US11330837B2 - Flow control device - Google Patents
Flow control device Download PDFInfo
- Publication number
- US11330837B2 US11330837B2 US15/320,921 US201515320921A US11330837B2 US 11330837 B2 US11330837 B2 US 11330837B2 US 201515320921 A US201515320921 A US 201515320921A US 11330837 B2 US11330837 B2 US 11330837B2
- Authority
- US
- United States
- Prior art keywords
- flow
- selector
- control device
- channels
- flow control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D3/00—Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
- A24D3/02—Manufacture of tobacco smoke filters
- A24D3/0295—Process control means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D3/00—Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
- A24D3/04—Tobacco smoke filters characterised by their shape or structure
- A24D3/041—Tobacco smoke filters characterised by their shape or structure with adjustable means for modifying the degree of filtration of the filter
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D3/00—Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
- A24D3/04—Tobacco smoke filters characterised by their shape or structure
- A24D3/043—Tobacco smoke filters characterised by their shape or structure with ventilation means, e.g. air dilution
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D3/00—Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
- A24D3/04—Tobacco smoke filters characterised by their shape or structure
- A24D3/048—Tobacco smoke filters characterised by their shape or structure containing additives
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D3/00—Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
- A24D3/06—Use of materials for tobacco smoke filters
- A24D3/061—Use of materials for tobacco smoke filters containing additives entrapped within capsules, sponge-like material or the like, for further release upon smoking
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D3/00—Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
- A24D3/04—Tobacco smoke filters characterised by their shape or structure
Definitions
- the invention relates, among other things, to a flow control device, and a method of manufacturing a flow control device.
- a flow control device for a smoking article.
- the device comprises first and second selector parts to control flow along a plurality of controllable flow channels.
- the first and second selector parts are is arranged to be axially displaceable to determine the number of controllable flow channels along which flow may be drawn.
- the first and second selector parts may be configured to control flow through the flow control device in response to user action.
- All of the controllable flow channels may be opened or closed by means of the axial displacement of the first and second selector parts.
- a controllable flow channel is a flow channel that can be opened or completely closed in response to user action.
- a controllable flow channel is directly controllable, and a controllable flow channel does not include flow channels in which the level of flow may only be adjusted indirectly, for example as a result of the operation of a separate, directly controllable flow channel.
- a first portion of one of the selector parts may comprise a first channel and a second portion of one of the selector parts may comprise a second channel.
- the first channel may extend axially further along the flow control device than the second channel. In a first position of relative axial displacement of the first and second selector parts, flow may be drawn along the first but not the second channel. In a second position of relative axial displacement of the first and second selector parts, flow may be drawn along the first and second channels.
- the first selector part may comprise a first surface and the second selector part may comprise a second surface.
- the controllable flow channels may comprise flow between the first and second surfaces.
- the controllable flow channels may not comprise flow through an opening encompassed by either of the first or second surfaces.
- the first and second surfaces may be in contact in all relative positions of axial displacement of the first and second selector parts.
- the first selector part may comprise a cylindrical portion and the first surface may comprise the outer circumferential surface of the cylindrical portion.
- the second selector part may comprise a tubular portion, and the second surface may comprise the cylindrical inner surface of the tubular portion.
- the cylindrical portion of the first selector part may fit within a receiving end of the tubular portion of the second selector part.
- the second surface may comprise first and second channels, which channels may open at, and extend from, the receiving end of the second surface.
- the first channel may extend further from the receiving end than the second channel.
- flow may be drawn between the first and second surfaces along the first but not the second channel.
- flow may be drawn between the first and second surfaces along both the first and second channels.
- the controllable flow channels may be controllable smoke flow channels.
- a filter for a smoking article comprising a flow control device in accordance with the first embodiment.
- the filter may comprise first and second filter parts.
- the first filter part may comprise a smoke modifying agent, and flow through the first filter part may be controlled by the flow control device.
- the second filter part may be disposed around the first filter part.
- a smoking article comprising a flow control device in accordance with the first embodiment, or a filter in accordance with the second embodiment.
- FIG. 1 is an exploded perspective view of a smoking article including a filter element comprising a flow control device;
- FIG. 2 is a sectional view of the smoking article of FIG. 1 ;
- FIG. 3 is a diagram of part of the filter element of FIG. 1 ;
- FIG. 4A is a first (“near”) end view of the selector of the flow control device shown in FIG. 1 ;
- FIG. 4B is a second (“far”) end view of the selector of the flow control device shown in is FIG. 1 ;
- FIG. 5 is a transverse cross-sectional view of the filter element of FIG. 1 along the line X-X′ marked in FIG. 3 ;
- FIGS. 6A, 6B, 6C, and 6D are diagrams of the region indicated in box Y on FIG. 3 , showing the selector of the flow control device in different positions. In particular;
- FIG. 6A shows the selector in a closed position
- FIG. 6B shows the selector in a first (“low”) open position
- FIG. 6C shows the selector in a second (“medium”) open position
- FIG. 6D shows the selector in a third (“high”) open position
- FIGS. 7A and 7B are diagrams showing the residence time of smoke drawn through the filter element of FIG. 1 .
- FIGS. 7A and 7B are diagrams showing the residence time of smoke drawn through the filter element of FIG. 1 .
- FIGS. 7A and 7B are diagrams showing the residence time of smoke drawn through the filter element of FIG. 1 .
- FIGS. 7A and 7B are diagrams showing the residence time of smoke drawn through the filter element of FIG. 1 .
- FIG. 7A shows the residence time of smoke drawn through the filter when the smoking article is in use in the closed position.
- FIG. 7B shows the residence time of smoke drawn through the filter when the smoking article is in use in the third (“high”) open position.
- smoking article includes smokable products such as cigarettes, cigars and cigarillos whether based on tobacco, tobacco derivatives, expanded tobacco, reconstituted tobacco or tobacco substitutes and also heat-not-burn products.
- FIGS. 1 and 2 show a smoking article 10 including a filter element 11 comprising a flow control device.
- the smoking article 10 includes a source of smokeable material, which preferably comprises tobacco, in the form of a cylindrical tobacco rod 12 .
- the tobacco rod 12 is in axial alignment with, and is connected to, the filter element 11 .
- the filter element 11 comprises a main filter part 13 and a selector 14 .
- the main filter part 13 includes an inner filter part 15 and an outer filter part 16 , which respectively define an inner flow path and an outer flow path through the filter element 11 .
- the inner filter part 15 includes an additive release component 17 for selective release of a smoke modifying agent, which may be an encapsulated smoke modifying agent such as a flavourant (e.g. menthol).
- a smoke modifying agent which may be an encapsulated smoke modifying agent such as a flavourant (e.g. menthol).
- the additive release component comprises a frangible spherical capsule 17 comprising a menthol flavourant.
- the selector 14 includes a first selector piece 18 at its end furthest from the tobacco rod 12 and a second selector piece 19 at its end nearest to the tobacco rod 12 .
- the second selector piece 19 is attached to the main filter part 13
- the first selector piece 18 is moveably attached to the second selector piece 19 .
- the tobacco rod 12 , main filter part 13 , and first and second selector pieces 18 , 19 are generally cylindrical, have a similar outer diameter, and are arranged co-axially, thereby defining an axis 20 .
- the first selector piece 18 is movable relative to the second selector piece 19 in order to close the inner flow path defined by the inner filter part 15 , or to select one or more different degrees of opening of the inner flow path.
- the inner flow path may be completely closed, or may be open to a small extent (a “low” setting), a greater extent (a “medium” setting), or may be fully open (a “high” setting).
- the outer flow path is always open. The outer flow path is not, therefore, “controllable” because it cannot be directly controlled (even though the level of flow through this path may in some circumstances be altered in response to the setting of the inner flow path).
- a paper wrapper 21 is wrapped around the tobacco rod 12 .
- a tipping paper 22 is wrapped around and thereby combines a length of the tobacco rod 12 , the main filter part 13 and the second selector piece 19 .
- the inner and outer filter parts 15 , 16 each include filtration material, which in the example shown in FIGS. 1 and 2 comprises cellulose acetate tow. In general, any material which is capable of filtering tobacco smoke may be used.
- the filtration material used in each of the different filter parts 15 , 16 may differ, or may be the same.
- the additive release component 17 is adapted to selectively release the smoke modifying agent and, in particular, to break or rupture in response to force, such as compressive force, applied to the filter element 11 .
- the additive release component 17 is a spherical capsule comprising a menthol flavourant.
- release is intended to include any means of exposure of the smoke modifying agent to the smoke that is drawn, in use, through the inner filter part 15 , in addition to physical release and movement of the smoke modifying agent out of the encapsulation.
- the additive Prior to its release, the additive is in an inactive state and does not affect the smoke. Once released, the additive is active and can modify the smoke that is drawn through the smoking article 10 when the smoking article is in use.
- the inner and outer filter parts 15 , 16 are coaxially arranged, with the annular outer filter part 16 arranged around the inner filter part 15 .
- the inner filter part 15 has a solid cylindrical shape.
- the outer filter part 16 has a hollow cylindrical tube shape.
- the inner diameter of the outer filter part 16 is substantially the same as the (outer) diameter of the inner filter part 15 .
- the outer diameter of the outer filter part 16 is substantially the same as the outer diameter of the tobacco rod 12 .
- the outer filter part 16 has a diameter of around 7.8 mm and the inner filter part 15 has a diameter of around 5.35 mm.
- the inner and outer filter parts 15 , 16 may have any suitable diameters and/or cross-sectional areas as appropriate.
- a barrier layer 23 of non-porous material is provided around the inner filter part 15 , that is to say between the inner and outer filter parts 15 , 16 .
- the barrier layer 23 also circumscribes part of the second selector piece 19 as shown in FIG. 2 .
- the barrier layer 23 may be formed of a non-porous polymer such as a film, for example, comprising cellulose diacetate.
- the barrier layer 23 is adapted to prevent flow or diffusion of smoke or flavourant from the inner to the outer filter parts 15 , 16 and vice versa. This can assist in preventing the migration of flavour or other smoke modifying additives between the inner and outer filter parts 15 , 16 , for instance.
- An additional inner plug wrap (not shown), which may be porous or non-porous, may also be provided around the inner filter part 15 .
- An outer plug wrap 24 is provided around the outer filter part 16 .
- the outer plug wrap 24 may be porous or non-porous.
- the first and second selector pieces 18 , 19 may be made of any suitable material, such as a plastic material and, in particular, they may be moulded from a thermoplastic such as high density polyethylene.
- the first selector piece 18 includes an inner part 25 and an outer, hollow tube part 26 (hereinafter referred to as a “first inner part” and “first outer part” respectively).
- the first inner part 25 comprises a central recess 25 a .
- the first inner part 25 and the first outer part 26 are generally cylindrical and coaxial.
- An annular space 27 (hereinafter referred to as a “first space”) between the first inner part and the first outer part 25 , 26 defines a flow path through the first selector piece 18 .
- a plurality of members 28 (hereinafter referred to as “first spokes”) at the end of the first selector piece 18 connect the first inner part 25 to the first outer part 26 .
- the first space 27 comprises the gaps between the first spokes 28 . In use, flow may be drawn through the first selector piece 18 between the first spokes 28 .
- the first spokes 28 each extend in a generally radial direction.
- FIG. 4A shows the selector 14 , viewed from the near (mouth) end.
- the first spokes 28 are distributed substantially evenly around the circumference of the first inner part 25 .
- the first spokes 28 each have a rectangular cross-section which is elongated in a direction parallel to the axis 20 .
- the first spokes 28 function to connect and support the first inner part 25 and the first outer part 26 , while allowing flow to be drawn between the two parts 25 , 26 .
- the first spokes 28 may have any suitable configuration accordingly.
- the first spokes 28 may be non-radial, and may be, for example, arranged in a spiral configuration. In some embodiments, the first spokes 28 may extend non-linearly between the first inner and first outer parts 25 , 26 , and may, for example, be curved.
- the first spokes 28 stop short of the far end of the first space 27 (see FIG. 2 ).
- the second selector piece 19 includes an inner part 29 , an intermediate, hollow tube part 30 , and an outer, hollow tube part 31 (hereinafter referred to as a “second inner part”, a “second intermediate part” and a “second outer part” respectively).
- the second inner part 29 , second intermediate part 30 , and the second outer part 31 are generally cylindrical and coaxial.
- the second intermediate part 30 divides the second selector piece 19 into an inner annular space 32 and an outer annular space 33 (hereinafter referred to as a “second inner space” and “second outer space” respectively).
- the second inner space 32 and the second outer space 33 define respective inner and outer flow paths through the second selector piece 19 .
- the second inner part 29 is connected to the second intermediate part 30 by a plurality of inner spokes 34 (hereinafter referred to as “second inner spokes”).
- the second intermediate part 30 is connected to the second outer part 31 by a plurality of outer spokes 35 (hereinafter referred to as “second outer spokes”).
- the second inner spokes 34 and the second outer spokes 35 connect the relevant parts of the second selector piece together while allowing flow to be drawn through the second selector piece 19 in the axial direction via the second inner space 32 (in the case of the second inner spokes 34 ), or via the second outer space 33 (in the case of the second outer spokes 35 ).
- the spokes 34 , 35 may have any suitable configuration accordingly.
- the inner filter part 15 is shorter than the outer filter part 16 , forming a cylindrical recess in the main filter part 13 at its near end.
- the barrier layer 23 is coextensive with the inner surface of the outer filter part 16 .
- the second intermediate part 30 which protrudes from the second selector piece 19 is received in the recess in the main filter part 13 .
- the second intermediate part 30 of the second selector piece 19 has a tapered (conical) section at its far end. The taper is such that, at the far end of the taper, the second intermediate part 30 is substantially equal to the width (when un-deformed) of the cylindrical recess in the main filter part 13 and, at the near end of the taper, it is wider.
- the outer filter part 16 is deformed by, and engages strongly with, the second intermediate part 30 .
- the second selector piece 19 and the main filter part 13 are attached together.
- a suitable adhesive may be also used.
- This arrangement also forms a seal for preventing smoke modifying agent from passing between the inner and outer flow paths. Moreover, the arrangement makes it easier to assemble the filter element 11 and reduces the risk of damage to the barrier layer 23 during assembly.
- the inner flow path defined by the inner filter part 15 is in fluid communication with the inner flow path defined by the second inner space 32 in the second selector piece 19 .
- the outer flow path defined by the outer filter part 16 is in fluid communication with the outer flow path defined by the second outer space 33 in the second selector piece 19 .
- the inner and outer flow paths are separated by the barrier layer 23 and the second intermediate part 30 .
- the first and second selector pieces 18 , 19 are connected to each other by way of a screw-threaded connection.
- a cylindrical recess 36 provided in the outer surface at the far end of the first outer part 26 cooperates with the internal surface 37 of the second outer part 31 .
- the external surface of the cylindrical recess 36 comprises a first thread 36 a .
- the internal surface 37 of the second outer part 31 comprises a second thread 37 a , which co-operates with the first thread 36 a . In this way, the smoker can control the relative axial position of the first and second selector pieces 18 , 19 by rotating one in relation to the other.
- a first collar 36 b at the far end of the cylindrical recess 36 , and a second collar 37 b on the internal surface 37 of the second outer part 31 interact to limit the extent to which the first and second selector pieces 18 , 19 may be unscrewed.
- the first and second selector pieces 18 , 19 may include co-operating parts (not shown) for indexing the rotation and hence the relative axial position of the two selector pieces 18 , 19 .
- the first collar 36 b may comprise one or more notches which may engage with one or more raised elements on the internal surface 37 of the second outer part 31 , which may provide tactile and/or audible feedback to the user.
- the outer parts 26 , 31 of the first and second selector pieces 18 , 19 interact with each other so as to form a seal. This seal is to reduce or prevent flow between the flow paths inside the selector 14 and the exterior of the smoking article 10 .
- the first inner part 25 of the first selector piece 18 and the second intermediate part 30 of the second selector piece 19 are adapted so that they can co-operate with each other to control the extent to which flow may be drawn along the inner flow path.
- a portion of the far end of the first inner part 25 fits between the second intermediate part 30 and second inner part 29 , and together these parts form a plurality of discrete controllable flow channels through which flow may be drawn from the second inner space 32 into the first space 27 .
- Each of the controllable flow channels may be open or closed depending upon the relative position of the first and second selector pieces 18 , 19 .
- the level of flow that may be drawn along the inner flow path is dependent on the number of controllable flow channels that are open.
- the inner flow path may be closed, or may be in one of a number of discrete open states, each different open state corresponding to a position in which a different number of controllable flow channels are open.
- the inner flow path may be closed, or may be in one of three different open states, representing a “low” setting, a “medium” setting, and a “high” setting.
- the first inner part 25 includes a flat annular surface 38 (hereinafter referred to as a “first end surface”) at its far end.
- the second intermediate part 30 includes a collar 39 extending inwards from its inner surface.
- the collar 39 has a flat annular surface 40 (hereinafter referred to as a “second end surface”) at its near end.
- FIGS. 6A-D are diagrams showing the region indicated in box Y on FIG. 3 .
- FIG. 6A shows the first and second selector pieces 18 , 19 in a first relative position, hereinafter referred to as the “closed position”, wherein no flow may be drawn along the inner flow path.
- the closed position the first end surface 38 contacts the second end surface 40 so as to prevent the passage of flow between these two surfaces.
- the closed position corresponds to the maximum extent to which the first selector piece 18 can be moved axially towards the second selector piece 19 .
- the first inner part 25 includes an outer cylindrical surface region 41 (hereinafter referred to as a “first cylindrical surface”) adjacent to its far end.
- the second intermediate part 30 includes an inner cylindrical surface region 42 (hereinafter referred to as a “second cylindrical surface”) adjacent to its near end.
- the first and second cylindrical surfaces 41 , 42 substantially contact each other in such a way as to allow slidable movement while preventing substantially any flow to be drawn between them, except in the controllable flow channels 43 , 44 which will be described below.
- the first and second cylindrical surfaces 41 , 42 are in contact to a greater or lesser extent in all relative positions of the first and second selector pieces 18 , 19 .
- the first and second cylindrical surfaces 41 , 42 may be separated by a narrow annular space, which may assist movement of the two cylindrical surfaces 41 , 42 , while allowing only a minimal amount of flow to be drawn between the two surfaces.
- the second cylindrical surface 42 includes first and second grooves 42 a , 42 b .
- the first and second grooves 42 a , 42 b define respective first and second controllable flow channels 43 , 44 , for flow between the first and second cylindrical surfaces 41 , 42 .
- Each groove 42 a , 42 b has an approximately semicircular cross-section.
- the first and second grooves 42 a , 42 b are spaced from each other around the second cylindrical surface 42 and, in the embodiment shown, they are positioned diametrically opposite each other (see FIG. 5 ).
- the second cylindrical surface 42 includes more than two grooves, and in this case, the more than two grooves may be positioned such that they are evenly or unevenly spaced around the second cylindrical surface. In other embodiments, there may be only one groove, or more than two grooves, such as three, four, five, six, seven, or eight grooves.
- each groove 42 a , 42 b extends from the near end of the second intermediate part 30 towards the far end.
- the first and second grooves 42 a , 42 b have different lengths.
- the first groove 42 a is longer than the second groove 42 b .
- the first groove 42 a extends to within an axial distance of about 0.1 mm from the second end surface 40 .
- the second groove 42 b extends to within an axial distance of about 0.3 mm from the second end surface 40 .
- the first and second grooves 42 a , 42 b in the second cylindrical surface 42 are substantially sealed by the first cylindrical surface 41 .
- the first and second controllable flow channels 43 , 44 are closed and substantially no flow may be drawn from the second inner space 32 of the second selector piece 19 into the first space 27 of the first selector piece 18 .
- the relative axial position of the first and second selector pieces 18 , 19 is such that the gap between the first and second end surfaces 38 , 40 is more than 0.1 mm and less than 0.3 mm.
- the second groove 42 b is completely sealed by the first cylindrical surface 41 .
- the first groove 42 a is not completely sealed by the first cylindrical surface 41 .
- the first controllable flow channel 43 is in fluid communication with the second inner space 32 .
- the second controllable flow channel 44 is substantially closed while the first controllable flow channel 43 is open. Flow can thereby be drawn between the second inner space 32 of the second selector piece 19 and the first space 27 in the first selector piece 18 . Substantially all of this flow is via the first controllable flow channel 43 .
- the resistance to flow through the first controllable flow channel 43 depends, in part, on the cross-sectional area of the first controllable flow channel 43 .
- the resistance to flow also depends on the length of the first controllable flow channel 43 , that is to say the length of the first groove 42 a covered by the first cylindrical surface 41 .
- the relative axial positions of the first and second selector pails 18 , 19 may be indexed, for example by means of one or more notches in the first collar 36 b , which may engage with one or more raised elements on the internal surface 37 of the second outer part 31 .
- the indexing may be such that there is a first index position wherein the first controllable flow channel 43 has a predetermined length.
- the relative position of the first and second selector pieces 18 , 19 may be 0.2 mm from the closed position.
- Such a relative position of the first and second selector pieces 18 , 19 as shown in FIG. 6B , in which flow may be drawn through the first controllable flow channel 43 , but not substantially through the second controllable flow channel 44 , is referred to hereinafter as a “first open position”.
- the relative position of the first and second selector pieces 18 , 19 is more than 0.3 mm from the closed position.
- neither the first groove 42 a , nor the second groove 42 b is completely covered by the first cylindrical surface 41 .
- the portions of the first and second grooves 42 a , 42 b which are not covered by the first cylindrical surface 41 are in fluid communication with the second inner space 32 of the second selector piece 19 .
- both the first and second controllable flow channels 43 , 44 are open. Flow can thereby be drawn between the second inner space 32 of the second selector piece 19 and the first space 27 in the first selector piece 18 . Substantially all of this flow is via the first and second controllable flow channels 43 , 44 .
- the resistance to flow through the first and second controllable flow channels 43 , 44 depends, in part, on the cross-sectional areas of the first and second controllable flow channels 43 , 44 .
- the resistance to flow also depends on the lengths of the first and second controllable flow channels 43 , 44 , that is to say the respective lengths of the first and second grooves 42 a , 42 b covered by the first cylindrical surface 41 .
- the relative axial positions of the first and second selector pieces 18 , 19 may be indexed.
- the indexing may be such that there is a second index position wherein the first and second controllable flow channels 43 , 44 have predetermined lengths.
- the relative position of the first and second selector pieces 18 , 19 may be 0.4 mm from the closed position.
- Such a relative position of the first and second selector pieces 18 , 19 as shown in FIG. 6C , in which flow may be drawn through both the first and second controllable flow channels 43 , 44 , is referred to hereinafter as a “second open position”.
- the first and second selector pieces 18 , 19 are in a maximally open position, which corresponds to the maximum extent to which the first selector piece 18 can be moved axially away from the second selector piece 19 .
- the axial displacement of the first and second selector pieces 18 , 19 is limited by contact between the first collar 36 b and the second collar 37 b.
- the first inner part 25 is fully withdrawn from the second intermediate pall 30 .
- the second inner space 32 of the second selector piece 19 is therefore in direct fluid communication with the first space 27 in the first selector piece 18 .
- the relative position of the first and second selector pieces 18 , 19 may be 0.6 mm from the closed position.
- neither of the controllable flow channels 43 , 44 are open, and thus substantially no flow can be drawn from the second inner space 32 to the first space 27 .
- the pressure drop may be greater than about 2000 mmWG.
- the second controllable flow channel 44 In the first open position, the second controllable flow channel 44 is closed, but the first controllable flow channel 43 is open and provides a route for flow to be drawn from the second inner space 32 to the first space 27 .
- the pressure drop In the first open position, which represents a “low” setting, the pressure drop may be about 700-900 mmWG.
- both the first and second controllable flow channels 43 , 44 are open. Thus, flow may be drawn from the second inner space 32 to the first space 27 via both channels.
- the pressure drop may be about 150-250 mmWG.
- the first inner part 25 is fully withdrawn from the is second intermediate part 3 o and flow may be drawn directly from the second inner space 32 to the first space 27 .
- the pressure drop may be less than about 20 mmWG.
- the smoker can manipulate the filter element 11 to control the properties of the smoke provided by the smoking article.
- the filter element 11 comprises an additive release component 17 in the form of a capsule.
- the capsule 17 contains a flavourant.
- the capsule may contain, in addition, or as an alternative to a flavourant, another smoke modifying agent.
- the smoker can apply force to, and thus deform, the filter element 11 and the capsule 17 .
- the application of force causes the capsule 17 to rupture and release the flavourant.
- the flavourant may become entrained in smoke which is drawn along the inner flow path through the filter element 11 .
- the smoking article 10 may, for example, be supplied with the first and second selector pieces 18 , 19 in the closed position. In this position, smoke can only flow in the outer flow path, in particular through the outer filter part 16 and second outer space 33 . Since no smoke can be drawn through the inner flow path when the first and second selector pieces 18 , 19 are in the closed position, the smoke which is drawn through the filter element 11 under these conditions will be unflavoured.
- the smoking article may be an inherently flavoured smoking article, such as a menthol smoking article.
- the additive release component 17 may comprise a menthol flavourant, and the selector 14 may be used to provide an increased level of flavour (a “boost”) above the background level.
- the user can rotate the first selector piece 18 relative to the second selector piece 19 and the remainder of the smoking article 10 .
- the selector 14 detailed in FIG. 6 can be moved, for example, between the closed position, a first open position (corresponding to a “low” level of flavour), a second open position (corresponding to a “medium” level of flavour), and a third open position (corresponding to a “high” level of flavour).
- a first open position corresponding to a “low” level of flavour
- a second open position corresponding to a “medium” level of flavour
- a third open position corresponding to a “high” level of flavour
- FIGS. 7A and 7B are diagrams showing the residence time of smoke drawn through the filter element of FIG. 1 .
- FIG. 7A shows the residence time of smoke when the smoking article is in use in the closed position, and in FIG. 7B the smoking article is in use in the third open position (the “high” setting). It can be seen from FIG. 7A that there is no flow along the inner flow path, and all of the smoke is drawn along the outer annular flow path. In contrast, as shown in FIG. 7B , when the selector is in the high setting, substantially all of the flow is drawn along the inner flow path and there is little or no flow drawn along the outer flow path.
- the first open position corresponds with the provision to the user of relatively more weakly flavoured smoke
- the second open position corresponds with the provision to the user of smoke having an intermediate level of flavour
- the third open position corresponds with the provision to the user of maximally flavoured smoke.
- the user can adjust the amount of flavourant entrained in the smoke.
- the outer flow path cannot be considered to be a controllable flow path or controllable flow channel.
- the outer flow path cannot be considered controllable because it comprises filter part 16 and spaces 33 and 27 , and none of these features can be manipulated in any way by the user to control the level of flow through the flow path.
- the outer flow path is not controllable because it cannot be directly controlled, even though the level of flow along the outer flow path may, under some circumstances, be adjusted as an indirect consequence of the adjustment of a controllable flow channel.
- Plastic materials are generally preferred for manufacture of the parts of the selector 14 and, in particular, they may be moulded from a thermoplastic such as high density polyethylene.
- the first and second selector pieces 18 , 19 may be moulded and then fitted together within the mould tool.
- first and/or second selector pieces 18 , 19 may comprise means for locating the part during the manufacturing process.
- one or more of the first spokes 28 , the second inner spokes 34 , and/or the second outer spokes 35 may comprise a unique spoke, for example comprising a protrusion, which may function as a locator.
- the present flow control device offers surprising manufacturing advantages.
- the amount of flow that can be drawn through the device depends not on the precise cross-sectional area of the flow path, but simply on the number of controllable flow channels 43 , 44 that are open, the manufacturing process can be controlled in a highly accurate and reproducible manner.
- grooves 42 a , 42 b can be defined in the mould tool by core pins which mean that they can be held to a very tight manufacturing tolerance.
- the selector 14 may be differently configured.
- the selector 14 need not include the collar 39 or the first and second end surfaces 38 , 40 .
- the prevention or reduction of flow through the inner flow path can be achieved merely by the movement of the first and second selector pieces 18 , 19 into relative axial positions in which the controllable flow channels 43 , 44 are closed by the first and second cylindrical surfaces 41 , 42 .
- the first and second end surfaces 38 , 40 may be differently configured.
- the first and second end surfaces 38 , 40 need not face in the axial direction.
- the first and second end surfaces 38 , 40 may be conically shaped, or may have any other shape or configuration in which the two surfaces are capable of interacting to substantially prevent the passage of smoke. Additional or alternative closures and/or seals may also be included.
- controllable flow channels 43 , 44 may differ from the two channels shown in the embodiment of FIGS. 1 to 6 .
- the selector 14 may have three main states, namely a closed state, an intermediate open state in which the controllable flow channel is open, and a maximally open state, in which the first inner part 25 is fully withdrawn from the second intermediate part 30 .
- controllable flow channels there may be three or more controllable flow channels, such as four, five, six, seven, or eight controllable flow channels, for example.
- the number of controllable flow channels may in some cases be limited by the desire to provide smoke having a discernibly different flavour in each position of the selector 14 .
- the number of discernable different states and hence the number of controllable flow channels in the selector 14 may differ for different flavourants.
- controllable flow channels there may be four or more open positions, each different open position corresponding to a different number of open controllable flow channels.
- controllable flow channels may have the same length and so may be in the same open or closed state at the same relative position of the first and second selector pieces 18 , 19 .
- the number of open positions will be equal to or smaller than the number of controllable flow channels.
- first and second cylindrical surfaces 41 , 42 are substantially in contact with each other. In other embodiments, however, the first and second cylindrical surfaces 41 , 42 may not be in contact with one another, such that a degree of flow may be drawn between the two surfaces, in addition to within the one or more channels 44 .
- One or more of the grooves 42 a , 42 b may have different cross-sectional areas and/or shapes from other grooves.
- a first groove may have a larger cross-sectional area than a second groove.
- the relative change in smoke modification between the first and second open positions may be larger than the case in which the grooves have the same cross-sectional area.
- the grooves 42 a , 42 b may have a non-uniform and/or a differently shaped, for example, square, cross section.
- the grooves 42 a , 42 b may be tapered such that the cross-sectional area of one or more of the grooves may vary along its length.
- the grooves 42 a , 42 b may extend in a different direction or different directions.
- the controllable flow channels formed by different grooves may have different lengths.
- the first and second selector pieces 18 , 19 may be adapted to move relative to each other in a different way, for example only axially or only rotationally.
- first cylindrical surface 41 may be adapted so that controllable flow channels 43 , 44 can be opened or closed in response to the movement.
- first and second cylindrical surfaces 41 , 42 may have circumferential modifications to the surface to aid rotation, such as castellation, grooves, and/or ridges.
- the first and second selector pieces 18 , 19 may lack screw threads 36 a , 37 a , and may simply be rotationally interlocked.
- the first and second cylindrical surfaces 41 , 42 need not be cylindrical and may, for example, be formed on one or more surfaces of non-cylindrical parts such as parts with square or rectangular cross sections.
- the parts whose surfaces interact to open or close the controllable flow channels 43 , 44 (which, in the embodiment shown in FIGS. 1-6 , are the first inner part 25 and the second intermediate part 30 ) need not fit one inside the other and, for example, may be arranged one alongside the other.
- a smoke modifying agent in the form of a flavourant is included in the inner flow path in the main filter part 13 .
- the smoke modifying agent can be included in the outer flow path.
- the filter part 13 may include smoke modifying agent in both of the inner and outer flow paths.
- One of the flow paths may contain one smoke modifying agent, and the other flow path may contain another, similar or different smoke modifying agent.
- One flow path may include more than one different smoke modifying agent, contained within the same or different additive release components.
- a smoke modifying agent is not present in either of the flow paths, and instead the flow paths may have different characteristics relating to, for example, the type of filtration of the smoke, the pressure drop, and/or the amount of ventilating air which is introduced.
- one or both of the flow paths may be flow paths for the flow of smoke modifying agent only, ventilating air only, or smoke modifying agent and ventilating air only. These flow paths need not pass through a filter part that includes filtration material.
- the second selector piece 19 need not have an outer flow path therethrough and may include only one flow path comprising a plurality of controllable flow channels, wherein the overall level of flow is controlled by means of the selector 14 .
- the selector 14 may be adapted to control flow through one, more than one, or all of the flow paths.
- the selector 14 may be any selecting means for allowing flow selectively through the first and second flow paths.
- the second selector piece 19 may be connected to the first selector piece 18 .
- Elements described as being associated with the first selector piece 18 may instead be associated with the second selector piece 19 and vice versa.
- the grooves 42 a , 42 b may be provided in the first cylindrical surface 41 .
- grooves may be provided in both the first and second cylindrical surfaces 41 , 42 .
- the selector 14 may also be used with other types of product. Instead of being used as part of a smoking article 10 , the selector 14 may be used with other types of tobacco industry products such as, for example, electronic cigarettes, inhalers, or other nicotine delivery systems. Such products need not include, for example, a main filter part 13 , and may, for example, simply comprise a reservoir of flavourant or other inhalable substance, the level of delivery of which may be controlled by means of a flow control device as described.
- the additive release component 17 may be a capsule having an outer shell, containing a smoke modifying agent in an interior cavity.
- the shell of the additive release component 17 may be frangible to release the smoke modifying agent on application of force.
- the inner filter part 15 may comprise a reaction surface against which the additive release component can be urged, in order to facilitate release of the smoke modifying agent.
- the additive release component 17 may not be frangible, but may release the smoke modifying agent contents in a plurality of discrete doses, preferably actuated by a plurality of separate applications of force.
- This type of additive release component may comprise a resiliently or plastically deformable outer shell, for example configured to release doses of the smoke modifying agent through a slit formed in a pre-determined area.
- the additive release component 17 may be spherical.
- the additive release component may be elongate, for example with a longitudinal axis extending coaxially with, or parallel to, the longitudinal axis 20 of the inner filter part 15 .
- the filter element 11 may comprise a plurality of additive release components 17 .
- the multiple additive release components may be engineered to release smoke modifying agent substantially simultaneously in response to a single application of force.
- the filter element may require a number of sequential applications of force for release of the smoke modifying agent from all of the additive release components.
- the filter element 11 may comprise two, three, four or more additive release components. Multiple additive release components may be positioned, for example, at regularly spaced intervals along the length of the filter part. Alternatively, multiple additive release components may be located as a cluster. In some embodiments, the additive release components may be situated within a cavity formed between two sections of filter material.
- the smoke modifying agent need not be included in an additive release component.
- the user does not need to first apply force to the filter element 11 to release the smoke modifying agent and can simply use the selector to change the proportion of modified smoke.
- the first and second selector pieces 18 , 19 may be positioned in the closed position prior to use to minimise diffusion of the smoke modifying agent out of the filter element 11 .
- the additive release component 17 comprises a smoke modifying agent, which may be any substance that may be added to the smoke flow path, for example to modify the composition or properties of smoke.
- the smoke modifying agent held within the additive release component 17 may be a deodoriser, a diluent, an adsorbent, or any other substance that is capable of modifying the gaseous flow.
- the smoke modifying agent may be water. Where local regulations permit, the smoke modifying agent may be a flavourant.
- flavour and “flavourant” refer to materials which, where local regulations permit, may be used to create a desired taste or aroma in a product for adult consumers. They may include extracts (e.g., licorice, hydrangea, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, clove oil, eugenol, menthol, Japanese mint, aniseed, cinnamon, herb, wintergreen, cherry, berry, peach, apple, Drambuie, bourbon, scotch, whiskey, spearmint, peppermint, lavender, cardamon, celery, cascarilla, nutmeg, sandalwood, bergamot, geranium, honey essence, rose oil, vanilla, lemon oil, orange oil, cassia, caraway, cognac, jasmine, ylang-ylang, sage, fennel, piment, ginger, anise, coriander, coffee, or a mint oil from any
- the smoke modifying agent may comprise menthol or eugenol.
- the flavour may be a tobacco flavour. Where the flavour is delivered in liquid form the tobacco flavour could be derived from tobacco extract. Where the flavour is derived from a solid product, the product could be tobacco leaf in shredded, particulate or granular form, or in the form of reconstituted tobacco sheet material.
- the smoke modifying agent may be a solid, such as a powder, a liquid, such as a liquid flavourant, deodoriser, water, etc, or a gas, such as an aromatic composition.
- the smoke modifying agent or one of the smoke modifying agents includes activated carbon material
- this can be included in the filter element in various ways.
- the activated carbon material may be held within a filter cavity.
- the activated carbon material may be included in the form of a charcoal patch on the inside of the barrier layer 23 or a layer of plugwrap material.
- Embodiments of the invention are configured to comply with applicable laws and/or regulations, such as, by way of non-limiting example, regulations relating to flavours, additives, emissions, constituents, and/or the like.
- the invention may be configured such that a smoking article implementing the invention is compliant with is applicable regulations before and after adjustment by a user.
- Such implementations may be configured to be compliant with applicable regulations in all user-selectable positions.
- the configuration is such that a smoking article implementing the invention meets or exceeds required regulatory test(s) in all user-selectable positions, such as, by way of non-limiting example, the testing threshold(s)/ceiling(s) for cigarette emissions and/or smoke constituents.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Cigarettes, Filters, And Manufacturing Of Filters (AREA)
- Manufacturing Of Cigar And Cigarette Tobacco (AREA)
- Catching Or Destruction (AREA)
- Flow Control (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Abstract
Description
Claims (13)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB1411619.8A GB201411619D0 (en) | 2014-06-30 | 2014-06-30 | Flow control device |
GB1411619 | 2014-06-30 | ||
GB1411619.8 | 2014-06-30 | ||
PCT/GB2015/051904 WO2016001648A1 (en) | 2014-06-30 | 2015-06-30 | Flow control device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170127719A1 US20170127719A1 (en) | 2017-05-11 |
US11330837B2 true US11330837B2 (en) | 2022-05-17 |
Family
ID=51410369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/320,921 Active 2037-08-06 US11330837B2 (en) | 2014-06-30 | 2015-06-30 | Flow control device |
Country Status (13)
Country | Link |
---|---|
US (1) | US11330837B2 (en) |
EP (1) | EP3160269A1 (en) |
JP (2) | JP2017524354A (en) |
KR (2) | KR102180906B1 (en) |
AR (1) | AR101823A1 (en) |
AU (1) | AU2015282467B2 (en) |
BR (1) | BR112016030207A2 (en) |
CL (1) | CL2016003377A1 (en) |
GB (1) | GB201411619D0 (en) |
RU (1) | RU2644106C1 (en) |
UA (1) | UA117874C2 (en) |
WO (1) | WO2016001648A1 (en) |
ZA (1) | ZA201608771B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101843257B1 (en) * | 2016-05-12 | 2018-03-28 | 주식회사 케이티앤지 | auxiliary filter for built in tobacco filter |
CN108378418B (en) * | 2018-05-18 | 2023-06-09 | 云南中烟工业有限责任公司 | Two-way rotary bead-bursting type splice and split cigarette comprising same |
EP3607839A1 (en) * | 2018-08-07 | 2020-02-12 | Gongqingcheng Daole Investment Management Partnership (LLP) | Smoke filtering device |
CN112890532B (en) * | 2021-03-31 | 2024-10-08 | 湖北中烟工业有限责任公司 | Visual smog display unit |
Citations (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2954035A (en) | 1958-04-04 | 1960-09-27 | Jacob A Saffir | Cigarettes |
US2968305A (en) | 1957-08-12 | 1961-01-17 | Filtox S A | Filter cigarette |
US3016902A (en) | 1960-07-29 | 1962-01-16 | Louis Stein | Adjustable filter tip |
US3310056A (en) | 1964-01-14 | 1967-03-21 | Rieder Zoltan | Partition disc for inhale-proof cigarettes |
US3330284A (en) | 1964-05-21 | 1967-07-11 | Frederick P Seman | Filtration means for filter cigarettes |
US3359988A (en) | 1965-04-21 | 1967-12-26 | Osborne M Thomson | Filter cigarette |
US3366122A (en) | 1965-02-03 | 1968-01-30 | Abe R. Brothers | Radial separator for purifying tobacco smoke and smokers' articles incorporating such separators |
US3376874A (en) | 1965-04-12 | 1968-04-09 | Kim Yunil | Adjustable cigarette filters |
US3428050A (en) | 1967-02-21 | 1969-02-18 | Walter R Kandel | Filter cigarette of adjustable filter capacity |
US3503406A (en) | 1968-10-28 | 1970-03-31 | Lawrence Murry Riegel | Cigarettes |
US3650278A (en) | 1970-01-05 | 1972-03-21 | W Roland Cook | Adjustable tar removing filter for smokers |
US4059043A (en) | 1975-12-24 | 1977-11-22 | American Filtrona Corporation | Method and apparatus for making tobacco smoke filters |
GB2020537A (en) | 1978-04-28 | 1979-11-21 | Douwe Egberts Tabaksfab | Filter tip for filter cigarettes |
US4433696A (en) | 1981-10-02 | 1984-02-28 | Philip Morris Incorporated | Variable dilution filter |
WO1984001273A1 (en) | 1982-09-30 | 1984-04-12 | Philip Morris Inc | Adjustable filter cigarette and a method of manufacture thereof |
US4527573A (en) | 1982-11-05 | 1985-07-09 | Philip Morris Incorporated | Filter cigarette |
US4532943A (en) | 1982-09-30 | 1985-08-06 | Philip Morris Incorporated | Adjustable filter cigarette |
US4559955A (en) | 1983-06-20 | 1985-12-24 | Link Electronics Ltd | Controlled air bleed cigarette holder |
US4593707A (en) | 1984-06-20 | 1986-06-10 | H.F. & Ph.F. Reemtsma Gmbh & Co. | Variably ventilated filter cigarette |
USRE32221E (en) | 1981-10-02 | 1986-08-12 | Variable dilution filter | |
US4649944A (en) | 1982-09-30 | 1987-03-17 | Philip Morris Incorporated | Filter cigarette |
US4649941A (en) | 1985-12-16 | 1987-03-17 | R. J. Reynolds Tobacco Company | Adjustable air dilution cigarette exhibiting controlled pressure drop |
US4677995A (en) | 1986-02-24 | 1987-07-07 | Philip Morris Incorporated | Filter cigarette |
US4687008A (en) | 1986-04-17 | 1987-08-18 | Philip Morris Incorporated | Filter cigarette |
EP0317154A1 (en) | 1987-11-10 | 1989-05-24 | Philip Morris Products Inc. | Filter cigarette |
US4898190A (en) | 1989-03-01 | 1990-02-06 | R. J. Reynolds Tabacco Company | Adjustable air dilution cigarette with pressure drop compensation |
JPH0732110B2 (en) | 1984-05-18 | 1995-04-10 | 株式会社日立製作所 | Electron beam exposure system |
EP0671131A1 (en) * | 1994-03-11 | 1995-09-13 | Rothmans International Services Limited | Filter for smoking article and smoking article incorporating it |
EP1512926A2 (en) | 2003-09-08 | 2005-03-09 | Tgk Company, Ltd. | Expansion device |
WO2005124207A1 (en) | 2004-06-21 | 2005-12-29 | Robertshaw Controls Company | Variable flow valve |
US20060174901A1 (en) | 2005-02-04 | 2006-08-10 | Philip Morris Usa Inc. | Flavor capsule for enhanced flavor delivery in cigarettes |
US20070012327A1 (en) | 2005-05-03 | 2007-01-18 | Philip Morris Usa Inc. | Cigarettes and filter subassemblies with squeezable flavor capsule and methods of manufacture |
US20080142028A1 (en) | 2006-10-02 | 2008-06-19 | R. J. Reynolds Tobacco Company | Filtered Cigarette |
WO2011039302A1 (en) | 2009-10-02 | 2011-04-07 | British American Tobacco Japan, Ltd | A filter comprising an additive material |
WO2011051115A1 (en) | 2009-10-28 | 2011-05-05 | Tobacco Research And Development Institute (Proprietary) Limited | Flow control device for a smoking article |
WO2011077314A1 (en) | 2009-12-23 | 2011-06-30 | Tobacco Research And Development Institute (Proprietary) Limited | Fluid release mechanism |
WO2011095410A1 (en) | 2010-02-05 | 2011-08-11 | Tobacco Research And Development Institute (Proprietary) Limited | Flow control device for a smoking article |
US20120186593A1 (en) | 2011-01-24 | 2012-07-26 | Anthony Albert Grano | Filter with both conventional and scented filtration |
WO2012156697A1 (en) | 2011-05-13 | 2012-11-22 | British American Tobacco (Investments) Limited | Filter for a smoking article |
KR20130009825A (en) | 2010-03-29 | 2013-01-23 | 브리티시 아메리칸 타바코 재팬 가부시키 가이샤 | Smoking article |
WO2013068398A1 (en) | 2011-11-07 | 2013-05-16 | Philip Morris Products S.A | Smoking article with movable vapour release component |
WO2013116558A1 (en) | 2012-01-31 | 2013-08-08 | Altria Client Services Inc. | Electronic cigarette |
WO2013127810A1 (en) | 2012-02-27 | 2013-09-06 | British American Tobacco (Investments) Limited | A flow control device for a smoking article |
US8640713B2 (en) | 2008-07-23 | 2014-02-04 | British American Tobacco (Investments) Limited | Ventilating sheath for smoking article |
KR20140018284A (en) | 2011-03-14 | 2014-02-12 | 브리티시 아메리칸 토바코 (인베스트먼츠) 리미티드 | Smoking article and method of manufacturing a smoking article |
-
2014
- 2014-06-30 GB GBGB1411619.8A patent/GB201411619D0/en not_active Ceased
-
2015
- 2015-06-26 AR ARP150102062A patent/AR101823A1/en unknown
- 2015-06-30 WO PCT/GB2015/051904 patent/WO2016001648A1/en active Application Filing
- 2015-06-30 KR KR1020177002701A patent/KR102180906B1/en active IP Right Grant
- 2015-06-30 AU AU2015282467A patent/AU2015282467B2/en not_active Ceased
- 2015-06-30 US US15/320,921 patent/US11330837B2/en active Active
- 2015-06-30 UA UAA201700750A patent/UA117874C2/en unknown
- 2015-06-30 EP EP15741250.3A patent/EP3160269A1/en not_active Withdrawn
- 2015-06-30 JP JP2016575445A patent/JP2017524354A/en active Pending
- 2015-06-30 KR KR1020197013379A patent/KR20190053294A/en active Application Filing
- 2015-06-30 BR BR112016030207A patent/BR112016030207A2/en not_active IP Right Cessation
- 2015-06-30 RU RU2017102722A patent/RU2644106C1/en active
-
2016
- 2016-12-20 ZA ZA2016/08771A patent/ZA201608771B/en unknown
- 2016-12-29 CL CL2016003377A patent/CL2016003377A1/en unknown
-
2019
- 2019-09-26 JP JP2019174899A patent/JP6840911B2/en active Active
Patent Citations (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2968305A (en) | 1957-08-12 | 1961-01-17 | Filtox S A | Filter cigarette |
US2954035A (en) | 1958-04-04 | 1960-09-27 | Jacob A Saffir | Cigarettes |
US3016902A (en) | 1960-07-29 | 1962-01-16 | Louis Stein | Adjustable filter tip |
US3310056A (en) | 1964-01-14 | 1967-03-21 | Rieder Zoltan | Partition disc for inhale-proof cigarettes |
US3330284A (en) | 1964-05-21 | 1967-07-11 | Frederick P Seman | Filtration means for filter cigarettes |
US3366122A (en) | 1965-02-03 | 1968-01-30 | Abe R. Brothers | Radial separator for purifying tobacco smoke and smokers' articles incorporating such separators |
US3376874A (en) | 1965-04-12 | 1968-04-09 | Kim Yunil | Adjustable cigarette filters |
US3359988A (en) | 1965-04-21 | 1967-12-26 | Osborne M Thomson | Filter cigarette |
US3428050A (en) | 1967-02-21 | 1969-02-18 | Walter R Kandel | Filter cigarette of adjustable filter capacity |
US3503406A (en) | 1968-10-28 | 1970-03-31 | Lawrence Murry Riegel | Cigarettes |
GB1264700A (en) | 1968-10-28 | 1972-02-23 | ||
US3650278A (en) | 1970-01-05 | 1972-03-21 | W Roland Cook | Adjustable tar removing filter for smokers |
US4059043A (en) | 1975-12-24 | 1977-11-22 | American Filtrona Corporation | Method and apparatus for making tobacco smoke filters |
GB2020537A (en) | 1978-04-28 | 1979-11-21 | Douwe Egberts Tabaksfab | Filter tip for filter cigarettes |
US4433696A (en) | 1981-10-02 | 1984-02-28 | Philip Morris Incorporated | Variable dilution filter |
USRE32221E (en) | 1981-10-02 | 1986-08-12 | Variable dilution filter | |
EP0105683A1 (en) | 1982-09-30 | 1984-04-18 | Philip Morris Incorporated | Adjustable filter cigarette and a method of manufacture thereof |
US4532943A (en) | 1982-09-30 | 1985-08-06 | Philip Morris Incorporated | Adjustable filter cigarette |
US4649944A (en) | 1982-09-30 | 1987-03-17 | Philip Morris Incorporated | Filter cigarette |
WO1984001273A1 (en) | 1982-09-30 | 1984-04-12 | Philip Morris Inc | Adjustable filter cigarette and a method of manufacture thereof |
US4527573A (en) | 1982-11-05 | 1985-07-09 | Philip Morris Incorporated | Filter cigarette |
US4559955A (en) | 1983-06-20 | 1985-12-24 | Link Electronics Ltd | Controlled air bleed cigarette holder |
JPH0732110B2 (en) | 1984-05-18 | 1995-04-10 | 株式会社日立製作所 | Electron beam exposure system |
US4593707A (en) | 1984-06-20 | 1986-06-10 | H.F. & Ph.F. Reemtsma Gmbh & Co. | Variably ventilated filter cigarette |
US4649941A (en) | 1985-12-16 | 1987-03-17 | R. J. Reynolds Tobacco Company | Adjustable air dilution cigarette exhibiting controlled pressure drop |
EP0234911A1 (en) | 1986-02-24 | 1987-09-02 | Philip Morris Products Inc. | Filter cigarette |
US4677995A (en) | 1986-02-24 | 1987-07-07 | Philip Morris Incorporated | Filter cigarette |
US4687008A (en) | 1986-04-17 | 1987-08-18 | Philip Morris Incorporated | Filter cigarette |
EP0317154A1 (en) | 1987-11-10 | 1989-05-24 | Philip Morris Products Inc. | Filter cigarette |
US4848375A (en) | 1987-11-10 | 1989-07-18 | Philip Morris Incorporated | Filter cigarette |
US4898190A (en) | 1989-03-01 | 1990-02-06 | R. J. Reynolds Tabacco Company | Adjustable air dilution cigarette with pressure drop compensation |
JPH07298866A (en) | 1994-03-11 | 1995-11-14 | Rothmans Internatl Services Ltd | Filter for smoking supplies and smoking supplies with said filter |
EP0671131A1 (en) * | 1994-03-11 | 1995-09-13 | Rothmans International Services Limited | Filter for smoking article and smoking article incorporating it |
EP1512926A2 (en) | 2003-09-08 | 2005-03-09 | Tgk Company, Ltd. | Expansion device |
JP2005106452A (en) | 2003-09-08 | 2005-04-21 | Tgk Co Ltd | Expansion device |
WO2005124207A1 (en) | 2004-06-21 | 2005-12-29 | Robertshaw Controls Company | Variable flow valve |
KR20070026622A (en) | 2004-06-21 | 2007-03-08 | 로버트쇼 컨트롤즈 캄파니 | Variable flow valve |
JP2008503694A (en) | 2004-06-21 | 2008-02-07 | ロバートショウ コントロールズ カンパニー | Variable flow valve |
US20060174901A1 (en) | 2005-02-04 | 2006-08-10 | Philip Morris Usa Inc. | Flavor capsule for enhanced flavor delivery in cigarettes |
WO2006082529A2 (en) | 2005-02-04 | 2006-08-10 | Philip Morris Products S.A. | Flavour capsule for enhanced flavour delivery in cigarettes |
US20070012327A1 (en) | 2005-05-03 | 2007-01-18 | Philip Morris Usa Inc. | Cigarettes and filter subassemblies with squeezable flavor capsule and methods of manufacture |
US20080142028A1 (en) | 2006-10-02 | 2008-06-19 | R. J. Reynolds Tobacco Company | Filtered Cigarette |
US8640713B2 (en) | 2008-07-23 | 2014-02-04 | British American Tobacco (Investments) Limited | Ventilating sheath for smoking article |
WO2011039302A1 (en) | 2009-10-02 | 2011-04-07 | British American Tobacco Japan, Ltd | A filter comprising an additive material |
KR20120101423A (en) | 2009-10-28 | 2012-09-13 | 타바코 리서치 앤드 디벨로프먼트 인스티튜트 (프러프라이어테리) 리미티드 | Flow control device for a smoking article |
WO2011051115A1 (en) | 2009-10-28 | 2011-05-05 | Tobacco Research And Development Institute (Proprietary) Limited | Flow control device for a smoking article |
WO2011077314A1 (en) | 2009-12-23 | 2011-06-30 | Tobacco Research And Development Institute (Proprietary) Limited | Fluid release mechanism |
WO2011095410A1 (en) | 2010-02-05 | 2011-08-11 | Tobacco Research And Development Institute (Proprietary) Limited | Flow control device for a smoking article |
US20130032161A1 (en) | 2010-02-05 | 2013-02-07 | Tobacco Research And Development Institute (Proprietary) Limited | Flow Control Device for a Smoking Article |
JP2013518569A (en) | 2010-02-05 | 2013-05-23 | タバコ リサーチ アンド ディベロップメント インスティテュート (プロプリエタリー) リミテッド | Smoke flow control device for smoking goods |
KR20130009825A (en) | 2010-03-29 | 2013-01-23 | 브리티시 아메리칸 타바코 재팬 가부시키 가이샤 | Smoking article |
US20120186593A1 (en) | 2011-01-24 | 2012-07-26 | Anthony Albert Grano | Filter with both conventional and scented filtration |
KR20140018284A (en) | 2011-03-14 | 2014-02-12 | 브리티시 아메리칸 토바코 (인베스트먼츠) 리미티드 | Smoking article and method of manufacturing a smoking article |
WO2012156697A1 (en) | 2011-05-13 | 2012-11-22 | British American Tobacco (Investments) Limited | Filter for a smoking article |
US20140069447A1 (en) | 2011-05-13 | 2014-03-13 | British American Tobacco (Investments) Limited | Filter for a Smoking Article |
KR20140032437A (en) | 2011-05-13 | 2014-03-14 | 브리티시 아메리칸 토바코 (인베스트먼츠) 리미티드 | Filter for a smoking article |
US20140096785A1 (en) | 2011-05-13 | 2014-04-10 | British American Tobacco (Investments) Limited | Filter for a Smoking Article |
JP2014513539A (en) | 2011-05-13 | 2014-06-05 | ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド | Smoking filter |
US20140166031A1 (en) | 2011-05-13 | 2014-06-19 | British American Tobacco (Investments) Limited | Filter for a Smoking Article |
US8960197B2 (en) | 2011-05-13 | 2015-02-24 | British American Tobacco (Investments) Limited | Filter for a smoking article |
US8960198B2 (en) | 2011-05-13 | 2015-02-24 | British American Tobacoo (Investments) Limited | Filter for a smoking article |
WO2013068398A1 (en) | 2011-11-07 | 2013-05-16 | Philip Morris Products S.A | Smoking article with movable vapour release component |
WO2013116558A1 (en) | 2012-01-31 | 2013-08-08 | Altria Client Services Inc. | Electronic cigarette |
WO2013127810A1 (en) | 2012-02-27 | 2013-09-06 | British American Tobacco (Investments) Limited | A flow control device for a smoking article |
Non-Patent Citations (15)
Title |
---|
International Search Report and Written Opinion , dated Aug. 9, 2012 for PCT/GB2012/051041, filed Nov. 5, 2012. |
International Search Report for corresponding application PCT/GB2015/051904 filed Jun. 30, 2015; dated Sep. 28, 2015. |
JP Search Report dated Dec. 22, 2017 re: Application No. 2016-575445, pp. 1-30, citing: JP 2014-513539 A, US 04898190 A, JP 2013-518569A, WO 2013/068398 A1, JP S59-098676 A, US 04559955 A and US 04649941 A. |
KR Notice of Allowance dated Aug. 20, 2020 re: Application No. 10-2017-7002701, pp. 1-6, citing: KR1020140032437 A, KR1020070026622 A, KR1020120101423 A, KR1020130009825 A, KR1020140018284 A, JP2008503694 A, JP2005106452 A, EP0671131 A1 and WO2013116558 A1. |
Notification of Transmittal of the International Preliminary Report on Patentability, dated Sep. 13, 2013 for PCT/GB2012/051041, filed Nov. 5, 2012. |
Office Action dated Jul. 15, 2014 for U.S. Appl. No. 14/117,418. |
Office Action dated May 22, 2014 for U.S. Appl. No. 14/080,402. |
Office Action dated May 23, 2014 for U.S. Appl. No. 14/080,487. |
Office Action for corresponding application U.S. Appl. No. 14/117,418 dated Jun. 8, 2016. |
Office Action for corresponding application U.S. Appl. No. 14/117,418 dated Oct. 7, 2016. |
Office Action, dated Nov. 2, 2014, for CN Application No. 2012-80023154.1 [English Translation]. |
Search Report, dated Oct. 24, 2014, for CN Application No. 2012-80023154.1 [English Translation]. |
Translation of Office Action for Korean Patent Application No. 10-2013-7033092 dated Jul. 17, 2015. |
Written Opinion of the International Preliminary Examining Authority, dated Aug. 7, 2012 for PCT/GB2012/051041, filed Nov. 5, 2012. |
Written Opinion of the ISA for corresponding application PCT/GB2015/051904 filed Jun. 30, 2015; dated Sep. 28, 2015. |
Also Published As
Publication number | Publication date |
---|---|
WO2016001648A1 (en) | 2016-01-07 |
AU2015282467B2 (en) | 2017-10-26 |
US20170127719A1 (en) | 2017-05-11 |
RU2644106C1 (en) | 2018-02-07 |
KR102180906B1 (en) | 2020-11-19 |
ZA201608771B (en) | 2019-06-26 |
JP6840911B2 (en) | 2021-03-10 |
EP3160269A1 (en) | 2017-05-03 |
UA117874C2 (en) | 2018-10-10 |
JP2020014471A (en) | 2020-01-30 |
CL2016003377A1 (en) | 2017-07-21 |
KR20170024082A (en) | 2017-03-06 |
AR101823A1 (en) | 2017-01-18 |
KR20190053294A (en) | 2019-05-17 |
GB201411619D0 (en) | 2014-08-13 |
BR112016030207A2 (en) | 2017-08-22 |
JP2017524354A (en) | 2017-08-31 |
AU2015282467A1 (en) | 2017-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9730470B2 (en) | Filter for a smoking article | |
US20120260928A1 (en) | Fluid Release Mechanism | |
JP6840911B2 (en) | Flow control device | |
WO2011051115A1 (en) | Flow control device for a smoking article | |
CA2966446C (en) | Variable ventilation smoking article with flavour source | |
US20200253270A1 (en) | A Smoking Article or an Aerosol Generating Product | |
GB2528243A (en) | Mouthpiece | |
AU2013270555B2 (en) | Filter for a smoking article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: BRITISH AMERICAN TOBACCO (INVESTMENTS) LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CLARKE, SHANE;RUSSELL, DAVID MORRISON;SPENDLOVE, DAVID;AND OTHERS;SIGNING DATES FROM 20140606 TO 20170215;REEL/FRAME:043868/0411 Owner name: BRITISH AMERICAN TOBACCO (INVESTMENTS) LIMITED, UN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CLARKE, SHANE;RUSSELL, DAVID MORRISON;SPENDLOVE, DAVID;AND OTHERS;SIGNING DATES FROM 20140606 TO 20170215;REEL/FRAME:043868/0411 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: NICOVENTURES TRADING LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BRITISH AMERICAN TOBACCO (INVESTMENTS) LIMITED;REEL/FRAME:055405/0253 Effective date: 20200305 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ALLOWED -- NOTICE OF ALLOWANCE NOT YET MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |