US11345295B2 - Impact absorbing structure for vehicles - Google Patents

Impact absorbing structure for vehicles Download PDF

Info

Publication number
US11345295B2
US11345295B2 US16/770,933 US201816770933A US11345295B2 US 11345295 B2 US11345295 B2 US 11345295B2 US 201816770933 A US201816770933 A US 201816770933A US 11345295 B2 US11345295 B2 US 11345295B2
Authority
US
United States
Prior art keywords
vehicle
frame member
frame
strut member
rear direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/770,933
Other versions
US20210162939A1 (en
Inventor
Chikara Kawamura
Tsuyoshi NISHIHARA
Kazutaka Ishikura
Hiroaki Takeshita
Tsuneki Shimanaka
Taiki Yotsuyanagi
Yoshiaki Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Assigned to MAZDA MOTOR CORPORATION reassignment MAZDA MOTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NISHIHARA, TSUYOSHI, SHIMANAKA, Tsuneki, ISHIKURA, KAZUTAKA, KAWAMURA, CHIKARA, MURAKAMI, YOSHIAKI, TAKESHITA, HIROAKI, YOTSUYANAGI, Taiki
Publication of US20210162939A1 publication Critical patent/US20210162939A1/en
Application granted granted Critical
Publication of US11345295B2 publication Critical patent/US11345295B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/03Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by material, e.g. composite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/30Elastomeric material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • B60R2019/1806Structural beams therefor, e.g. shock-absorbing
    • B60R2019/1833Structural beams therefor, e.g. shock-absorbing made of plastic material
    • B60R2019/1853Structural beams therefor, e.g. shock-absorbing made of plastic material of reinforced plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • B60R2019/1886Bumper fascias and fastening means therefor

Definitions

  • the present invention relates to an impact absorbing structure for a vehicle including a frame member formed of a resin material.
  • an impact absorbing structure for absorbing an impact applied to a front portion or a rear portion of a vehicle at a time of collision by using a compression-deformable buffer member (hereinafter, also referred to as a crash can).
  • the crash can is mounted between a bumper reinforcement extending in a vehicle width direction along a front end surface or a rear end surface of the vehicle, and distal ends of a pair of left and right side frames extending from a passenger compartment side toward the bumper reinforcement.
  • the crash can is formed of a metal material. By compressing and destroying the crash can in an axis direction at a time of vehicle collision, impact energy transmitted to a passenger compartment is absorbed.
  • the crash can formed of resin such as CFRP regardless of a difference in vehicle type in an aspect of lowering a ratio of cost of a mold.
  • a colliding object may collide against a bumper reinforcement from an oblique direction inclined upward or downward with respect to a longitudinal direction (axis direction) of the crash can depending on a vehicle type.
  • a vehicle height is low such as a sports type vehicle
  • the height of a bumper reinforcement is low with respect to a colliding object. Therefore, the colliding object collides against the bumper reinforcement obliquely from upward.
  • a vehicle height is high such as an SUV
  • the height of a bumper reinforcement is high with respect to a colliding object. Therefore, the colliding object collides against the bumper reinforcement obliquely from downward.
  • an impact load directing obliquely downward or obliquely upward is input to the crash can via the bumper reinforcement.
  • a bending stress acting to bend the crash can upward or downward may be applied to an intermediate portion of the crash can in a longitudinal direction thereof (vehicle front-rear direction), and the crash can may be bent.
  • the crash can is bent, the crash can is not appropriately compressed and destroyed in the axis direction, and a sufficient impact absorbing effect may not be obtained.
  • Patent Literature 1 mentions a measure of suppressing bending deformation, which occurs due to a bending stress acting on a base end (connecting portion to a side frame) of the crash can at a time of oblique collision from upward or oblique collision from downward.
  • Patent Literature 1 does not mention bending deformation of an intermediate portion between the base end and a distal end (connecting portion to a bumper reinforcement) of the crash can. Thus, there is room for further investigation.
  • Patent Literature 1 Japanese Unexamined Patent Application Publication No. 2009-274663
  • an object of the present invention is to provide an impact absorbing structure for a vehicle, which enables to, with use of a resin frame member as a buffer member (crash can), suppress bending of an intermediate portion of the frame member in a front-rear direction due to a bending stress acting at a time of oblique collision from upward or oblique collision from downward.
  • an impact absorbing structure for a vehicle includes: a resin frame member extending in a vehicle front-rear direction and including an opening portion in a surface thereof on one side in a vehicle width direction; and a strut member disposed in the opening portion of the frame member.
  • the frame member includes a frame body having the opening portion, and a rib protruding at least either upward or downward from the frame body and extending in the vehicle front-rear direction.
  • the strut member is disposed between a pair of opening edges for defining an upper edge and a lower edge of the opening portion, and at a position abuttable against the paired opening edges, when the frame member is deformed by input of a load at a time of oblique collision from upward or oblique collision from downward.
  • FIG. 1 is a diagram illustrating an embodiment in which an impact absorbing structure according to the present invention is applied to a vehicle front portion, and is a perspective view illustrating essential parts including a crash can.
  • FIG. 2 is a right side view illustrating essential parts of the vehicle front portion.
  • FIG. 3 is an exploded perspective view in which a strut member is removed from the state of FIG. 1 .
  • FIG. 4 is an enlarged cross-sectional view taken along the line A-A in FIG. 2 .
  • FIGS. 1 to 4 illustrate a preferred embodiment in a case where an impact absorbing structure according to the present invention is applied to a vehicle front portion.
  • the arrow F indicates a vehicle front side
  • the arrow L indicates a vehicle left side
  • the arrow R indicates a vehicle right side
  • the arrow U indicates a vehicle upper side. Since essential parts of a vehicle front portion according to the present embodiment are symmetrical in a left-right direction, in the following, only a configuration on the vehicle left side is described, unless otherwise specifically mentioned.
  • the vehicle left side corresponds to an outer side in a vehicle width direction
  • the vehicle right side corresponds to an inner side in the vehicle width direction.
  • the vehicle front portion includes a pair of left and right front side frames 100 extending in the front-rear direction on left and right sides of an engine room, a pair of left and right crash cans 1 disposed in front of the front side frames 100 , and a pair of left and right mounting plates 110 disposed between the front side frames 100 and the crash cans 1 .
  • the mounting plate 110 is fixedly fastened to a front end of the front side frame 100
  • the crash can 1 is fixedly fastened to a front surface of the mounting plate 110 .
  • the crash can 1 is formed of carbon fiber reinforced resin (hereinafter, abbreviated as “CFRP”).
  • a bumper reinforcement 120 extending in the vehicle width direction is formed on a front end of the vehicle.
  • the bumper reinforcement 120 is mounted to connect front ends of the paired left and right crash cans 1 to each other.
  • the front side frame 100 is a vehicle body strength member including a closed cross section extending in a vehicle front-rear direction.
  • the front side frame 100 includes a front side frame inner panel 101 , and a front side frame outer panel 102 connected to the front side frame inner panel 101 from the outer side in the vehicle width direction.
  • the front side frame inner panel 101 and the front side frame outer panel 102 include a pair of upper and lower flanges for connecting the two panels 101 and 102 .
  • bolt mounting portions 103 are formed on four corner portions (an upper portion and a lower portion of each of left and right side portions) at a front end of the front side frame 100 .
  • the bolt mounting portions 103 are formed to radially bulge from the corner portions of the front end of the front side frame 100 .
  • a mounting hole 103 a passing through in the vehicle front-rear direction is formed in each of the bolt mounting portions 103 . Illustration of the bolt mounting portions 103 on the inner side in the vehicle width direction and on the lower side is omitted.
  • the mounting plate 110 includes a plurality of (four) mounting holes 110 a ( FIG. 2 ) passing through in the vehicle front-rear direction at positions corresponding to the mounting holes 103 a of the bolt mounting portions 103 in a front view.
  • the mounting plate 110 is connected to a front end of the front side frame 100 by using a fastening member Ta including a bolt and a nut. Specifically, the mounting plate 110 is abutted against a front end of the front side frame 100 , and in this state, a bolt is received in the mounting hole 110 a of the mounting plate 110 and in the mounting hole 103 a of the front side frame 100 , and a nut is screwed with the bolt. Thus, the mounting plate 110 is connected to a front end of the front side frame 100 (see FIGS. 1 and 2 ).
  • the bumper reinforcement 120 is a member for applying a predetermined strength to an unillustrated bumper. Both ends of the bumper reinforcement 120 in the vehicle width direction are respectively connected to the front side frames 100 via the crash cans 1 .
  • the bumper reinforcement 120 extends in the vehicle width direction while being moderately curved to protrude forward.
  • a closed cross sectional space 120 A is formed inside the bumper reinforcement 120 .
  • the crash can 1 includes a frame member 10 and a strut member 20 .
  • the frame member 10 and the strut member 20 are constituted of a one-piece mold of CFRP.
  • the frame member 10 is a substantially hat-shaped member in a cross sectional view, which extends in the vehicle front-rear direction, and has a cross section orthogonal to the vehicle front-rear direction opened to the outer side in the vehicle width direction, and includes an opening portion 15 in a surface thereof on the outer side in the vehicle width direction.
  • the strut member 20 is a member similar to a flat plate extending in the vehicle front-rear direction along a plane orthogonal to the vehicle width direction, and is disposed at a position corresponding to the opening portion 15 of the frame member 10 , specifically, between a pair of opening edges 15 u and 15 d for defining an upper edge and a lower edge of the opening portion 15 .
  • the strut member 20 is a member for interfering and supporting the paired opening edges 15 u and 15 d of the frame member 10 .
  • the strut member 20 plays a role of suppressing the frame member 10 from being deformed to narrow the opening portion 15 (in other words, move the upper and lower opening edges 15 u and 15 d toward each other).
  • the frame member 10 integrally includes a frame body 11 , an upper rib 12 u , a lower rib 12 d , a base-end-side flange 13 ( 13 u , 13 d ), and a distal-end-side flange 14 .
  • the frame body 11 includes an upper wall 11 a , a lower wall 11 b , and a lateral wall 11 c for connecting inner ends of the upper and lower walls 11 a and 11 b in the vehicle width direction to each other.
  • the frame body 11 has, over the entire length thereof in the vehicle front-rear direction, an opened cross sectional space 11 A surrounded by the three walls 11 a , 11 b , and 11 c and opened to the outer side in the vehicle width direction, in other words, the opened cross sectional space 11 A having the opening portion 15 in a surface thereof on the outer side in the vehicle width direction (see FIGS. 2 to 4 ).
  • the frame body 11 is formed into a tapered shape such that a size of a cross section orthogonal to the vehicle front-rear direction gradually decreases toward the vehicle front side.
  • a recess portion 11 c 1 recessed toward aside where the opening portion 15 is formed (toward the outer side in the vehicle width direction) is formed in an intermediate portion, in an up-down direction, of the lateral wall 11 c on the inner side in the vehicle width direction to extend over the entire length of the lateral wall 11 c in the vehicle front-rear direction.
  • Bulging portions 11 c 2 and 11 c 2 bulging toward aside (toward the inner side in the vehicle width direction) opposite to the opening portion 15 are formed on an upper side and a lower side of the recess portion 11 c 1 .
  • the recess portion 11 c , and the bulging portions 11 c 2 and 11 c 2 are formed to be smoothly continued to one another.
  • a curved portion 11 d is formed on a corner portion where the upper wall 11 a and the lateral wall 11 c intersect with each other, and on a corner portion where the lower wall 11 b and the lateral wall 11 c intersect with each other.
  • the curved portion 11 d is curved to form a part of the upper and lower bulging portions 11 c 2 of the lateral wall 11 c.
  • An upper wall curved portion 11 e is formed on an intermediate portion of the upper wall 11 a in the vehicle width direction.
  • the upper wall 11 a is formed in such a way that an area on the outer side in the vehicle width direction (an area close to the upper rib 12 u ) is higher than an area on the inner side in the vehicle width direction with respect to the upper wall curved portion 11 e.
  • a lower wall curved portion 11 f is formed on an intermediate portion of the lower wall 11 b in the vehicle width direction.
  • the lower wall 11 b is formed in such a way that an area on the outer side in the vehicle width direction (an area close to the lower rib 12 d ) is lower than an area on the inner side in the vehicle width direction with respect to the lower wall curved portion 11 f.
  • the upper rib 12 u is formed to protrude upward from the upper opening edge 15 u of the fame body 11 .
  • the lower rib 12 d is formed to protrude downward from the lower opening edge 15 d of the frame body 11 .
  • Each of the upper rib 12 u and the lower rib 12 d is formed substantially over the entire length of the frame body 1 in the vehicle front-rear direction (longitudinal direction).
  • the upper rib 12 u and the lower rib 12 d play a role of enhancing rigidity against an upward or downward bending stress acting on the crash can 1 . This contributes to suppressing bending of an intermediate portion of the crash can 1 , when collision (hereinafter, referred to as “oblique collision from upward or oblique collision from downward”) occurs in which an input direction of a collision load input from the vehicle front side is inclined upward or downward with respect to the vehicle front-rear direction (longitudinal direction of the crash can 1 ).
  • the base-end-side flange 13 includes an upper base-end-side flange 13 u protruding upward from an upper edge of a base end (rear end) of the frame body 11 , and a lower base-end-side flange 13 d ( FIG. 2 ) protruding downward from a lower edge of the base end (rear end) of the frame body 11 .
  • Each of the upper and lower base-end-side flanges 13 u and 13 d includes a plurality of mounting hole 13 a passing through in the vehicle front-rear direction.
  • the mounting plate 110 includes a plurality of mounting holes 110 b passing through in the front-rear direction at positions corresponding to the mounting holes 13 a of the base-end-side flanges 13 u and 13 d in a front view (view in the vehicle front-rear direction).
  • the frame member 10 is connected to the mounting plate 110 by using a fastening member Tb including a bolt and a nut.
  • a fastening member Tb including a bolt and a nut.
  • the base-end-side flange 13 (the upper base-end-side flange 13 u and the lower base-end-side flange 13 d ) of the frame member 10 is abutted against a front surface of the mounting plate 110 , and in this state, a bolt is received in the mounting hole 13 a of the base-end-side flange 13 and in the mounting hole 110 b of the mounting plate 110 , and a nut is screwed with the bolt.
  • a base end (rear end) of the frame member 10 is connected to the mounting plate 110 .
  • a base end of the frame member 10 is connected to a front end of the front side frame 100 via the mounting plate 110 .
  • connection structure increases a connection strength between a base end (rear end) of the frame member 10 and the front side frame 100 , this contributes to suppressing bending of the base end of the frame member 10 at a time of oblique collision from upward or oblique collision from downward. Specifically, when oblique collision from upward or oblique collision from downward occurs, a bending stress acting on the frame member 10 is maximum at a base end of the frame member 10 . Since the above-described connection structure reinforces a base end of the frame member 10 on which a maximum bending stress acts as described above, the connection structure is advantageous in suppressing bending deformation of the base end.
  • the mounting plate 110 includes a pair of upper and lower mounting holes 110 c passing through in the vehicle front-rear direction at a position close to the outer side in the vehicle width direction.
  • the paired mounting holes 110 c are holes for connecting a base-end-side flange 22 of the strut member 20 to be described later, and are formed between a pair of mounting holes 110 a close to the outer side in the vehicle width direction among the four mounting holes 110 a formed in four corners of the mounting plate 110 .
  • the distal-end-side flange 14 is formed to extend toward the outer side in the vehicle width direction from a distal end (front end) of the frame body 11 .
  • the distal-end-side flange 14 includes a pair of upper and lower mounting holes 14 a passing through in the vehicle front-rear direction.
  • a rear wall 121 of the bumper reinforcement 120 includes a plurality of (two) mounting holes 120 a passing through in the vehicle front-rear direction at positions corresponding to the mounting holes 14 a of the distal-end-side flange 14 in a front view (view in the vehicle front-rear direction).
  • the strut member 20 integrally includes a strut body 21 , the base-end-side flange 22 , and a distal-end-side flange 23 .
  • the base-end-side flange 22 of the strut member 20 is formed to extend toward the outer side in the vehicle width direction from a base end (rear end) of the strut body 21 .
  • the base-end-side flange 22 includes a plurality of (two) mounting holes 22 a passing through in the vehicle front-rear direction at positions corresponding to the mounting holes 110 c of the mounting plate 110 in a front view (view in the vehicle front-rear direction).
  • the base-end-side flange 22 of the strut member 20 is connected to a front surface of the mounting plate 110 by using a fastening member Tc including a bolt and a nut. Specifically, the base-end-side flange 22 is abutted against a front surface of the mounting plate 110 , and in this state, a bolt is received in the mounting hole 22 a of the base-end-side flange 22 and in the mounting hole 110 c of the mounting plate 110 , and a nut is screwed with the bolt. Thus, the base-end-side flange 22 of the strut member 20 is connected to the mounting plate 110 .
  • the distal-end-side flange 23 of the strut member 20 is formed to extend toward the outer side in the vehicle width direction from a distal end (front end) of the strut body 21 .
  • the distal-end-side flange 23 of the strut member 20 includes a plurality of (two) mounting holes 23 a passing through in the vehicle front-rear direction at positions corresponding to the mounting holes 14 a of the distal-end-side flange 14 of the frame member 10 in a front view (view in the vehicle front-rear direction).
  • the distal-end-side flange 23 of the strut member 20 is connected to the rear wall 121 of the bumper reinforcement 120 together with the distal-end-side flange 14 of the frame member 10 by using a fastening member Td including a bolt and a nut.
  • the distal-end-side flange 14 of the frame member 10 is disposed to be interposed between the distal-end-side flange 23 of the strut member 20 and the rear wall 121 of the bumper reinforcement 120 , and in this state, a bolt is received in the mounting hole 23 a of the distal-end-side flange 23 , in the mounting hole 14 a of the distal-end-side flange 14 , and in the mounting hole 120 a of the rear wall 121 , and a nut is screwed with the bolt.
  • the distal-end-side flanges 23 and 14 of the strut member 20 and the frame member 10 (in other words, a distal end of the crash can 1 ) are connected to the rear wall 121 of the bumper reinforcement 120 .
  • the strut body 21 is disposed to extend in the vehicle front-rear direction substantially over the entire length from the rear wall 121 of the bumper reinforcement 120 to a front surface of the mounting plate 110 at a position corresponding to the opening portion 15 of the frame member 10 on the outer side in the vehicle width direction. Further, the strut body 21 is disposed in such a way that gaps Su and Sd are respectively formed between the strut body 21 and each of the upper and lower opening edges 15 u and 15 d.
  • the gap Su (upper gap Su) is formed between an upper end 21 u of the strut body 21 and the upper opening edge 15 u
  • the gap Sd (lower gap Sd) is formed between a lower end 21 d of the strut body 21 and the lower opening edge 15 d in a state that the strut body 21 is disposed in the opening portion 15 (between the upper and lower opening edges 15 u and 15 d ) of the frame member 10 .
  • Vertical widths of the upper gap Su and the lower gap Sd are set to a value capable of interfering and supporting the opening edges 15 u and 15 d of the frame member 10 by the strut member 20 at a time of oblique collision from upward or oblique collision from downward. Specifically, when an upward or downward bending stress acts on the frame member 10 by oblique collision from upward or oblique collision from downward, the frame member 10 is deformed in a direction to move the upper and lower opening edges 15 u and 15 d toward each other.
  • the upper opening edge 15 u is abutted against the upper end 21 u of the strut body 21
  • the lower opening edge 15 d is abutted against the lower end 21 d of the strut body 21 .
  • the vertical widths of the upper gap Su and the lower gap Sd are set to a value capable of performing support (interference and support) by the abutment. Setting the gaps Su an Sd as described above contributes to suppressing the frame member 10 from being excessively deformed at a time of oblique collision from upward or oblique collision from downward.
  • the vertical widths of the upper gap Su and the lower gap Sd are set to a value capable of discharging, to the outside, fragments of the frame member 10 , which is sequentially destroyed at a time of vehicle collision. Sequential destruction indicates a deformation mode at which an object is compressed and destroyed in an order from a side where a load is input (in this case, in an order from the front side).
  • the upper gap Su and the lower gap Sd are formed to have a substantially fixed vertical width along the vehicle front-rear direction.
  • the strut body 21 is formed into a trapezoidal shape in a vehicle side view in association with a tapered shape of the opening portion 15 whose vertical width is gradually decreased toward the front side.
  • the strut body 21 includes a plurality of base wall portions 25 , and a plurality of convex portions 26 protruding in a direction (toward the outer side in the vehicle width direction) away from the frame member 10 with respect to the base wall portions 25 .
  • the plurality of the base wall portions 25 and the plurality of the convex portions 26 are alternately arranged to align at a predetermined pitch (equi-distantly) in the vehicle front-rear direction.
  • eight convex portions 26 in total are formed on the strut body 21 .
  • the base wall portions 25 and the convex portions 26 are respectively formed to extend in the up-down direction from the upper end 21 u to the lower end 21 d of the strut body 21 .
  • the strut body 21 is formed to have a substantially fixed plate thickness from a front end to a rear end thereof.
  • the strut body 21 is formed into a corrugated shape including the plurality of the convex portions 26 as described above. Therefore, as compared with a case that, for example, the strut body 21 is formed into a flat plate linearly extending in the vehicle front-rear direction, an interfering support force (force against a compression stress) of the strut body 21 in the up-down direction is high.
  • the crash can 1 includes the frame member 10 of carbon fiber reinforced resin (CFRP) extending in the vehicle front-rear direction and having the opening portion 15 in a surface thereof on the outer side in the vehicle width direction; and the strut member 20 disposed in the opening portion 15 of the frame member 10 .
  • the frame member 10 includes the frame body 11 having the opening portion 15 , and the upper rib 12 u and the lower rib 12 d protruding upward and downward from the frame body 11 and extending in the vehicle front-rear direction.
  • CFRP carbon fiber reinforced resin
  • the strut member 20 is disposed between the paired opening edges 15 u and 15 d for defining an upper edge and a lower edge of the opening portion 15 , and at a position abuttable against the paired opening edges 15 u and 15 d , when the frame member 10 is deformed by input of a load at a time of oblique collision from upward or oblique collision from downward (see FIGS. 1, 2, and 4 ).
  • a unit having an opened cross sectional structure including the opening portion 15 is used as the resin frame member 10 . Therefore, it is more easy to form the frame member 10 of a resin material, as compared with a case that the frame member 10 has a closed cross sectional structure.
  • rigidity of the frame member 10 having an opened cross sectional structure is weak against a bending stress, and the frame member 10 is likely to be bent and deformed at a time of oblique collision from upward or oblique collision from downward.
  • the strut member 20 is disposed in the opening portion 15 of the frame member 10 .
  • the strut member 20 is abutted against the upper and lower opening edges 15 u and 15 d , when the frame member 10 is deformed by input of a load at a time of oblique collision from upward or oblique collision from downward. Consequently, a deformation amount of the frame member 10 is kept low. Specifically, even when the frame member 10 is attempted to be deformed to narrow the opening portion 15 (in other words, move the upper and lower opening edges 15 u and 15 d toward each other), a deformation amount of the frame member 10 is restricted by abutment of the upper and lower opening edges 15 u and 15 d against the strut member 20 . This contributes to suppressing upward and downward bending deformation of the frame member 10 .
  • the frame member 10 since the frame member 10 includes the ribs 12 u and 12 d extending in the vehicle front-rear direction, bending deformation of the frame member 10 is also suppressed by action of the ribs 12 u and 12 d .
  • the embodiment is able to advantageously suppress bending of an intermediate portion of the crash can 1 in the front-rear direction due to a bending stress acting at a time of oblique collision from upward or oblique collision from downward, while making it easy to produce the crash can 1 including the frame member 10 and the strut member 20 .
  • the gap Su is formed along the vehicle front-rear direction and between the upper opening edge 15 u and the upper end 21 u of the strut member 20
  • the gap Sd is formed along the vehicle front-rear direction and between the lower opening edge 15 d and the lower end 21 d of the strut member 20 (see FIGS. 1, 2, and 4 ).
  • the above configuration enables to appropriately and sequentially destroy the frame member 10 at a time of frontal collision, while suppressing bending of an intermediate portion of the frame member 10 in the front-rear direction due to a bending stress acting at a time of oblique collision from upward or oblique collision from downward. This enables to enhance impact absorbing ability by the frame member 10 .
  • the strut member 20 includes the plurality of the base wall portions 25 extending in the up-down direction, and the plurality of the convex portions 26 protruding toward the outer side in the vehicle width direction (in a direction away from the frame member 10 ) from the base wall portions 25 and extending in the up-down direction.
  • the plurality of the base wall portions 25 and the plurality of the convex portions 26 are alternately arranged to align in the vehicle front-rear direction at a predetermined pitch (see FIGS. 1 to 3 ).
  • the plurality of the convex portions 26 protruding toward the outer side in the vehicle width direction and extending in the up-down direction are formed on the strut member 20 , it is possible to enhance rigidity of the strut member 20 against an upward or downward load, as compared with a case that the strut member 20 is formed of a simple flat plate. Therefore, it is possible to securely receive, by the strut member 20 , the upper and lower opening edges 15 u and 15 d of the frame member 10 at a time of oblique collision from upward or oblique collision from downward, and it is possible to advantageously suppress bending deformation of the frame member 10 .
  • the strut member 20 since the strut member 20 includes a plurality of ridgelines formed on boundaries between the convex portions 26 and the base wall portions 25 , and extending in the up-down direction, the ridgelines function to induce bending at a time of frontal collision.
  • compressive destruction of the strut member 20 is promoted, it is possible to appropriately and sequentially destroy the crash can 1 including the strut member 20 and the frame member 10 , and further enhance impact absorbing ability by the cash can 1 .
  • the strut member 20 includes the base-end-side flange 22 connected to the front side frame 100 via the mounting plate 110 , and the distal-end-side flange 23 directly connected to the bumper reinforcement 120 (see FIGS. 1 to 3 ).
  • the present invention is not limited to a configuration of the embodiment, and various modifications are available, as far as the modifications do not depart from the gist of the present invention.
  • the embodiment employs, as the strut member 20 , the corrugated strut member 20 , which is formed in such a way that the plurality of base wall portions 25 and the plurality of the convex portions 26 are alternately aligned in the vehicle front-rear direction.
  • the shape of the strut member 20 is not limited to the above.
  • both of the frame member 10 and the strut member 20 are formed of carbon fiber reinforced resin (CFRP).
  • CFRP carbon fiber reinforced resin
  • another resin material may be used as a material for the frame member and the strut member.
  • the strut member is not necessarily required to be formed of a resin material.
  • the strut member may be formed of a material other than the resin material, such as a steel plate.
  • the upper rib 2 u protruding upward, and the lower rib 12 d are formed on the frame member 10 .
  • one of the upper rib 12 u and the lower rib 12 d may be omitted.
  • the upper gap Su is formed between the upper opening edge 15 u of the frame member 10 and the upper end 21 u of the strut member 20
  • the lower gap Sd is formed between the lower opening edge 15 d of the frame member 10 and the lower end 21 d of the strut member 20 .
  • one of the upper gap Su and the lower gap Sd may be omitted.
  • An impact absorbing structure for a vehicle includes: a resin frame member extending in a vehicle front-rear direction and including an opening portion in a surface thereof on one side in a vehicle width direction; and a strut member disposed in the opening portion of the frame member.
  • the frame member includes a frame body having the opening portion, and a rib protruding at least either upward or downward from the frame body and extending in the vehicle front-rear direction.
  • the strut member is disposed between a pair of opening edges for defining an upper edge and a lower edge of the opening portion, and at a position abuttable against the paired opening edges, when the frame member is deformed by input of a load at a time of oblique collision from upward or oblique collision from downward.
  • the resin frame member since a unit having an opened cross sectional structure including the opening portion is used as the resin frame member. Therefore, it is more easy to form the frame member of a resin material, as compared with a case that the frame member has a closed cross sectional structure.
  • rigidity of the frame member having an opened cross sectional structure is weak against a bending stress, and the frame member is likely to be bent and deformed at a time of oblique collision from upward or oblique collision from downward.
  • the strut member is disposed in the opening portion of the frame member.
  • the strut member is abutted against the upper and lower opening edges, when the frame member is deformed by input of a load at a time of oblique collision from upward or oblique collision from downward. Consequently, a deformation amount of the frame member is kept low. Specifically, even when the frame member is attempted to be deformed to narrow the opening portion (in other words, move the upper and lower opening edges toward each other), a deformation amount of the frame member is restricted by abutment of the upper and lower opening edges against the strut member. This contributes to suppressing upward and downward bending deformation of the frame member.
  • the frame member includes the ribs extending in the vehicle front-rear direction, bending deformation of the frame member is also suppressed by action of the ribs.
  • the above configuration is able to advantageously suppress bending of an intermediate portion of a buffer member (crash can) in the front-rear direction due to a bending stress acting at a time of oblique collision from upward or oblique collision from downward, while making it easy to produce the buffer member including the frame member and the strut member.
  • a gap may be formed along the vehicle front-rear direction and in at least one of positions between the upper opening edge and an upper end of the strut member, and between the lower opening edge and a lower end of the strut member.
  • the strut member may include a plurality of base wall portions extending in an up-down direction, and a plurality of convex portions protruding toward one side in the vehicle width direction from the base wall portions and extending in the up-down direction.
  • the plurality of the base wall portions and the plurality of the convex portions may be alternately arranged to align in the vehicle front-rear direction.
  • the plurality of the convex portions protruding toward one side in the vehicle width direction and extending in the up-down direction are formed on the strut member, it is possible to enhance rigidity of the strut member against an upward or downward load, as compared with a case that the strut member is formed of a simple flat plate. Therefore, it is possible to securely receive, by the strut member, the upper and lower opening edges of the frame member at a time of oblique collision from upward or oblique collision from downward, and it is possible to advantageously suppress bending deformation of the frame member.
  • the strut member since the strut member includes a plurality of ridgelines formed on boundaries between the convex portions and the base wall portions, and extending in the up-down direction, the ridgelines function to induce bending at a time of frontal collision.
  • a buffer member crash can
  • the strut member and the frame member since compressive destruction of the strut member is promoted, it is possible to appropriately and sequentially destroy a buffer member (crash can) including the strut member and the frame member, and further enhance impact absorbing ability by the buffer member.
  • the frame member and the strut member may be disposed between a front side frame and a bumper reinforcement on a front portion of the vehicle.
  • the strut member may include a base-end-side flange connected to the front side frame, and a distal-end-side flange connected to the bumper reinforcement.

Abstract

An impact absorbing structure for a vehicle according to the present invention includes: a resin frame member extending in a vehicle front-rear direction and having an opening portion in a surface thereof on one side in a vehicle width direction; and a strut member disposed in the opening portion of the frame member. The frame member includes a frame body having the opening portion, and a rib protruding at least either upward or downward from the frame body and extending in the vehicle front-rear direction. The strut member is disposed between a pair of opening edges for defining an upper edge and a lower edge of the opening portion and at a position abuttable against the paired opening edges, when the frame member is deformed by input of a load at a time of oblique collision from upward or oblique collision from downward.

Description

TECHNICAL FIELD
The present invention relates to an impact absorbing structure for a vehicle including a frame member formed of a resin material.
BACKGROUND ART
Conventionally, there is known an impact absorbing structure for absorbing an impact applied to a front portion or a rear portion of a vehicle at a time of collision by using a compression-deformable buffer member (hereinafter, also referred to as a crash can). The crash can is mounted between a bumper reinforcement extending in a vehicle width direction along a front end surface or a rear end surface of the vehicle, and distal ends of a pair of left and right side frames extending from a passenger compartment side toward the bumper reinforcement.
Generally, the crash can is formed of a metal material. By compressing and destroying the crash can in an axis direction at a time of vehicle collision, impact energy transmitted to a passenger compartment is absorbed.
Since the crash can is a relatively large component, an influence of the metal crash can on a weight of a vehicle body is non-negligible. In view of the above, as described in Patent Literature 1, forming a crash can (crash box) of a resin material such as CFRP has also been performed to reduce the weight of a vehicle body.
Further, it is desirable to standardize the crash can formed of resin such as CFRP regardless of a difference in vehicle type in an aspect of lowering a ratio of cost of a mold.
On the other hand, the height of a bumper reinforcement with respect to a colliding object differs depending on a vehicle type. Therefore, a colliding object may collide against a bumper reinforcement from an oblique direction inclined upward or downward with respect to a longitudinal direction (axis direction) of the crash can depending on a vehicle type.
Specifically, in a vehicle of a type in which a vehicle height is low such as a sports type vehicle, the height of a bumper reinforcement is low with respect to a colliding object. Therefore, the colliding object collides against the bumper reinforcement obliquely from upward. On the other hand, in a vehicle of a type in which a vehicle height is high such as an SUV, the height of a bumper reinforcement is high with respect to a colliding object. Therefore, the colliding object collides against the bumper reinforcement obliquely from downward.
When oblique collision from upward or oblique collision from downward as described above occurs, an impact load directing obliquely downward or obliquely upward is input to the crash can via the bumper reinforcement. Thus, a bending stress acting to bend the crash can upward or downward may be applied to an intermediate portion of the crash can in a longitudinal direction thereof (vehicle front-rear direction), and the crash can may be bent. When the crash can is bent, the crash can is not appropriately compressed and destroyed in the axis direction, and a sufficient impact absorbing effect may not be obtained.
The configuration of Patent Literature 1 mentions a measure of suppressing bending deformation, which occurs due to a bending stress acting on a base end (connecting portion to a side frame) of the crash can at a time of oblique collision from upward or oblique collision from downward. However, Patent Literature 1 does not mention bending deformation of an intermediate portion between the base end and a distal end (connecting portion to a bumper reinforcement) of the crash can. Thus, there is room for further investigation.
CITATION LIST Patent Literature
Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2009-274663
SUMMARY OF INVENTION
In view of the above-described circumstances, an object of the present invention is to provide an impact absorbing structure for a vehicle, which enables to, with use of a resin frame member as a buffer member (crash can), suppress bending of an intermediate portion of the frame member in a front-rear direction due to a bending stress acting at a time of oblique collision from upward or oblique collision from downward.
As a means for solving the above issue, an impact absorbing structure for a vehicle according to the present invention includes: a resin frame member extending in a vehicle front-rear direction and including an opening portion in a surface thereof on one side in a vehicle width direction; and a strut member disposed in the opening portion of the frame member. The frame member includes a frame body having the opening portion, and a rib protruding at least either upward or downward from the frame body and extending in the vehicle front-rear direction. The strut member is disposed between a pair of opening edges for defining an upper edge and a lower edge of the opening portion, and at a position abuttable against the paired opening edges, when the frame member is deformed by input of a load at a time of oblique collision from upward or oblique collision from downward.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a diagram illustrating an embodiment in which an impact absorbing structure according to the present invention is applied to a vehicle front portion, and is a perspective view illustrating essential parts including a crash can.
FIG. 2 is a right side view illustrating essential parts of the vehicle front portion.
FIG. 3 is an exploded perspective view in which a strut member is removed from the state of FIG. 1.
FIG. 4 is an enlarged cross-sectional view taken along the line A-A in FIG. 2.
DESCRIPTION OF EMBODIMENTS
In the following, an embodiment according to the present invention is described in detail with reference to the drawings.
FIGS. 1 to 4 illustrate a preferred embodiment in a case where an impact absorbing structure according to the present invention is applied to a vehicle front portion. In the drawings, the arrow F indicates a vehicle front side, the arrow L indicates a vehicle left side, the arrow R indicates a vehicle right side, and the arrow U indicates a vehicle upper side. Since essential parts of a vehicle front portion according to the present embodiment are symmetrical in a left-right direction, in the following, only a configuration on the vehicle left side is described, unless otherwise specifically mentioned. In this case, the vehicle left side corresponds to an outer side in a vehicle width direction, and the vehicle right side corresponds to an inner side in the vehicle width direction.
As illustrated in FIGS. 1 to 3, the vehicle front portion includes a pair of left and right front side frames 100 extending in the front-rear direction on left and right sides of an engine room, a pair of left and right crash cans 1 disposed in front of the front side frames 100, and a pair of left and right mounting plates 110 disposed between the front side frames 100 and the crash cans 1. The mounting plate 110 is fixedly fastened to a front end of the front side frame 100, and the crash can 1 is fixedly fastened to a front surface of the mounting plate 110. The crash can 1 is formed of carbon fiber reinforced resin (hereinafter, abbreviated as “CFRP”).
A bumper reinforcement 120 extending in the vehicle width direction is formed on a front end of the vehicle. The bumper reinforcement 120 is mounted to connect front ends of the paired left and right crash cans 1 to each other.
As illustrated in FIG. 1, the front side frame 100 is a vehicle body strength member including a closed cross section extending in a vehicle front-rear direction. The front side frame 100 includes a front side frame inner panel 101, and a front side frame outer panel 102 connected to the front side frame inner panel 101 from the outer side in the vehicle width direction. The front side frame inner panel 101 and the front side frame outer panel 102 include a pair of upper and lower flanges for connecting the two panels 101 and 102.
As illustrated in FIGS. 1 and 2, bolt mounting portions 103 are formed on four corner portions (an upper portion and a lower portion of each of left and right side portions) at a front end of the front side frame 100. The bolt mounting portions 103 are formed to radially bulge from the corner portions of the front end of the front side frame 100. As illustrated in FIG. 2, a mounting hole 103 a passing through in the vehicle front-rear direction is formed in each of the bolt mounting portions 103. Illustration of the bolt mounting portions 103 on the inner side in the vehicle width direction and on the lower side is omitted.
As illustrated in FIG. 2, the mounting plate 110 includes a plurality of (four) mounting holes 110 a (FIG. 2) passing through in the vehicle front-rear direction at positions corresponding to the mounting holes 103 a of the bolt mounting portions 103 in a front view.
The mounting plate 110 is connected to a front end of the front side frame 100 by using a fastening member Ta including a bolt and a nut. Specifically, the mounting plate 110 is abutted against a front end of the front side frame 100, and in this state, a bolt is received in the mounting hole 110 a of the mounting plate 110 and in the mounting hole 103 a of the front side frame 100, and a nut is screwed with the bolt. Thus, the mounting plate 110 is connected to a front end of the front side frame 100 (see FIGS. 1 and 2).
As illustrated in FIGS. 1 and 2, the bumper reinforcement 120 is a member for applying a predetermined strength to an unillustrated bumper. Both ends of the bumper reinforcement 120 in the vehicle width direction are respectively connected to the front side frames 100 via the crash cans 1. The bumper reinforcement 120 extends in the vehicle width direction while being moderately curved to protrude forward. A closed cross sectional space 120A is formed inside the bumper reinforcement 120.
As illustrated in FIGS. 1 to 4, the crash can 1 includes a frame member 10 and a strut member 20. The frame member 10 and the strut member 20 are constituted of a one-piece mold of CFRP.
The frame member 10 is a substantially hat-shaped member in a cross sectional view, which extends in the vehicle front-rear direction, and has a cross section orthogonal to the vehicle front-rear direction opened to the outer side in the vehicle width direction, and includes an opening portion 15 in a surface thereof on the outer side in the vehicle width direction.
The strut member 20 is a member similar to a flat plate extending in the vehicle front-rear direction along a plane orthogonal to the vehicle width direction, and is disposed at a position corresponding to the opening portion 15 of the frame member 10, specifically, between a pair of opening edges 15 u and 15 d for defining an upper edge and a lower edge of the opening portion 15. The strut member 20 is a member for interfering and supporting the paired opening edges 15 u and 15 d of the frame member 10. When an upward or downward bending stress acts on the frame member 10, the strut member 20 plays a role of suppressing the frame member 10 from being deformed to narrow the opening portion 15 (in other words, move the upper and lower opening edges 15 u and 15 d toward each other).
As illustrated in FIGS. 1 to 3, the frame member 10 integrally includes a frame body 11, an upper rib 12 u, a lower rib 12 d, a base-end-side flange 13 (13 u, 13 d), and a distal-end-side flange 14.
As mainly illustrated in FIG. 4, the frame body 11 includes an upper wall 11 a, a lower wall 11 b, and a lateral wall 11 c for connecting inner ends of the upper and lower walls 11 a and 11 b in the vehicle width direction to each other. In other words, the frame body 11 has, over the entire length thereof in the vehicle front-rear direction, an opened cross sectional space 11A surrounded by the three walls 11 a, 11 b, and 11 c and opened to the outer side in the vehicle width direction, in other words, the opened cross sectional space 11A having the opening portion 15 in a surface thereof on the outer side in the vehicle width direction (see FIGS. 2 to 4). Further, as illustrated in FIGS. 1 to 3, the frame body 11 is formed into a tapered shape such that a size of a cross section orthogonal to the vehicle front-rear direction gradually decreases toward the vehicle front side.
As illustrated in FIG. 4, a recess portion 11 c 1 recessed toward aside where the opening portion 15 is formed (toward the outer side in the vehicle width direction) is formed in an intermediate portion, in an up-down direction, of the lateral wall 11 c on the inner side in the vehicle width direction to extend over the entire length of the lateral wall 11 c in the vehicle front-rear direction. Bulging portions 11 c 2 and 11 c 2 bulging toward aside (toward the inner side in the vehicle width direction) opposite to the opening portion 15 are formed on an upper side and a lower side of the recess portion 11 c 1. The recess portion 11 c, and the bulging portions 11 c 2 and 11 c 2 are formed to be smoothly continued to one another.
A curved portion 11 d is formed on a corner portion where the upper wall 11 a and the lateral wall 11 c intersect with each other, and on a corner portion where the lower wall 11 b and the lateral wall 11 c intersect with each other. The curved portion 11 d is curved to form a part of the upper and lower bulging portions 11 c 2 of the lateral wall 11 c.
An upper wall curved portion 11 e is formed on an intermediate portion of the upper wall 11 a in the vehicle width direction. Specifically, the upper wall 11 a is formed in such a way that an area on the outer side in the vehicle width direction (an area close to the upper rib 12 u) is higher than an area on the inner side in the vehicle width direction with respect to the upper wall curved portion 11 e.
Likewise, a lower wall curved portion 11 f is formed on an intermediate portion of the lower wall 11 b in the vehicle width direction. Specifically, the lower wall 11 b is formed in such a way that an area on the outer side in the vehicle width direction (an area close to the lower rib 12 d) is lower than an area on the inner side in the vehicle width direction with respect to the lower wall curved portion 11 f.
As illustrated in FIG. 4, the upper rib 12 u is formed to protrude upward from the upper opening edge 15 u of the fame body 11. The lower rib 12 d is formed to protrude downward from the lower opening edge 15 d of the frame body 11.
Each of the upper rib 12 u and the lower rib 12 d is formed substantially over the entire length of the frame body 1 in the vehicle front-rear direction (longitudinal direction). The upper rib 12 u and the lower rib 12 d play a role of enhancing rigidity against an upward or downward bending stress acting on the crash can 1. This contributes to suppressing bending of an intermediate portion of the crash can 1, when collision (hereinafter, referred to as “oblique collision from upward or oblique collision from downward”) occurs in which an input direction of a collision load input from the vehicle front side is inclined upward or downward with respect to the vehicle front-rear direction (longitudinal direction of the crash can 1).
As illustrated in FIGS. 1 to 3, the base-end-side flange 13 includes an upper base-end-side flange 13 u protruding upward from an upper edge of a base end (rear end) of the frame body 11, and a lower base-end-side flange 13 d (FIG. 2) protruding downward from a lower edge of the base end (rear end) of the frame body 11.
Each of the upper and lower base-end- side flanges 13 u and 13 d includes a plurality of mounting hole 13 a passing through in the vehicle front-rear direction. On the other hand, as illustrated in FIG. 2, the mounting plate 110 includes a plurality of mounting holes 110 b passing through in the front-rear direction at positions corresponding to the mounting holes 13 a of the base-end- side flanges 13 u and 13 d in a front view (view in the vehicle front-rear direction).
The frame member 10 is connected to the mounting plate 110 by using a fastening member Tb including a bolt and a nut. Specifically, the base-end-side flange 13 (the upper base-end-side flange 13 u and the lower base-end-side flange 13 d) of the frame member 10 is abutted against a front surface of the mounting plate 110, and in this state, a bolt is received in the mounting hole 13 a of the base-end-side flange 13 and in the mounting hole 110 b of the mounting plate 110, and a nut is screwed with the bolt. Thus, a base end (rear end) of the frame member 10 is connected to the mounting plate 110. In other words, a base end of the frame member 10 is connected to a front end of the front side frame 100 via the mounting plate 110.
Since a connection structure as described above increases a connection strength between a base end (rear end) of the frame member 10 and the front side frame 100, this contributes to suppressing bending of the base end of the frame member 10 at a time of oblique collision from upward or oblique collision from downward. Specifically, when oblique collision from upward or oblique collision from downward occurs, a bending stress acting on the frame member 10 is maximum at a base end of the frame member 10. Since the above-described connection structure reinforces a base end of the frame member 10 on which a maximum bending stress acts as described above, the connection structure is advantageous in suppressing bending deformation of the base end.
As illustrated in FIGS. 2 and 3, the mounting plate 110 includes a pair of upper and lower mounting holes 110 c passing through in the vehicle front-rear direction at a position close to the outer side in the vehicle width direction. The paired mounting holes 110 c are holes for connecting a base-end-side flange 22 of the strut member 20 to be described later, and are formed between a pair of mounting holes 110 a close to the outer side in the vehicle width direction among the four mounting holes 110 a formed in four corners of the mounting plate 110.
As illustrated in FIGS. 1 to 3, the distal-end-side flange 14 is formed to extend toward the outer side in the vehicle width direction from a distal end (front end) of the frame body 11.
As illustrated in FIG. 2, the distal-end-side flange 14 includes a pair of upper and lower mounting holes 14 a passing through in the vehicle front-rear direction. On the other hand, a rear wall 121 of the bumper reinforcement 120 includes a plurality of (two) mounting holes 120 a passing through in the vehicle front-rear direction at positions corresponding to the mounting holes 14 a of the distal-end-side flange 14 in a front view (view in the vehicle front-rear direction).
As illustrated in FIGS. 1 to 4, the strut member 20 integrally includes a strut body 21, the base-end-side flange 22, and a distal-end-side flange 23.
As illustrated in FIGS. 2 and 3, the base-end-side flange 22 of the strut member 20 is formed to extend toward the outer side in the vehicle width direction from a base end (rear end) of the strut body 21. The base-end-side flange 22 includes a plurality of (two) mounting holes 22 a passing through in the vehicle front-rear direction at positions corresponding to the mounting holes 110 c of the mounting plate 110 in a front view (view in the vehicle front-rear direction).
The base-end-side flange 22 of the strut member 20 is connected to a front surface of the mounting plate 110 by using a fastening member Tc including a bolt and a nut. Specifically, the base-end-side flange 22 is abutted against a front surface of the mounting plate 110, and in this state, a bolt is received in the mounting hole 22 a of the base-end-side flange 22 and in the mounting hole 110 c of the mounting plate 110, and a nut is screwed with the bolt. Thus, the base-end-side flange 22 of the strut member 20 is connected to the mounting plate 110.
As illustrated in FIGS. 1 to 3, the distal-end-side flange 23 of the strut member 20 is formed to extend toward the outer side in the vehicle width direction from a distal end (front end) of the strut body 21.
As illustrated in FIGS. 2 and 3, the distal-end-side flange 23 of the strut member 20 includes a plurality of (two) mounting holes 23 a passing through in the vehicle front-rear direction at positions corresponding to the mounting holes 14 a of the distal-end-side flange 14 of the frame member 10 in a front view (view in the vehicle front-rear direction).
The distal-end-side flange 23 of the strut member 20 is connected to the rear wall 121 of the bumper reinforcement 120 together with the distal-end-side flange 14 of the frame member 10 by using a fastening member Td including a bolt and a nut. Specifically, the distal-end-side flange 14 of the frame member 10 is disposed to be interposed between the distal-end-side flange 23 of the strut member 20 and the rear wall 121 of the bumper reinforcement 120, and in this state, a bolt is received in the mounting hole 23 a of the distal-end-side flange 23, in the mounting hole 14 a of the distal-end-side flange 14, and in the mounting hole 120 a of the rear wall 121, and a nut is screwed with the bolt. Thus, the distal-end- side flanges 23 and 14 of the strut member 20 and the frame member 10 (in other words, a distal end of the crash can 1) are connected to the rear wall 121 of the bumper reinforcement 120.
As illustrated in FIGS. 1, 2, and 4, the strut body 21 is disposed to extend in the vehicle front-rear direction substantially over the entire length from the rear wall 121 of the bumper reinforcement 120 to a front surface of the mounting plate 110 at a position corresponding to the opening portion 15 of the frame member 10 on the outer side in the vehicle width direction. Further, the strut body 21 is disposed in such a way that gaps Su and Sd are respectively formed between the strut body 21 and each of the upper and lower opening edges 15 u and 15 d.
Specifically, as illustrated in FIG. 4, the gap Su (upper gap Su) is formed between an upper end 21 u of the strut body 21 and the upper opening edge 15 u, and the gap Sd (lower gap Sd) is formed between a lower end 21 d of the strut body 21 and the lower opening edge 15 d in a state that the strut body 21 is disposed in the opening portion 15 (between the upper and lower opening edges 15 u and 15 d) of the frame member 10.
Vertical widths of the upper gap Su and the lower gap Sd are set to a value capable of interfering and supporting the opening edges 15 u and 15 d of the frame member 10 by the strut member 20 at a time of oblique collision from upward or oblique collision from downward. Specifically, when an upward or downward bending stress acts on the frame member 10 by oblique collision from upward or oblique collision from downward, the frame member 10 is deformed in a direction to move the upper and lower opening edges 15 u and 15 d toward each other. At this occasion, as far as the vertical widths of the upper gap Su and the lower gap Sd lie within a predetermined range, the upper opening edge 15 u is abutted against the upper end 21 u of the strut body 21, and the lower opening edge 15 d is abutted against the lower end 21 d of the strut body 21. The vertical widths of the upper gap Su and the lower gap Sd are set to a value capable of performing support (interference and support) by the abutment. Setting the gaps Su an Sd as described above contributes to suppressing the frame member 10 from being excessively deformed at a time of oblique collision from upward or oblique collision from downward.
Further, the vertical widths of the upper gap Su and the lower gap Sd are set to a value capable of discharging, to the outside, fragments of the frame member 10, which is sequentially destroyed at a time of vehicle collision. Sequential destruction indicates a deformation mode at which an object is compressed and destroyed in an order from a side where a load is input (in this case, in an order from the front side).
The upper gap Su and the lower gap Sd are formed to have a substantially fixed vertical width along the vehicle front-rear direction. Specifically, as illustrated in FIG. 2, the strut body 21 is formed into a trapezoidal shape in a vehicle side view in association with a tapered shape of the opening portion 15 whose vertical width is gradually decreased toward the front side.
As illustrated in FIGS. 1 to 4, the strut body 21 includes a plurality of base wall portions 25, and a plurality of convex portions 26 protruding in a direction (toward the outer side in the vehicle width direction) away from the frame member 10 with respect to the base wall portions 25. The plurality of the base wall portions 25 and the plurality of the convex portions 26 are alternately arranged to align at a predetermined pitch (equi-distantly) in the vehicle front-rear direction. In the present embodiment, eight convex portions 26 in total are formed on the strut body 21.
The base wall portions 25 and the convex portions 26 are respectively formed to extend in the up-down direction from the upper end 21 u to the lower end 21 d of the strut body 21.
The strut body 21 is formed to have a substantially fixed plate thickness from a front end to a rear end thereof. However, the strut body 21 is formed into a corrugated shape including the plurality of the convex portions 26 as described above. Therefore, as compared with a case that, for example, the strut body 21 is formed into a flat plate linearly extending in the vehicle front-rear direction, an interfering support force (force against a compression stress) of the strut body 21 in the up-down direction is high.
As described above, the crash can 1 according to the present embodiment includes the frame member 10 of carbon fiber reinforced resin (CFRP) extending in the vehicle front-rear direction and having the opening portion 15 in a surface thereof on the outer side in the vehicle width direction; and the strut member 20 disposed in the opening portion 15 of the frame member 10. The frame member 10 includes the frame body 11 having the opening portion 15, and the upper rib 12 u and the lower rib 12 d protruding upward and downward from the frame body 11 and extending in the vehicle front-rear direction. The strut member 20 is disposed between the paired opening edges 15 u and 15 d for defining an upper edge and a lower edge of the opening portion 15, and at a position abuttable against the paired opening edges 15 u and 15 d, when the frame member 10 is deformed by input of a load at a time of oblique collision from upward or oblique collision from downward (see FIGS. 1, 2, and 4).
In this configuration, a unit having an opened cross sectional structure including the opening portion 15 is used as the resin frame member 10. Therefore, it is more easy to form the frame member 10 of a resin material, as compared with a case that the frame member 10 has a closed cross sectional structure. However, it is conceived that rigidity of the frame member 10 having an opened cross sectional structure is weak against a bending stress, and the frame member 10 is likely to be bent and deformed at a time of oblique collision from upward or oblique collision from downward. In contrast, in the embodiment, the strut member 20 is disposed in the opening portion 15 of the frame member 10. Therefore, the strut member 20 is abutted against the upper and lower opening edges 15 u and 15 d, when the frame member 10 is deformed by input of a load at a time of oblique collision from upward or oblique collision from downward. Consequently, a deformation amount of the frame member 10 is kept low. Specifically, even when the frame member 10 is attempted to be deformed to narrow the opening portion 15 (in other words, move the upper and lower opening edges 15 u and 15 d toward each other), a deformation amount of the frame member 10 is restricted by abutment of the upper and lower opening edges 15 u and 15 d against the strut member 20. This contributes to suppressing upward and downward bending deformation of the frame member 10. Further, since the frame member 10 includes the ribs 12 u and 12 d extending in the vehicle front-rear direction, bending deformation of the frame member 10 is also suppressed by action of the ribs 12 u and 12 d. Thus, the embodiment is able to advantageously suppress bending of an intermediate portion of the crash can 1 in the front-rear direction due to a bending stress acting at a time of oblique collision from upward or oblique collision from downward, while making it easy to produce the crash can 1 including the frame member 10 and the strut member 20.
Further, in the embodiment, the gap Su is formed along the vehicle front-rear direction and between the upper opening edge 15 u and the upper end 21 u of the strut member 20, and the gap Sd is formed along the vehicle front-rear direction and between the lower opening edge 15 d and the lower end 21 d of the strut member 20 (see FIGS. 1, 2, and 4).
In this configuration, since fragments of the frame member 10, which is sequentially destroyed at a time of vehicle collision, are discharged to the outside through the upper and lower gaps Su and Sd, it is possible to prevent the fragments from being accumulated in the opened cross sectional space 11A inside the frame member 10. Thus, sequential destruction of the frame member 10 is smoothly carried out, particularly at a time of frontal collision of the vehicle (at a time of collision in which an input direction of a collision load substantially coincides with the vehicle front-rear direction). This enables to sufficiently secure a destructive amount of the frame member 10 in a compression direction.
In other words, the above configuration enables to appropriately and sequentially destroy the frame member 10 at a time of frontal collision, while suppressing bending of an intermediate portion of the frame member 10 in the front-rear direction due to a bending stress acting at a time of oblique collision from upward or oblique collision from downward. This enables to enhance impact absorbing ability by the frame member 10.
Further, in the embodiment, the strut member 20 includes the plurality of the base wall portions 25 extending in the up-down direction, and the plurality of the convex portions 26 protruding toward the outer side in the vehicle width direction (in a direction away from the frame member 10) from the base wall portions 25 and extending in the up-down direction. The plurality of the base wall portions 25 and the plurality of the convex portions 26 are alternately arranged to align in the vehicle front-rear direction at a predetermined pitch (see FIGS. 1 to 3).
In this configuration, since the plurality of the convex portions 26 protruding toward the outer side in the vehicle width direction and extending in the up-down direction are formed on the strut member 20, it is possible to enhance rigidity of the strut member 20 against an upward or downward load, as compared with a case that the strut member 20 is formed of a simple flat plate. Therefore, it is possible to securely receive, by the strut member 20, the upper and lower opening edges 15 u and 15 d of the frame member 10 at a time of oblique collision from upward or oblique collision from downward, and it is possible to advantageously suppress bending deformation of the frame member 10.
On the other hand, since the strut member 20 includes a plurality of ridgelines formed on boundaries between the convex portions 26 and the base wall portions 25, and extending in the up-down direction, the ridgelines function to induce bending at a time of frontal collision. Thus, since compressive destruction of the strut member 20 is promoted, it is possible to appropriately and sequentially destroy the crash can 1 including the strut member 20 and the frame member 10, and further enhance impact absorbing ability by the cash can 1.
Further, in the embodiment, the strut member 20 includes the base-end-side flange 22 connected to the front side frame 100 via the mounting plate 110, and the distal-end-side flange 23 directly connected to the bumper reinforcement 120 (see FIGS. 1 to 3).
In this configuration, it is possible to appropriately and sequentially destroy the strut member 20 in an order from the front side by a collision load input from the bumper reinforcement 120 through the distal-end-side flange 23 at a time of vehicle collision, and efficiently transmit the collision load input to the strut member 20 to the front side frame 100 through the base-end-side flange 22.
The present invention is not limited to a configuration of the embodiment, and various modifications are available, as far as the modifications do not depart from the gist of the present invention.
For example, the embodiment employs, as the strut member 20, the corrugated strut member 20, which is formed in such a way that the plurality of base wall portions 25 and the plurality of the convex portions 26 are alternately aligned in the vehicle front-rear direction. However, the shape of the strut member 20 is not limited to the above. For example, it is possible to employ a strut member, which is formed in such a way that a thick portion having a large thickness in the vehicle width direction, and a thin portion having a small thickness in the vehicle width direction are alternately aligned in the vehicle front-rear direction.
In the embodiment, both of the frame member 10 and the strut member 20 are formed of carbon fiber reinforced resin (CFRP). Alternatively, another resin material may be used as a material for the frame member and the strut member. Further, the strut member is not necessarily required to be formed of a resin material. The strut member may be formed of a material other than the resin material, such as a steel plate.
In the embodiment, the upper rib 2 u protruding upward, and the lower rib 12 d are formed on the frame member 10. Alternatively, one of the upper rib 12 u and the lower rib 12 d may be omitted.
In the embodiment, the upper gap Su is formed between the upper opening edge 15 u of the frame member 10 and the upper end 21 u of the strut member 20, and the lower gap Sd is formed between the lower opening edge 15 d of the frame member 10 and the lower end 21 d of the strut member 20. Alternatively, one of the upper gap Su and the lower gap Sd may be omitted.
Overview of Embodiment
The following is an overview of the embodiment.
An impact absorbing structure for a vehicle according to the embodiment includes: a resin frame member extending in a vehicle front-rear direction and including an opening portion in a surface thereof on one side in a vehicle width direction; and a strut member disposed in the opening portion of the frame member. The frame member includes a frame body having the opening portion, and a rib protruding at least either upward or downward from the frame body and extending in the vehicle front-rear direction. The strut member is disposed between a pair of opening edges for defining an upper edge and a lower edge of the opening portion, and at a position abuttable against the paired opening edges, when the frame member is deformed by input of a load at a time of oblique collision from upward or oblique collision from downward.
In the above configuration, since a unit having an opened cross sectional structure including the opening portion is used as the resin frame member. Therefore, it is more easy to form the frame member of a resin material, as compared with a case that the frame member has a closed cross sectional structure. However, it is conceived that rigidity of the frame member having an opened cross sectional structure is weak against a bending stress, and the frame member is likely to be bent and deformed at a time of oblique collision from upward or oblique collision from downward. In contrast, in the above configuration, the strut member is disposed in the opening portion of the frame member. Therefore, the strut member is abutted against the upper and lower opening edges, when the frame member is deformed by input of a load at a time of oblique collision from upward or oblique collision from downward. Consequently, a deformation amount of the frame member is kept low. Specifically, even when the frame member is attempted to be deformed to narrow the opening portion (in other words, move the upper and lower opening edges toward each other), a deformation amount of the frame member is restricted by abutment of the upper and lower opening edges against the strut member. This contributes to suppressing upward and downward bending deformation of the frame member. Further, since the frame member includes the ribs extending in the vehicle front-rear direction, bending deformation of the frame member is also suppressed by action of the ribs. Thus, the above configuration is able to advantageously suppress bending of an intermediate portion of a buffer member (crash can) in the front-rear direction due to a bending stress acting at a time of oblique collision from upward or oblique collision from downward, while making it easy to produce the buffer member including the frame member and the strut member.
Preferably, a gap may be formed along the vehicle front-rear direction and in at least one of positions between the upper opening edge and an upper end of the strut member, and between the lower opening edge and a lower end of the strut member.
In the above configuration, since fragments of the frame member, which is sequentially destroyed at a time of vehicle collision, are discharged to the outside through the gaps, it is possible to prevent the fragments from being accumulated inside the frame member. Thus, sequential destruction of the frame member is smoothly carried out, particularly at a time of frontal collision of the vehicle (at a time of collision in which an input direction of a collision load substantially coincides with the vehicle front-rear direction). This enables to sufficiently secure a destructive amount of the frame member in a compression direction.
In other words, in the above configuration, it is possible to appropriately and sequentially destroy the frame member at a time of frontal collision, while suppressing bending of an intermediate portion of the frame member in the front-rear direction due to a bending stress acting at a time of oblique collision from upward or oblique collision from downward, and enhance impact absorbing ability by the frame member.
Preferably, the strut member may include a plurality of base wall portions extending in an up-down direction, and a plurality of convex portions protruding toward one side in the vehicle width direction from the base wall portions and extending in the up-down direction. The plurality of the base wall portions and the plurality of the convex portions may be alternately arranged to align in the vehicle front-rear direction.
In the above configuration, since the plurality of the convex portions protruding toward one side in the vehicle width direction and extending in the up-down direction are formed on the strut member, it is possible to enhance rigidity of the strut member against an upward or downward load, as compared with a case that the strut member is formed of a simple flat plate. Therefore, it is possible to securely receive, by the strut member, the upper and lower opening edges of the frame member at a time of oblique collision from upward or oblique collision from downward, and it is possible to advantageously suppress bending deformation of the frame member.
On the other hand, since the strut member includes a plurality of ridgelines formed on boundaries between the convex portions and the base wall portions, and extending in the up-down direction, the ridgelines function to induce bending at a time of frontal collision. Thus, since compressive destruction of the strut member is promoted, it is possible to appropriately and sequentially destroy a buffer member (crash can) including the strut member and the frame member, and further enhance impact absorbing ability by the buffer member.
The frame member and the strut member may be disposed between a front side frame and a bumper reinforcement on a front portion of the vehicle.
In the above configuration, it is possible to suppress bending deformation of the frame member at a time of oblique collision from upward or oblique collision from downward, while reducing the weight of the front portion of the vehicle.
In the above configuration, more preferably, the strut member may include a base-end-side flange connected to the front side frame, and a distal-end-side flange connected to the bumper reinforcement.
In the above configuration, it is possible to appropriately and sequentially destroy the strut member in an order from the front side by a collision load input from the bumper reinforcement through the distal-end-side flange at a time of vehicle collision, and efficiently transmit the collision load input to the strut member to the front side frame through the base-end-side flange.

Claims (9)

The invention claimed is:
1. An impact absorbing structure for a vehicle comprising:
a resin frame member extending in a vehicle front-rear direction and including an opening portion in a surface thereof on one side in a vehicle width direction; and
a strut member disposed in the opening portion of the frame member, wherein
the frame member includes a frame body having the opening portion, and a rib protruding at least either upward or downward from the frame body and extending in the vehicle front-rear direction,
the strut member is disposed between a pair of opening edges for defining an upper edge and a lower edge of the opening portion, and at a position abuttable against the paired opening edges, when the frame member is deformed by input of a load at a time of oblique collision from upward or oblique collision from downward, and
a gap is formed along the vehicle front-rear direction and in at least one of positions between the upper opening edge and an upper end of the strut member, and between the lower opening edge and a lower end of the strut member.
2. The impact absorbing structure for the vehicle according to claim 1, wherein
the strut member includes a plurality of base wall portions extending in an up-down direction, and a plurality of convex portions protruding toward one side in the vehicle width direction from the base wall portions and extending in the up-down direction, and
the plurality of the base wall portions and the plurality of the convex portions are alternately arranged to align in the vehicle front-rear direction.
3. The impact absorbing structure for the vehicle according to claim 2, wherein
the frame member and the strut member are disposed between a front side frame and a bumper reinforcement on a front portion of the vehicle.
4. The impact absorbing structure for the vehicle according to claim 3, wherein
the strut member includes a base-end-side flange connected to the front side frame, and a distal-end-side flange connected to the bumper reinforcement.
5. The impact absorbing structure for the vehicle according to claim 1, wherein
the frame member and the strut member are disposed between a front side frame and a bumper reinforcement on a front portion of the vehicle.
6. The impact absorbing structure for the vehicle according to claim 5, wherein
the strut member includes a base-end-side flange connected to the front side frame, and a distal-end-side flange connected to the bumper reinforcement.
7. An impact absorbing structure for a vehicle comprising:
a resin frame member extending in a vehicle front-rear direction and including an opening portion in a surface thereof on one side in a vehicle width direction; and
a strut member disposed in the opening portion of the frame member, wherein
the frame member includes a frame body having the opening portion, and a rib protruding at least either upward or downward from the frame body and extending in the vehicle front-rear direction,
the strut member is disposed between a pair of opening edges for defining an upper edge and a lower edge of the opening portion, and at a position abuttable against the paired opening edges, when the frame member is deformed by input of a load at a time of oblique collision from upward or oblique collision from downward,
the strut member includes a plurality of base wall portions extending in an up-down direction, and a plurality of convex portions protruding toward one side in the vehicle width direction from the base wall portions and extending in the up-down direction, and
the plurality of the base wall portions and the plurality of the convex portions are alternately arranged to align in the vehicle front-rear direction.
8. The impact absorbing structure for the vehicle according to claim 7, wherein
the frame member and the strut member are disposed between a front side frame and a bumper reinforcement on a front portion of the vehicle.
9. The impact absorbing structure for the vehicle according to claim 8, wherein
the strut member includes a base-end-side flange connected to the front side frame, and a distal-end-side flange connected to the bumper reinforcement.
US16/770,933 2017-12-14 2018-12-11 Impact absorbing structure for vehicles Active 2039-02-09 US11345295B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP2017-239880 2017-12-14
JP2017-239880 2017-12-14
JP2017239880A JP6555331B2 (en) 2017-12-14 2017-12-14 Vehicle shock absorption structure
PCT/JP2018/045392 WO2019117111A1 (en) 2017-12-14 2018-12-11 Shock absorbing structure for vehicles

Publications (2)

Publication Number Publication Date
US20210162939A1 US20210162939A1 (en) 2021-06-03
US11345295B2 true US11345295B2 (en) 2022-05-31

Family

ID=66819252

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/770,933 Active 2039-02-09 US11345295B2 (en) 2017-12-14 2018-12-11 Impact absorbing structure for vehicles

Country Status (5)

Country Link
US (1) US11345295B2 (en)
EP (1) EP3722159B1 (en)
JP (1) JP6555331B2 (en)
CN (1) CN111479724B (en)
WO (1) WO2019117111A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE1751561A1 (en) * 2017-12-18 2019-06-19 Gestamp Hardtech Ab Crash box for a bumper
US11325648B2 (en) * 2019-05-07 2022-05-10 Hyundai Motor Company Front end module frame of vehicle

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015626A (en) 2005-07-08 2007-01-25 Toyota Industries Corp Support structure for vehicle bumper
JP2008221987A (en) 2007-03-12 2008-09-25 Toyota Motor Corp Bumper reinforcement supporting structure
JP2009234377A (en) 2008-03-26 2009-10-15 Suzuki Motor Corp Vehicle crash box and vehicle front-body structure
JP2009274663A (en) 2008-05-16 2009-11-26 Toyota Motor Corp Vehicle energy absorbing structure
US20100127531A1 (en) 2008-11-25 2010-05-27 Honda Motor Co., Ltd. Front vehicle body structure
US20150191203A1 (en) 2012-07-06 2015-07-09 Toyota Jidosha Kabushiki Kaisha Vehicle body front portion structure
US9415735B1 (en) 2015-09-11 2016-08-16 Ford Global Technologies, Llc Vehicle deflection system for impact events
US20160325701A1 (en) 2014-01-10 2016-11-10 Honda Motor Co., Ltd. Automobile bumper
US20170021868A1 (en) 2015-07-22 2017-01-26 Toyota Jidosha Kabushiki Kaisha Vehicle front section structure
JP2017094850A (en) 2015-11-20 2017-06-01 マツダ株式会社 Shock absorbing member structure for vehicle

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3646583B2 (en) * 1999-10-06 2005-05-11 トヨタ自動車株式会社 Front side member structure
JP3863100B2 (en) * 2002-12-10 2006-12-27 株式会社神戸製鋼所 Energy absorbing member for vehicle body and electromagnetic forming method for forming flange on energy absorbing member for vehicle body
JP4285293B2 (en) * 2004-03-24 2009-06-24 トヨタ自動車株式会社 Shock absorption structure at the front of the vehicle
JP4506499B2 (en) * 2005-02-15 2010-07-21 マツダ株式会社 Front body structure of automobile
JP2008094236A (en) * 2006-10-11 2008-04-24 Toyota Motor Corp Vehicular shock-absorbing member
JP2008120256A (en) * 2006-11-13 2008-05-29 Toyota Motor Corp Shock absorbing structure for vehicle
JP2008213816A (en) * 2007-02-05 2008-09-18 Honda Motor Co Ltd Vehicle body strength adjusting device for vehicle
US8210601B2 (en) * 2008-09-18 2012-07-03 Mazda Motor Corporation Vehicle body structure
JP5381539B2 (en) * 2009-09-15 2014-01-08 マツダ株式会社 Front body structure of the vehicle
JP5920486B2 (en) * 2012-12-18 2016-05-25 トヨタ自動車株式会社 Vehicle end structure
WO2014106924A1 (en) * 2013-01-07 2014-07-10 本田技研工業株式会社 Shock-absorbing member for automotive vehicle and body structure of automotive vehicle
JP6254857B2 (en) * 2014-01-24 2017-12-27 株式会社Subaru Body front structure
KR101624239B1 (en) * 2014-06-16 2016-05-26 기아자동차주식회사 Structure of bumper-beam
JP6601868B2 (en) * 2015-09-04 2019-11-06 株式会社Subaru Energy absorbing structure
JP6281558B2 (en) * 2015-11-20 2018-02-21 マツダ株式会社 Vehicle shock absorbing member structure
JP6365514B2 (en) * 2015-11-20 2018-08-01 マツダ株式会社 Vehicle shock absorption structure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015626A (en) 2005-07-08 2007-01-25 Toyota Industries Corp Support structure for vehicle bumper
JP2008221987A (en) 2007-03-12 2008-09-25 Toyota Motor Corp Bumper reinforcement supporting structure
JP2009234377A (en) 2008-03-26 2009-10-15 Suzuki Motor Corp Vehicle crash box and vehicle front-body structure
JP2009274663A (en) 2008-05-16 2009-11-26 Toyota Motor Corp Vehicle energy absorbing structure
US20100127531A1 (en) 2008-11-25 2010-05-27 Honda Motor Co., Ltd. Front vehicle body structure
US20150191203A1 (en) 2012-07-06 2015-07-09 Toyota Jidosha Kabushiki Kaisha Vehicle body front portion structure
US20160325701A1 (en) 2014-01-10 2016-11-10 Honda Motor Co., Ltd. Automobile bumper
US20170021868A1 (en) 2015-07-22 2017-01-26 Toyota Jidosha Kabushiki Kaisha Vehicle front section structure
JP2017024552A (en) 2015-07-22 2017-02-02 トヨタ自動車株式会社 Vehicle front part structure
US9415735B1 (en) 2015-09-11 2016-08-16 Ford Global Technologies, Llc Vehicle deflection system for impact events
JP2017094850A (en) 2015-11-20 2017-06-01 マツダ株式会社 Shock absorbing member structure for vehicle

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
An Office Action; "Notice of Reasons for Refusal," issued by the Japanese Patent Office dated Feb. 5, 2019, which corresponds to Japanese Patent Application No. 2017-239880.
International Search Report issued in PCT/JP2018/045392; dated Feb. 12, 2019.
The extended European search report issued by the European Patent Office dated Sep. 30, 2020, which corresponds to European Patent Application No. 18888603.0-1132 and is related to U.S. Appl. No. 16/770,933.

Also Published As

Publication number Publication date
EP3722159A4 (en) 2020-10-28
US20210162939A1 (en) 2021-06-03
WO2019117111A1 (en) 2019-06-20
EP3722159A1 (en) 2020-10-14
CN111479724B (en) 2023-06-20
CN111479724A (en) 2020-07-31
EP3722159B1 (en) 2021-12-08
JP6555331B2 (en) 2019-08-07
JP2019104465A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
US20200324823A1 (en) Impact absorbing structure for vehicles
US10604092B2 (en) Bumper beam structure
US9771106B2 (en) Vehicle body front structure
US9399489B2 (en) Vehicle-body front structure
US20150251613A1 (en) Front structure of vehicle body
JP6128569B2 (en) Impact energy absorption structure for vehicles
CN109249885B (en) Front vehicle body structure of vehicle
US8820804B2 (en) Vehicle end section structure
JP2007038839A (en) Rear part car body structure for vehicle
US20180065671A1 (en) Rear vehicle-body structure of vehicle
US11345295B2 (en) Impact absorbing structure for vehicles
US10343501B2 (en) Door impact beam
CN109641623B (en) Vehicle body structure
US20150203129A1 (en) Railcar
US10814810B2 (en) Bumper apparatus for vehicle
JP6566018B2 (en) Vehicle shock absorption structure
JP5234324B2 (en) Vehicle body structure
JP2018111378A (en) Vehicle bumper structure
JP5217485B2 (en) Front side member structure
JP7252443B2 (en) Body member and body structure
JP7064921B2 (en) Vehicle front body structure
US8915537B2 (en) Vehicle body structure
JPWO2010058467A1 (en) Body structure and vehicle bumper
JP6237674B2 (en) Structural members for vehicles
JP2015168363A (en) Front structure of vehicle body

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAZDA MOTOR CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAWAMURA, CHIKARA;NISHIHARA, TSUYOSHI;ISHIKURA, KAZUTAKA;AND OTHERS;SIGNING DATES FROM 20200513 TO 20200514;REEL/FRAME:052870/0688

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE