, nifurfoline, nifurpirinol, nifurprazine, nifurtoinol, nitrofurantoin), quinolones and analogs (e.g., cinoxacin, ciprofloxacin, clinafloxacin, difloxacin, enoxacin, fleroxacin, flumequine, grepafloxacin, lomefloxacin, miloxacin, nadifloxacin, nalidixic acid, norfloxacin, ofloxacin, oxolinic acid, pazufloxacin, pefloxacin, pipemidic acid, piromidic acid, rosoxacin, rufloxacin, sparfloxacin, temafloxacin, tosufloxacin, trovafloxacin), sulfonamides (e.g., acetyl sulfamethoxypyrazine, benzylsulfamide, chloramine-b, chloramine-t, dichloramine t, n2-formyl sulfisomidine, n4-β-d-glucosylsulfanilamide, mafenide, 4′-(methylsulfamoyl)sulfanilanilide, noprylsulfamide, phthalylsulfacetamide, phthalylsulfathiazole, salazosulfadimidine, succinylsulfathiazole, sulfabenzamide, sulfacetamide, sulfachlorpyridazine, sulfachrysoidine, sulfacytine, sulfadiazine, sulfadicramide, sulfadimethoxine, sulfadoxine, sulfaethidole, sulfaguanidine, sulfaguanol, sulfalene, sulfaloxic acid, sulfamerazine, sulfameter, sulfamethazine, sulfamethizole, sulfamethomidine, sulfamethoxazole, sulfamethoxypyridazine, sulfametrole, sulfamidochrysoidine, sulfamoxole, sulfanilamide, 4-sulfanilamidosalicylic acid, n4-sulfanilylsulfanilamide, sulfanilylurea, n-sulfanilyl-3,4-xylamide, sulfanitran, sulfaperine, sulfaphenazole, sulfaproxyline, sulfapyrazine, sulfapyridine, sulfasomizole, sulfasymazine, sulfathiazole, sulfathiourea, sulfatolamide, sulfisomidine, sulfisoxazole) sulfones (e.g., acedapsone, acediasulfone, acetosulfone sodium, dapsone, diathymosulfone, glucosulfone sodium, solasulfone, succisulfone, sulfanilic acid, p-sulfanilylbenzylamine, sulfoxone sodium, thiazolsulfone), and others (e.g., clofoctol, hexedine, methenamine, methenamine anhydromethylene-citrate, methenamine hippurate, methenamine mandelate, methenamine sulfosalicylate, nitroxoline, taurolidine, xibomol).
  • Antifungal antibiotics can include polyenes (e.g., amphotericin b, candicidin, dermostatin, filipin, fungichromin, hachimycin, hamycin, lucensomycin, mepartricin, natamycin, nystatin, pecilocin, perimycin), others (e.g., azaserine, griseofulvin, oligomycins, neomycin undecylenate, pyrrolnitrin, siccanin, tubercidin, viridin).
  • Synthetic antifungals can include allylamines (e.g., butenafine, naftifine, terbinafine), imidazoles (e.g., bifonazole, butoconazole, chlordantoin, chlormidazole, cloconazole, clotrimazole, econazole, enilconazole, fenticonazole, flutrimazole, isoconazole, ketoconazole, lanoconazole, miconazole, omoconazole, oxiconazole nitrate, sertaconazole, sulconazole, tioconazole), thiocarbamates (e.g., tolciclate, tolindate, tolnaftate), triazoles (e.g., fluconazole, itraconazole, saperconazole, terconazole) others (e.g., acrisorcin, amorolfine, biphenamine, bromosalicylchloranilide, buclosamide, calcium propionate, chlorphenesin, ciclopirox, cloxyquin, coparaffinate, diamthazole dihydrochloride, exalarnide, flucytosine, halethazole, hexetidine, loflucarban, nifuratel, potassium iodide, propionic acid, pyrithione, salicylanilide, sodium propionate, sulbentine, tenonitrozole, triacetin, ujothion, undecylenic acid, zinc propionate).
  • Antineoplastics can include antibiotics and analogs (e.g., aclacinomycins, actinomycin fl, anthramycin, azaserine, bleomycins, cactinomycin, carubicin, carzinophilin, chromomycins, dactinomycin, daunorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin, epirubicin, idarubicin, menogaril, mitomycins, mycophenolic acid, nogalamycin, olivomycines, peplomycin, pirarubicin, plicamycin, porfiromycin, puromycin, streptonigrin, streptozocin, tubercidin, zinostatin, zorubicin), antimetabolites (e.g. folic acid analogs (e.g., denopterin, edatrexate, methotrexate, piritrexim, pteropterin, Tomudex®, trimetrexate), purine analogs (e.g., cladribine, fludarabine, 6-mercaptopurine, thiamiprine, thioguanine), pyrimidine analogs (e.g., ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, doxifluridine, emitefur, enocitabine, floxuridine, fluorouracil, gemcitabine, tagafur).
  • Anti-inflammatory agents include steroidal and non-steroidal anti-inflammatory agents. Steroidal anti-inflammatory agents can include 21-acetoxypregnenolone, alclometasone, algestone, amcinonide, beclomethasone, betamethasone, budesonide, chloroprednisone, clobetasol, clobetasone, clocortolone, cloprednol, corticosterone, cortisone, cortivazol, deflazacort, desonide, desoximetasone, dexamethasone, diflorasone, diflucortolone, difluprednate, enoxolone, fluazacort, flucloronide, flumethasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin butyl, fluocortolone, fluorometholone, fluperolone acetate, fluprednidene acetate, fluprednisolone, flurandrenolide, fluticasone propionate, formocortal, halcinonide, halobetasol propionate, halometasone, halopredone acetate, hydrocortamate, hydrocortisone, loteprednol etabonate, mazipredone, medrysone, meprednisone, methylprednisolone, mometasone furoate, paramethasone, prednicarbate, prednisolone, prednisolone 25-diethylamino-acetate, prednisolone sodium phosphate, prednisone, prednival, prednylidene, rimexolone, tixocortol, triamcinolone, triamcinolone acetonide, triamcinolone benetonide, and triamcinolone hexacetonide.
  • Non-steroidal anti-inflammatory agents can include aminoarylcarboxylic acid derivatives (e.g., enfenamic acid, etofenamate, flufenamic acid, isonixin, meclofenamic acid, mefenamic acid, niflumic acid, talniflumate, terofenamate, tolfenamic acid), arylacetic acid derivatives (e.g., aceclofenac, acemetacin, alclofenac, amfenac, amtolmetin guacil, bromfenac, bufexamac, cinmetacin, clopirac, diclofenac sodium, etodolac, felbinac, fenclozic acid, fentiazac, glucametacin, ibufenac, indomethacin, isofezolac, isoxepac, lonazolac, metiazinic acid, mofezolac, oxametacine, pirazolac, proglumetacin, sulindac, tiaramide, tolmetin, tropesin, zomepirac), arylbutyric acid derivatives (e.g., bumadizon, butibufen, fenbufen, xenbucin), arylcarboxylic acids (e.g., clidanac, ketorolac, tinoridine), arylpropionic acid derivatives (e.g., alminoprofen, benoxaprofen, bermoprofen, bucloxic acid, carprofen, fenoprofen, flunoxaprofen, flurbiprofen, ibuprofen, ibuproxam, indoprofen, ketoprofen, loxoprofen, naproxen, oxaprozin, piketoprolen, pirprofen, pranoprofen, protizinic acid, suprofen, tiaprofenic acid, ximoprofen, zaltoprofen), pyrazoles (e.g., difenamizole, epirizole), pyrazolones (e.g., apazone, benzpiperylon, feprazone, mofebutazone, morazone, oxyphenbutazone, phenylbutazone, pipebuzone, propyphenazone, ramifenazone, suxibuzone, thiazolinobutazone), salicylic acid derivatives (e.g., acetaminosalol, aspirin, benorylate, bromosaligenin, calcium acetylsalicylate, diflunisal, etersalate, fendosal, gentisic acid, glycol salicylate, imidazole salicylate, lysine acetylsalicylate, mesalamine, morpholine salicylate, 1-naphthyl salicylate, olsalazine, parsalmide, phenyl acetylsalicylate, phenyl salicylate, salacetamide, salicylamide o-acetic acid, salicyl sulfuric acid, salsalate, sulfasalazine), thiazinecarboxamides (e.g., ampiroxicam, droxicam, isoxicam, lomoxicam, piroxicam, tenoxicam), ϵ-acetamidocaproic acid, s-adenosylmethionine, 3-amino-4-hydroxybutyric acid, amixetrine, bendazac, benzydamine, a-bisabolol, bucolome, difenpiramide, ditazol, emorfazone, fepradinol, guaiazulene, nabumetone, nimesulide, oxaceprol, paranyline, perisoxal, proquazone, superoxide dismutase, tenidap, and zileuton.
  • Antimicrobial agents can include antibiotics, antiseptics, disinfectants, and/or other synthetic moieties, and combinations thereof, that are soluble in organic solvents such as alcohols, ketones, ethers, aldehydes, acetonitrile, acetic acid, formic acid, methylene chloride and chloroform.
  • Illustration of Subject Technology as Clauses
  • Various examples of aspects of the disclosure are described as numbered clauses (1, 2, 3, etc.) for convenience. These are provided as examples, and do not limit the subject technology. Identifications of the figures and reference numbers are provided below merely as examples and for illustrative purposes, and the clauses are not limited by those identifications.
  • Clause 1. An intraocular implant for delivery of a drug to an eye, the implant comprising: an elongate body configured to be advanced into the eye through conjunctiva and sclera of the eye, the elongate body comprising a longitudinal length such that upon placement within the eye, a first portion of the implant is within an anterior chamber of the eye, and a second portion of the implant is within an intrascleral space of the eye; and a drug deliverable from the implant to the eye.
  • Clause 2. The implant of the preceding Clause, wherein the elongate body comprises a resilient material impregnated with the drug, the drug configured to be released from the implant to the eye.
  • Clause 3. The implant of any of the preceding Clauses, wherein the elongate body comprises a rigid material coated on an outer surface with a resilient material, the resilient material configured to engage against the eye to reduce and/or avoid migration of implant.
  • Clause 4. The implant of any of the preceding Clauses, wherein the resilient material is impregnated with the drug, the drug configured to be released from the implant to the eye.
  • Clause 5. The implant of any of the preceding Clauses, wherein the elongate body comprises a first passage in communication with a cavity within the elongate body, the cavity comprising the drug, wherein the drug is configured to be released from the cavity through the first passage.
  • Clause 6. The implant of any of the preceding Clauses, wherein the first passage comprises a membrane configured to permit release of the drug from the implant at a predetermined rate.
  • Clause 7. The implant of any of the preceding Clauses, wherein the first passage comprises a slit through the elongate body between the first and second portions of the implant.
  • Clause 8. The implant of any of the preceding Clauses, wherein the first passage extends through the first portion, and a second passage, in communication with the cavity, extends through the second portion, wherein the drug is configured to be released from the cavity through at least one of the first and second passages.
  • Clause 9. The implant of any of the preceding Clauses, wherein the first and second passages comprise a membrane configured to permit release of the drug from the implant at a predetermined rate.
  • Clause 10. The implant of any of the preceding Clauses, wherein an outer surface of the elongate body is tapered to reduce and/or avoid migration of the elongate body deep to the sclera, the elongate body having a cross-sectional width at the first portion that is less than a cross-sectional width at the second portion.
  • Clause 11. The implant of any of the preceding Clauses, wherein an outer surface of the elongate body comprises a protrusion to reduce and/or avoid migration of the elongate body deep to the sclera.
  • Clause 12. The implant of Clause 11, wherein the protrusion is proximate to the second portion of the elongate body.
  • Clause 13. The implant of Clause 11, wherein the protrusion comprises a barb.
  • Clause 14. The implant of Clause 11, wherein the protrusion comprises a ridge.
  • Clause 15. The implant of any of the preceding Clauses, wherein the elongate body comprises a longitudinal length defining a lumen extending through the first and second portions, the drug is retained within the lumen and configured to be released from the implant to the eye.
  • Clause 16. The implant of any of the preceding Clauses, wherein the lumen is obstructed by the drug to permit fluid flow through the lumen after the drug is sufficiently released from the implant to define a passage between the first and second portions.
  • Clause 17. The implant of any of the preceding Clauses, wherein the lumen is coated with the drug to permit drug elution via fluid flow through the lumen.
  • Clause 18. An intraocular implant for delivery of a drug to an eye, the implant comprising: an elongate body configured to be advanced within a needle through a conjunctiva, a Tenon capsule, and a sclera of the eye, the elongate body comprising a tapered outer surface to reduce and/or avoid migration of the elongate body deep to the sclera, the elongate body having a cross-sectional width at a first portion that is less than a cross-sectional width at a second portion; and a drug deliverable from the implant to the eye.
  • Clause 19. The implant of the preceding Clause, wherein the elongate body comprises a resilient material impregnated with the drug, the drug configured to be released from the implant to the eye.
  • Clause 20. The implant of any of the preceding Clauses, wherein the elongate body comprises a rigid material coated on an outer surface with a resilient material, the resilient material configured to engage against the eye to reduce and/or avoid migration of implant.
  • Clause 21. The implant of any of the preceding Clauses, wherein the resilient material is impregnated with the drug, the drug configured to be released from the implant to the eye.
  • Clause 22. The implant of any of the preceding Clauses, wherein the first portion comprises a first passage in communication with a cavity within the elongate body, the cavity comprising the drug, wherein the drug is configured to be released from the cavity through the first passage.
  • Clause 23. The implant of any of the preceding Clauses, wherein the first passage comprises a membrane configured to permit release of the drug from the implant at a predetermined rate.
  • Clause 24. The implant of any of the preceding Clauses, wherein the first passage extends through the first portion, and a second passage, in communication with the cavity, extends through the second portion, wherein the drug is configured to be released from the cavity through at least one of the first and second passages.
  • Clause 25. An ab externo method of placing an intraocular implant into an eye, the method comprising the steps of: advancing a needle, in which the implant is disposed, into the eye through conjunctiva and sclera of the eye, the implant comprising a drug deliverable to the eye; and releasing the intraocular implant to anchor the implant within an intrascleral space of the eye.
  • Clause 26. The method of the preceding Clause, wherein when released, a proximal end of the implant is positioned within the sclera.
  • Clause 27. The method of any of the preceding Clauses, wherein the releasing comprises positioning a first portion of the implant within an anterior chamber of the eye and a second portion of the implant within the intrascleral space.
  • Clause 28. The method of any of the preceding Clauses, wherein the advancing comprises advancing the needle through Tenon's capsule.
  • Clause 29. The method of any of the preceding Clauses, wherein advancing the needle further comprises advancing a pusher rod within the needle to position the implant at a distal portion of the needle.
  • Clause 30. The method of any of the preceding Clauses, comprising positioning a bevel of the needle within an anterior chamber of the eye while advancing the pusher rod to advance a first portion of the implant through the bevel of the needle while permitting a second portion of the implant to remain within the needle.
  • Clause 31. The method of any of the preceding Clauses, further comprising withdrawing the needle relative to the pusher rod while maintaining the pusher rod stationary relative to the eye to retain the first portion of the implant within the anterior chamber of the eye.
  • Clause 32. The method of any of the preceding Clauses, positioning a bevel of the needle within an anterior chamber of the eye.
  • Clause 33. The method of any of the preceding Clauses, wherein the positioning comprises orienting a longitudinal axis of the needle at an angle relative to a visual axis of the eye to facilitate placement of a second portion of the implant deep to a superficial layer of the sclera and a first portion of the implant within the anterior chamber of the eye.
  • Clause 34. The method of Clause 33, wherein the angle is between about 10 degrees and about 60 degrees.
  • Clause 35. The method of Clause 33, wherein the angle is between about 20 degrees and about 50 degrees.
  • Clause 36. The method of Clause 33, wherein the angle is between about 25 degrees and about 40 degrees.
  • Clause 37. The method of Clause 33, wherein the angle is between about 30 degrees and about 35 degrees.
  • Clause 38. The method of Clause 33, wherein the angle is about 30 degrees.
  • Clause 39. The method of any of the preceding Clauses, wherein upon release, a first end of the implant is positioned within an anterior chamber of the eye and a second end of the implant is positioned at least about 0.25-0.5 mm deep to a superficial wall of the sclera.
  • Clause 40. The method of any of the preceding Clauses, wherein upon release, a proximal end of the implant is positioned at least about 0.25-0.5 mm deep to a superficial wall of the sclera.
  • Clause 41. The method of any of the preceding Clauses, wherein upon release, a first end of the implant is positioned within the anterior chamber and a second end of the implant is positioned at least about 0.5-0.75 mm deep to a superficial wall of the sclera.
  • Clause 42. The method of any of the preceding Clauses, wherein upon release, a proximal end of the implant is positioned at least about 0.5-0.75 mm deep to a superficial wall of the sclera.
  • Clause 43. The method of any of the preceding Clauses, further comprising the step of contacting a sleeve, coupled to the needle, against an external surface of the eye, to restrict further longitudinal advancement of the needle into the eye.
  • Clause 44. The method of any of the preceding Clauses, wherein the releasing comprises releasing the intraocular implant to anchor a first portion of the implant deep to the sclera and a second portion of the implant within an intrascleral space of the eye.
  • Clause 45. The method of any of the preceding Clauses, wherein the positioning comprises positioning the second portion of the implant between layers of the sclera.
  • Clause 46. The method of any of the preceding Clauses, comprising positioning a bevel of the needle within an anterior chamber of the eye and an outflow portion of the implant within the anterior chamber.
  • Clause 47. The method of any of the preceding Clauses, comprising positioning a bevel of the needle within a choroidal space of the eye and an outflow portion of the implant within the choroidal space.
  • Clause 48. The method of any of the preceding Clauses, comprising positioning a bevel of the needle within a vitreous space of the eye and an outflow portion of the implant within the vitreous space.
  • Clause 49. The method of any of the preceding Clauses, wherein the implant comprises a tapered cross-sectional profile, the releasing comprising anchoring the implant by positioning a larger cross-sectional profile first end portion of the implant superficially within the sclera and a smaller cross-sectional profile second end portion deep to the first end portion.
  • Clause 50. The method of any of the preceding Clauses, wherein the implant comprises a conical shape in which the first end portion of the implant has a larger cross-sectional profile than the second end portion.
  • Clause 51. The method of any of the preceding Clauses, wherein the implant comprises at least one engagement protrusion disposed along a proximal, outer region of the implant, the releasing comprising anchoring the implant by positioning the engagement protrusion between layers of sclera.
  • Clause 52. The method of any of the preceding Clauses, wherein the at least one engagement protrusion comprises a hook, ridge, barb, spike, wing, or bump.
  • Clause 53. The method of any of the preceding Clauses, wherein the implant comprises an intraocular shunt.
  • Clause 54. The method of any of the preceding Clauses, further comprising positioning a proximal end of the implant within a target outflow region and a distal end of the implant within an anterior chamber of the eye.
  • Clause 55. The method of any of the preceding Clauses, wherein the implant comprises an intraocular shunt and the drug coats the shunt or fills a lumen of the shunt.
  • Clause 56. The method of any of the preceding Clauses, wherein the implant comprises a soft biocompatible material.
  • Clause 57. The method of any of the preceding Clauses, wherein the implant comprises a soft polymer material.
  • Clause 58. The method of any of the preceding Clauses, wherein the implant comprises a gelatin material.
  • Clause 59. An intraocular implant placement device for placing an intraocular implant into an eye, the device comprising: a body comprising proximal and distal portions and a longitudinal needle axis extending between the proximal and distal portions, the proximal portion configured to couple with an intraocular implant injector to permit a needle of the implant injector to extend along the longitudinal needle axis, and the distal portion comprising an eye-contacting surface configured to engage the eye to permit a clinician to align the placement device relative to an indicium of the eye thereby aligning the needle relative to the eye.
  • Clause 60. The placement device of the preceding Clause, wherein a length of the body along the longitudinal needle axis is selected to limit advancement of the needle through the eye-contacting surface.
  • Clause 61. The placement device of any of the preceding Clauses, wherein the body obstructs advancement of the needle distal to the eye-contacting surface beyond a predetermined length.
  • Clause 62. The placement device of any of the preceding Clauses, wherein the eye-contacting surface comprises at least one arcuate surface for alignment of the placement device relative to an indicium of the eye and alignment of the longitudinal needle axis to the eye.
  • Clause 63. The placement device of any of the preceding Clauses, wherein the eye-contacting surface is at least partially concave.
  • Clause 64. The placement device of any of the preceding Clauses, wherein the distal portion flares outwardly.
  • Clause 65. The placement device of any of the preceding Clauses, wherein the eye-contacting surface extends from an arcuate edge of the distal portion, the arcuate edge being positionable adjacent to a corneal limbus of the eye for aligning the placement device relative to the eye.
  • Clause 66. The placement device of any of the preceding Clauses, wherein the eye-contacting surface extends proximally from a distal end of the body.
  • Clause 67. The placement device of any of the preceding Clauses, wherein when coupled with the implant injector, the needle of the implant injector is coaxial with the longitudinal needle axis.
  • Clause 68. The placement device of any of the preceding Clauses, wherein the placement device is detachable from an implant injector.
  • Clause 69. The placement device of any of the preceding Clauses, wherein the body surrounds at least a portion of the needle.
  • Clause 70. The placement device of any of the preceding Clauses, wherein the body comprises an elongate shaft and a needle port extending therethrough.
  • Clause 71. The placement device of any of the preceding Clauses, wherein the needle port extends through the eye-contacting surface.
  • Clause 72. The placement device of any of the preceding Clauses, wherein the longitudinal needle axis extends through the eye-contacting surface.
  • Clause 73. The placement device of any of the preceding Clauses, wherein the eye-contacting surface comprises a blunt face positionable against the eye, the blunt face having a surface area of at least about 5 mm2.
  • Clause 74. The placement device of any of the preceding Clauses, wherein eye-contacting surface comprises a blunt face positionable against the eye, the blunt face having a surface area of at least about 10 mm2.
  • Clause 75. The placement device of any of the preceding Clauses, wherein eye-contacting surface comprises a single, continuous surface through which the needle axis passes.
  • Clause 76. The placement device of any of the preceding Clauses, wherein a portion of the body is transparent to facilitate visualization of the needle or an indicium of the eye.
  • Further Considerations
  • In some embodiments, any of the clauses herein may depend from any one of the independent clauses or any one of the dependent clauses. In one aspect, any of the clauses (e.g., dependent or independent clauses) may be combined with any other one or more clauses (e.g., dependent or independent clauses). In one aspect, a claim may include some or all of the words (e.g., steps, operations, means or components) recited in a clause, a sentence, a phrase or a paragraph. In one aspect, a claim may include some or all of the words recited in one or more clauses, sentences, phrases or paragraphs. In one aspect, some of the words in each of the clauses, sentences, phrases or paragraphs may be removed. In one aspect, additional words or elements may be added to a clause, a sentence, a phrase or a paragraph. In one aspect, the subject technology may be implemented without utilizing some of the components, elements, functions or operations described herein. In one aspect, the subject technology may be implemented utilizing additional components, elements, functions or operations.
  • The foregoing description is provided to enable a person skilled in the art to practice the various configurations described herein. While the subject technology has been particularly described with reference to the various figures and configurations, it should be understood that these are for illustration purposes only and should not be taken as limiting the scope of the subject technology.
  • There may be many other ways to implement the subject technology. Various functions and elements described herein may be partitioned differently from those shown without departing from the scope of the subject technology. Various modifications to these configurations will be readily apparent to those skilled in the art, and generic principles defined herein may be applied to other configurations. Thus, many changes and modifications may be made to the subject technology, by one having ordinary skill in the art, without departing from the scope of the subject technology.
  • It is understood that the specific order or hierarchy of steps in the processes disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged. Some of the steps may be performed simultaneously. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
  • As used herein, the phrase “at least one of” preceding a series of items, with the term “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item). The phrase “at least one of” does not require selection of at least one of each item listed; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
  • Terms such as “top,” “bottom,” “front,” “rear” and the like as used in this disclosure should be understood as referring to an arbitrary frame of reference, rather than to the ordinary gravitational frame of reference. Thus, a top surface, a bottom surface, a front surface, and a rear surface may extend upwardly, downwardly, diagonally, or horizontally in a gravitational frame of reference.
  • Furthermore, to the extent that the term “include,” “have,” or the like is used in the description or the claims, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim.
  • In one or more aspects, the terms “about,” “substantially,” and “approximately” may provide an industry-accepted tolerance for their corresponding terms and/or relativity between items, such as from less than one percent to 10 percent.
  • The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
  • A reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” Pronouns in the masculine (e.g., his) include the feminine and neuter gender (e.g., her and its) and vice versa. The term “some” refers to one or more. Underlined and/or italicized headings and subheadings are used for convenience only, do not limit the subject technology, and are not referred to in connection with the interpretation of the description of the subject technology. All structural and functional equivalents to the elements of the various configurations described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and intended to be encompassed by the subject technology. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the above description.
  • Although the detailed description contains many specifics, these should not be construed as limiting the scope of the subject technology but merely as illustrating different examples and aspects of the subject technology. It should be appreciated that the scope of the subject technology includes other embodiments not discussed in detail above. Various other modifications, changes and variations may be made in the arrangement, operation and details of the method and apparatus of the subject technology disclosed herein without departing from the scope of the present disclosure. Unless otherwise expressed, reference to an element in the singular is not intended to mean “one and only one” unless explicitly stated, but rather is meant to mean “one or more.” In addition, it is not necessary for a device or method to address every problem that is solvable (or possess every advantage that is achievable) by different embodiments of the disclosure in order to be encompassed within the scope of the disclosure. The use herein of “can” and derivatives thereof shall be understood in the sense of “possibly” or “optionally” as opposed to an affirmative capability.

Claims (20)

What is claimed is:
1. An ab externo method of placing an intraocular implant into an eye, the method comprising the steps of:
advancing an injector through sclera toward an anterior chamber of the eye, the injector carrying an intraocular implant that comprises a drug deliverable to the eye, the implant comprising an elongate body having first and second end portions, a cavity in which the drug is disposed, and a membrane disposed along the first end portion that permits elution of the drug from the cavity through the membrane;
positioning the intraocular implant across a trabecular meshwork of the eye with the first end portion extending into the anterior chamber of the eye; and
releasing the intraocular implant to anchor the implant within the eye, wherein the implant obstructs flow of aqueous humor from the anterior chamber and permits elution of the drug through the membrane into the anterior chamber.
2. The method of claim 1, wherein when released, the second end portion of the elongate body is positioned within the sclera.
3. The method of claim 1, wherein the releasing comprises positioning a first end portion of the elongate body within an anterior chamber of the eye and a second end portion of the elongate body within the intrascleral space.
4. The method of claim 1, wherein the releasing comprises positioning a first end portion of the elongate body within an anterior chamber of the eye and a second end portion of the elongate body within Schlemm's canal.
5. The method of claim 1, wherein advancing the injector further comprises advancing a pusher rod within the injector to position the implant at a distal portion of the injector.
6. The method of claim 5, comprising positioning a bevel of the injector within an anterior chamber of the eye while advancing the pusher rod to advance a first portion of the implant through the bevel of the injector while permitting a second portion of the implant to remain within the injector.
7. The method of claim 1, comprising positioning a bevel of the injector within an anterior chamber of the eye.
8. The method of claim 7, wherein the positioning comprises orienting a longitudinal axis of the injector at an angle relative to a visual axis of the eye to facilitate placement of a second portion of the implant deep to a superficial layer of the sclera and a first portion of the implant within the anterior chamber of the eye.
9. The method of claim 1, further comprising the step of contacting a sleeve, coupled to the injector, against an external surface of the eye, to restrict further longitudinal advancement of the injector into the eye.
10. The method of claim 1, comprising positioning a bevel of the injector within a choroidal space of the eye and a first portion of the implant within the choroidal space.
11. The method of claim 1, comprising positioning a bevel of the injector within a vitreous space of the eye and a first portion of the implant within the vitreous space.
12. The method of claim 1, wherein the implant comprises a tapered cross-sectional profile, the releasing comprising anchoring the implant by positioning a larger cross-sectional profile first end portion of the implant superficially within the sclera and a smaller cross-sectional profile second end portion deep to the first end portion.
13. The method of claim 1, wherein the membrane is configured to permit release of the drug from the implant at a predetermined rate.
14. The method of claim 1, wherein the elongate body comprises an outer surface having a coating thereon.
15. The method of claim 14, wherein the coating is any of a flexible material and another drug.
16. An ab externo method of placing an intraocular implant into an eye, the method comprising the steps of:
advancing an injector through sclera toward an anterior chamber of the eye, the implant comprising an elongate body having a tapered cross-sectional profile and a cavity in which a drug deliverable to the eye is disposed, a first end portion of the elongate body comprising a membrane configured to permit elution of the drug from the cavity through the membrane, a cross-sectional profile of the elongate body being greater along the first end portion than along the second end portion; and
anchoring the implant within the eye by positioning a second end portion of the implant superficially within the sclera and the first end portion deep to the second end portion to permit elution of the drug through the membrane into the anterior chamber.
17. The method of claim 16, wherein advancing the injector further comprises advancing a pusher rod within the injector to position the implant at a distal portion of the injector.
18. The method of claim 17, comprising positioning a bevel of the injector within an anterior chamber of the eye while advancing the pusher rod to advance the first end portion of the implant through the bevel of the injector while permitting the second end portion of the implant to remain within the injector.
19. The method of claim 16, comprising positioning a bevel of the injector within an anterior chamber of the eye.
20. The method of claim 16, wherein the cross-sectional profile of the elongate body tapers from the first end toward the second end.
US16/868,498 2016-06-02 2020-05-06 Intraocular drug delivery Pending US20200261271A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/868,498 US20200261271A1 (en) 2016-06-02 2020-05-06 Intraocular drug delivery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662344899P 2016-06-02 2016-06-02
US15/613,018 US10667947B2 (en) 2016-06-02 2017-06-02 Intraocular drug delivery
US16/868,498 US20200261271A1 (en) 2016-06-02 2020-05-06 Intraocular drug delivery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/613,018 Continuation US10667947B2 (en) 2016-06-02 2017-06-02 Intraocular drug delivery

Publications (1)

Publication Number Publication Date
US20200261271A1 true US20200261271A1 (en) 2020-08-20

Family

ID=60478017

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/613,018 Active 2038-07-16 US10667947B2 (en) 2016-06-02 2017-06-02 Intraocular drug delivery
US16/868,498 Pending US20200261271A1 (en) 2016-06-02 2020-05-06 Intraocular drug delivery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/613,018 Active 2038-07-16 US10667947B2 (en) 2016-06-02 2017-06-02 Intraocular drug delivery

Country Status (11)

Country Link
US (2) US10667947B2 (en)
EP (1) EP3463228A4 (en)
JP (1) JP2019517366A (en)
KR (1) KR20190019966A (en)
CN (1) CN109561987A (en)
AU (1) AU2017274654A1 (en)
BR (1) BR112018074389A2 (en)
CA (1) CA3025526A1 (en)
MX (1) MX2018014763A (en)
RU (1) RU2018142990A (en)
WO (1) WO2017210627A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11058581B2 (en) 2017-07-20 2021-07-13 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US11166849B2 (en) 2017-07-20 2021-11-09 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US11291585B2 (en) 2020-02-14 2022-04-05 Shifamed Holdings, Llc Shunting systems with rotation-based flow control assemblies, and associated systems and methods
US11517477B2 (en) 2019-10-10 2022-12-06 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and associated systems and methods
US11529258B2 (en) 2020-01-23 2022-12-20 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and associated systems and methods
US11596550B2 (en) 2020-04-16 2023-03-07 Shifamed Holdings, Llc Adjustable glaucoma treatment devices and associated systems and methods
US11737920B2 (en) 2020-02-18 2023-08-29 Shifamed Holdings, Llc Adjustable flow glaucoma shunts having non-linearly arranged flow control elements, and associated systems and methods
US11766355B2 (en) 2020-03-19 2023-09-26 Shifamed Holdings, Llc Intraocular shunts with low-profile actuation elements and associated systems and methods
US11865283B2 (en) 2021-01-22 2024-01-09 Shifamed Holdings, Llc Adjustable shunting systems with plate assemblies, and associated systems and methods

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852256B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for intraocular shunt placement
US10085884B2 (en) 2006-06-30 2018-10-02 Aquesys, Inc. Intraocular devices
US8721702B2 (en) 2010-11-15 2014-05-13 Aquesys, Inc. Intraocular shunt deployment devices
US20120123316A1 (en) 2010-11-15 2012-05-17 Aquesys, Inc. Intraocular shunts for placement in the intra-tenon's space
US10842671B2 (en) 2010-11-15 2020-11-24 Aquesys, Inc. Intraocular shunt placement in the suprachoroidal space
US9808373B2 (en) 2013-06-28 2017-11-07 Aquesys, Inc. Intraocular shunt implantation
US9610195B2 (en) 2013-02-27 2017-04-04 Aquesys, Inc. Intraocular shunt implantation methods and devices
US10080682B2 (en) 2011-12-08 2018-09-25 Aquesys, Inc. Intrascleral shunt placement
KR102086103B1 (en) 2013-11-14 2020-03-06 아큐시스, 인코포레이티드 Intraocular shunt inserter
US20200306086A1 (en) * 2015-03-16 2020-10-01 Jeannette M. A. da Silva Curiel Method and apparatus for inserting an implant in the cornea of the eye
US10470927B2 (en) 2015-06-03 2019-11-12 Aquesys, Inc. AB externo intraocular shunt placement
WO2017106517A1 (en) 2015-12-15 2017-06-22 Ivantis, Inc. Ocular implant and delivery system
AU2017274654A1 (en) 2016-06-02 2018-12-20 Aquesys, Inc. Intraocular drug delivery
US11246753B2 (en) 2017-11-08 2022-02-15 Aquesys, Inc. Manually adjustable intraocular flow regulation
US20210030590A1 (en) * 2018-02-22 2021-02-04 Ivantis, Inc. Ocular implant and delivery system
US11135089B2 (en) 2018-03-09 2021-10-05 Aquesys, Inc. Intraocular shunt inserter
US10952898B2 (en) 2018-03-09 2021-03-23 Aquesys, Inc. Intraocular shunt inserter
US11039954B2 (en) * 2019-03-21 2021-06-22 Microoptx Inc. Implantable ocular drug delivery devices and methods
KR20220152234A (en) 2020-02-20 2022-11-15 아큐시스, 인코포레이티드 Dual-Mode Intraocular Shunt Injector
US20220133532A1 (en) * 2020-11-04 2022-05-05 Aerie Pharmaceuticals, Inc. Medical implant
KR20230130622A (en) 2021-01-11 2023-09-12 알콘 인코포레이티드 Systems and methods for viscoelastic delivery
WO2022236779A1 (en) * 2021-05-13 2022-11-17 Beijing Sightnovo Medical Technology Co., Ltd Medical penetration and drainage for glaucoma treatment
BR112023025939A2 (en) * 2021-06-30 2024-02-27 Aquesys Inc TREATMENT SYSTEMS AND PROCEDURES FOR GLAUCOMA
US20240024158A1 (en) * 2022-07-22 2024-01-25 SpyGlass Pharma, Inc. Intraocular drug delivery systems and methods of use

Family Cites Families (282)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788327A (en) 1971-03-30 1974-01-29 H Donowitz Surgical implant device
US3960150A (en) 1971-09-09 1976-06-01 Alza Corporation Bioerodible ocular device
US3987816A (en) 1975-12-30 1976-10-26 Hooker Chemicals & Plastics Corporation Entrance duct with weir
US4402308A (en) 1980-11-03 1983-09-06 Scott Walter P Medical implantation device
US4562463A (en) 1981-05-15 1985-12-31 Stereographics Corp. Stereoscopic television system with field storage for sequential display of right and left images
US5275622A (en) 1983-12-09 1994-01-04 Harrison Medical Technologies, Inc. Endovascular grafting apparatus, system and method and devices for use therewith
US4787885A (en) 1984-04-06 1988-11-29 Binder Perry S Hydrogel seton
US4583117A (en) 1984-07-17 1986-04-15 Stereographics Corporation Stereoscopic video camera
US4820626A (en) 1985-06-06 1989-04-11 Thomas Jefferson University Method of treating a synthetic or naturally occuring surface with microvascular endothelial cells, and the treated surface itself
EP0208950A3 (en) 1985-06-27 1987-12-16 Patrik Dr. med. Gründler Apparatus for human cornea transplantation
US4700692A (en) 1985-12-23 1987-10-20 Baumgartner George C Surgical implantation method and apparatus
NZ215409A (en) 1986-03-07 1989-02-24 Anthony Christopher Be Molteno Implant for drainage of aqueous humour in glaucoma
CH670760A5 (en) 1986-06-02 1989-07-14 Sulzer Ag
US4826478A (en) 1986-06-23 1989-05-02 Stanley Schocket Anterior chamber tube shunt to an encircling band, and related surgical procedure
US4722724A (en) 1986-06-23 1988-02-02 Stanley Schocket Anterior chamber tube shunt to an encircling band, and related surgical procedure
US4863457A (en) 1986-11-24 1989-09-05 Lee David A Drug delivery device
GB8707503D0 (en) 1987-03-30 1987-05-07 Joseph N H Vitreous body prosthesis
US4911161A (en) 1987-04-29 1990-03-27 Noetix, Inc. Capsulectomy cutting apparatus
US5057098A (en) 1987-05-01 1991-10-15 Ophthalmocare, Inc. Apparatus and method for extracting cataract tissue
US4934363A (en) 1987-12-15 1990-06-19 Iolab Corporation Lens insertion instrument
US4848340A (en) 1988-02-10 1989-07-18 Intelligent Surgical Lasers Eyetracker and method of use
US4836201A (en) 1988-03-24 1989-06-06 Patton Medical Technologies, Inc. "Envelope" apparatus for inserting intra-ocular lens into the eye
US4936825A (en) 1988-04-11 1990-06-26 Ungerleider Bruce A Method for reducing intraocular pressure caused by glaucoma
US4915684A (en) 1988-06-21 1990-04-10 Mackeen Donald L Method and apparatus for modulating the flow of lacrimal fluid through a punctum and associated canaliculus
US5071408A (en) 1988-10-07 1991-12-10 Ahmed Abdul Mateen Medical valve
US5098426A (en) 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US5098443A (en) 1989-03-23 1992-03-24 University Of Miami Method of implanting intraocular and intraorbital implantable devices for the controlled release of pharmacological agents
US4978352A (en) 1989-06-07 1990-12-18 Fedorov Svjatoslav N Process for producing collagen-based cross-linked biopolymer, an implant from said biopolymer, method for producing said implant, and method for hermetization of corneal or scleral wounds involved in eye injuries, using said implant
US6514238B1 (en) 1989-08-14 2003-02-04 Photogenesis, Inc. Method for preparation and transplantation of volute grafts and surgical instrument therefor
DE3929575A1 (en) 1989-09-06 1991-03-07 Vascomed Kathetertech DILATATION CATHETER FOR EXTENDING BLOOD VESSELS WITH MOTOR DRIVE
US4946436A (en) 1989-11-17 1990-08-07 Smith Stewart G Pressure-relieving device and process for implanting
US5092837A (en) 1989-12-20 1992-03-03 Robert Ritch Method for the treatment of glaucoma
US4968296A (en) 1989-12-20 1990-11-06 Robert Ritch Transscleral drainage implant device for the treatment of glaucoma
US5180362A (en) 1990-04-03 1993-01-19 Worst J G F Gonio seton
US5041081A (en) 1990-05-18 1991-08-20 Odrich Ronald B Ocular implant for controlling glaucoma
US5476445A (en) 1990-05-31 1995-12-19 Iovision, Inc. Glaucoma implant with a temporary flow restricting seal
US5178604A (en) 1990-05-31 1993-01-12 Iovision, Inc. Glaucoma implant
US5273530A (en) 1990-11-14 1993-12-28 The University Of Rochester Intraretinal delivery and withdrawal instruments
US5162641A (en) 1991-02-19 1992-11-10 Phoenix Laser Systems, Inc. System and method for detecting, correcting and measuring depth movement of target tissue in a laser surgical system
US5217453A (en) 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
US5207660A (en) 1991-04-26 1993-05-04 Cornell Research Foundation, Inc. Method for the delivery of compositions to the ocular tissues
US6007511A (en) 1991-05-08 1999-12-28 Prywes; Arnold S. Shunt valve and therapeutic delivery system for treatment of glaucoma and methods and apparatus for its installation
US5300020A (en) 1991-05-31 1994-04-05 Medflex Corporation Surgically implantable device for glaucoma relief
US5500013A (en) 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
FR2687303B1 (en) 1992-02-19 1998-12-04 Vito Lelio Burgio ADDITIONAL DEVICE FOR ORDINARY NEEDLES FOR TRANSCUTANEOUS BIOPSY OF COMPACT TISSUES, ESPECIALLY OSTEO-MEDULAR TISSUE.
FR2691093B1 (en) 1992-05-12 1996-06-14 Univ Joseph Fourier ROBOT FOR GUIDANCE OF GESTURES AND CONTROL METHOD.
US5290295A (en) 1992-07-15 1994-03-01 Querals & Fine, Inc. Insertion tool for an intraluminal graft procedure
US5707376A (en) 1992-08-06 1998-01-13 William Cook Europe A/S Stent introducer and method of use
US5370607A (en) 1992-10-28 1994-12-06 Annuit Coeptis, Inc. Glaucoma implant device and method for implanting same
US5338291A (en) 1993-02-03 1994-08-16 Pudenz-Schulte Medical Research Corporation Glaucoma shunt and method for draining aqueous humor
US5342370A (en) 1993-03-19 1994-08-30 University Of Miami Method and apparatus for implanting an artifical meshwork in glaucoma surgery
US5410638A (en) 1993-05-03 1995-04-25 Northwestern University System for positioning a medical instrument within a biotic structure using a micromanipulator
US5472439A (en) 1993-10-06 1995-12-05 American Cyanamid Company Endoscopic surgical instrument with rotatable inner shaft
US5443505A (en) 1993-11-15 1995-08-22 Oculex Pharmaceuticals, Inc. Biocompatible ocular implants
US5360339A (en) 1994-03-01 1994-11-01 Rosenberg Neil A Dental prophy cup having a paste-distributing channel arrangement
US5516522A (en) 1994-03-14 1996-05-14 Board Of Supervisors Of Louisiana State University Biodegradable porous device for long-term drug delivery with constant rate release and method of making the same
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US5716394A (en) 1994-04-29 1998-02-10 W. L. Gore & Associates, Inc. Blood contact surfaces using extracellular matrix synthesized in vitro
US5704907A (en) 1994-07-22 1998-01-06 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US5520631A (en) 1994-07-22 1996-05-28 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US6102045A (en) 1994-07-22 2000-08-15 Premier Laser Systems, Inc. Method and apparatus for lowering the intraocular pressure of an eye
US5665114A (en) 1994-08-12 1997-09-09 Meadox Medicals, Inc. Tubular expanded polytetrafluoroethylene implantable prostheses
US5601094A (en) 1994-11-22 1997-02-11 Reiss; George R. Ophthalmic shunt
US5763491A (en) 1994-12-09 1998-06-09 The Regents Of The University Of California Method for enhancing outflow of aqueous humor in treatment of glaucoma
US6228873B1 (en) 1994-12-09 2001-05-08 The Regents Of The University Of California Method for enhancing outflow of aqueous humor in treatment of glaucoma
US5558630A (en) 1994-12-30 1996-09-24 Fisher; Bret L. Intrascleral implant and method for the regulation of intraocular pressure
GB2296663A (en) 1995-01-03 1996-07-10 Ahmed Salih Mahmud Drainage device for alleviating excess ophthalmic fluid pressure
IL113723A (en) 1995-05-14 2002-11-10 Optonol Ltd Intraocular implant
US5688562A (en) 1995-06-20 1997-11-18 E. I. Du Pont De Nemours And Company Method for modifying uncoated synthetic polymer fibers using a Langmuir-Blodgett film coating process
DE69618405T2 (en) 1995-09-18 2002-08-01 Becton Dickinson Co Needle protection with collapsing cover
US5656026A (en) 1995-10-27 1997-08-12 Joseph; Neil H. Method of in vitro testing one-way pressure gradient limiting valved glaucoma drainage implants
US6090063A (en) 1995-12-01 2000-07-18 C. R. Bard, Inc. Device, system and method for implantation of filaments and particles in the body
US5665093A (en) 1995-12-11 1997-09-09 Atkins; Joseph R. Surgical implantation method and apparatus
US5722948A (en) 1996-02-14 1998-03-03 Gross; Fredric J. Covering for an ocular device
AUPN929096A0 (en) 1996-04-17 1996-05-09 Lions Eye Institute A system for ocular ultramicrosurgery
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
AUPO394496A0 (en) 1996-11-29 1997-01-02 Lions Eye Institute Biological microfistula tube and implantation method and apparatus
US6261256B1 (en) 1996-12-20 2001-07-17 Abdul Mateen Ahmed Pocket medical valve & method
US6050970A (en) 1997-05-08 2000-04-18 Pharmacia & Upjohn Company Method and apparatus for inserting a glaucoma implant in an anterior and posterior segment of the eye
US6007578A (en) 1997-10-08 1999-12-28 Ras Holding Corp Scleral prosthesis for treatment of presbyopia and other eye disorders
US8313454B2 (en) * 1997-11-20 2012-11-20 Optonol Ltd. Fluid drainage device, delivery device, and associated methods of use and manufacture
US6203513B1 (en) 1997-11-20 2001-03-20 Optonol Ltd. Flow regulating implant, method of manufacture, and delivery device
US5938583A (en) 1997-12-29 1999-08-17 Grimm; Peter D. Precision implant needle and method of using same in seed implant treatment of prostate cancer
US6651670B2 (en) 1998-02-13 2003-11-25 Ventrica, Inc. Delivering a conduit into a heart wall to place a coronary vessel in communication with a heart chamber and removing tissue from the vessel or heart wall to facilitate such communication
US5964747A (en) 1998-03-23 1999-10-12 Duke University Lighting instrument, in particular for use in ophthalmologic microsurgery
US6315753B1 (en) 1998-05-01 2001-11-13 Sub-Q, Inc. System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge
US6086543A (en) 1998-06-24 2000-07-11 Rubicor Medical, Inc. Fine needle and core biopsy devices and methods
US6936053B1 (en) 1998-07-02 2005-08-30 Jeffrey N. Weiss Ocular implant needle
WO2000015147A1 (en) 1998-09-10 2000-03-23 Percardia, Inc. Transmycardial shunt and its attachment mechanism, for left ventricular revascularization
US6146366A (en) 1998-11-03 2000-11-14 Ras Holding Corp Device for the treatment of macular degeneration and other eye disorders
US6377699B1 (en) 1998-11-25 2002-04-23 Iridian Technologies, Inc. Iris imaging telephone security module and method
US6228023B1 (en) 1999-02-17 2001-05-08 Abiomed, Inc. Tissue pick and method for use in minimally invasive surgical procedures
RU2160574C1 (en) 1999-03-23 2000-12-20 Козлова Татьяна Валентиновна Method and device for treating the cases of glaucoma
JP2002541975A (en) 1999-04-26 2002-12-10 ジーエムピー ヴィジョン ソルーションズ インコーポレイテッド Trabeculotomy device and method for treatment of glaucoma
US6699210B2 (en) 1999-04-27 2004-03-02 The Arizona Board Of Regents Glaucoma shunt and a method of making and surgically implanting the same
US6159218A (en) 1999-05-19 2000-12-12 Aramant; Robert B. Retinal tissue implantation tool
US6558342B1 (en) 1999-06-02 2003-05-06 Optonol Ltd. Flow control device, introducer and method of implanting
US7008396B1 (en) 1999-09-03 2006-03-07 Restorvision, Inc. Ophthalmic device and method of manufacture and use
US6752753B1 (en) 1999-10-15 2004-06-22 Deschutes Medical Products, Inc. Brachytherapy instrument and methods
EP1473003B1 (en) 1999-10-21 2008-11-19 Alcon, Inc. Drug delivery device
SE9904338D0 (en) 1999-11-30 1999-11-30 Pharmacia & Upjohn Ab Intraocular lens implants
US6638238B1 (en) 1999-12-09 2003-10-28 The Regents Of The University Of California Liposuction cannula device and method
US6450937B1 (en) 1999-12-17 2002-09-17 C. R. Bard, Inc. Needle for implanting brachytherapy seeds
US6676607B2 (en) 2000-01-03 2004-01-13 The Johns Hopkins University Intraoperative microsurgical ultrasonic device and methods related thereto
US6471666B1 (en) 2000-02-24 2002-10-29 Steven A. Odrich Injectable glaucoma device
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
US7708711B2 (en) 2000-04-14 2010-05-04 Glaukos Corporation Ocular implant with therapeutic agents and methods thereof
US20030060752A1 (en) 2000-04-14 2003-03-27 Olav Bergheim Glaucoma device and methods thereof
US6533768B1 (en) 2000-04-14 2003-03-18 The Regents Of The University Of California Device for glaucoma treatment and methods thereof
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
US20050277864A1 (en) 2000-04-14 2005-12-15 David Haffner Injectable gel implant for glaucoma treatment
US20050049578A1 (en) 2000-04-14 2005-03-03 Hosheng Tu Implantable ocular pump to reduce intraocular pressure
US7201722B2 (en) 2000-04-18 2007-04-10 Allegiance Corporation Bone biopsy instrument having improved sample retention
FR2813521B1 (en) 2000-09-01 2003-06-13 Ioltechnologie Production GLAUCOME DRAIN
US6962573B1 (en) 2000-10-18 2005-11-08 Wilcox Michael J C-shaped cross section tubular ophthalmic implant for reduction of intraocular pressure in glaucomatous eyes and method of use
US20020087149A1 (en) 2001-01-03 2002-07-04 Mccary Brian Douglas Ophthalmic illumination device
US6595945B2 (en) 2001-01-09 2003-07-22 J. David Brown Glaucoma treatment device and method
US6881198B2 (en) 2001-01-09 2005-04-19 J. David Brown Glaucoma treatment device and method
EP2335660B1 (en) 2001-01-18 2018-03-28 The Regents of The University of California Minimally invasive glaucoma surgical instrument
US20040210209A1 (en) 2001-02-13 2004-10-21 Yeung Jeffrey E. Treating back pain by re-establishing the exchange of nutrient & waste
US20050240201A1 (en) 2001-02-13 2005-10-27 Yeung Jeffrey E Disc shunt delivery devices
EP1367968A4 (en) 2001-03-16 2006-12-13 Glaukos Corp Applicator and methods for placing a trabecular shunt for glaucoma treatment
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
US7488303B1 (en) 2002-09-21 2009-02-10 Glaukos Corporation Ocular implant with anchor and multiple openings
DE60225815T2 (en) 2001-04-07 2009-02-05 Glaukos Corp., Laguna Hills GLAUKOM-STENT FOR GLAUCOMA TREATMENT
AU2002305400A1 (en) 2001-05-03 2002-11-18 Glaukos Corporation Medical device and methods of use for glaucoma treatment
US7331984B2 (en) 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
US20080015633A1 (en) 2001-09-06 2008-01-17 Ryan Abbott Systems and Methods for Treating Septal Defects
US7163543B2 (en) 2001-11-08 2007-01-16 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US20030093084A1 (en) 2001-11-13 2003-05-15 Optonol Ltd. Delivery devices for flow regulating implants
JP3762285B2 (en) 2001-11-19 2006-04-05 キヤノン株式会社 Non-contact tonometer
US8491549B2 (en) 2001-11-21 2013-07-23 Iscience Interventional Corporation Ophthalmic microsurgical system
US6939298B2 (en) 2002-02-28 2005-09-06 Gmp Vision Solutions, Inc Device and method for monitoring aqueous flow within the eye
US7186232B1 (en) 2002-03-07 2007-03-06 Glaukoa Corporation Fluid infusion methods for glaucoma treatment
US20060200113A1 (en) 2002-03-07 2006-09-07 David Haffner Liquid jet for glaucoma treatment
CA2675209C (en) 2002-03-22 2013-01-08 Cordis Corporation Rapid-exchange balloon catheter shaft and method
US20040147870A1 (en) 2002-04-08 2004-07-29 Burns Thomas W. Glaucoma treatment kit
US9301875B2 (en) 2002-04-08 2016-04-05 Glaukos Corporation Ocular disorder treatment implants with multiple opening
AU2003233300A1 (en) 2002-05-29 2003-12-12 University Of Saskatchewan Technologies Inc. A shunt and method treatment of glaucoma
US20030236483A1 (en) 2002-06-25 2003-12-25 Ren David H Dual drainage ocular shunt for glaucoma
BR0312816A (en) 2002-07-19 2007-06-26 Univ Yale implantable ophthalmic shunt in one eye and method of lowering eye pressure and treating glaucoma in one eye
US20070027537A1 (en) 2002-08-02 2007-02-01 David Castillejos Method and intra-sclera implant for treatment of glaucoma and presbyopia
EP1539066B1 (en) 2002-09-17 2012-11-07 Iscience Surgical Corporation Apparatus surgical bypass of aqueous humor
US6899717B2 (en) 2002-09-18 2005-05-31 Allergan, Inc. Methods and apparatus for delivery of ocular implants
MXPA05002841A (en) 2002-09-18 2005-05-27 Oculex Pharm Inc Methods and apparatus for delivery of ocular implants.
EP2359689B1 (en) 2002-09-27 2015-08-26 The General Hospital Corporation Microfluidic device for cell separation and use thereof
JP2006507368A (en) 2002-09-29 2006-03-02 サーモディックス,インコーポレイティド Methods for subretinal administration of steroid-containing therapeutic agents; methods for localizing pharmacodynamic effects in the choroid and retina; and related methods for the treatment and / or prevention of retinal diseases
SI1413253T1 (en) 2002-10-25 2006-02-28 Somatex Medical Technologies Gmbh Sample holding device for a biospy cannula
US7037335B2 (en) 2002-11-19 2006-05-02 Eagle Vision, Inc. Bulbous scleral implants for the treatment of eye disorders such as presbyopia and glaucoma
US7160264B2 (en) 2002-12-19 2007-01-09 Medtronic-Xomed, Inc. Article and method for ocular aqueous drainage
US20040216749A1 (en) 2003-01-23 2004-11-04 Hosheng Tu Vasomodulation during glaucoma surgery
WO2004075764A1 (en) 2003-02-27 2004-09-10 Applied Tissue Technologies Llc Method and apparatus for processing dermal tissue
USD490152S1 (en) 2003-02-28 2004-05-18 Glaukos Corporation Surgical handpiece
US20040199130A1 (en) 2003-04-03 2004-10-07 Chornenky Victor I. Apparatus and method for treatment of macular degeneration
US20040236343A1 (en) 2003-05-23 2004-11-25 Taylor Jon B. Insertion tool for ocular implant and method for using same
JP2007526013A (en) 2003-06-16 2007-09-13 ソルクス インコーポレイテッド Shunt device for treating glaucoma
US7291125B2 (en) 2003-11-14 2007-11-06 Transcend Medical, Inc. Ocular pressure regulation
JP5090742B2 (en) 2003-12-05 2012-12-05 インフォーカス リミテッド ライアビリティー カンパニー Improved glaucoma transplant device
WO2005070490A2 (en) 2004-01-23 2005-08-04 Iscience Surgical Corporation Composite ophthalmic microcannula
JP2007535386A (en) 2004-04-29 2007-12-06 アイサイエンス・インターベンショナル・コーポレーション Device for surgical enhancement of aqueous humor drainage
US20100173866A1 (en) 2004-04-29 2010-07-08 Iscience Interventional Corporation Apparatus and method for ocular treatment
AU2005249966A1 (en) 2004-05-27 2005-12-15 Clarity Corporation Glaucoma shunt
US7726814B2 (en) 2004-07-08 2010-06-01 Costruzioni Strumenti Oftalmici S.R.L. Reflection microscope and method
US20060064112A1 (en) 2004-09-08 2006-03-23 Edward Perez Ocular device applicator
US20060173397A1 (en) 2004-11-23 2006-08-03 Hosheng Tu Ophthalmology implants and methods of manufacture
EP1830713B1 (en) 2004-11-29 2011-03-16 Granit Medical Innovations, LLC Rotating fine needle for core tissue sampling
US20070118065A1 (en) 2004-12-03 2007-05-24 Leonard Pinchuk Glaucoma Implant Device
US20070141116A1 (en) 2004-12-03 2007-06-21 Leonard Pinchuk Glaucoma Implant Device
US7837644B2 (en) 2004-12-03 2010-11-23 Innfocus, Llc Glaucoma implant device
US7594899B2 (en) 2004-12-03 2009-09-29 Innfocus, Llc Glaucoma implant device
US20060173446A1 (en) 2005-01-28 2006-08-03 Alcon, Inc. Surgical apparatus
DE102005008235A1 (en) 2005-02-22 2006-08-31 Reinhardt Thyzel Sealing device for use with an eye operating instrument has a sealing element that is set down on an area around an opening made in the eye to permit the passage of an instrument or laser beam, while protecting the eye tissue
US7892282B2 (en) 2005-04-08 2011-02-22 Abbott Medical Optics Inc. Methods and apparatus for inserting an intraocular lens into an eye
US10357328B2 (en) 2005-04-20 2019-07-23 Bard Peripheral Vascular, Inc. and Bard Shannon Limited Marking device with retractable cannula
RU2313315C2 (en) 2005-07-11 2007-12-27 Государственное образовательное учреждение высшего профессионального образования Российский государственный медицинский университет Федерального агентства по здравоохранению и социальному развитию Method for surgical treatment of cataract in combination with glaucoma and device for fulfilling the method
US7918870B2 (en) 2005-09-12 2011-04-05 Bridgepoint Medical, Inc. Endovascular devices and methods
EP1979023B1 (en) 2006-01-17 2015-07-22 Transcend Medical, Inc. Glaucoma treatment device
US20070202186A1 (en) 2006-02-22 2007-08-30 Iscience Interventional Corporation Apparatus and formulations for suprachoroidal drug delivery
AU2007237905A1 (en) 2006-04-18 2007-10-25 Cascade Ophthalmics Intraocular pressure attenuation device
US8668676B2 (en) 2006-06-19 2014-03-11 Allergan, Inc. Apparatus and methods for implanting particulate ocular implants
US7458953B2 (en) 2006-06-20 2008-12-02 Gholam A. Peyman Ocular drainage device
US8758290B2 (en) 2010-11-15 2014-06-24 Aquesys, Inc. Devices and methods for implanting a shunt in the suprachoroidal space
US20120197175A1 (en) 2006-06-30 2012-08-02 Aquesys, Inc. Methods, systems and apparatus for relieving pressure in an organ
US20120123315A1 (en) 2010-11-15 2012-05-17 Aquesys, Inc. Intraocular shunts
US20120123316A1 (en) 2010-11-15 2012-05-17 Aquesys, Inc. Intraocular shunts for placement in the intra-tenon's space
US8852256B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for intraocular shunt placement
US10085884B2 (en) 2006-06-30 2018-10-02 Aquesys, Inc. Intraocular devices
US20120123317A1 (en) 2010-11-15 2012-05-17 Aquesys, Inc. Methods for implanation of glaucoma shunts
US8721702B2 (en) 2010-11-15 2014-05-13 Aquesys, Inc. Intraocular shunt deployment devices
US8974511B2 (en) 2010-11-15 2015-03-10 Aquesys, Inc. Methods for treating closed angle glaucoma
US8663303B2 (en) 2010-11-15 2014-03-04 Aquesys, Inc. Methods for deploying an intraocular shunt from a deployment device and into an eye
US8828070B2 (en) 2010-11-15 2014-09-09 Aquesys, Inc. Devices for deploying intraocular shunts
US8801766B2 (en) 2010-11-15 2014-08-12 Aquesys, Inc. Devices for deploying intraocular shunts
US8852137B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for implanting a soft gel shunt in the suprachoroidal space
US8308701B2 (en) 2010-11-15 2012-11-13 Aquesys, Inc. Methods for deploying intraocular shunts
US20120123434A1 (en) 2010-11-15 2012-05-17 Aquesys, Inc. Devices for deploying intraocular shunts
EP2043572B1 (en) 2006-06-30 2014-12-31 Aquesys Inc. Apparatus for relieving pressure in an organ
US9095411B2 (en) 2010-11-15 2015-08-04 Aquesys, Inc. Devices for deploying intraocular shunts
US20080057106A1 (en) 2006-08-29 2008-03-06 Erickson Signe R Low profile bioactive agent delivery device
CA2668954C (en) 2006-11-10 2020-09-08 Glaukos Corporation Uveoscleral shunt and methods for implanting same
CA2704695A1 (en) 2006-11-15 2008-05-22 Mark Goldin Tissue cavitation device and method
US8969415B2 (en) * 2006-12-01 2015-03-03 Allergan, Inc. Intraocular drug delivery systems
EP2091482A2 (en) 2006-12-01 2009-08-26 Allergan, Inc. Method for determining optimum intraocular locations for drug delivery systems
WO2008124643A1 (en) 2007-04-05 2008-10-16 Velomedix, Inc. Device and method for safe access to a body cavity
US7658729B2 (en) 2007-05-25 2010-02-09 Hull Thomas P Attachment device and system for corneal irrigating cannula and method thereof
US20080312661A1 (en) 2007-06-12 2008-12-18 Downer David A Lens Injector Lumen Tip for Wound Assisted Delivery
EP2173289A4 (en) * 2007-07-17 2010-11-24 Transcend Medical Inc Ocular implant with hydrogel expansion capabilities
SG184727A1 (en) 2007-09-07 2012-10-30 Quadra Logic Tech Inc Insertion and extraction tools for lacrimal implants
BRPI0820176B8 (en) 2007-11-08 2021-06-22 Alimera Sciences Inc eye implantation device and kit for releasing an implant
US20090124973A1 (en) 2007-11-09 2009-05-14 D Agostino Eduardo Insertion mechanism for use with a syringe
US8512404B2 (en) 2007-11-20 2013-08-20 Ivantis, Inc. Ocular implant delivery system and method
KR101691368B1 (en) 2008-01-07 2016-12-30 살루타리스 메디컬 디바이스즈, 인코퍼레이티드 Devices for minimally-invasive extraocular delivery of radiation to the posterior portion of the eye
EP3251719B1 (en) 2008-02-05 2020-10-21 Bridgepoint Medical, Inc. Crossing occlusions in blood vessels
US8109896B2 (en) 2008-02-11 2012-02-07 Optonol Ltd. Devices and methods for opening fluid passageways
JP5209341B2 (en) 2008-02-27 2013-06-12 株式会社ニデック Non-contact tonometer
CN101965211A (en) 2008-03-05 2011-02-02 伊万提斯公司 Methods and apparatus for treating glaucoma
WO2009124192A1 (en) 2008-04-02 2009-10-08 Laurimed, Llc Methods and devices for delivering injections
US8172863B2 (en) 2008-04-28 2012-05-08 Bridgepoint Medical, Inc. Methods and apparatus for crossing occlusions in blood vessels
US8157759B2 (en) 2008-05-16 2012-04-17 Ocumatrix, Inc. Method and apparatus for fluid drainage of the eye
EP3298995A1 (en) 2008-06-25 2018-03-28 Novartis AG Ocular implant with shape change capabilities
US20100134759A1 (en) 2008-06-26 2010-06-03 Silvestrini Thomas A Digital imaging system for eye procedures
US8945086B2 (en) 2008-07-01 2015-02-03 Bruce Becker Retrobulbar needle and methods of use
US9101734B2 (en) 2008-09-09 2015-08-11 Biosense Webster, Inc. Force-sensing catheter with bonded center strut
US20100098772A1 (en) 2008-10-21 2010-04-22 Allergan, Inc. Drug delivery systems and methods for treating neovascularization
US8974059B2 (en) 2008-12-03 2015-03-10 University Of Miami Retinal imaging system for the mouse or rat or other small animals
CA2745884C (en) 2008-12-05 2017-08-01 Ivantis, Inc. Cannula for ocular implant delivery system
US20100191224A1 (en) 2008-12-15 2010-07-29 C.R. Bard, Inc. Magnetic detent mechanism for medical instruments
JP5524983B2 (en) 2009-01-28 2014-06-18 トランセンド・メディカル・インコーポレイテッド Implant system
ES2747755T3 (en) 2009-01-29 2020-03-11 Forsight Vision4 Inc Administration of a drug to the posterior segment
WO2010093945A2 (en) 2009-02-13 2010-08-19 Glaukos Corporation Uveoscleral drug delivery implant and methods for implanting the same
US8702639B2 (en) 2009-03-26 2014-04-22 Abbott Medical Optics Inc. Glaucoma shunts with flow management and improved surgical performance
US8337393B2 (en) 2009-04-03 2012-12-25 Transcend Medical, Inc. Ocular implant delivery systems and methods
EP3785683B1 (en) * 2009-05-18 2023-11-01 Dose Medical Corporation Drug eluting ocular implant
US10206813B2 (en) 2009-05-18 2019-02-19 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
US8070289B2 (en) 2009-06-26 2011-12-06 Peyman Gholam A Non-contact optical coherence tomography imaging of the central and peripheral retina
EP2451375B1 (en) 2009-07-09 2018-10-03 Ivantis, Inc. Single operator device for delivering an ocular implant
EP2451503B1 (en) 2009-07-09 2018-10-24 Ivantis, Inc. Ocular implants and methods for delivering ocular implants into the eye
CA2768009C (en) 2009-07-15 2019-01-22 Acclarent, Inc. Tympanic membrane pressure equalization tube delivery system
US8535333B2 (en) 2009-07-29 2013-09-17 Transcend Medical, Inc. Ocular implant applier and methods of use
US20110118835A1 (en) 2009-08-13 2011-05-19 Matthew Silvestrini Branched ocular implant
US8951221B2 (en) 2009-08-20 2015-02-10 Grieshaber Ophthalmic Research Foundation Method and device for the treatment of glaucoma
US9814392B2 (en) 2009-10-30 2017-11-14 The Johns Hopkins University Visual tracking and annotaton of clinically important anatomical landmarks for surgical interventions
US20110105990A1 (en) 2009-11-04 2011-05-05 Silvestrini Thomas A Zonal drug delivery device and method
US8529492B2 (en) 2009-12-23 2013-09-10 Trascend Medical, Inc. Drug delivery devices and methods
NO2575711T3 (en) 2010-06-07 2018-01-06
US8545430B2 (en) 2010-06-09 2013-10-01 Transcend Medical, Inc. Expandable ocular devices
US8444589B2 (en) 2010-06-09 2013-05-21 Transcend Medical, Inc. Ocular implant with fluid outflow pathways having microporous membranes
EP2618777A1 (en) * 2010-09-21 2013-07-31 The Regents of the University of Colorado, a body corporate Aqueous humor micro bypass shunt
US10842671B2 (en) 2010-11-15 2020-11-24 Aquesys, Inc. Intraocular shunt placement in the suprachoroidal space
US20120165720A1 (en) 2010-11-15 2012-06-28 Aquesys, Inc. Intraocular shunts
US8585629B2 (en) 2010-11-15 2013-11-19 Aquesys, Inc. Systems for deploying intraocular shunts
US20120310137A1 (en) 2011-06-02 2012-12-06 Silvestrini Thomas A Eye shunt with porous structure
US9757276B2 (en) 2011-11-11 2017-09-12 Opr Group Ltd. Ocular implant with intraocular fluid pressure regulation
US8765210B2 (en) 2011-12-08 2014-07-01 Aquesys, Inc. Systems and methods for making gelatin shunts
US8852136B2 (en) 2011-12-08 2014-10-07 Aquesys, Inc. Methods for placing a shunt into the intra-scleral space
US9808373B2 (en) 2013-06-28 2017-11-07 Aquesys, Inc. Intraocular shunt implantation
US9610195B2 (en) 2013-02-27 2017-04-04 Aquesys, Inc. Intraocular shunt implantation methods and devices
US10080682B2 (en) 2011-12-08 2018-09-25 Aquesys, Inc. Intrascleral shunt placement
US8663150B2 (en) 2011-12-19 2014-03-04 Ivantis, Inc. Delivering ocular implants into the eye
US9101444B2 (en) 2012-01-12 2015-08-11 Innfocus, Inc. Method, surgical kit and device for treating glaucoma
CA3098762C (en) 2012-03-26 2023-01-17 Glaukos Corporation System and method for delivering multiple ocular implants
US10085633B2 (en) 2012-04-19 2018-10-02 Novartis Ag Direct visualization system for glaucoma treatment
US9241832B2 (en) 2012-04-24 2016-01-26 Transcend Medical, Inc. Delivery system for ocular implant
US20140066833A1 (en) 2012-08-28 2014-03-06 Clearlix Ltd. Expandable fluid drainage implants and associated delivery devices and methods
EA030047B1 (en) 2012-09-17 2018-06-29 Новартис Аг System for implanting in an eye and method for operating the system for implanting in an eye
US9763829B2 (en) 2012-11-14 2017-09-19 Novartis Ag Flow promoting ocular implant
US10154924B2 (en) 2013-01-28 2018-12-18 Novartis Ag Schlemm's canal devices and method for improving fluid flow
US10159600B2 (en) 2013-02-19 2018-12-25 Aquesys, Inc. Adjustable intraocular flow regulation
US9125723B2 (en) * 2013-02-19 2015-09-08 Aquesys, Inc. Adjustable glaucoma implant
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US9827121B2 (en) 2013-03-15 2017-11-28 Cook Medical Technologies Llc Quick release deployment handle for medical devices
US20140323995A1 (en) 2013-04-24 2014-10-30 Transcend Medical, Inc. Targeted Drug Delivery Devices and Methods
US9649223B2 (en) 2013-06-13 2017-05-16 Innfocus, Inc. Inserter for tubular medical implant devices
KR102086103B1 (en) 2013-11-14 2020-03-06 아큐시스, 인코포레이티드 Intraocular shunt inserter
US9044301B1 (en) 2013-11-25 2015-06-02 Innfocus, Inc. Methods, systems and devices for treating glaucoma
RU2728195C2 (en) 2014-02-26 2020-07-28 Аллерган, Инк. Device for delivery of intraocular implant and methods of its use
AR097340A1 (en) 2014-08-14 2016-03-09 Cholomoniuk Hector Eduardo KIT FOR THE TREATMENT OF GLAUCOMA, DRAINAGE DEVICE AND INSERTION PROVISION AND IMPLEMENTATION METHOD
EP3964183A1 (en) 2015-03-31 2022-03-09 Sight Sciences, Inc. Ocular delivery systems and methods
US10470927B2 (en) * 2015-06-03 2019-11-12 Aquesys, Inc. AB externo intraocular shunt placement
AU2017274654A1 (en) 2016-06-02 2018-12-20 Aquesys, Inc. Intraocular drug delivery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11058581B2 (en) 2017-07-20 2021-07-13 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US11166849B2 (en) 2017-07-20 2021-11-09 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US11166848B2 (en) 2017-07-20 2021-11-09 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US11517477B2 (en) 2019-10-10 2022-12-06 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and associated systems and methods
US11529258B2 (en) 2020-01-23 2022-12-20 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and associated systems and methods
US11291585B2 (en) 2020-02-14 2022-04-05 Shifamed Holdings, Llc Shunting systems with rotation-based flow control assemblies, and associated systems and methods
US11737920B2 (en) 2020-02-18 2023-08-29 Shifamed Holdings, Llc Adjustable flow glaucoma shunts having non-linearly arranged flow control elements, and associated systems and methods
US11766355B2 (en) 2020-03-19 2023-09-26 Shifamed Holdings, Llc Intraocular shunts with low-profile actuation elements and associated systems and methods
US11596550B2 (en) 2020-04-16 2023-03-07 Shifamed Holdings, Llc Adjustable glaucoma treatment devices and associated systems and methods
US11865283B2 (en) 2021-01-22 2024-01-09 Shifamed Holdings, Llc Adjustable shunting systems with plate assemblies, and associated systems and methods

Also Published As

Publication number Publication date
MX2018014763A (en) 2019-04-29
KR20190019966A (en) 2019-02-27
RU2018142990A (en) 2020-06-05
WO2017210627A1 (en) 2017-12-07
AU2017274654A1 (en) 2018-12-20
US20170348150A1 (en) 2017-12-07
RU2018142990A3 (en) 2020-06-05
EP3463228A4 (en) 2020-03-04
BR112018074389A2 (en) 2019-03-06
JP2019517366A (en) 2019-06-24
EP3463228A1 (en) 2019-04-10
CA3025526A1 (en) 2017-12-07
US10667947B2 (en) 2020-06-02
CN109561987A (en) 2019-04-02

Similar Documents

Publication Publication Date Title
US20200261271A1 (en) Intraocular drug delivery
US9592242B2 (en) Methods for treating edema in the eye and intraocular implants for use therefor
US11590265B2 (en) Apparatuses and methods for treating ophthalmic diseases and disorders
AU2002236495A1 (en) Intraocular implants for preventing transplant rejection in the eye
EP1550471A1 (en) Intraocular implants for preventing transplant rejection in the eye

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

AS Assignment

Owner name: AQUESYS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HORVATH, CHRISTOPHER;ROMODA, LASZLO O.;SIGNING DATES FROM 20200227 TO 20200401;REEL/FRAME:053739/0868

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION