US11456285B2 - Semiconductor device and method of manufacturing semiconductor device - Google Patents

Semiconductor device and method of manufacturing semiconductor device Download PDF

Info

Publication number
US11456285B2
US11456285B2 US16/909,975 US202016909975A US11456285B2 US 11456285 B2 US11456285 B2 US 11456285B2 US 202016909975 A US202016909975 A US 202016909975A US 11456285 B2 US11456285 B2 US 11456285B2
Authority
US
United States
Prior art keywords
substrate
semiconductor device
circuit patterns
terminals
sealing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/909,975
Other versions
US20210066258A1 (en
Inventor
Toshio Denta
Masanori Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Assigned to FUJI ELECTRIC CO., LTD. reassignment FUJI ELECTRIC CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DENTA, Toshio, TANAKA, MASANORI
Publication of US20210066258A1 publication Critical patent/US20210066258A1/en
Application granted granted Critical
Publication of US11456285B2 publication Critical patent/US11456285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/162Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits the devices being mounted on two or more different substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49531Additional leads the additional leads being a wiring board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • H01L2224/48096Kinked the kinked part being in proximity to the bonding area on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48175Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/802Applying energy for connecting
    • H01L2224/80201Compression bonding
    • H01L2224/80205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the embodiments discussed herein relate to a semiconductor device and a method of manufacturing a semiconductor device.
  • semiconductor devices include semiconductor elements and a control integrated circuit that realizes driving control and the like of the semiconductor elements.
  • the semiconductor elements referred to here may be IGBT (Insulated Gate Bipolar Transistors) and power MOSFETs (Metal Oxide Semiconductor Field Effect Transistors).
  • This type of semiconductor device includes a substrate on which the semiconductor elements are mounted and a case that houses the substrate, and is sealed using sealing resin. Main terminals that are electrically connected to the main electrodes of the semiconductor elements and control terminals that are electrically connected to the control integrated circuit are insert molded into the case.
  • the control integrated circuit is provided in the region of the case where the control terminals are disposed.
  • a molding step of integrally molding the main terminals and control terminals on the case and a bonding step that bonds the substrate to this type of case are needed.
  • a further step of electrically connecting circuit patterns provided on the semiconductor elements and the main terminals integrally molded to the case using bonding wires is also needed. In this way, when manufacturing a semiconductor device, many manufacturing steps and members are needed, which raises the manufacturing cost. There is also demand for improvements to the electrical and thermal characteristics.
  • a semiconductor device including: a substrate including an insulating layer and a plurality of circuit patterns formed on the insulating layer, the substrate having a principal surface on which an element region is set; a plurality of semiconductor elements provided on the plurality of circuit patterns in the element region; a plurality of main terminals that each have a first end joined to one of the plurality of circuit patterns in the element region and a second end extending out of the substrate from a first side of the substrate; a plurality of control terminals disposed in a control region that is adjacent to a second side of the substrate opposite the first side; and a sealing member that seals the principal surface and the control region.
  • FIGS. 1A and 1B are views depicting an external appearance of a semiconductor device according to the present embodiments
  • FIG. 2 is a side sectional view of the semiconductor device according to the present embodiments.
  • FIG. 3 is a plan sectional view of the semiconductor device according to the present embodiments.
  • FIG. 4 is a flowchart depicting a method of manufacturing a semiconductor device according to the present embodiments.
  • FIG. 5 is a diagram useful in explaining a step of joining external connection terminals, which is included in the method of manufacturing a semiconductor device according to the present embodiments;
  • FIG. 6 is a diagram useful in explaining a step of joining hanger terminals, which is included in the method of manufacturing a semiconductor device according to the present embodiments;
  • FIG. 7 is a diagram useful in explaining a step of joining semiconductor elements and electronic components and a step of connecting with bonding wires in the method of manufacturing a semiconductor device according to the present embodiments.
  • FIG. 8 is a diagram useful in explaining a step of sealing in the method of manufacturing a semiconductor device according to the present embodiments.
  • the expressions “front surface” and “upper surface” refer to the surface of the semiconductor device 10 that faces upward in FIG. 2 .
  • the expression “up” refers to the upward direction for the semiconductor device 10 in FIG. 2 .
  • the expressions “rear surface” and “lower surface” refer to the surface of the semiconductor device 10 that faces downward in FIG. 2 .
  • the expression “down” refers to the downward direction for the semiconductor device 10 in FIG. 2 .
  • front surface “upper surface”, “up”, “rear surface”, “lower surface”, “down”, and “side surface” are merely convenient expressions used to specify relative positional relationships, and are not intended to limit the technical scope of the present embodiments.
  • “up” and “down” do not necessarily mean directions that are perpendicular to the ground. That is, the “up” and “down” directions are not limited to the direction of gravity.
  • FIGS. 1A and 1B depict the external appearance of a semiconductor device according to the present embodiments.
  • FIG. 1A is a side view of a semiconductor device 10 (as viewed from above or below in FIG. 1B ), and FIG. 1B is a plan view of the semiconductor device 10 .
  • FIG. 2 is a side sectional view of the semiconductor device according to the present embodiments and FIG. 3 is a plan sectional view of the semiconductor device according to the present embodiments.
  • FIG. 2 is a cross-sectional view taken along a dot-dash line X-X in FIG. 3
  • FIG. 3 is a cross-sectional view taken along a dot-dash line X-X in FIG. 2 .
  • FIG. 3 corresponds to the plan view in FIG. 1B .
  • the entire structure of the semiconductor device 10 is sealed by a sealing member 60 to form a three-dimensional shape.
  • the sealing member 60 of the semiconductor device 10 may be cubic but have rounded corners.
  • a plurality of control terminals 30 and a plurality of main terminals 40 extend out from the respective side surfaces along the long edges of the sealing member 60 . Note that in the present embodiments, when not distinguishing between individual terminals, the control terminals and the main terminals are collectively described as the “control terminals 30 ” and the “main terminals 40 ”.
  • the semiconductor device 10 includes six pairs of a first semiconductor element 21 a and a second semiconductor element 21 b , a metal base substrate 22 , control terminals 30 (including control terminals 31 to 33 ), main terminals 40 (including main terminals 41 a to 41 d ), and electronic components 50 .
  • the control terminals 30 , the electronic components 50 , the first semiconductor elements 21 a , the second semiconductor element 21 b , and the main terminals 40 are electrically connected by appropriate bonding wires 26 . Note that the bonding wires connected to the electronic components 50 have been omitted from FIG. 3 .
  • the bonding wires 26 are made of a metal, such as aluminum or copper, with superior electrical conductivity, or an alloy including at least one of these metals.
  • the diameter of the bonding wires 26 is preferably at least 100 ⁇ m but not greater than 1 mm.
  • the first semiconductor elements 21 a include switching elements, such as IGBT or power MOSFETs.
  • a first semiconductor element 21 a is an IGBT
  • the collector electrode is provided on the rear surface as a main electrode
  • a gate electrode and an emitter electrode as a main electrode are provided on the front surface.
  • a first semiconductor element 21 a is a power MOSFET
  • a drain electrode as a main electrode is provided on the rear surface
  • a gate electrode and a source electrode as a main electrode are provided on the front surface.
  • the rear surface of each first semiconductor element 21 a described above is joined by solder (not illustrated) to circuit patterns 24 a , 24 b , 24 c , and 24 d of the metal base substrate 22 .
  • the second semiconductor elements 21 b include diodes such as SBD (Schottky Barrier Diodes) and FWD (FreeWheeling Diodes). These second semiconductor elements 21 b each have an output electrode (cathode electrode) as a main electrode on the rear surface and an input electrode (anode electrode) as a main electrode on the front surface.
  • the rear surface of each second semiconductor element 21 b described above is joined by solder (not illustrated) to the circuit patterns 24 a , 24 b , 24 c , and 24 d .
  • FIG. 3 merely depicts an example case where six pairs of the first semiconductor element 21 a and the second semiconductor element 21 b are provided. The number of pairs is not limited to six, and a number of pairs in keeping with the specification of the semiconductor device 10 or the like may be provided.
  • the metal base substrate 22 includes an insulating layer 23 , the circuit patterns 24 a , 24 b , 24 c , and 24 d and fixing patterns 24 e , 24 f , and 24 g formed on the insulating layer 23 , and a heat dissipating plate 25 formed on the rear surface of the insulating layer 23 .
  • the insulating layer 23 is made of any of: epoxy resin; epoxy resin mixed with inorganic filler; polyimide; and polytetrafluoroethylene. Note that the thickness of the insulating layer 23 is preferably at least 0.09 mm but not greater than 0.15 mm.
  • the circuit patterns 24 a , 24 b , 24 c , and 24 d and the fixing patterns 24 e , 24 f , and 24 g are made of a metal with superior electrical conductivity, such as copper or a copper alloy. Note that the shapes of the circuit patterns 24 a , 24 b , 24 c , and 24 d and the fixing patterns 24 e , 24 f , and 24 g in FIGS. 2 and 3 are mere examples.
  • circuit patterns 24 a , 24 b , 24 c , and 24 d and the fixing patterns 24 e , 24 f , and 24 g are produced by etching a conductive plate or foil formed on one surface of the insulating layer 23 , or by sticking a conductive plate to one surface of the insulating layer 23 .
  • the thickness of the circuit patterns 24 a , 24 b , 24 c , and 24 d and the fixing patterns 24 e , 24 f , and 24 g is preferably at least 0.10 mm but not greater than 1.00 mm, and more preferably at least 0.20 mm and not greater than 0.50 mm.
  • the circuit patterns 24 a , 24 b , 24 c , and 24 d are formed in an element region 22 a on the principal surface of the metal base substrate 22 , as depicted in FIGS. 2 and 3 .
  • the first semiconductor elements 21 a and the second semiconductor elements 21 b are joined by solder (not illustrated) to the circuit patterns 24 a , 24 b , 24 c , and 24 d .
  • the shapes, disposed positions, and numbers of the circuit patterns 24 a , 24 b , 24 c , and 24 d , and the disposed positions of the first semiconductor elements 21 a and the second semiconductor elements 21 b are mere examples, are not limited to FIGS. 2 and 3 , and are set as appropriate according to the design, specification, and the like.
  • the fixing patterns 24 e , 24 f , and 24 g are not electrically connected to other components.
  • the shape and number of the fixing patterns 24 e , 24 f , and 24 g are not limited to the examples depicted in FIGS. 2 and 3 , and are set as appropriate according to the design, specification, and the like.
  • the heat dissipating plate 25 is made of aluminum, iron, silver, or copper, which have superior thermal conductivity, or an alloy including at least one of these metals.
  • a material such as nickel may also be formed on the surface of the heat dissipating plate by plating or the like.
  • a nickel-phosphorus alloy, a nickel-boron alloy, or the like may be used.
  • a radiator (not illustrated) may be attached to the rear side of the heat dissipating plate 25 via solder, silver solder, or the like to improve the dissipation of heat.
  • the radiator used here is made of aluminum, iron, silver, or copper, which have superior thermal conductivity, or an alloy including at least one of these metals.
  • a cooling device including a fin or a heat sink with a plurality of fins and a cooling device that uses water cooling or the like may also be used as the radiator.
  • the heat dissipating plate may be integrally formed with this type of radiator.
  • the heat dissipating plate is made of aluminum, iron, silver, or copper that have superior thermal conductivity, or an alloy including at least one of these materials.
  • a material such as nickel may be formed by plating or the like on the surface of the heat dissipating plate that is integrated with the cooler.
  • a nickel-phosphorus alloy, a nickel-boron alloy, or the like may be used. Note that the thickness of the heat dissipating plate 25 is preferably at least 0.1 mm but not greater than 2.0 mm.
  • Each of the plurality of main terminals 40 has one end provided on the right side in FIG. 3 of the metal base substrate 22 , and another end that extends out from a side surface (or “first side surface”) on the right side of the semiconductor device 10 in FIG. 3 .
  • the main terminals 41 b , 41 a , 41 c , and 41 d out of the plurality of main terminals 40 are respectively joined to the circuit patterns 24 a , 24 b , 24 c , and 24 d of the metal base substrate 22 .
  • the main terminal 41 a includes a joining portion 41 a 1 , a linking portion 41 a 2 , and a terminal portion 41 a 3 .
  • the joining portion 41 a 1 is parallel to the front surface of the metal base substrate 22 and is joined to the circuit pattern 24 b .
  • the linking portion 41 a 2 is inclined and integrally connects the joining portion 41 a 1 and the terminal portion 41 a 3 .
  • the terminal portion 41 a 3 is separated from the front surface of the metal base substrate 22 in keeping with the inclination of the linking portion 41 a 2 , and extends from the metal base substrate 22 to the outside in parallel with the front surface.
  • the main terminals 41 b , 41 c , and 41 d have the same configuration as the main terminal 41 a.
  • the hanger terminals 42 , 43 , and 44 each have one end respectively joined to the fixing patterns 24 e , 24 f , and 24 g described above, with the other end facing outward from the metal base substrate 22 .
  • the other end of the hanger terminal 42 is exposed from the side surface (or “third side surface”) of the semiconductor device 10 at the top in FIG. 3
  • the other end of the hanger terminal 43 is exposed from the side surface (or “fourth side surface”) of the semiconductor device 10 at the bottom in FIG. 3
  • the other end of the hanger terminal 44 is exposed from the side surface (or “first side surface”) of the semiconductor device 10 on the right in FIG. 3 .
  • the hanger terminals 42 , 43 , and 44 As described later, the parts of the hanger terminals 42 , 43 , and 44 that extend from the semiconductor device 10 are removed, so that the other ends of the hanger terminals 42 , 43 , and 44 do not protrude from the side surfaces of the semiconductor device 10 .
  • the hanger terminals 42 and 43 include joining portions 42 al and 43 a 1 , linking portions 42 a 2 and 43 a 2 , and hanger portions 42 a 3 and 43 a 3 .
  • the hanger terminal 44 has the same configuration as the hanger terminals 42 and 43 .
  • the plurality of control terminals 30 (including the control terminals 31 , 32 , and 33 ) are provided in a control region 30 a that is adjacent to the other side of the metal base substrate 22 that is opposite the first side of the metal base substrate 22 to which the plurality of main terminals 40 are joined.
  • the control region 30 a is located at a higher position than the front surface of the metal base substrate 22 .
  • the control terminals 30 extend outward from the side surface (or “second side surface”) of the semiconductor device 10 on the left in FIG. 3 .
  • the plurality of control terminals 30 further include a control wiring portion 34 .
  • the control wiring portion 34 is disposed in the control region 30 a , with the electronic components 50 being mounted via solder (not illustrated).
  • the control wiring portion 34 is positioned at the same height as the parts of the control terminals 30 that extend to the outside from the side surface.
  • the control wiring portion 34 is positioned higher than the parts of the main terminals 40 that are joined to the circuit patterns 24 a , 24 b , 24 c , and 24 d and the parts of the hanger terminals 42 , 43 , and 44 that are joined to the fixing patterns 24 e , 24 f , and 24 g .
  • the control terminals 30 , the terminal portion 41 a 3 of the main terminals 41 a , 41 b , 41 c and 41 d (the terminal portions of the main terminals 41 b , 41 c and 41 d are not depicted), and the hanger portions 42 a 3 and 43 a 3 of the hanger terminals 42 , 43 and 44 (the hanger portion of the hanger terminal 44 is not depicted) are positioned at the same height.
  • the plurality of main terminals 40 , the hanger terminals 42 , 43 , and 44 , and the control terminals 30 are made of a metal that has superior electrical conductivity, such as copper or a copper alloy. In addition, these terminals may be coated with a metal, such as nickel or nickel alloy.
  • a suitable number of electronic components 50 are joined to the control wiring portion 34 via solder (not illustrated).
  • control ICs, thermistors, capacitors, resistors, and the like are used as appropriate to provide the semiconductor device 10 with the desired functions.
  • the sealing member 60 seals the configuration described above.
  • This sealing member 60 includes a thermosetting resin, such as maleimide-modified epoxy resin, maleimide-modified phenol resin, or maleimide resin, and a filler contained in the thermosetting resin.
  • a specific example is epoxy resin, which includes a filler such as silicon oxide, aluminum oxide, boron nitride, or aluminum nitride.
  • FIG. 4 is a flowchart depicting a method of manufacturing a semiconductor device according to the present embodiments.
  • FIG. 5 is a diagram useful in explaining a step of joining external connection terminals, which is included in the method of manufacturing a semiconductor device according to the present embodiments.
  • FIG. 6 is a diagram useful in explaining a step of joining hanger terminals, which is included in the method of manufacturing a semiconductor device according to the present embodiments. Note that FIGS. 5 and 6 are cross-sectional views corresponding to positions of a dot-dash line X-X and a dot-dash line Y-Y in FIG. 3 .
  • FIG. 5 and 6 are cross-sectional views corresponding to positions of a dot-dash line X-X and a dot-dash line Y-Y in FIG. 3 .
  • FIG. 5 and 6 are cross-sectional views corresponding to positions of a dot-dash line X-X and a dot-dash line Y-Y in FIG.
  • FIG. 7 is a diagram useful in explaining a step of joining semiconductor elements and electronic components and a step of connecting with bonding wires in the method of manufacturing a semiconductor device according to the present embodiments
  • FIG. 8 is a diagram useful in explaining a step of sealing in the method of manufacturing a semiconductor device according to the present embodiments. Note that FIGS. 7 and 8 are cross-sectional views corresponding to the position of the dot-dash line X-X in FIG. 3 .
  • the components of the semiconductor device 10 such as the first semiconductor elements 21 a , the second semiconductor elements 21 b , the metal base substrate 22 , a lead frame (not illustrated) where the plurality of control terminals 30 , the plurality of main terminals 40 , and the hanger terminals 42 , 43 , and 44 are aligned by tie bars, the electronic components 50 , and the raw materials of the sealing member 60 are prepared (Step S 1 ).
  • the lead frame described above is set on the metal base substrate 22 (Step S 2 ).
  • the control wiring portion 34 of the control terminals 30 (the control terminals 31 , 32 , and 33 are depicted in FIG.
  • the joining portion 41 a 1 of the main terminal 41 a (the main terminals 41 b , 41 c , and 41 d are the same) included in the lead frame (the joining portions of the main terminals 41 b , 41 c , and 41 d are omitted from the drawing) is positioned on the circuit pattern 24 b (or the circuit patterns 24 a , 24 c , and 24 d for the other terminals) of the metal base substrate 22 .
  • a predetermined jig or the like (not illustrated) is used so that the control terminals 30 and the control wiring portion 34 are kept in the control region 30 a that is at a higher position than the principal surface of the metal base substrate 22 .
  • the joining portion 41 a 1 of the main terminal 41 a included in the lead frame set on the circuit pattern 24 b of the metal base substrate 22 is joined by ultrasonic bonding (in the direction of the dashed arrow) to the circuit pattern 24 b .
  • the main terminals 41 b , 41 c , 41 d included in the lead frame set on the circuit patterns 24 a , 24 c , and 24 d of the metal base substrate 22 are joined in the same way by ultrasonic bonding.
  • FIG. 5 the joining portion 41 a 1 of the main terminal 41 a included in the lead frame set on the circuit pattern 24 b of the metal base substrate 22 is joined by ultrasonic bonding (in the direction of the dashed arrow) to the circuit pattern 24 b .
  • the main terminals 41 b , 41 c , 41 d included in the lead frame set on the circuit patterns 24 a , 24 c , and 24 d of the metal base substrate 22 are joined in the same way by ultrasonic bonding.
  • the joining portions 42 a 1 and 43 a 1 of the hanger terminals 42 and 43 included in the lead frame set on the fixing patterns 24 e and 24 f of the metal base substrate 22 are joined (in the direction of the dashed arrow) by ultrasonic bonding.
  • the hanger terminal 44 included in the lead frame set on the fixing pattern 24 g of the metal base substrate 22 is similarly joined by ultrasonic bonding (Step S 3 ). By doing so, three out of the four edges of the metal base substrate 22 become suspended by the main terminals 41 a , 41 b , 41 c , and 41 d and the hanger terminals 42 , 43 , and 44 . As a result, the metal base substrate 22 is kept horizontal in the following manufacturing steps.
  • the thickness of the circuit patterns 24 a , 24 b , 24 c , and 24 d and the fixing patterns 24 e , 24 f , and 24 g is preferably at least 0.10 mm but not greater than 1.00 mm, and more preferably, at least 0.20 mm but not greater than 0.50 mm. This value is at least 10 times or so thicker than the thickness of the insulating layer 23 .
  • a first semiconductor element 21 a and a second semiconductor element 21 b are both joined to the circuit pattern 24 b via solder.
  • other first semiconductor elements 21 a and second semiconductor elements 21 b are joined to the circuit patterns 24 a , 24 c , and 24 d via solder.
  • the electronic components 50 are also joined to the control wiring portion 34 via solder (Step S 4 ).
  • the control terminals 30 , the electronic components 50 , the first semiconductor elements 21 a , the second semiconductor elements 21 b , and the main terminals 40 are electrically connected as appropriate by the bonding wires 26 (Step S 5 ).
  • the assembly depicted in FIG. 7 is placed between an upper die 81 and a lower die 82 of a molding die 80 .
  • the metal base substrate 22 , and the plurality of control terminals 30 , the plurality of main terminals 40 , and the hanger terminals 42 , 43 , and 44 of the lead frame become housed in a cavity 84 formed by the upper die 81 and the lower die 82 .
  • the raw material of the sealing member 60 is then injected from a flow path 83 of the lower die 82 so as to fill the inside of the cavity 84 .
  • the metal base substrate 22 and the plurality of control terminals 30 , the plurality of main terminals 40 , and the hanger terminals 42 , 43 , and 44 of the lead frame are sealed by the sealing member 60 .
  • the metal base substrate 22 is sealed in a state where the metal base substrate 22 is kept horizontal by the main terminals 41 a , 41 b , 41 c , and 41 d and the hanger terminals 42 , 43 , and 44 .
  • the upper die 81 and the lower die 82 are separated and the semiconductor device 10 is taken out.
  • Step S 6 the semiconductor device 10 depicted in FIGS. 1A to 3 is obtained.
  • the semiconductor device 10 described above includes the first and second semiconductor elements 21 a and 21 b , and the metal base substrate 22 , which includes the insulating layer 23 and the circuit patterns 24 a , 24 b , 24 c , and 24 d formed on the insulating layer 23 and which has the first and second semiconductor elements 21 a and 21 b mounted on the circuit patterns 24 a , 24 b , 24 c , and 24 d in the element region 22 a set on the principal surface.
  • the semiconductor device 10 is also provided with the main terminals 41 b , 41 a , 41 c , and 41 d , respective first ends of which are joined to the circuit patterns 24 a , 24 b , 24 c , and 24 d in the element region 22 a and respective second ends of which extend outside the metal base substrate 22 from one side of the metal base substrate 22 .
  • control terminals 30 which include a control wiring portion 34 disposed in the control region 30 a located adjacent to the other side that is opposite the first side where the main terminals 41 b , 41 a , 41 c , and 41 d of the metal base substrate 22 are joined, and the sealing member 60 that seals the principal surface of the metal base substrate 22 and the control region 30 a.
  • the main terminals 41 b , 41 a , 41 c , and 41 d are directly joined to the circuit patterns 24 a , 24 b , 24 c , and 24 d where the first and second semiconductor elements 21 a and 21 b are disposed.
  • the metal base substrate 22 is used in the semiconductor device 10 , it is possible for heat produced in the first semiconductor elements 21 a and the second semiconductor elements 21 b to be efficiently dissipated from the heat dissipating plate 25 , which suppresses increases in temperature.
  • the control region 30 a where the control wiring portion 34 of the control terminals 30 is disposed is located at a higher position than the element region 22 a of the metal base substrate 22 .
  • the semiconductor device 10 does not use a case that is integrally molded with the control terminals 30 , the main terminals 41 b , 41 a , 41 c , and 41 d , and the like. This means that a step of molding this type of case and a step of bonding the metal base substrate 22 to the case are unnecessary. Accordingly, it is possible to simplify the manufacturing process of the semiconductor device 10 and to reduce the manufacturing cost.

Abstract

A semiconductor device, including a substrate having an insulating layer and a plurality of circuit patterns formed on the insulating layer, the substrate having a principal surface on which an element region is set. The semiconductor device further includes a plurality of semiconductor elements provided on the plurality of circuit patterns in the element region, a plurality of main terminals that each have a first end joined to one of the plurality of circuit patterns in the element region and a second end extending out of the substrate from a first side of the substrate, a plurality of control terminals disposed in a control region that is adjacent to a second side of the substrate opposite the first side, and a sealing member that seals the principal surface and the control region.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2019-155928, filed on Aug. 28, 2019, the entire contents of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION 1. Field of the Invention
The embodiments discussed herein relate to a semiconductor device and a method of manufacturing a semiconductor device.
2. Background of the Related Art
In recent years, some semiconductor devices include semiconductor elements and a control integrated circuit that realizes driving control and the like of the semiconductor elements. As examples, the semiconductor elements referred to here may be IGBT (Insulated Gate Bipolar Transistors) and power MOSFETs (Metal Oxide Semiconductor Field Effect Transistors). This type of semiconductor device includes a substrate on which the semiconductor elements are mounted and a case that houses the substrate, and is sealed using sealing resin. Main terminals that are electrically connected to the main electrodes of the semiconductor elements and control terminals that are electrically connected to the control integrated circuit are insert molded into the case. The control integrated circuit is provided in the region of the case where the control terminals are disposed.
See, for example, Japanese Laid-open Patent Publication No. 2014-146704.
With the semiconductor device described above, a molding step of integrally molding the main terminals and control terminals on the case and a bonding step that bonds the substrate to this type of case are needed. A further step of electrically connecting circuit patterns provided on the semiconductor elements and the main terminals integrally molded to the case using bonding wires is also needed. In this way, when manufacturing a semiconductor device, many manufacturing steps and members are needed, which raises the manufacturing cost. There is also demand for improvements to the electrical and thermal characteristics.
SUMMARY OF THE INVENTION
According to an aspect, there is provided a semiconductor device including: a substrate including an insulating layer and a plurality of circuit patterns formed on the insulating layer, the substrate having a principal surface on which an element region is set; a plurality of semiconductor elements provided on the plurality of circuit patterns in the element region; a plurality of main terminals that each have a first end joined to one of the plurality of circuit patterns in the element region and a second end extending out of the substrate from a first side of the substrate; a plurality of control terminals disposed in a control region that is adjacent to a second side of the substrate opposite the first side; and a sealing member that seals the principal surface and the control region.
The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1A and 1B are views depicting an external appearance of a semiconductor device according to the present embodiments;
FIG. 2 is a side sectional view of the semiconductor device according to the present embodiments;
FIG. 3 is a plan sectional view of the semiconductor device according to the present embodiments;
FIG. 4 is a flowchart depicting a method of manufacturing a semiconductor device according to the present embodiments;
FIG. 5 is a diagram useful in explaining a step of joining external connection terminals, which is included in the method of manufacturing a semiconductor device according to the present embodiments;
FIG. 6 is a diagram useful in explaining a step of joining hanger terminals, which is included in the method of manufacturing a semiconductor device according to the present embodiments;
FIG. 7 is a diagram useful in explaining a step of joining semiconductor elements and electronic components and a step of connecting with bonding wires in the method of manufacturing a semiconductor device according to the present embodiments; and
FIG. 8 is a diagram useful in explaining a step of sealing in the method of manufacturing a semiconductor device according to the present embodiments.
DETAILED DESCRIPTION OF THE INVENTION
Several embodiments will now be described with reference to the drawings. Note that in the following description, the expressions “front surface” and “upper surface” refer to the surface of the semiconductor device 10 that faces upward in FIG. 2. In the same way, the expression “up” refers to the upward direction for the semiconductor device 10 in FIG. 2. The expressions “rear surface” and “lower surface” refer to the surface of the semiconductor device 10 that faces downward in FIG. 2. In the same way, the expression “down” refers to the downward direction for the semiconductor device 10 in FIG. 2. These expressions indicate the same directions as needed in the other drawings. The expressions “front surface”, “upper surface”, “up”, “rear surface”, “lower surface”, “down”, and “side surface” are merely convenient expressions used to specify relative positional relationships, and are not intended to limit the technical scope of the present embodiments. As one example, “up” and “down” do not necessarily mean directions that are perpendicular to the ground. That is, the “up” and “down” directions are not limited to the direction of gravity.
A semiconductor device according to the present embodiments will now be described with reference to FIGS. 1A to 3. FIGS. 1A and 1B depict the external appearance of a semiconductor device according to the present embodiments. FIG. 1A is a side view of a semiconductor device 10 (as viewed from above or below in FIG. 1B), and FIG. 1B is a plan view of the semiconductor device 10. FIG. 2 is a side sectional view of the semiconductor device according to the present embodiments and FIG. 3 is a plan sectional view of the semiconductor device according to the present embodiments. FIG. 2 is a cross-sectional view taken along a dot-dash line X-X in FIG. 3, and FIG. 3 is a cross-sectional view taken along a dot-dash line X-X in FIG. 2. FIG. 3 corresponds to the plan view in FIG. 1B.
As depicted in FIGS. 1A and 1B, the entire structure of the semiconductor device 10 is sealed by a sealing member 60 to form a three-dimensional shape. Note that the sealing member 60 of the semiconductor device 10 may be cubic but have rounded corners. In the semiconductor device 10, a plurality of control terminals 30 and a plurality of main terminals 40 extend out from the respective side surfaces along the long edges of the sealing member 60. Note that in the present embodiments, when not distinguishing between individual terminals, the control terminals and the main terminals are collectively described as the “control terminals 30” and the “main terminals 40”.
In this semiconductor device 10, a configuration like that depicted in FIGS. 2 and 3 is sealed by the sealing member 60. That is, the semiconductor device 10 includes six pairs of a first semiconductor element 21 a and a second semiconductor element 21 b, a metal base substrate 22, control terminals 30 (including control terminals 31 to 33), main terminals 40 (including main terminals 41 a to 41 d), and electronic components 50. In this semiconductor device 10, the control terminals 30, the electronic components 50, the first semiconductor elements 21 a, the second semiconductor element 21 b, and the main terminals 40 are electrically connected by appropriate bonding wires 26. Note that the bonding wires connected to the electronic components 50 have been omitted from FIG. 3. This configuration of the semiconductor device 10 is sealed by the sealing member 60. The bonding wires 26 are made of a metal, such as aluminum or copper, with superior electrical conductivity, or an alloy including at least one of these metals. The diameter of the bonding wires 26 is preferably at least 100 μm but not greater than 1 mm.
The first semiconductor elements 21 a include switching elements, such as IGBT or power MOSFETs. When a first semiconductor element 21 a is an IGBT, the collector electrode is provided on the rear surface as a main electrode, and a gate electrode and an emitter electrode as a main electrode are provided on the front surface. When a first semiconductor element 21 a is a power MOSFET, a drain electrode as a main electrode is provided on the rear surface, and a gate electrode and a source electrode as a main electrode are provided on the front surface. The rear surface of each first semiconductor element 21 a described above is joined by solder (not illustrated) to circuit patterns 24 a, 24 b, 24 c, and 24 d of the metal base substrate 22. As examples, the second semiconductor elements 21 b include diodes such as SBD (Schottky Barrier Diodes) and FWD (FreeWheeling Diodes). These second semiconductor elements 21 b each have an output electrode (cathode electrode) as a main electrode on the rear surface and an input electrode (anode electrode) as a main electrode on the front surface. The rear surface of each second semiconductor element 21 b described above is joined by solder (not illustrated) to the circuit patterns 24 a, 24 b, 24 c, and 24 d. Note that in place of the first semiconductor elements 21 a and the second semiconductor elements 21 b, it is also possible to use an RC (Reverse-Conducting)-IGBT that combines the functions of an IGBT and an FWD. FIG. 3 merely depicts an example case where six pairs of the first semiconductor element 21 a and the second semiconductor element 21 b are provided. The number of pairs is not limited to six, and a number of pairs in keeping with the specification of the semiconductor device 10 or the like may be provided.
The metal base substrate 22 includes an insulating layer 23, the circuit patterns 24 a, 24 b, 24 c, and 24 d and fixing patterns 24 e, 24 f, and 24 g formed on the insulating layer 23, and a heat dissipating plate 25 formed on the rear surface of the insulating layer 23. The insulating layer 23 is made of any of: epoxy resin; epoxy resin mixed with inorganic filler; polyimide; and polytetrafluoroethylene. Note that the thickness of the insulating layer 23 is preferably at least 0.09 mm but not greater than 0.15 mm. The circuit patterns 24 a, 24 b, 24 c, and 24 d and the fixing patterns 24 e, 24 f, and 24 g are made of a metal with superior electrical conductivity, such as copper or a copper alloy. Note that the shapes of the circuit patterns 24 a, 24 b, 24 c, and 24 d and the fixing patterns 24 e, 24 f, and 24 g in FIGS. 2 and 3 are mere examples. These circuit patterns 24 a, 24 b, 24 c, and 24 d and the fixing patterns 24 e, 24 f, and 24 g are produced by etching a conductive plate or foil formed on one surface of the insulating layer 23, or by sticking a conductive plate to one surface of the insulating layer 23. Note that the thickness of the circuit patterns 24 a, 24 b, 24 c, and 24 d and the fixing patterns 24 e, 24 f, and 24 g is preferably at least 0.10 mm but not greater than 1.00 mm, and more preferably at least 0.20 mm and not greater than 0.50 mm. The circuit patterns 24 a, 24 b, 24 c, and 24 d are formed in an element region 22 a on the principal surface of the metal base substrate 22, as depicted in FIGS. 2 and 3. The first semiconductor elements 21 a and the second semiconductor elements 21 b are joined by solder (not illustrated) to the circuit patterns 24 a, 24 b, 24 c, and 24 d. The shapes, disposed positions, and numbers of the circuit patterns 24 a, 24 b, 24 c, and 24 d, and the disposed positions of the first semiconductor elements 21 a and the second semiconductor elements 21 b are mere examples, are not limited to FIGS. 2 and 3, and are set as appropriate according to the design, specification, and the like. Only hanger terminals 42, 43, and 44, described later, are fixed to the fixing patterns 24 e, 24 f, and 24 g, which are not electrically connected to other components. Note that the shape and number of the fixing patterns 24 e, 24 f, and 24 g are not limited to the examples depicted in FIGS. 2 and 3, and are set as appropriate according to the design, specification, and the like. However, it is preferable for the fixing patterns 24 e, 24 f, and 24 g to be formed on one side (or “first side”) of the metal base substrate 22 to which the main terminals 40, described later, are joined, or on another side (or “second side”) which is opposite this first side. It is also preferable to form the fixing patterns 24 e, 24 f, and 24 g at corners of the metal base substrate 22.
As examples, the heat dissipating plate 25 is made of aluminum, iron, silver, or copper, which have superior thermal conductivity, or an alloy including at least one of these metals. To improve corrosion resistance, as one example, a material such as nickel may also be formed on the surface of the heat dissipating plate by plating or the like. In more detail, aside from nickel, a nickel-phosphorus alloy, a nickel-boron alloy, or the like may be used. In addition, a radiator (not illustrated) may be attached to the rear side of the heat dissipating plate 25 via solder, silver solder, or the like to improve the dissipation of heat. As examples, the radiator used here is made of aluminum, iron, silver, or copper, which have superior thermal conductivity, or an alloy including at least one of these metals. A cooling device including a fin or a heat sink with a plurality of fins and a cooling device that uses water cooling or the like may also be used as the radiator. The heat dissipating plate may be integrally formed with this type of radiator. In that case, the heat dissipating plate is made of aluminum, iron, silver, or copper that have superior thermal conductivity, or an alloy including at least one of these materials. To improve corrosion resistance, as one example, a material such as nickel may be formed by plating or the like on the surface of the heat dissipating plate that is integrated with the cooler. In more detail, aside from nickel, a nickel-phosphorus alloy, a nickel-boron alloy, or the like may be used. Note that the thickness of the heat dissipating plate 25 is preferably at least 0.1 mm but not greater than 2.0 mm.
Each of the plurality of main terminals 40 has one end provided on the right side in FIG. 3 of the metal base substrate 22, and another end that extends out from a side surface (or “first side surface”) on the right side of the semiconductor device 10 in FIG. 3. The main terminals 41 b, 41 a, 41 c, and 41 d out of the plurality of main terminals 40 are respectively joined to the circuit patterns 24 a, 24 b, 24 c, and 24 d of the metal base substrate 22. The main terminal 41 a includes a joining portion 41 a 1, a linking portion 41 a 2, and a terminal portion 41 a 3. The joining portion 41 a 1 is parallel to the front surface of the metal base substrate 22 and is joined to the circuit pattern 24 b. The linking portion 41 a 2 is inclined and integrally connects the joining portion 41 a 1 and the terminal portion 41 a 3. The terminal portion 41 a 3 is separated from the front surface of the metal base substrate 22 in keeping with the inclination of the linking portion 41 a 2, and extends from the metal base substrate 22 to the outside in parallel with the front surface. Note that although not illustrated, the main terminals 41 b, 41 c, and 41 d have the same configuration as the main terminal 41 a.
The hanger terminals 42, 43, and 44 each have one end respectively joined to the fixing patterns 24 e, 24 f, and 24 g described above, with the other end facing outward from the metal base substrate 22. The other end of the hanger terminal 42 is exposed from the side surface (or “third side surface”) of the semiconductor device 10 at the top in FIG. 3, the other end of the hanger terminal 43 is exposed from the side surface (or “fourth side surface”) of the semiconductor device 10 at the bottom in FIG. 3, and the other end of the hanger terminal 44 is exposed from the side surface (or “first side surface”) of the semiconductor device 10 on the right in FIG. 3. As described later, the parts of the hanger terminals 42, 43, and 44 that extend from the semiconductor device 10 are removed, so that the other ends of the hanger terminals 42, 43, and 44 do not protrude from the side surfaces of the semiconductor device 10. As depicted in FIG. 6 described later, the hanger terminals 42 and 43 include joining portions 42 al and 43 a 1, linking portions 42 a 2 and 43 a 2, and hanger portions 42 a 3 and 43 a 3. Although not illustrated, the hanger terminal 44 has the same configuration as the hanger terminals 42 and 43.
The plurality of control terminals 30 (including the control terminals 31, 32, and 33) are provided in a control region 30 a that is adjacent to the other side of the metal base substrate 22 that is opposite the first side of the metal base substrate 22 to which the plurality of main terminals 40 are joined. The control region 30 a is located at a higher position than the front surface of the metal base substrate 22. The control terminals 30 extend outward from the side surface (or “second side surface”) of the semiconductor device 10 on the left in FIG. 3. The plurality of control terminals 30 further include a control wiring portion 34. The control wiring portion 34 is disposed in the control region 30 a, with the electronic components 50 being mounted via solder (not illustrated). The control wiring portion 34 is positioned at the same height as the parts of the control terminals 30 that extend to the outside from the side surface. The control wiring portion 34 is positioned higher than the parts of the main terminals 40 that are joined to the circuit patterns 24 a, 24 b, 24 c, and 24 d and the parts of the hanger terminals 42, 43, and 44 that are joined to the fixing patterns 24 e, 24 f, and 24 g. The control terminals 30, the terminal portion 41 a 3 of the main terminals 41 a, 41 b, 41 c and 41 d (the terminal portions of the main terminals 41 b, 41 c and 41 d are not depicted), and the hanger portions 42 a 3 and 43 a 3 of the hanger terminals 42, 43 and 44 (the hanger portion of the hanger terminal 44 is not depicted) are positioned at the same height.
The plurality of main terminals 40, the hanger terminals 42, 43, and 44, and the control terminals 30 (including the control terminals 31, 32, and 33) are made of a metal that has superior electrical conductivity, such as copper or a copper alloy. In addition, these terminals may be coated with a metal, such as nickel or nickel alloy.
A suitable number of electronic components 50 are joined to the control wiring portion 34 via solder (not illustrated). As the electronic components 50, control ICs, thermistors, capacitors, resistors, and the like are used as appropriate to provide the semiconductor device 10 with the desired functions. The sealing member 60 seals the configuration described above. This sealing member 60 includes a thermosetting resin, such as maleimide-modified epoxy resin, maleimide-modified phenol resin, or maleimide resin, and a filler contained in the thermosetting resin. A specific example is epoxy resin, which includes a filler such as silicon oxide, aluminum oxide, boron nitride, or aluminum nitride.
Next, a method of manufacturing a semiconductor device 10 like that described above will be described with reference to FIGS. 4 to 8. FIG. 4 is a flowchart depicting a method of manufacturing a semiconductor device according to the present embodiments. FIG. 5 is a diagram useful in explaining a step of joining external connection terminals, which is included in the method of manufacturing a semiconductor device according to the present embodiments. FIG. 6 is a diagram useful in explaining a step of joining hanger terminals, which is included in the method of manufacturing a semiconductor device according to the present embodiments. Note that FIGS. 5 and 6 are cross-sectional views corresponding to positions of a dot-dash line X-X and a dot-dash line Y-Y in FIG. 3. FIG. 7 is a diagram useful in explaining a step of joining semiconductor elements and electronic components and a step of connecting with bonding wires in the method of manufacturing a semiconductor device according to the present embodiments, and FIG. 8 is a diagram useful in explaining a step of sealing in the method of manufacturing a semiconductor device according to the present embodiments. Note that FIGS. 7 and 8 are cross-sectional views corresponding to the position of the dot-dash line X-X in FIG. 3.
First, the components of the semiconductor device 10, such as the first semiconductor elements 21 a, the second semiconductor elements 21 b, the metal base substrate 22, a lead frame (not illustrated) where the plurality of control terminals 30, the plurality of main terminals 40, and the hanger terminals 42, 43, and 44 are aligned by tie bars, the electronic components 50, and the raw materials of the sealing member 60 are prepared (Step S1). Next, the lead frame described above is set on the metal base substrate 22 (Step S2). At this time, as one example, as depicted in FIG. 5, the control wiring portion 34 of the control terminals 30 (the control terminals 31, 32, and 33 are depicted in FIG. 5) included in the lead frame is positioned in the control region 30 a. At the same time, the joining portion 41 a 1 of the main terminal 41 a (the main terminals 41 b, 41 c, and 41 d are the same) included in the lead frame (the joining portions of the main terminals 41 b, 41 c, and 41 d are omitted from the drawing) is positioned on the circuit pattern 24 b (or the circuit patterns 24 a, 24 c, and 24 d for the other terminals) of the metal base substrate 22. At this time, a predetermined jig or the like (not illustrated) is used so that the control terminals 30 and the control wiring portion 34 are kept in the control region 30 a that is at a higher position than the principal surface of the metal base substrate 22.
Next, as depicted in FIG. 5, the joining portion 41 a 1 of the main terminal 41 a included in the lead frame set on the circuit pattern 24 b of the metal base substrate 22 is joined by ultrasonic bonding (in the direction of the dashed arrow) to the circuit pattern 24 b. In the same way, the main terminals 41 b, 41 c, 41 d included in the lead frame set on the circuit patterns 24 a, 24 c, and 24 d of the metal base substrate 22 are joined in the same way by ultrasonic bonding. At the same time, as depicted in FIG. 6, the joining portions 42 a 1 and 43 a 1 of the hanger terminals 42 and 43 included in the lead frame set on the fixing patterns 24 e and 24 f of the metal base substrate 22 are joined (in the direction of the dashed arrow) by ultrasonic bonding. In the same way, the hanger terminal 44 included in the lead frame set on the fixing pattern 24 g of the metal base substrate 22 is similarly joined by ultrasonic bonding (Step S3). By doing so, three out of the four edges of the metal base substrate 22 become suspended by the main terminals 41 a, 41 b, 41 c, and 41 d and the hanger terminals 42, 43, and 44. As a result, the metal base substrate 22 is kept horizontal in the following manufacturing steps. Also, as described earlier, on the metal base substrate 22, the thickness of the circuit patterns 24 a, 24 b, 24 c, and 24 d and the fixing patterns 24 e, 24 f, and 24 g is preferably at least 0.10 mm but not greater than 1.00 mm, and more preferably, at least 0.20 mm but not greater than 0.50 mm. This value is at least 10 times or so thicker than the thickness of the insulating layer 23. This means that even if ultrasonic bonding is performed on the circuit patterns 24 a, 24 b, 24 c, and 24 d and the fixing patterns 24 e, 24 f, and 24 g on the insulating layer 23, it is possible to reliably transmit the ultrasonic vibration, so that the main terminals 40 and the control terminals 30 may be stably joined.
Next, as depicted in FIG. 7, a first semiconductor element 21 a and a second semiconductor element 21 b are both joined to the circuit pattern 24 b via solder. In the same way, other first semiconductor elements 21 a and second semiconductor elements 21 b are joined to the circuit patterns 24 a, 24 c, and 24 d via solder. The electronic components 50 are also joined to the control wiring portion 34 via solder (Step S4). Next, as depicted in FIG. 7, the control terminals 30, the electronic components 50, the first semiconductor elements 21 a, the second semiconductor elements 21 b, and the main terminals 40 (in FIG. 7, the main terminal 41 a) are electrically connected as appropriate by the bonding wires 26 (Step S5).
Next, the assembly depicted in FIG. 7 is placed between an upper die 81 and a lower die 82 of a molding die 80. By doing so, as depicted in FIG. 8, the metal base substrate 22, and the plurality of control terminals 30, the plurality of main terminals 40, and the hanger terminals 42, 43, and 44 of the lead frame become housed in a cavity 84 formed by the upper die 81 and the lower die 82. The raw material of the sealing member 60 is then injected from a flow path 83 of the lower die 82 so as to fill the inside of the cavity 84. By doing so, the metal base substrate 22 and the plurality of control terminals 30, the plurality of main terminals 40, and the hanger terminals 42, 43, and 44 of the lead frame are sealed by the sealing member 60. At this time, the metal base substrate 22 is sealed in a state where the metal base substrate 22 is kept horizontal by the main terminals 41 a, 41 b, 41 c, and 41 d and the hanger terminals 42, 43, and 44. After molding, the upper die 81 and the lower die 82 are separated and the semiconductor device 10 is taken out. Finally, unnecessary parts, such as burrs of the sealing member 60, the tie bars of the lead frame, and parts of the hanger terminals 42, 43, and 44 that extend out of the semiconductor device 10 are removed. By doing so, the semiconductor device 10 depicted in FIGS. 1A to 3 is obtained (Step S6).
The semiconductor device 10 described above includes the first and second semiconductor elements 21 a and 21 b, and the metal base substrate 22, which includes the insulating layer 23 and the circuit patterns 24 a, 24 b, 24 c, and 24 d formed on the insulating layer 23 and which has the first and second semiconductor elements 21 a and 21 b mounted on the circuit patterns 24 a, 24 b, 24 c, and 24 d in the element region 22 a set on the principal surface. The semiconductor device 10 is also provided with the main terminals 41 b, 41 a, 41 c, and 41 d, respective first ends of which are joined to the circuit patterns 24 a, 24 b, 24 c, and 24 d in the element region 22 a and respective second ends of which extend outside the metal base substrate 22 from one side of the metal base substrate 22. In addition, the semiconductor device 10 includes control terminals 30, which include a control wiring portion 34 disposed in the control region 30 a located adjacent to the other side that is opposite the first side where the main terminals 41 b, 41 a, 41 c, and 41 d of the metal base substrate 22 are joined, and the sealing member 60 that seals the principal surface of the metal base substrate 22 and the control region 30 a.
In this semiconductor device 10, the main terminals 41 b, 41 a, 41 c, and 41 d are directly joined to the circuit patterns 24 a, 24 b, 24 c, and 24 d where the first and second semiconductor elements 21 a and 21 b are disposed. This means that compared to a configuration where joining is achieved by bonding wires, electrical resistance is reduced. Also, since the metal base substrate 22 is used in the semiconductor device 10, it is possible for heat produced in the first semiconductor elements 21 a and the second semiconductor elements 21 b to be efficiently dissipated from the heat dissipating plate 25, which suppresses increases in temperature. The control region 30 a where the control wiring portion 34 of the control terminals 30 is disposed is located at a higher position than the element region 22 a of the metal base substrate 22. This means that it is possible to suppress the influence of noise produced in the respective regions and to stably drive the semiconductor device 10. Accordingly, the characteristics of the semiconductor device 10 are improved. In addition, the semiconductor device 10 does not use a case that is integrally molded with the control terminals 30, the main terminals 41 b, 41 a, 41 c, and 41 d, and the like. This means that a step of molding this type of case and a step of bonding the metal base substrate 22 to the case are unnecessary. Accordingly, it is possible to simplify the manufacturing process of the semiconductor device 10 and to reduce the manufacturing cost.
According to the present embodiments, it is possible to reduce the manufacturing cost and to improve the characteristics.
All examples and conditional language provided herein are intended for the pedagogical purposes of aiding the reader in understanding the invention and the concepts contributed by the inventor to further the art, and are not to be construed as limitations to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although one or more embodiments of the present invention have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.

Claims (21)

What is claimed is:
1. A semiconductor device, comprising:
a substrate including an insulating layer and a plurality of circuit patterns formed on the insulating layer, the substrate having a principal surface on which an element region is set;
a plurality of semiconductor elements provided on the plurality of circuit patterns in the element region;
a plurality of main terminals that each have a first end bonded directly to one of the plurality of circuit patterns in the element region and a second end extending out of the substrate from a first side of the substrate;
a plurality of control terminals disposed in a control region that is adjacent to a second side of the substrate opposite the first side;
a sealing member that seals the principal surface and the control region, wherein
the sealing member has a first side surface that corresponds to the first side of the substrate, and a second side surface that corresponds to the second side of the substrate,
each of the plurality of main terminals extends from the first side surface of the sealing member, and
each of the plurality of control terminals extends from the second side surface of the sealing member.
2. The semiconductor device according to claim 1, further comprising: a fixing pattern formed on the insulating layer of the substrate; and a hanger terminal having a first end and a second end, the first end being fixed to the fixing pattern and being sealed by the sealing member.
3. The semiconductor device according to claim 2, wherein the fixing pattern is formed on the second side of the substrate on the principle surface thereof.
4. The semiconductor device according to claim 3, wherein
the substrate has a corner, and
the semiconductor device further includes another fixing pattern formed in the corner of the substrate on the principle surface thereof.
5. The semiconductor device according to claim 4, wherein
the substrate has a third side and a fourth side that are between the first side and the second side, the third side being closer to the fixing pattern than the fourth side, and
the hanger terminal extends out of the substrate from the third side.
6. The semiconductor device according to claim 5, wherein
the sealing member has a third side surface that corresponds to the third side of the substrate, and a fourth side surface that corresponds to the fourth side of the substrate, and
the hanger terminal is sealed by the sealing member, with the second end thereof exposed from the third side surface or the fourth side surface of the sealing member.
7. The semiconductor device according to claim 2, wherein the fixing pattern is electrically connected only to the hanger terminal.
8. The semiconductor device according to claim 1,
wherein the plurality of control terminals are located at a higher position than the principal surface of the substrate in a depth direction of the semiconductor device.
9. The semiconductor device according to claim 1, wherein
at least one of the plurality of control terminals includes a control wiring portion, and
the semiconductor device further includes an electronic component disposed on the control wiring portion.
10. The semiconductor device according to claim 1,
wherein the insulating layer is formed of one of: epoxy resin, epoxy resin mixed with inorganic filler, polyimide, or polytetrafluoroethylene.
11. The semiconductor device according to claim 1, wherein each of the main terminals has
a joining portion at the first end thereof, the joining portion being in parallel to the principal surface of the substrate, and is bonded to one of the plurality of circuit patterns in the element region,
a terminal portion at the second end thereof, and
a linking portion that is inclined and integrally connects the joining portion and the terminal portion.
12. The semiconductor device according to claim 1, further comprising a bonding interface between a rear surface of the first end of each of the plurality of main terminals and a front surface of a corresponding one of the plurality of circuit patterns.
13. The semiconductor device according to claim 1, wherein
each of the plurality of main terminals has a joining portion at the first end thereof, the joining portion being bonded in parallel to the principal surface of the substrate.
14. The semiconductor device according to claim 1, wherein
in a depth direction of the semiconductor device, a shortest distance between each of the plurality of control terminals and the principal surface of the substrate is larger than a shortest distance between any of the joining portions and the principal surface of the substrate.
15. The semiconductor device according to claim 1, wherein
the first end of each of the plurality of main terminals is bonded to a side surface of one of the plurality of circuit patterns corresponding to the first side of the substrate.
16. A method of manufacturing a semiconductor device, the method comprising:
preparing a substrate including an insulating layer and a plurality of circuit patterns formed on the insulating layer, setting an element region on a principal surface of the substrate;
preparing a plurality of main terminals, and a plurality of control terminals;
disposing a first end of each of the plurality of main terminals in one of the plurality of circuit patterns in the element region, so that a second end of each of the plurality of main terminals extends out of the substrate from a first side of the substrate;
disposing the plurality of control terminals in a control region that is adjacent to a second side of the substrate opposite the first side;
directly bonding the first ends of the plurality of main terminals disposed in the plurality of circuit patterns of the substrate to the plurality of circuit patterns;
sealing the principal surface and the control region with a sealing member, wherein
the substrate prepared at the step of preparing a substrate further includes a fixing pattern formed together with the plurality of circuit patterns on the insulating layer, and
the method further includes:
preparing a hanger terminal,
disposing one end of the hanger terminal on the fixing pattern, and
joining the one end of the hanger terminal to the fixing pattern.
17. The method of manufacturing a semiconductor device according to claim 16, wherein the fixing pattern is formed on the second side of the substrate on the principal surface thereof.
18. The method of manufacturing a semiconductor device according to claim 17,
wherein the substrate has a corner, and another fixing pattern formed in the corner of the substrate on the principal surface thereof.
19. The method of manufacturing a semiconductor device according to claim 16,
wherein the bonding includes joining to the circuit patterns by ultrasonic bonding.
20. The method of manufacturing a semiconductor device according to claim 16, wherein
said preparing a plurality of main terminals includes preparing a plurality of main terminals such that each of the main terminals has
a joining portion at the first end thereof,
a terminal portion at the second end thereof, and
a linking portion that is inclined and integrally connects the joining portion and the terminal portion;
said disposing a first end of each of the plurality of main terminals includes disposing the joining portion of said each main terminal in parallel to the principal surface of the substrate; and
said bonding the first ends of the plurality of main terminals disposed in the plurality of circuit patterns of the substrate to the circuit patterns includes bonding the joining portions of the plurality of main terminals directly to the plurality of circuit patterns.
21. A semiconductor device, comprising:
a substrate including an insulating layer and a plurality of circuit patterns formed on the insulating layer, the substrate having a principal surface on which an element region is set, the substrate having first to fourth sides to define an outer periphery thereof, the second side being opposite to the first side, the third side being perpendicular to the first and second sides, the fourth sides being perpendicular to the first and second sides and being opposite to the third side;
a plurality of semiconductor elements provided on the plurality of circuit patterns in the element region;
a plurality of main terminals that each have a first end bonded to one of the plurality of circuit patterns in the element region and a second end extending out of the substrate from the first side of the substrate;
a plurality of control terminals disposed in a control region that is adjacent to the second side of the substrate;
a sealing member that seals the principal surface and the control region;
a fixing pattern formed on the insulating layer of the substrate; and
a hanger terminal having a first end and a second end, the first end thereof being fixed to the fixing pattern and being sealed by the sealing member, wherein the sealing member has
a first side surface that corresponds to the first side of the substrate,
a second side surface that corresponds to the second side of the substrate,
a third side surface that corresponds to the third side of the substrate, and
a fourth side surface that corresponds to the fourth side of the substrate,
each of the plurality of main terminals extends from the first side surface of the sealing member,
each of the plurality of control terminals extends from the second side surface of the sealing member, and
the hanger terminal is sealed by the sealing member, with the second end thereof exposed from the third side surface or the fourth side surface of the sealing member.
US16/909,975 2019-08-28 2020-06-23 Semiconductor device and method of manufacturing semiconductor device Active US11456285B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019155928A JP7459465B2 (en) 2019-08-28 2019-08-28 Semiconductor device and semiconductor device manufacturing method
JP2019-155928 2019-08-28
JPJP2019-155928 2019-08-28

Publications (2)

Publication Number Publication Date
US20210066258A1 US20210066258A1 (en) 2021-03-04
US11456285B2 true US11456285B2 (en) 2022-09-27

Family

ID=74677719

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/909,975 Active US11456285B2 (en) 2019-08-28 2020-06-23 Semiconductor device and method of manufacturing semiconductor device

Country Status (3)

Country Link
US (1) US11456285B2 (en)
JP (1) JP7459465B2 (en)
CN (1) CN112447691A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199808A1 (en) * 2022-04-12 2023-10-19 ローム株式会社 Semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235234A (en) 1992-02-24 1993-09-10 Matsushita Electric Works Ltd Semiconductor device and manufacture thereof
US20010028107A1 (en) * 2000-03-23 2001-10-11 Takashi Wada Semiconductor device and a method of manufacturing the same
JP2004128420A (en) 2002-10-07 2004-04-22 Fuji Electric Fa Components & Systems Co Ltd Semiconductor module and manufacturing method thereof
US20080099922A1 (en) * 2006-10-30 2008-05-01 Noriaki Sakamoto Circuit device and manufacturing method thereof
JP2010040615A (en) 2008-08-01 2010-02-18 Hitachi Ltd Semiconductor device
US20100133667A1 (en) * 2008-11-28 2010-06-03 Mitsubishi Electric Corporation Power semiconductor module
US20140210060A1 (en) * 2013-01-29 2014-07-31 Fuji Electric Co., Ltd. Semiconductor device
US20140374889A1 (en) * 2012-06-13 2014-12-25 Fuji Electric Co., Ltd. Semiconductor device
US20190006258A1 (en) * 2017-06-30 2019-01-03 Renesas Electronics Corporation Method of manufacturing semiconductor module and semiconductor module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5125758B2 (en) 2008-05-19 2013-01-23 三菱電機株式会社 Resin-sealed semiconductor device and manufacturing method thereof
JP2010010537A (en) 2008-06-30 2010-01-14 Hitachi Metals Ltd Circuit board and method of manufacturing the same, and electronic component module
JP5696780B2 (en) 2011-04-01 2015-04-08 富士電機株式会社 Semiconductor device and manufacturing method thereof
KR101915873B1 (en) 2014-05-12 2018-11-06 미쓰비시덴키 가부시키가이샤 Power semiconductor device and method for manufacturing same
JP6490027B2 (en) 2016-06-10 2019-03-27 三菱電機株式会社 Semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235234A (en) 1992-02-24 1993-09-10 Matsushita Electric Works Ltd Semiconductor device and manufacture thereof
US20010028107A1 (en) * 2000-03-23 2001-10-11 Takashi Wada Semiconductor device and a method of manufacturing the same
JP2004128420A (en) 2002-10-07 2004-04-22 Fuji Electric Fa Components & Systems Co Ltd Semiconductor module and manufacturing method thereof
US20080099922A1 (en) * 2006-10-30 2008-05-01 Noriaki Sakamoto Circuit device and manufacturing method thereof
JP2010040615A (en) 2008-08-01 2010-02-18 Hitachi Ltd Semiconductor device
US20100133667A1 (en) * 2008-11-28 2010-06-03 Mitsubishi Electric Corporation Power semiconductor module
US20140374889A1 (en) * 2012-06-13 2014-12-25 Fuji Electric Co., Ltd. Semiconductor device
US20140210060A1 (en) * 2013-01-29 2014-07-31 Fuji Electric Co., Ltd. Semiconductor device
JP2014146704A (en) 2013-01-29 2014-08-14 Fuji Electric Co Ltd Semiconductor device
US20190006258A1 (en) * 2017-06-30 2019-01-03 Renesas Electronics Corporation Method of manufacturing semiconductor module and semiconductor module

Also Published As

Publication number Publication date
JP2021034657A (en) 2021-03-01
CN112447691A (en) 2021-03-05
JP7459465B2 (en) 2024-04-02
US20210066258A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
WO2013021647A1 (en) Semiconductor module, semiconductor device provided with semiconductor module, and method for manufacturing semiconductor module
JP7159620B2 (en) Semiconductor devices, cooling modules, power converters and electric vehicles
US11133271B2 (en) Semiconductor device
US11456244B2 (en) Semiconductor device
US11456285B2 (en) Semiconductor device and method of manufacturing semiconductor device
US11637052B2 (en) Semiconductor device and semiconductor device manufacturing method
JP2012209470A (en) Semiconductor device, semiconductor device module, and manufacturing method of the semiconductor device
US20200185291A1 (en) Semiconductor device manufacturing method and semiconductor device
KR20180087330A (en) Metal slug for double sided cooling of power module
JP2015185835A (en) Semiconductor device and manufacturing method of the same
JP7135293B2 (en) Semiconductor device and method for manufacturing semiconductor device
US20210358835A1 (en) Semiconductor device
US20240021496A1 (en) Semiconductor device
JP2021034384A (en) Semiconductor device
US11178770B2 (en) Semiconductor device and semiconductor device manufacturing method
US20230335452A1 (en) Semiconductor device and semiconductor device manufacturing method
JP2005150419A (en) Semiconductor device
US20240096764A1 (en) Semiconductor device
US20240071898A1 (en) Semiconductor device and semiconductor device manufacturing method
US11177224B2 (en) Method of manufacturing semiconductor device
US20230067156A1 (en) Semiconductor device
CN210403714U (en) Power module
US20230402334A1 (en) Semiconductor device
US20240007014A1 (en) Power conversion device
US20220208685A1 (en) Semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJI ELECTRIC CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DENTA, TOSHIO;TANAKA, MASANORI;REEL/FRAME:053019/0120

Effective date: 20200609

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE