US10989246B2 - Anti-vibration fastener - Google Patents

Anti-vibration fastener Download PDF

Info

Publication number
US10989246B2
US10989246B2 US16/198,357 US201816198357A US10989246B2 US 10989246 B2 US10989246 B2 US 10989246B2 US 201816198357 A US201816198357 A US 201816198357A US 10989246 B2 US10989246 B2 US 10989246B2
Authority
US
United States
Prior art keywords
section
nut
aperture
diameter
bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/198,357
Other versions
US20200158159A1 (en
Inventor
Richard C. Sicard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US16/198,357 priority Critical patent/US10989246B2/en
Publication of US20200158159A1 publication Critical patent/US20200158159A1/en
Priority to US17/176,924 priority patent/US20210164512A1/en
Application granted granted Critical
Publication of US10989246B2 publication Critical patent/US10989246B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B23/00Specially shaped nuts or heads of bolts or screws for rotations by a tool
    • F16B23/0007Specially shaped nuts or heads of bolts or screws for rotations by a tool characterised by the shape of the recess or the protrusion engaging the tool
    • F16B23/0023Specially shaped nuts or heads of bolts or screws for rotations by a tool characterised by the shape of the recess or the protrusion engaging the tool substantially cross-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B39/00Locking of screws, bolts or nuts
    • F16B39/02Locking of screws, bolts or nuts in which the locking takes place after screwing down
    • F16B39/12Locking of screws, bolts or nuts in which the locking takes place after screwing down by means of locknuts
    • F16B39/16Locking of screws, bolts or nuts in which the locking takes place after screwing down by means of locknuts in which the screw-thread of the locknut differs from that of the nut
    • F16B39/18Locking of screws, bolts or nuts in which the locking takes place after screwing down by means of locknuts in which the screw-thread of the locknut differs from that of the nut in which the locknut grips with screw-thread in the nuts as well as on the bolt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • F16B35/005Set screws; Locking means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B37/00Nuts or like thread-engaging members
    • F16B37/12Nuts or like thread-engaging members with thread-engaging surfaces formed by inserted coil-springs, discs, or the like; Independent pieces of wound wire used as nuts; Threaded inserts for holes
    • F16B37/122Threaded inserts, e.g. "rampa bolts"
    • F16B37/125Threaded inserts, e.g. "rampa bolts" the external surface of the insert being threaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B39/00Locking of screws, bolts or nuts
    • F16B39/02Locking of screws, bolts or nuts in which the locking takes place after screwing down
    • F16B39/12Locking of screws, bolts or nuts in which the locking takes place after screwing down by means of locknuts
    • F16B39/16Locking of screws, bolts or nuts in which the locking takes place after screwing down by means of locknuts in which the screw-thread of the locknut differs from that of the nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/02Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread
    • F16B5/0241Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread with the possibility for the connection to absorb deformation, e.g. thermal or vibrational
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • F16B35/04Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws with specially-shaped head or shaft in order to fix the bolt on or in an object
    • F16B35/041Specially-shaped shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/02Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread
    • F16B5/0275Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread the screw-threaded element having at least two axially separated threaded portions

Definitions

  • the present general inventive concept relates generally to a fastener, and particularly, to an anti-vibration fastener.
  • a fastener is a mechanical device typically used to join two or more objects together. Nuts and bolts of all sizes, design, and material are manufactured by industries every day. The main purpose of a fastener is to attach one object to another. They are made according to engineering specifications and are used in various manufacturing industries, including consumer products, marine products, aerospace products, automotive products, and light products. In most applications, fasteners are required to be constructed from durable material. Furthermore, fasteners can function in very high or low temperatures and can dampen vibration.
  • a standard wrench is used to tighten the fastener.
  • a torque wrench is used on the fastener.
  • another commonly used method is to lock wire the nut or use a tab washer in order to maintain the clamping force of the fastener.
  • Vibration loosening is an important concern when using any fastener.
  • vibration that causes sliding of the nut and/or the bolt relative to a joint can result in motion between the threads and reduce the clamp force provided by the nut and/or bolt.
  • the sliding in the joint can result in further stress on the bolt due to bending loads and even joint failure.
  • One approach to reducing vibration loosening is using an adhesive applied in the threads of the nut and/or the bolt.
  • the main purpose of the adhesive is to increase the friction and/or prevent the nut and/or the bolt from sliding.
  • the Nord-Lock Company has created the Nord-Lock wedge washer, which is very effective against vibration.
  • a washer is only one type of fastener and there are many objects that have different ways to be joined.
  • the present general inventive concept provides an anti-vibration fastener.
  • an anti-vibration fastener including a square flange bolt to affix a first object to a second object, the square flange bolt including a first threaded portion disposed at a front end of the square flange bolt, and a second threaded portion disposed at a rear end of the square flange bolt having a diameter smaller than a diameter of the first threaded portion, and a forward nut to encapsulate at least a portion of the square flange bolt such that the first object and the second object are disposed between the forward nut and the front end of the square flange bolt, and an aft nut to encapsulate at least a portion of the square flange bolt and the forward nut.
  • the first threaded portion may include a plurality of external threads oriented in a first direction and the second threaded portion may include a plurality of external threads oriented in the first direction.
  • the forward nut may further include a front portion, including a front aperture disposed at substantially center portion of the front portion to receive at least a portion of the first threaded portion therein, the front aperture having a diameter substantially similar to the diameter of the first threaded portion, and a plurality of internal threads disposed within an inner surface of the front aperture oriented in the first direction to correspond to and interweave with the plurality of external threads of the first threaded portion.
  • the forward nut may further include a stub portion connected to the front portion of the forward nut, the stub portion including a rear aperture disposed at a substantially center portion of the stub portion to receive at least a portion of the second threaded portion, the rear aperture having a diameter substantially similar to the diameter of the second threaded portion, and a plurality of internal threads disposed within the an inner surface of the rear aperture oriented in the first direction to correspond to and interweave with the plurality of external threads of the second threaded portion.
  • the stub portion may further include a plurality of external threads disposed on an external surface of the stub portion of the forward nut.
  • the aft nut may further include a front portion, including a front aperture disposed at a portion of a center of the front portion to receive at least a portion of the stub portion of the forward nut and having a diameter substantially similar to the diameter of the stub portion of the forward nut, and a plurality of internal threads disposed within the front aperture oriented in the first direction to interweave with the plurality of external threads disposed on the stub portion of the forward nut.
  • the aft nut may further include a stub portion, including a rear aperture disposed at a portion of a center of the stub portion to receive at least a portion of the third section and having a diameter substantially similar to the diameter of the third section, and a plurality of internal threads disposed within the rear aperture oriented in the at least one direction to interweave with the plurality of external threads on the third section.
  • the square flange bolt may further include a non-threaded portion disposed between the first threaded portion and the second threaded portion to separate the first threaded portion from the second threaded portion.
  • the first threaded portion may include a plurality of external threads oriented in a first direction
  • the second threaded portion may include a plurality of external threads oriented in a second direction.
  • the forward nut may further include a front portion, including a front aperture disposed at substantially center portion of the front portion to receive at least a portion of the first threaded portion therein, the front aperture having a diameter substantially similar to the diameter of the first threaded portion, and a plurality of internal threads disposed within an inner surface of the front aperture oriented in the first direction to correspond to and interweave with the plurality of external threads of the first threaded portion.
  • the forward nut may further include a stub portion connected to the front portion of the forward nut, the stub portion including a rear aperture disposed at a substantially center portion of the stub portion to receive at least a portion of the second threaded portion, the rear aperture having a diameter larger than the diameter of the second threaded portion, and a non-threaded inner surface disposed within the rear aperture to receive the plurality of external threads of the second threaded portion.
  • the stub portion may further include a plurality of external threads disposed on an external surface of the stub portion of the forward nut.
  • the aft nut may further include a front portion, including a front aperture disposed at a portion of a center of the front portion to receive at least a portion of the stub portion of the forward nut and having a diameter substantially similar to the diameter of the stub portion of the forward nut, and a plurality of internal threads disposed within the front aperture oriented in the first direction to interweave with the plurality of external threads disposed on the stub portion of the forward nut.
  • the aft nut may further include a stub portion, including a rear aperture disposed at a portion of a center of the stub portion to receive at least a portion of the second threaded portion and having a diameter substantially similar to the diameter of the second threaded portion, and a plurality of internal threads disposed within the rear aperture oriented in the at least one direction to interweave with the plurality of external threads on the second threaded portion.
  • an anti-vibration fastener including a square bolt to affix an object to a wall, the square bolt including a first threaded portion having a first diameter, the first threaded portion being disposed at a front end of the square bolt, and a second threaded portion having a second diameter, the second threaded portion being disposed at a rear end of the square bolt to be at least partially inserted into the wall, a forward nut to encapsulate at least a portion of the square bolt such that the first object is disposed between the forward nut and the wall, and an aft nut to encapsulate at least a portion of the square bolt and the forward nut.
  • the second diameter may be larger than the first diameter.
  • the second diameter may be smaller than the first diameter.
  • the square flange bolt may further include a non-threaded portion disposed between the first threaded portion and the second threaded portion to separate the first threaded portion from the second threaded portion.
  • FIG. 1 illustrates an exploded view of an anti-vibration fastener, according to an exemplary embodiment of the present general inventive concept
  • FIG. 2A illustrates an isometric view of a square flange bolt, according to an exemplary embodiment of the present general inventive concept
  • FIG. 2B illustrates a top view of a front end of the square flange bolt, according to an exemplary embodiment of the present general inventive concept
  • FIG. 3 illustrates an isometric bottom view of a forward nut, according to an exemplary embodiment of the present general inventive concept
  • FIG. 4 illustrates an isometric bottom view of an aft nut including a partial interior view the aft nut, according to an exemplary embodiment of the present general inventive concept
  • FIG. 5 illustrates a cutaway view of the anti-vibration fastener using the square flange bolt, according to an exemplary embodiment of the present general inventive concept
  • FIG. 6 illustrates an exploded view of an anti-vibration fastener, according to another exemplary embodiment of the present general inventive concept
  • FIG. 7A illustrates side view of a square bolt, according to another exemplary embodiment of the present general inventive concept
  • FIG. 7B illustrates a top view of a front end of the square bolt, according to another exemplary embodiment of the present general inventive concept
  • FIG. 8 illustrates an isometric rear end view of the anti-vibration fastener using the square bolt affixed to a wall, according to another exemplary embodiment of the present general inventive concept
  • FIG. 9 illustrates an isometric view of a square flange bolt, according to another exemplary embodiment of the present general inventive concept.
  • FIG. 10A a front view of a forward nut, according to another exemplary embodiment of the present general inventive concept
  • FIG. 10B illustrates an isometric bottom view of a forward nut, according to another exemplary embodiment of the present general inventive concept.
  • FIG. 11 illustrates side view of a square bolt, according to another exemplary embodiment of the present general inventive concept.
  • FIG. 1 illustrates an exploded view of an anti-vibration fastener 100 , according to an exemplary embodiment of the present general inventive concept.
  • FIG. 2A illustrates an isometric view of a square flange bolt 110 , according to an exemplary embodiment of the present general inventive concept.
  • FIG. 2B illustrates a top view of a front end 110 a of the square flange bolt 110 , according to an exemplary embodiment of the present general inventive concept.
  • the anti-vibration fastener 100 may be constructed from at least one of metal, plastic, wood, and rubber, etc., but is not limited thereto.
  • the anti-vibration fastener 100 may include a square flange bolt 110 , a forward nut 120 , and an aft nut 130 , but is not limited thereto.
  • the square flange bolt 110 is illustrated to be a bolt type fastener, the square flange bolt 110 may be at least one of a nail, a screw, a pin, a peg, a rivet, a threaded insert, and a threaded rod, etc., but is not limited thereto.
  • the square flange bolt 110 may include a front end 110 a , a rear end 110 b , a head 111 , a flange 112 , a first section 113 , a second section 114 , and a third section 115 , but is not limited thereto.
  • the head 111 is illustrated to have a rectangular prism shape.
  • the head 111 may be rectangular, circular, pentagonal, hexagonal, octagonal, or any other shape known to one of ordinary skill in the art, but is not limited thereto.
  • the head 111 may include at least one screwdriver-receiving groove 111 a , but is not limited thereto.
  • the head 111 may be of any predetermined size to include the at least one screwdriver-receiving groove 111 a of any predetermined size.
  • the at least one screwdriver-receiving groove 111 a may receive at least one of a Phillips-head screwdriver and a flat-head screwdriver, etc., but is not limited thereto.
  • the head 111 may receive at least one of a socket wrench and a torque wrench, etc., but is not limited thereto.
  • the flange 112 may include a front surface 112 a and a bearing surface 112 b , but is not limited thereto.
  • the first section 113 may include a first end 113 a , a second end 113 b , and a plurality of external threads 113 c , but is not limited thereto.
  • the third section 115 may include a first end 115 a , a second end 115 b , and a plurality of external threads 115 c , but is not limited thereto.
  • the first section 113 may be substantially larger in diameter with respect to the diameter of the second section 114 and the diameter of the third section 115 .
  • the plurality of external threads 113 c may be disposed on at least a portion of the first section 113 .
  • the plurality of external threads 113 c may be oriented in a first direction (e.g., counterclockwise), but are not limited thereto.
  • the plurality of external threads 113 c may be oriented in a second direction (e.g., clockwise), but are not limited thereto.
  • the second section 114 may include a substantially smooth surface, but is not limited thereto.
  • the plurality of external threads 115 c may be disposed on at least a portion of the third section 115 .
  • the plurality of external threads 115 c may be oriented in the first direction, but are not limited thereto.
  • the plurality of external threads 115 c may be oriented in the second direction, but are not limited thereto.
  • the rear end 110 b may be shaped by at least one of tapered, pointed, flat, etc., but is not limited thereto.
  • first section 113 may also be referred to as the first threaded portion 113
  • third section 115 may also be referred to as the second threaded portion 115 , for at least the reason that the first section 113 includes the plurality of external threads 113 c
  • the third section 115 includes the plurality of external threads 115 c.
  • the second section 114 may also be referred to as a non-threaded portion 114 , for at least the reason that the second section 114 does not include any threading.
  • the second section 114 may be an optional portion of the square flange bolt 110 , and may be excluded from the square flange bolt 110 based on a manufacturer's preference.
  • FIG. 3 illustrates an isometric bottom view of a forward nut 120 , according to an exemplary embodiment of the present general inventive concept.
  • the forward nut 120 may include a front portion 121 and a stub portion 122 , but is not limited thereto.
  • the front portion 121 is illustrated to have an octagonal shape.
  • the front portion 121 may be rectangular prism, rectangular, circular, pentagonal, hexagonal, or any other shape known to one of ordinary skill in the art, but is not limited thereto.
  • the front portion 121 may include a front surface 121 a , a rear surface 121 b , an octagonal surface 121 c , a front aperture 121 d , and a plurality of internal threads 121 e , but is not limited thereto.
  • the stub portion 122 may include a first end 122 a , a second end 122 b , a plurality of external threads 122 c , a rear aperture 122 d , and a plurality of internal threads 122 e , but is not limited thereto.
  • the front aperture 121 d may be disposed at a portion of a center of the front portion 121 .
  • the front aperture section 121 d may be substantially larger in diameter with respect to the diameter of the rear aperture 122 d and may extend across at least a portion of a length of the front portion 121 , beginning from the front surface 121 a and terminating at a juncture of the rear surface 121 b and the first end 122 a .
  • the rear aperture 122 d may be disposed at a portion of a center of the stub portion 122 .
  • the rear aperture 122 d may extend across at least a portion of the length of the stub portion 122 , beginning from the second end 122 b and terminating at the juncture of the rear surface 121 b and the first end 122 a.
  • the plurality of internal threads 121 e may be disposed within the front aperture 121 d .
  • the plurality of internal threads 121 e may be oriented in the first direction, but are not limited thereto.
  • the plurality of internal threads 121 e may be oriented in the second direction, but are not limited thereto.
  • the plurality of external threads 122 c may be disposed on at least a portion of the stub portion 122 .
  • the plurality of external threads 122 c may be oriented in the first direction, but are not limited thereto.
  • the plurality of external threads 122 c may be oriented in the second direction, but are not limited thereto.
  • the plurality of internal threads 122 e may be disposed within the rear aperture 122 d .
  • the plurality of internal threads 122 e may be oriented in the first direction, but are not limited thereto.
  • the plurality of internal threads 122 e may be oriented in the second direction, but are not limited thereto.
  • FIG. 4 illustrates an isometric bottom view of an aft nut 130 including an interior view the aft nut 130 , according to an exemplary embodiment of the present general inventive concept.
  • the aft nut 130 may include a front portion 131 and a stub portion 132 , but is not limited thereto.
  • the front portion 131 may include a front surface 131 a , a rear surface 131 b , a cylindrical surface 131 c , a front aperture 131 d , and a plurality of internal threads 131 e , but is not limited thereto.
  • the cylindrical surface 131 c is illustrated to have a cylindrical shape with two flat sides.
  • the cylindrical surface 131 c may be rectangular prism, rectangular, circular, pentagonal, hexagonal, or any other shape known to one of ordinary skill in the art, but is not limited thereto.
  • the stub portion 132 may include a first end 132 a , a second end 132 b , a knurled surface 132 c , a rear aperture 132 d , and a plurality of internal threads 132 e , but is not limited thereto.
  • the front aperture 131 d may be disposed at a portion of a center of the front portion 131 .
  • the front aperture section 131 d may be substantially larger in diameter with respect to the diameter of the second rear aperture 132 d and may extend across at least a portion of a length of the front portion 131 , beginning from the front surface 131 a and terminating at a juncture of the rear surface 131 b and the first end 132 a .
  • the rear aperture 132 d may be disposed at a portion of a center of the stub portion 132 .
  • the rear aperture 132 d may extend across at least a portion of the length of the stub portion 132 , beginning from the second end 132 b and terminating at the juncture of the rear surface 131 b and the first end 132 a.
  • the plurality of internal threads 131 e may be disposed within the front aperture 131 d .
  • the plurality of internal threads 131 e may be oriented in the first direction, but are not limited thereto.
  • the plurality of internal threads 131 e may be oriented in the second direction, but are not limited thereto.
  • the knurled surface 132 c may include a pattern of straight, angled, and/or crossed lines, but is not limited thereto.
  • the knurled surface 132 c may enable a user to grasp the stub portion 132 , such that the user may rotate the aft nut 130 .
  • the knurled surface 1320 may be a textured surface, which increases the friction between the user's fingers and the knurled surfaced 132 c , such that the aft nut 130 may rotate in response to the user rotating the aft nut 130 in any direction.
  • the plurality of internal threads 132 e may be disposed within the rear aperture 132 d .
  • the plurality of internal threads 132 e may be oriented in the first direction, but are not limited thereto.
  • the plurality of internal threads 132 e may be oriented in the second direction, but are not limited thereto.
  • the plurality of external threads 122 c of the forward nut 120 is illustrated to be wider than the plurality of internal threads 131 e of the aft nut 130 , the plurality of external threads 122 c are not to scale. Therefore, the plurality of external threads 122 c of the forward nut 120 may be interwoven with the plurality of internal threads 131 e of the aft nut 130 .
  • FIG. 5 illustrates a cutaway view of the anti-vibration fastener 100 using the square flange bolt 110 , according to an exemplary embodiment of the present general inventive concept.
  • the anti-vibration fastener 100 may be used to affix and/or adhere a first object 10 to a second object 20 .
  • the first object 10 and the second object 20 may be arranged, such that at least a portion of a rear surface 10 b of the first object 10 is in substantial contact with at least a portion of a front surface 20 a of the second object 20 .
  • the square flange bolt 110 may be inserted, by the user, through a hole 15 in both the first object 10 and the second object 20 at a similar location.
  • the user may grasp at least one of a portion of the front end 110 a , a portion of the first section 113 , a portion of the second section 114 , and a portion of the third section 115 to apply a lateral force to the square flange bolt 110 into the hole 15 .
  • the third section 115 may enter the first object 10 and the second object 20 via the hole 15 , followed by the second section 114 , and the first section 113 .
  • the movement of the square flange bolt 110 may terminate in response to the bearing surface 112 b contacting a front surface 10 a of the first object 10 .
  • At least a portion of the third section 115 , a portion of the second section 114 , and a portion of the first section 113 may extend laterally away from a rear surface 20 b of the second object 20 .
  • the user may affix and/or adhere the forward nut 120 to the square flange bolt 110 to secure the first object 10 to the second object 20 .
  • the user may grasp the forward nut 120 via at least a portion of the front portion 121 and/or at least a portion of the stub portion 122 .
  • the user may orient the forward nut 120 , such that the front surface 121 a and the front aperture 121 d are facing the rear surface 20 b of the second object 20 .
  • the front aperture 121 d may be moved laterally toward the rear surface 20 b of the second object 20 and maneuvered to encapsulate at least a portion of the square flange bolt 110 .
  • the front aperture 121 d may be positioned and moved by the user, such that as the user may move the forward nut 120 towards the rear surface 20 b of the second object 20 .
  • the front aperture 121 d may receive the third section 115 , first, followed by the second section 114 , and at least a portion of the first section 113 .
  • the rear aperture 122 d may have substantially the same diameter as the diameter of the third section 115 . As such, at least a portion of the rear aperture 122 d may no longer be moved laterally over the third section 115 . Moreover, upon contact of the rear aperture 122 d with the second end 115 b of the third section 115 , the user may rotate the forward nut 120 in the first direction, such that the plurality of internal threads 122 e are interwoven corresponding to the plurality of external threads 115 c.
  • the front aperture 121 d may have substantially the same diameter as the diameter of the first section 113 . As such, the front aperture 121 d may no longer be moved laterally over the first section 113 . Moreover, upon contact of the front aperture 121 d with the second end 113 b of the first section 113 , the user may rotate the forward nut 120 in the first direction, such that the plurality of internal threads 121 e are interwoven corresponding to the plurality of external threads 113 c . The forward nut 120 may be rotated in the first direction until the front surface 121 a has made substantial contact with the rear surface 20 b of the second object 20 and there is substantial resistance to further rotation thereof. Thus, the forward nut 120 and the square flange bolt 110 may be considered interlocked.
  • the combination of the square flange bolt 110 and the forward nut 120 may extend laterally away from the rear surface 20 b of the second object 20 .
  • the user may affix and/or adhere the aft nut 130 to the forward nut 120 .
  • the user may grasp the aft nut 130 via at least a portion of the front portion 131 and/or at least a portion of the stub portion 132 .
  • the user may grasp the knurled surface 132 c via at least a portion of the stub portion 132 .
  • the user may orient the aft nut 130 , such that the front surface 131 a and the front aperture 131 d are facing the rear surface 121 b of the forward nut 120 .
  • the front aperture 131 d may be moved laterally toward the rear surface 121 b of the forward nut 120 and maneuvered to encapsulate at least a portion of the square flange bolt 110 and the forward nut 120 .
  • the front aperture 131 d may be positioned and moved by the user, such that as the user may move the aft nut 130 towards the rear surface 121 b of the forward nut 120 .
  • the front aperture 131 d may receive the third section 115 , first, followed by at least a portion of the second section 114 .
  • the rear aperture 132 d may have substantially the same diameter as the diameter of the third section 115 . As such, at least a portion of the rear aperture 131 d may no longer be moved laterally over the third section 115 . Moreover, upon contact of the rear aperture 132 d with the second end 115 b of the third section 115 , the user may rotate the aft nut 130 in the first direction, such that the plurality of internal threads 132 e are interwoven corresponding to the plurality of external threads 115 c.
  • the front aperture 131 d may have substantially the same diameter as the diameter of the stub portion 122 of the forward nut 120 . As such, the front aperture 131 d may no longer be moved laterally over the stub portion 122 . Moreover, upon contact of the front aperture 131 d with the second end 122 b of the stub portion 122 , the user may rotate the aft nut 130 in the first direction such that the plurality of internal threads 131 e are interwoven corresponding to the plurality of external threads 122 c . The aft nut 130 may be rotated in the first direction until the front surface 131 a has made substantial contact with the rear surface 121 b of the forward nut 120 and there is substantial resistance to further rotation thereof.
  • the contact of the front surface 131 a of the aft nut 130 and the rear surface 121 b of the forward nut 120 may be near at least a portion of the second section 114 of the square flange bolt 110 , such that it may be considered substantially at the center of the second section 114 .
  • the aft nut 130 , the forward nut 120 , and the square flange bolt 110 may be considered interlocked.
  • the interlocked arrangement of the forward nut 120 and the aft nut 130 may reduce vibration to a minimum. Specifically, the interwoven arrangement of the plurality of the internal threads 131 e with the plurality of external threads 122 c in the first direction may cancel any loosening motion of the forward nut 120 in the second direction. As such, the aft nut 130 may oppose any motion of the forward nut 120 rotating in the second direction.
  • the application of the anti-vibration fastener 100 to any article and/or process of manufacture and/or assembly in relevant industries may significantly improve the article and/or process.
  • the specific combination of the square flange bolt 110 , the difference in diameter of the first section 113 with respect to the third section 115 , the forward nut 120 , the difference in diameter of the front aperture 121 d with respect to the rear aperture 122 d , the aft nut 130 , the difference in diameter of the front aperture 131 d with respect to the rear aperture 132 d , and the interwoven arrangement of the plurality of external threads 122 c and the plurality of internal threads 131 e may create a stronger bond than the conventional bolt and nut.
  • the anti-vibration fastener 100 may withstand any vibration force, including at least one of wind, seismic activity, volcanic eruption, etc., but is not limited thereto.
  • FIG. 6 illustrates an exploded view of an anti-vibration fastener 200 , according to another exemplary embodiment of the present general inventive concept
  • FIG. 7A illustrates an isometric view of a square bolt 210 , according to another exemplary embodiment of the present general inventive concept
  • FIG. 7B illustrates a top view of a front end 210 a of the square bolt 210 , according to another exemplary embodiment of the present general inventive concept.
  • the anti-vibration fastener 200 may be constructed from at least one of metal, plastic, wood, and rubber, etc., but is not limited thereto.
  • the anti-vibration fastener 200 may include a square bolt 210 , a forward nut 120 , and an aft nut 130 , but is not limited thereto.
  • the square bolt 210 is illustrated to be a bolt type fastener, the square bolt 210 may be at least one of a nail, a screw, a pin, a peg, a rivet, a threaded insert, and a threaded rod, etc., but is not limited thereto.
  • the square flange bolt 210 may include a front end 210 a , a rear end 210 b , a head 211 , an intermediary surface 212 , a first section 213 , a second section 214 , and a third section 215 but is not limited thereto.
  • the head 211 is illustrated to have a rectangular prism shape.
  • the head 211 may be rectangular, circular, pentagonal, hexagonal, octagonal, or any other shape known to one of ordinary skill in the art, but is not limited thereto.
  • the head 211 may include at least one screwdriver-receiving groove 211 a , but is not limited thereto.
  • the head 211 may be of any predetermined size to include the at least one screwdriver-receiving groove 211 a of any predetermined size.
  • the at least one screwdriver-receiving groove 211 a may receive at least one of a Phillips-head screwdriver and a flat-head screwdriver, etc., but is not limited thereto.
  • the head 211 may receive at least one of a socket wrench and a torque wrench, etc., but is not limited thereto.
  • the first section 213 may include a first end 213 a , a second end 213 b , and a plurality of external threads 213 c , but is not limited thereto.
  • the third section 215 may include a first end 215 a , a second end 215 b , and a plurality of external threads 215 c , but is not limited thereto.
  • the first section 213 may be substantially larger in diameter with respect to the diameter of the second section 214 and the diameter of the third section 215 .
  • the plurality of external threads 213 c may be disposed on at least a portion of the first section 213 .
  • the plurality of external threads 213 c may be oriented in a first direction (e.g., counterclockwise), but are not limited thereto.
  • the plurality of external threads 213 c may be oriented in a second direction (e.g., clockwise), but are not limited thereto.
  • the second section 214 may be a substantially smooth surface, but is not limited thereto.
  • the plurality of external threads 215 c may be disposed on at least a portion of the third section 215 .
  • the plurality of external threads 215 c may be oriented in the first direction, but are not limited thereto. Alternatively, the plurality of external threads 215 c may be oriented in the second direction, but are not limited thereto.
  • the rear end 210 b may be shaped by at least one of tapered, pointed, flat, etc., but is not limited thereto.
  • first section 213 may also be referred to as the first threaded portion 213
  • third section 215 may also be referred to as the second threaded portion 215 , for at least the reason that the first section 213 includes the plurality of external threads 213 c
  • the third section 215 includes the plurality of external threads 215 c.
  • the second section 214 may also be referred to as a none threaded portion 214 , for at least the reason that the second section 214 does not include any threading.
  • the second section 214 may be an optional portion of the square flange bolt 210 , and may be excluded from the square flange bolt 210 based on a manufacturer's preference.
  • FIG. 8 illustrates an isometric rear end view of the anti-vibration fastener 200 using the square bolt 210 affixed to a wall, according to another exemplary embodiment of the present general inventive concept.
  • the user may affix and/or adhere the forward nut 120 to the square bolt 210 .
  • the user may grasp at least one of a portion of the front end 210 a , a portion of the first section 213 , a portion of the second section 214 , and a portion of the third section 215 to apply a lateral force to the square bolt 210 into the forward nut 120 via the front aperture 121 d .
  • the user may grasp the forward nut 120 via at least a portion of the front portion 121 and/or at least a portion of the stub portion 122 .
  • the user may orient the forward nut 120 , such that the front surface 121 a and the front aperture 121 d are facing the head 211 .
  • the front aperture 121 d may be moved laterally toward the head 211 and maneuvered to encapsulate at least a portion of the square bolt 210 .
  • the front aperture 121 d will first receive the first section 213 , followed by the second section 214 , and at least a portion of the third section 215 .
  • At least a portion of the third section 215 , a portion of the second section 214 , and a portion of the first section 213 may extend laterally away from a front surface 30 a of the first object 30 .
  • the user may affix and/or adhere the forward nut 120 to the square bolt 210 .
  • the user may grasp the forward nut 120 via at least a portion of the front portion 121 and/or at least a portion of the stub portion 122 .
  • the rear aperture 122 d may have substantially the same diameter as the diameter of the first section 213 . As such, at least a portion of the rear aperture 122 d may no longer be moved laterally over the first section 213 . Moreover, upon contact of the rear aperture 122 d with the first end 213 a of the first section 213 , the user may rotate the forward nut 120 in the first direction, such that the plurality of internal threads 122 e are interwoven corresponding to the plurality of external threads 213 c.
  • the front aperture 121 d may have substantially the same diameter as the diameter of the third section 215 . As such, the front aperture 121 d may no longer be moved laterally over the first section 215 . Moreover, upon contact of the front aperture 121 d with the first end 215 a of the third section 215 , the user may rotate the forward nut 120 in the first direction such that the plurality of internal threads 121 e are interwoven with the plurality of external threads 215 c . The forward nut 120 may be rotated in the first direction until the square bolt 210 protrudes from the second end 122 b and/or as desired by the user. Thus, the forward nut 120 and the square bolt 210 may be considered interlocked.
  • the user may affix and/or adhere the aft nut 130 to the combination of the square bolt 210 and the forward nut 120 .
  • the user may grasp the aft nut 130 via at least a portion of the front portion 131 and/or at least a portion of the stub portion 132 .
  • the user may grasp the knurled surface 132 c via at least a portion of the stub portion 132 .
  • the user may orient the aft nut 130 , such that the front surface 131 a and the front aperture 131 d are facing the rear surface 121 b of the forward nut 120 .
  • the front aperture 131 d may be moved laterally toward the rear surface 121 b of the forward nut 120 and maneuvered to encapsulate at least a portion of the square bolt 210 and the forward nut 120 .
  • the front aperture 131 d may be positioned and moved by the user, such that as the user may move the aft nut 130 towards the rear surface 121 b of the forward nut 120 .
  • the front aperture 131 d may receive the first section 213 , first, followed by at least a portion of the second section 214 .
  • the rear aperture 132 d may have substantially the same diameter as the diameter of the first section 213 . As such, at least a portion of the rear aperture 131 d may no longer be moved laterally over the first section 213 . Moreover, upon contact of the rear aperture 132 d with the first end 213 a of the first section 213 , the user may rotate the aft nut 130 in the first direction, such that the plurality of internal threads 132 e are interwoven corresponding to the plurality of external threads 213 c.
  • the front aperture 131 d may have substantially the same diameter as the diameter of the stub portion 122 of the forward nut 120 . As such, the front aperture 131 d may no longer be moved laterally over the stub portion 122 . Moreover, upon contact of the front aperture 131 d with the second end 122 b of the stub portion 122 , the user may rotate the aft nut 130 in the first direction such that the plurality of internal threads 131 e are interwoven corresponding to the plurality of external threads 122 c . The aft nut 130 may be rotated in the first direction until the front surface 131 a has made substantial contact with the rear surface 121 b of the forward nut 120 and there is substantial resistance to further rotation thereof.
  • the contact of the front surface 131 a of the aft nut 130 and the rear surface 121 b of the forward nut 120 may be near at least a portion of the second section 214 of the square bolt 210 , such that it may be considered substantially at the center of the second section 214 .
  • the aft nut 130 , the forward nut 120 , and the square bolt 210 may be considered interlocked.
  • the user may orient the anti-vibration fastener 200 toward the front surface 30 a of the first object 30 disposed against the wall 50 . More specifically, the forward nut 120 and at least a portion of the third section 215 of the square bolt 210 protruding from the front aperture 121 d may be oriented to face the first object 30 , such that the front surface 121 a , the front aperture 121 d , and the rear end 210 b are facing the front surface 30 a of the first object 30 . Subsequently, the anti-vibration fastener 200 may be moved laterally toward the front surface 30 a of the first object 30 . In other words, the front aperture 121 d may be positioned and moved by the user, such that as the user may move the forward nut 120 towards the front surface 30 a of the first object 30 .
  • the user may affix and/or adhere the first object 30 to the wall 50 by applying a lateral force of the combination of the square bolt 210 , the forward nut 120 , and the aft nut 130 through the wall 50 .
  • the interlocked arrangement of the forward nut 120 and the aft nut 130 may reduce vibration to a minimum. Specifically, the interwoven arrangement of the plurality of the internal threads 131 e with the plurality of external threads 122 c in the first direction may cancel any loosening motion of the forward nut 120 in the second direction. As such, the aft nut 130 may oppose any motion of the forward nut 120 rotating in the second direction.
  • the application of the anti-vibration fastener 200 to any article and/or process of manufacture and/or assembly in relevant industries may significantly improve the article and/or process.
  • the specific combination of the square bolt 210 , the difference in diameter of the first section 213 with respect to the third section 215 , the forward nut 120 , the difference in diameter of the front aperture 121 d with respect to the rear aperture 122 d , the aft nut 130 , the difference in diameter of the front aperture 131 d with respect to the rear aperture 132 d , and the interwoven arrangement of the plurality of external threads 122 c and the plurality of internal threads 132 e may create a stronger bond than the conventional bolt and nut.
  • the anti-vibration fastener 200 may withstand any vibration force, including at least one of wind, seismic activity, volcanic eruption, etc., but is not limited thereto.
  • FIG. 9 illustrates an isometric view of a square flange bolt 310 , according to another exemplary embodiment of the present general inventive concept.
  • the square flange bolt 310 is illustrated to be a bolt type fastener, the square flange bolt 310 may be at least one of a nail, a screw, a pin, a peg, a rivet, a threaded insert, and a threaded rod, etc., but is not limited thereto.
  • the square flange bolt 310 may include a front end 310 a , a rear end 310 b , a head 311 , a flange 312 , a first section 313 , a second section 314 , and a third section 315 , but is not limited thereto.
  • the head 311 is illustrated to have a rectangular prism shape.
  • the head 311 may be rectangular, circular, pentagonal, hexagonal, octagonal, or any other shape known to one of ordinary skill in the art, but is not limited thereto.
  • the head 311 may include at least one screwdriver-receiving groove 311 a , but is not limited thereto.
  • the head 311 may be of any predetermined size to include the at least one screwdriver-receiving groove 311 a of any predetermined size.
  • the at least one screwdriver-receiving groove 311 a may receive at least one of a Phillips-head screwdriver and a flat-head screwdriver, etc., but is not limited thereto.
  • the head 311 may receive at least one of a socket wrench and a torque wrench, etc., but is not limited thereto.
  • the flange 312 may include a front surface 312 a and a bearing surface 312 h , but is not limited thereto.
  • the first section 313 may include a first end 313 a , a second end 313 b , and a plurality of external threads 313 c , but is not limited thereto.
  • the third section 315 may include a first end 315 a , a second end 315 b , and a plurality of external threads 315 c , but is not limited thereto.
  • the first section 313 may be substantially larger in diameter with respect to the diameter of the second section 314 and the diameter of the third section 315 .
  • the plurality of external threads 313 c may be disposed on at least a portion of the first section 313 .
  • the plurality of external threads 313 c may be oriented in a first direction (e.g., counterclockwise), but are not limited thereto.
  • the plurality of external threads 313 c may be oriented in a second direction (e.g., clockwise), but are not limited thereto.
  • the second section 314 may include a substantially smooth surface, but is not limited thereto.
  • the plurality of external threads 315 c may be disposed on at least a portion of the third section 315 .
  • the plurality of external threads 315 c may be oriented in the second direction, but are not limited thereto.
  • the plurality of external threads 315 c may be oriented in the first direction, but are not limited thereto.
  • the rear end 310 b may be shaped by at least one of tapered, pointed, flat, etc., but is not limited thereto.
  • first section 313 may also be referred to as the first threaded portion 313
  • third section 315 may also be referred to as the second threaded portion 315 , for at least the reason that the first section 313 includes the plurality of external threads 313 c
  • the third section 315 includes the plurality of external threads 315 c.
  • the second section 314 may also be referred to as a non-threaded portion 314 , for at least the reason that the second section 114 does not include any threading.
  • the second section 314 may be an optional portion of the square flange bolt 310 , and may be excluded from the square flange bolt 310 based on a manufacturer's preference.
  • FIG. 10A a front view of a forward nut 320 , according to another exemplary embodiment of the present general inventive concept.
  • FIG. 10B illustrates an isometric bottom view of a forward nut 320 , according to another exemplary embodiment of the present general inventive concept.
  • the forward nut 320 may include a front portion 321 and a stub portion 322 , but is not limited thereto.
  • the front portion 321 is illustrated to have an octagonal shape.
  • the front portion 321 may be rectangular prism, rectangular, circular, pentagonal, hexagonal, or any other shape known to one of ordinary skill in the art, but is not limited thereto.
  • the front portion 321 may include a front surface 321 a , a rear surface 321 b , an octagonal surface 321 c , a front aperture 321 d , and a plurality of internal threads 321 e , but is not limited thereto.
  • the stub portion 322 may include a first end 322 a , a second end 322 b , a plurality of external threads 322 c , a rear aperture 322 d , and a non-threaded inner surface 322 e , but is not limited thereto.
  • the front aperture 321 d may be disposed at a portion of a center of the front portion 321 .
  • the front aperture section 321 d may be substantially larger in diameter with respect to the diameter of the rear aperture 322 d and may extend across at least a portion of a length of the front portion 321 , beginning from the front surface 321 a and terminating at a juncture of the rear surface 321 b and the first end 322 a .
  • the rear aperture 322 d may be disposed at a portion of a center of the stub portion 322 .
  • the rear aperture 322 d may extend across at least a portion of the length of the stub portion 322 , beginning from the second end 322 b and terminating at the juncture of the rear surface 321 b and the first end 322 a.
  • the front aperture 321 d may be larger than the rear aperture 322 d , in order to allow the third section 315 including the plurality of external threads 315 c to slide therethrough without being stopped by and/or interfering with the plurality of internal threads 321 e .
  • the non-threaded inner surface 322 e allows the third section 315 including the plurality of external threads 315 c to slide through an entirety of the stub portion 322 , such that an end portion of the third section 315 protrudes outside from a back end of the stub portion 322 .
  • the plurality of internal threads 321 e may be disposed within the front aperture 321 d .
  • the plurality of external threads 322 c may be disposed on at least a portion of the stub portion 322 .
  • the plurality of external threads 322 c may be oriented in the second direction, but are not limited thereto.
  • the plurality of external threads 322 c may be oriented in the first direction, but are not limited thereto.
  • the square flange bolt 310 may be used to affix and/or adhere a first object to a second object. Specifically, the user may arrange the square flange bolt 310 on one side of the first object that is placed next to the second object and placing the forward nut 320 on the opposite end with respect to the square flange bolt 310 protruding from the first object and the second object. More specifically, the user may affix and/or adhere the forward nut 320 to the square flange bolt 310 . The user may grasp the forward nut 320 via at least a portion of the front portion 321 and/or at least a portion of the stub portion 322 .
  • the user may orient the forward nut 320 , such that the front surface 321 a and the front aperture 321 d are facing the rear end 310 b . Subsequently, the front aperture 321 d may be moved laterally toward the rear 310 b and maneuvered to encapsulate at least a portion of the square flange bolt 310 . As such, the front aperture 321 d may receive the third section 315 , first, followed by the second section 314 , and at least a portion of the first section 313 .
  • the rear aperture 322 d may have diameter that is slightly larger than the diameter of the third section 315 .
  • the front aperture 321 d may have substantially the same diameter as the diameter of the first section 313 . As such, the front aperture 321 d may no longer be moved laterally over the first section 313 . Moreover, upon contact of the front aperture 321 d with the second end 313 b of the first section 313 , the user may rotate the forward nut 320 in the first direction, such that the plurality of internal threads 321 e are interwoven corresponding to the plurality of external threads 313 c . Thus, the forward nut 320 and the square flange bolt 310 may be considered interlocked.
  • the user may affix and/or adhere the aft nut 130 to the forward nut 320 .
  • the user may grasp the aft nut 130 via at least a portion of the front portion 131 and/or at least a portion of the stub portion 132 .
  • the user may grasp the knurled surface 132 c via at least a portion of the stub portion 132 .
  • the user may orient the aft nut 130 , such that the front surface 131 a and the front aperture 131 d are facing the rear surface 321 b of the forward nut 320 .
  • the front aperture 131 d may be moved laterally toward the rear surface 321 b of the forward nut 320 and maneuvered to encapsulate at least a portion of the square flange bolt 310 and the forward nut 320 .
  • the front aperture 131 d may be positioned and moved by the user, such that as the user may move the aft nut 130 towards the rear surface 321 b of the forward nut 320 .
  • the front aperture 131 d may receive the third section 315 , first, followed by at least a portion of the second section 314 .
  • the rear aperture 132 d may have a diameter that is slightly smaller than the diameter of the third section 315 . As such, at least a portion of the rear aperture 131 d may no longer be moved laterally over the third section 315 . Moreover, upon contact of the rear aperture 132 d with the second end 315 b of the third section 315 , the user may rotate the aft nut 130 in the second direction, such that the plurality of internal threads 132 e are interwoven corresponding to the plurality of external threads 315 c that are disposed outside the stub portion 322 .
  • the front aperture 131 d may have substantially the same diameter as the diameter of the stub portion 322 of the forward nut 320 . As such, the front aperture 131 d may no longer be moved laterally over the stub portion 322 . Moreover, upon contact of the front aperture 131 d with the second end 322 b of the stub portion 322 , the user may rotate the aft nut 130 in the second direction such that the plurality of internal threads 131 e are interwoven corresponding to the plurality of external threads 322 c . The aft nut 130 may be rotated in the second direction until the front surface 131 a has made substantial contact with the rear surface 321 b of the forward nut 320 and there is substantial resistance to further rotation thereof.
  • the contact of the front surface 131 a of the aft nut 130 and the rear surface 321 b of the forward nut 320 may be near at least a portion of the second section 314 of the square flange bolt 310 , such that it may be considered substantially at the center of the second section 314 .
  • the aft nut 130 , the forward nut 320 , and the square flange bolt 310 may be considered interlocked.
  • FIG. 11 illustrates an isometric view of a square bolt 410 , according to another exemplary embodiment of the present general inventive concept.
  • the square bolt 410 is illustrated to be a bolt type fastener, the square bolt 410 may be at least one of a nail, a screw, a pin, a peg, a rivet, a threaded insert, and a threaded rod, etc., but is not limited thereto.
  • the square flange bolt 410 may include a front end 410 a , a rear end 410 b , a head 411 , an intermediary surface 412 , a first section 413 , a second section 414 , and a third section 415 , but is not limited thereto.
  • the head 411 is illustrated to have a rectangular prism shape.
  • the head 411 may be rectangular, circular, pentagonal, hexagonal, octagonal, or any other shape known to one of ordinary skill in the art, but is not limited thereto.
  • the head 411 may include at least one screwdriver-receiving groove 411 a , but is not limited thereto.
  • the head 411 may be of any predetermined size to include the at least one screwdriver-receiving groove 411 a of any predetermined size.
  • the at least one screwdriver-receiving groove 411 a may receive at least one of a Phillips-head screwdriver and a flat-head screwdriver, etc., but is not limited thereto.
  • the head 411 may receive at least one of a socket wrench and a torque wrench, etc., but is not limited thereto.
  • the first section 413 may include a first end 413 a , a second end 413 b , and a plurality of external threads 413 c , but is not limited thereto.
  • the third section 115 may include a first end 415 a a second end 415 b , and a plurality of external threads 415 c , but is not limited thereto.
  • the first section 413 may be substantially larger in diameter with respect to the diameter of the second section 414 and the diameter of the third section 415 .
  • the plurality of external threads 413 c may be disposed on at least a portion of the first section 413 .
  • the plurality of external threads 413 c may be oriented in a first direction (e.g., clockwise), but are not limited thereto.
  • the plurality of external threads 413 c may be oriented in a second direction (e.g., counterclockwise), but are not limited thereto.
  • the second section 414 may be a substantially smooth surface, but is not limited thereto.
  • the plurality of external threads 415 c may be disposed on at least a portion of the third section 415 .
  • the plurality of external threads 415 c may be oriented in the second direction, but are not limited thereto.
  • the plurality of external threads 415 c may be oriented in the first direction, but are not limited thereto.
  • the rear end 410 b may be shaped by at least one of tapered, pointed, flat, etc., but is not limited thereto.
  • first section 413 may also be referred to as the first threaded portion 413
  • third section 415 may also be referred to as the second threaded portion 415 , for at least the reason that the first section 413 includes the plurality of external threads 413 c
  • the third section 415 includes the plurality of external threads 415 c.
  • the second section 414 may also be referred to as a non-threaded portion 414 , for at least the reason that the second section 414 does not include any threading.
  • the second section 414 may be an optional portion of the square flange bolt 410 , and may be excluded from the square flange bolt 410 based on a manufacturer's preference.
  • the user may affix and/or adhere the forward nut 320 to the square bolt 410 .
  • the user may grasp at least one of a portion of the front end 410 a , a portion of the first section 413 , a portion of the second section 414 , and a portion of the third section 415 to apply a lateral force to the square bolt 410 into the forward nut 320 via the front aperture 321 d .
  • the user may grasp the forward nut 320 via at least a portion of the front portion 321 and/or at least a portion of the stub portion 322 .
  • the user may orient the forward nut 320 , such that the front surface 321 a and the front aperture 321 d are facing the head 411 . Subsequently, the front aperture 321 d may be moved laterally toward the head 411 and maneuvered to encapsulate at least a portion of the square bolt 410 . As such, the front aperture 321 d will first receive the first section 413 , followed by the second section 414 , and at least a portion of the third section 415 .
  • the user may affix and/or adhere the forward nut 320 to the square bolt 410 .
  • the user may grasp the forward nut 320 via at least a portion of the front portion 321 and/or at least a portion of the stub portion 322 .
  • the rear aperture 322 d may have substantially the same diameter as the diameter of the first section 413 . As such, at least a portion of the rear aperture 322 d may no longer be moved laterally over the first section 413 . Moreover, upon contact of the rear aperture 322 d with the first end 413 a of the first section 413 , the user may rotate the forward nut 320 in the first direction, such that the plurality of internal threads 322 e are interwoven corresponding to the plurality of external threads 413 c.
  • the front aperture 321 d may have substantially the same diameter as the diameter of the third section 415 . As such, the front aperture 321 d may no longer be moved laterally over the first section 415 . Moreover, upon contact of the front aperture 321 d with the first end 415 a of the third section 415 , the user may rotate the forward nut 320 in the second direction such that the plurality of internal threads 321 e are interwoven with the plurality of external threads 415 c . The forward nut 320 may be rotated in the first direction until the square bolt 410 protrudes from the second end 322 b and/or as desired by the user. Thus, the forward nut 320 and the square bolt 410 may be considered interlocked.
  • the user may affix and/or adhere the aft nut 130 to the combination of the square bolt 410 and the forward nut 320 .
  • the user may grasp the aft nut 130 via at least a portion of the front portion 131 and/or at least a portion of the stub portion 132 .
  • the user may grasp the knurled surface 132 c via at least a portion of the stub portion 132 .
  • the user may orient the aft nut 130 , such that the front surface 131 a and the front aperture 131 d are facing the rear surface 321 b of the forward nut 320 .
  • the front aperture 131 d may be moved laterally toward the rear surface 321 b of the forward nut 320 and maneuvered to encapsulate at least a portion of the square bolt 410 and the forward nut 320 .
  • the front aperture 131 d may be positioned and moved by the user, such that as the user may move the aft nut 130 towards the rear surface 321 b of the forward nut 320 .
  • the front aperture 131 d may receive the first section 413 , first, followed by at least a portion of the second section 414 .
  • the rear aperture 132 d may have substantially the same diameter as the diameter of the first section 413 . As such, at least a portion of the rear aperture 131 d may no longer be moved laterally over the first section 413 . Moreover, upon contact of the rear aperture 132 d with the first end 413 a of the first section 413 , the user may rotate the aft nut 130 in the first direction, such that the plurality of internal threads 132 e are interwoven corresponding to the plurality of external threads 413 c.
  • the front aperture 131 d may have substantially the same diameter as the diameter of the stub portion 322 of the forward nut 320 . As such, the front aperture 131 d may no longer be moved laterally over the stub portion 322 . Moreover, upon contact of the front aperture 131 d with the second end 322 b of the stub portion 322 , the user may rotate the aft nut 130 in the first direction such that the plurality of internal threads 131 e are interwoven corresponding to the plurality of external threads 322 c . The aft nut 130 may be rotated in the first direction until the front surface 131 a has made substantial contact with the rear surface 321 b of the forward nut 320 and there is substantial resistance to further rotation thereof.
  • the contact of the front surface 131 a of the aft nut 130 and the rear surface 321 b of the forward nut 320 may be near at least a portion of the second section 414 of the square bolt 410 , such that it may be considered substantially at the center of the second section 414 .
  • the aft nut 130 , the forward nut 320 , and the square bolt 410 may be considered interlocked.
  • the combination of the square bolt 410 , the forward nut 320 , and the aft nut 130 may be used to affix and/or adhere an object to a wall.
  • the user may move the combination of the square bolt 410 , the forward nut 320 , and the aft nut 130 , such that the rear end 410 b and the front surface 320 a are facing the object and wall and are disposed on the wall.
  • the first section 113 of the square flange bolt 110 may include the plurality of external threads 113 c oriented in a counterclockwise direction.
  • the forward nut 120 may include the plurality of internal threads 121 e oriented in a counterclockwise direction and the plurality of internal threads 122 e oriented in a counterclockwise direction.
  • the plurality of external threads 113 c correspond to the plurality of internal threads 121 e , such that the user may rotate the forward nut 120 around the first section 113 in a counterclockwise direction in response to the front aperture 121 d being directed to encase the first section 113 .
  • the plurality of external threads 113 c may be interwoven corresponding to the plurality of internal threads 121 e .
  • the aft nut 130 may include the plurality of internal threads 131 e oriented in a counterclockwise direction and the plurality of internal threads 132 e oriented in a counterclockwise direction.
  • the plurality of external threads 115 c correspond to the plurality of internal threads 132 e , such that the user may move the rear aperture 132 d to encase the third section and rotate the aft nut 130 around the third section 115 in a counterclockwise direction.
  • the plurality of external threads 115 c may be interwoven corresponding to the plurality of internal threads 132 e .
  • the diameter of the first section 113 near the flange 112 may have a substantially larger diameter than the third section 115 .
  • the first section 113 and the third section may be separated by a second section 114 , which may be smaller in size with respect to the first section 113 and the third section 115 .
  • the stub portion 122 of the forward nut 120 may receive the front portion 131 of the aft nut 130 .
  • the rear surface 121 b may be in substantial contact with the front surface 131 a at a portion of the second section 114 , such that it may be considered a center of the second section 114 .
  • the head 111 of the square flange bolt 110 may include at least one screwdriver-receiving groove 111 a that may receive at least one of a Phillips-head screwdriver, flat head screwdriver, and a socket wrench, but is not limited thereto.
  • the forward nut 120 may include the plurality of internal threads 121 e oriented in a counterclockwise direction.
  • the diameter of the front aperture 121 d may be substantially similar to the diameter of the first section 113 of the square flange bolt 110 .
  • the plurality of external threads 113 c correspond to the plurality of internal threads 121 e , such that the user may rotate the forward nut 120 around the first section 113 in a counterclockwise direction in response to the front aperture 121 d being directed to encase the first section 113 .
  • the plurality of external threads 113 c may be interwoven corresponding to the plurality of internal threads 121 e .
  • the first object 10 and the second object 20 may be affixed and/or adhered using the square flange bolt 110 and the forward nut 120 .
  • the user may laterally direct the square flange bolt 110 through the hole 15 .
  • the third section 115 may protrude first, followed by the second section 114 , and at least a portion of the first section 113 .
  • the square flange bolt 110 may be supported by the flange 112 due to the bearing surface 112 b in substantial contact with the front surface 10 a of the first object 10 .
  • the forward nut 120 may be affixed and/or adhered on the rear surface 22 b of the second object 20 via the first section 113 and the third section 115 .
  • the stub portion 122 of the forward nut 120 may receive the front portion 131 of the aft nut 130 .
  • the stub portion 122 of the forward nut 120 may receive the front portion 131 of the aft nut 130 .
  • the front portion 131 of the aft nut 130 may include the front aperture 131 d and the plurality of internal threads 131 e oriented in a counterclockwise direction.
  • the stub portion 122 of the forward nut 120 may include the plurality of external threads 122 c oriented in a counterclockwise direction.
  • the diameter of the front aperture 131 d may be substantially the same in diameter as the stub portion 122 of the forward nut 120 . Additionally, the user may laterally move the front aperture 131 d towards the stub portion 122 .
  • the user may interconnect the front portion 131 of the aft nut 130 with the stud portion 122 of the forward nut 120 by rotating the aft nut 130 in a counterclockwise direction, such that the plurality of internal threads 132 e are interwoven with the corresponding plurality of external threads 122 c .
  • the aft nut 130 may include the plurality of internal threads 131 e oriented in a counterclockwise direction and the plurality of internal threads 132 e oriented in a counterclockwise direction.
  • the plurality of external threads 115 c correspond to the plurality of internal threads 132 e , such that the user may move the rear aperture 132 d to encase the third section and rotate the aft nut 130 around the third section 115 in a counterclockwise direction.
  • the plurality of external threads 115 c may be interwoven with the plurality of internal threads 132 e .
  • the stub portion 132 may include the knurled surface 132 c to allow the user to grasp the stub portion 132 due to the knurled surface 132 c being a textured surface.
  • the square bolt 210 may function differently than the square flange bolt 110 .
  • the head 211 of the square bolt 210 may be directed toward the front surface 121 a of the forward nut 120 .
  • the first section 213 of the square bolt 210 may be substantially smaller in diameter than the front aperture 121 d .
  • the first section 213 may move through the front aperture 121 d until it reaches the rear aperture 122 d .
  • the rear aperture 122 d may be substantially similar in diameter to the diameter of the first section 213 .
  • the user may rotate the forward nut 120 in the counterclockwise direction to interweave the plurality of internal threads 122 e with the plurality of external threads 213 c .
  • the user may continue to rotate the forward nut 120 until at least a portion of the square bolt 210 protrudes from the second end 132 b.
  • the user may direct the stub portion 122 of the forward nut 120 toward the front surface 131 a of the aft nut 130 .
  • the first section 213 of the square bolt 210 may be substantially smaller in diameter than the front aperture 131 d . As such, the first section 213 may move through the front aperture 131 d until it reaches the rear aperture 132 d .
  • the rear aperture 132 d may be substantially similar in diameter to the diameter of the first section 213 .
  • the user may rotate the aft nut 130 in the counterclockwise direction to interweave the plurality of internal threads 132 e with the plurality of external threads 213 c .
  • the user may continue to rotate the aft nut 130 until at least a portion of the square bolt 210 protrudes from the second end 132 b.
  • the third section 215 of the square bolt 210 may be substantially similar in diameter to the diameter of the front aperture 131 d .
  • the user may rotate the aft nut 130 in the counterclockwise direction to interweave the plurality of internal threads 131 e corresponding to the plurality of external threads 215 c.
  • the anti-vibration fastener 200 may be used when the user lacks access to a rear portion of an object and/or the object needs to be affixed and/or adhered to a front surface of the object and/or a wall.
  • the diameter of the first section 213 and the diameter of the third section 215 may be reversed on the square bolt 210 , which corresponds respectively to the diameter of the third section 115 and the diameter of the first section 113 on the square flange bolt 110 .
  • the second section 214 of the square bolt 210 and the second section 114 of the square flange bolt 110 may be similar in construction, such that those portions are a non-threaded space between the first and third sections.
  • the head 211 of the square flange bolt 210 may include at least one screwdriver-receiving grooves 211 a that may receive at least one of a Phillips-head screwdriver, flat head screwdriver, and a socket wrench, but is not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Plates (AREA)

Abstract

An anti-vibration fastener, including a square flange bolt to affix a first object to a second object, the square flange bolt including a first threaded portion disposed at a front end of the square flange bolt, and a second threaded portion disposed at a rear end of the square flange bolt having a diameter smaller than a diameter of the first threaded portion, and a forward nut to encapsulate at least a portion of the square flange bolt such that the first object and the second object are disposed between the forward nut and the front end of the square flange bolt, and an aft nut to encapsulate at least a portion of the square flange bolt and the forward nut.

Description

BACKGROUND 1. Field
The present general inventive concept relates generally to a fastener, and particularly, to an anti-vibration fastener.
2. Description of the Related Art
A fastener is a mechanical device typically used to join two or more objects together. Nuts and bolts of all sizes, design, and material are manufactured by industries every day. The main purpose of a fastener is to attach one object to another. They are made according to engineering specifications and are used in various manufacturing industries, including consumer products, marine products, aerospace products, automotive products, and light products. In most applications, fasteners are required to be constructed from durable material. Furthermore, fasteners can function in very high or low temperatures and can dampen vibration.
Currently, in some products, a standard wrench is used to tighten the fastener. In other products, a torque wrench is used on the fastener. Yet, another commonly used method is to lock wire the nut or use a tab washer in order to maintain the clamping force of the fastener.
Vibration loosening is an important concern when using any fastener. In particular, vibration that causes sliding of the nut and/or the bolt relative to a joint, can result in motion between the threads and reduce the clamp force provided by the nut and/or bolt. Furthermore, the sliding in the joint can result in further stress on the bolt due to bending loads and even joint failure.
One approach to reducing vibration loosening is using an adhesive applied in the threads of the nut and/or the bolt. The main purpose of the adhesive is to increase the friction and/or prevent the nut and/or the bolt from sliding.
The Nord-Lock Company has created the Nord-Lock wedge washer, which is very effective against vibration. However, a washer is only one type of fastener and there are many objects that have different ways to be joined.
Therefore, there is a need for other types of fasteners that dampens the force of vibration.
SUMMARY
The present general inventive concept provides an anti-vibration fastener.
Additional features and utilities of the present general inventive concept will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the general inventive concept.
The foregoing and/or other features and utilities of the present general inventive concept may be achieved by providing an anti-vibration fastener, including a square flange bolt to affix a first object to a second object, the square flange bolt including a first threaded portion disposed at a front end of the square flange bolt, and a second threaded portion disposed at a rear end of the square flange bolt having a diameter smaller than a diameter of the first threaded portion, and a forward nut to encapsulate at least a portion of the square flange bolt such that the first object and the second object are disposed between the forward nut and the front end of the square flange bolt, and an aft nut to encapsulate at least a portion of the square flange bolt and the forward nut.
The first threaded portion may include a plurality of external threads oriented in a first direction and the second threaded portion may include a plurality of external threads oriented in the first direction.
The forward nut may further include a front portion, including a front aperture disposed at substantially center portion of the front portion to receive at least a portion of the first threaded portion therein, the front aperture having a diameter substantially similar to the diameter of the first threaded portion, and a plurality of internal threads disposed within an inner surface of the front aperture oriented in the first direction to correspond to and interweave with the plurality of external threads of the first threaded portion.
The forward nut may further include a stub portion connected to the front portion of the forward nut, the stub portion including a rear aperture disposed at a substantially center portion of the stub portion to receive at least a portion of the second threaded portion, the rear aperture having a diameter substantially similar to the diameter of the second threaded portion, and a plurality of internal threads disposed within the an inner surface of the rear aperture oriented in the first direction to correspond to and interweave with the plurality of external threads of the second threaded portion.
The stub portion may further include a plurality of external threads disposed on an external surface of the stub portion of the forward nut.
The aft nut may further include a front portion, including a front aperture disposed at a portion of a center of the front portion to receive at least a portion of the stub portion of the forward nut and having a diameter substantially similar to the diameter of the stub portion of the forward nut, and a plurality of internal threads disposed within the front aperture oriented in the first direction to interweave with the plurality of external threads disposed on the stub portion of the forward nut.
The aft nut may further include a stub portion, including a rear aperture disposed at a portion of a center of the stub portion to receive at least a portion of the third section and having a diameter substantially similar to the diameter of the third section, and a plurality of internal threads disposed within the rear aperture oriented in the at least one direction to interweave with the plurality of external threads on the third section.
The square flange bolt may further include a non-threaded portion disposed between the first threaded portion and the second threaded portion to separate the first threaded portion from the second threaded portion.
The first threaded portion may include a plurality of external threads oriented in a first direction, and the second threaded portion may include a plurality of external threads oriented in a second direction.
The forward nut may further include a front portion, including a front aperture disposed at substantially center portion of the front portion to receive at least a portion of the first threaded portion therein, the front aperture having a diameter substantially similar to the diameter of the first threaded portion, and a plurality of internal threads disposed within an inner surface of the front aperture oriented in the first direction to correspond to and interweave with the plurality of external threads of the first threaded portion.
The forward nut may further include a stub portion connected to the front portion of the forward nut, the stub portion including a rear aperture disposed at a substantially center portion of the stub portion to receive at least a portion of the second threaded portion, the rear aperture having a diameter larger than the diameter of the second threaded portion, and a non-threaded inner surface disposed within the rear aperture to receive the plurality of external threads of the second threaded portion.
The stub portion may further include a plurality of external threads disposed on an external surface of the stub portion of the forward nut.
The aft nut may further include a front portion, including a front aperture disposed at a portion of a center of the front portion to receive at least a portion of the stub portion of the forward nut and having a diameter substantially similar to the diameter of the stub portion of the forward nut, and a plurality of internal threads disposed within the front aperture oriented in the first direction to interweave with the plurality of external threads disposed on the stub portion of the forward nut.
The aft nut may further include a stub portion, including a rear aperture disposed at a portion of a center of the stub portion to receive at least a portion of the second threaded portion and having a diameter substantially similar to the diameter of the second threaded portion, and a plurality of internal threads disposed within the rear aperture oriented in the at least one direction to interweave with the plurality of external threads on the second threaded portion.
The foregoing and/or other features and utilities of the present general inventive concept may also be achieved by providing an anti-vibration fastener, including a square bolt to affix an object to a wall, the square bolt including a first threaded portion having a first diameter, the first threaded portion being disposed at a front end of the square bolt, and a second threaded portion having a second diameter, the second threaded portion being disposed at a rear end of the square bolt to be at least partially inserted into the wall, a forward nut to encapsulate at least a portion of the square bolt such that the first object is disposed between the forward nut and the wall, and an aft nut to encapsulate at least a portion of the square bolt and the forward nut.
The second diameter may be larger than the first diameter.
The second diameter may be smaller than the first diameter.
The square flange bolt may further include a non-threaded portion disposed between the first threaded portion and the second threaded portion to separate the first threaded portion from the second threaded portion.
BRIEF DESCRIPTION OF THE DRAWINGS
These and/or other features and utilities of the present generally inventive concept will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
FIG. 1 illustrates an exploded view of an anti-vibration fastener, according to an exemplary embodiment of the present general inventive concept;
FIG. 2A illustrates an isometric view of a square flange bolt, according to an exemplary embodiment of the present general inventive concept;
FIG. 2B illustrates a top view of a front end of the square flange bolt, according to an exemplary embodiment of the present general inventive concept;
FIG. 3 illustrates an isometric bottom view of a forward nut, according to an exemplary embodiment of the present general inventive concept;
FIG. 4 illustrates an isometric bottom view of an aft nut including a partial interior view the aft nut, according to an exemplary embodiment of the present general inventive concept;
FIG. 5 illustrates a cutaway view of the anti-vibration fastener using the square flange bolt, according to an exemplary embodiment of the present general inventive concept;
FIG. 6 illustrates an exploded view of an anti-vibration fastener, according to another exemplary embodiment of the present general inventive concept;
FIG. 7A illustrates side view of a square bolt, according to another exemplary embodiment of the present general inventive concept;
FIG. 7B illustrates a top view of a front end of the square bolt, according to another exemplary embodiment of the present general inventive concept;
FIG. 8 illustrates an isometric rear end view of the anti-vibration fastener using the square bolt affixed to a wall, according to another exemplary embodiment of the present general inventive concept;
FIG. 9 illustrates an isometric view of a square flange bolt, according to another exemplary embodiment of the present general inventive concept;
FIG. 10A a front view of a forward nut, according to another exemplary embodiment of the present general inventive concept;
FIG. 10B illustrates an isometric bottom view of a forward nut, according to another exemplary embodiment of the present general inventive concept; and
FIG. 11 illustrates side view of a square bolt, according to another exemplary embodiment of the present general inventive concept.
DETAILED DESCRIPTION
Various example embodiments (a.k.a., exemplary embodiments) will now be described more fully with reference to the accompanying drawings in which some example embodiments are illustrated. In the figures, the thicknesses of lines, layers and/or regions may be exaggerated for clarity.
Accordingly, while example embodiments are capable of various modifications and alternative forms, embodiments thereof are shown by way of example in the figures and will herein be described in detail. It should be understood, however, that there is no intent to limit example embodiments to the particular forms disclosed, but on the contrary, example embodiments are to cover all modifications, equivalents, and alternatives falling within the scope of the disclosure. Like numbers refer to like/similar elements throughout the detailed description.
It is understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.).
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes” and/or “including,” when used herein, specify the presence of stated features, integers, steps, operations, elements and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which example embodiments belong. It will be further understood that terms, e.g., those defined hi commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art. However, should the present disclosure give a specific meaning to a term deviating from a meaning commonly understood by one of ordinary skill, this meaning is to be taken into account in the specific context this definition is given herein.
FIG. 1 illustrates an exploded view of an anti-vibration fastener 100, according to an exemplary embodiment of the present general inventive concept.
FIG. 2A illustrates an isometric view of a square flange bolt 110, according to an exemplary embodiment of the present general inventive concept.
FIG. 2B illustrates a top view of a front end 110 a of the square flange bolt 110, according to an exemplary embodiment of the present general inventive concept.
The anti-vibration fastener 100 may be constructed from at least one of metal, plastic, wood, and rubber, etc., but is not limited thereto.
The anti-vibration fastener 100 may include a square flange bolt 110, a forward nut 120, and an aft nut 130, but is not limited thereto.
Although, the square flange bolt 110 is illustrated to be a bolt type fastener, the square flange bolt 110 may be at least one of a nail, a screw, a pin, a peg, a rivet, a threaded insert, and a threaded rod, etc., but is not limited thereto.
The square flange bolt 110 may include a front end 110 a, a rear end 110 b, a head 111, a flange 112, a first section 113, a second section 114, and a third section 115, but is not limited thereto.
Referring to FIGS. 1 through 2B, the head 111 is illustrated to have a rectangular prism shape. However, the head 111 may be rectangular, circular, pentagonal, hexagonal, octagonal, or any other shape known to one of ordinary skill in the art, but is not limited thereto.
The head 111 may include at least one screwdriver-receiving groove 111 a, but is not limited thereto.
The head 111 may be of any predetermined size to include the at least one screwdriver-receiving groove 111 a of any predetermined size. The at least one screwdriver-receiving groove 111 a may receive at least one of a Phillips-head screwdriver and a flat-head screwdriver, etc., but is not limited thereto. Furthermore, the head 111 may receive at least one of a socket wrench and a torque wrench, etc., but is not limited thereto.
The flange 112 may include a front surface 112 a and a bearing surface 112 b, but is not limited thereto.
The first section 113 may include a first end 113 a, a second end 113 b, and a plurality of external threads 113 c, but is not limited thereto.
The third section 115 may include a first end 115 a, a second end 115 b, and a plurality of external threads 115 c, but is not limited thereto.
Referring to FIGS. 1 through 2A, the first section 113 may be substantially larger in diameter with respect to the diameter of the second section 114 and the diameter of the third section 115. The plurality of external threads 113 c may be disposed on at least a portion of the first section 113. The plurality of external threads 113 c may be oriented in a first direction (e.g., counterclockwise), but are not limited thereto. Alternatively, the plurality of external threads 113 c may be oriented in a second direction (e.g., clockwise), but are not limited thereto. The second section 114 may include a substantially smooth surface, but is not limited thereto. The plurality of external threads 115 c may be disposed on at least a portion of the third section 115. The plurality of external threads 115 c may be oriented in the first direction, but are not limited thereto. Alternatively, the plurality of external threads 115 c may be oriented in the second direction, but are not limited thereto. The rear end 110 b may be shaped by at least one of tapered, pointed, flat, etc., but is not limited thereto.
Alternatively, the first section 113 may also be referred to as the first threaded portion 113, and the third section 115 may also be referred to as the second threaded portion 115, for at least the reason that the first section 113 includes the plurality of external threads 113 c, and the third section 115 includes the plurality of external threads 115 c.
Alternatively, the second section 114 may also be referred to as a non-threaded portion 114, for at least the reason that the second section 114 does not include any threading. Also, the second section 114 may be an optional portion of the square flange bolt 110, and may be excluded from the square flange bolt 110 based on a manufacturer's preference.
FIG. 3 illustrates an isometric bottom view of a forward nut 120, according to an exemplary embodiment of the present general inventive concept.
Referring to FIGS. 1 and 3, the forward nut 120 may include a front portion 121 and a stub portion 122, but is not limited thereto.
Referring to FIGS. 1 and 3, the front portion 121 is illustrated to have an octagonal shape. However, the front portion 121 may be rectangular prism, rectangular, circular, pentagonal, hexagonal, or any other shape known to one of ordinary skill in the art, but is not limited thereto.
Referring to FIG. 1, the front portion 121 may include a front surface 121 a, a rear surface 121 b, an octagonal surface 121 c, a front aperture 121 d, and a plurality of internal threads 121 e, but is not limited thereto.
Referring to FIG. 3, the stub portion 122 may include a first end 122 a, a second end 122 b, a plurality of external threads 122 c, a rear aperture 122 d, and a plurality of internal threads 122 e, but is not limited thereto.
Referring to FIGS. 1 and 3, the front aperture 121 d may be disposed at a portion of a center of the front portion 121. Furthermore, the front aperture section 121 d may be substantially larger in diameter with respect to the diameter of the rear aperture 122 d and may extend across at least a portion of a length of the front portion 121, beginning from the front surface 121 a and terminating at a juncture of the rear surface 121 b and the first end 122 a. The rear aperture 122 d may be disposed at a portion of a center of the stub portion 122. Additionally, the rear aperture 122 d may extend across at least a portion of the length of the stub portion 122, beginning from the second end 122 b and terminating at the juncture of the rear surface 121 b and the first end 122 a.
The plurality of internal threads 121 e may be disposed within the front aperture 121 d. The plurality of internal threads 121 e may be oriented in the first direction, but are not limited thereto. Alternatively, the plurality of internal threads 121 e may be oriented in the second direction, but are not limited thereto. The plurality of external threads 122 c may be disposed on at least a portion of the stub portion 122. The plurality of external threads 122 c may be oriented in the first direction, but are not limited thereto. Alternatively, the plurality of external threads 122 c may be oriented in the second direction, but are not limited thereto. The plurality of internal threads 122 e may be disposed within the rear aperture 122 d. The plurality of internal threads 122 e may be oriented in the first direction, but are not limited thereto. Alternatively, the plurality of internal threads 122 e may be oriented in the second direction, but are not limited thereto.
FIG. 4 illustrates an isometric bottom view of an aft nut 130 including an interior view the aft nut 130, according to an exemplary embodiment of the present general inventive concept.
Referring to FIGS. 1 and 4, the aft nut 130 may include a front portion 131 and a stub portion 132, but is not limited thereto.
Referring to FIG. 4, the front portion 131 may include a front surface 131 a, a rear surface 131 b, a cylindrical surface 131 c, a front aperture 131 d, and a plurality of internal threads 131 e, but is not limited thereto.
Referring to FIGS. 1 and 4, the cylindrical surface 131 c is illustrated to have a cylindrical shape with two flat sides. However, the cylindrical surface 131 c may be rectangular prism, rectangular, circular, pentagonal, hexagonal, or any other shape known to one of ordinary skill in the art, but is not limited thereto.
Referring to FIG. 4, the stub portion 132 may include a first end 132 a, a second end 132 b, a knurled surface 132 c, a rear aperture 132 d, and a plurality of internal threads 132 e, but is not limited thereto.
Referring to FIG. 4, the front aperture 131 d may be disposed at a portion of a center of the front portion 131. Furthermore, the front aperture section 131 d may be substantially larger in diameter with respect to the diameter of the second rear aperture 132 d and may extend across at least a portion of a length of the front portion 131, beginning from the front surface 131 a and terminating at a juncture of the rear surface 131 b and the first end 132 a. The rear aperture 132 d may be disposed at a portion of a center of the stub portion 132. Additionally, the rear aperture 132 d may extend across at least a portion of the length of the stub portion 132, beginning from the second end 132 b and terminating at the juncture of the rear surface 131 b and the first end 132 a.
The plurality of internal threads 131 e may be disposed within the front aperture 131 d. The plurality of internal threads 131 e may be oriented in the first direction, but are not limited thereto. Alternatively, the plurality of internal threads 131 e may be oriented in the second direction, but are not limited thereto. The knurled surface 132 c may include a pattern of straight, angled, and/or crossed lines, but is not limited thereto. The knurled surface 132 c may enable a user to grasp the stub portion 132, such that the user may rotate the aft nut 130. Specifically, the knurled surface 1320 may be a textured surface, which increases the friction between the user's fingers and the knurled surfaced 132 c, such that the aft nut 130 may rotate in response to the user rotating the aft nut 130 in any direction. The plurality of internal threads 132 e may be disposed within the rear aperture 132 d. The plurality of internal threads 132 e may be oriented in the first direction, but are not limited thereto. Alternatively, the plurality of internal threads 132 e may be oriented in the second direction, but are not limited thereto.
Referring to FIGS. 3 through 4, although, the plurality of external threads 122 c of the forward nut 120 is illustrated to be wider than the plurality of internal threads 131 e of the aft nut 130, the plurality of external threads 122 c are not to scale. Therefore, the plurality of external threads 122 c of the forward nut 120 may be interwoven with the plurality of internal threads 131 e of the aft nut 130.
FIG. 5 illustrates a cutaway view of the anti-vibration fastener 100 using the square flange bolt 110, according to an exemplary embodiment of the present general inventive concept.
Referring to FIG. 5, the anti-vibration fastener 100 may be used to affix and/or adhere a first object 10 to a second object 20. The first object 10 and the second object 20 may be arranged, such that at least a portion of a rear surface 10 b of the first object 10 is in substantial contact with at least a portion of a front surface 20 a of the second object 20. Subsequently, the square flange bolt 110 may be inserted, by the user, through a hole 15 in both the first object 10 and the second object 20 at a similar location. The user may grasp at least one of a portion of the front end 110 a, a portion of the first section 113, a portion of the second section 114, and a portion of the third section 115 to apply a lateral force to the square flange bolt 110 into the hole 15. The third section 115 may enter the first object 10 and the second object 20 via the hole 15, followed by the second section 114, and the first section 113. Moreover, the movement of the square flange bolt 110 may terminate in response to the bearing surface 112 b contacting a front surface 10 a of the first object 10.
At least a portion of the third section 115, a portion of the second section 114, and a portion of the first section 113 may extend laterally away from a rear surface 20 b of the second object 20. The user may affix and/or adhere the forward nut 120 to the square flange bolt 110 to secure the first object 10 to the second object 20. The user may grasp the forward nut 120 via at least a portion of the front portion 121 and/or at least a portion of the stub portion 122. The user may orient the forward nut 120, such that the front surface 121 a and the front aperture 121 d are facing the rear surface 20 b of the second object 20. Subsequently, the front aperture 121 d may be moved laterally toward the rear surface 20 b of the second object 20 and maneuvered to encapsulate at least a portion of the square flange bolt 110. In other words, the front aperture 121 d may be positioned and moved by the user, such that as the user may move the forward nut 120 towards the rear surface 20 b of the second object 20. As such, the front aperture 121 d may receive the third section 115, first, followed by the second section 114, and at least a portion of the first section 113.
The rear aperture 122 d may have substantially the same diameter as the diameter of the third section 115. As such, at least a portion of the rear aperture 122 d may no longer be moved laterally over the third section 115. Moreover, upon contact of the rear aperture 122 d with the second end 115 b of the third section 115, the user may rotate the forward nut 120 in the first direction, such that the plurality of internal threads 122 e are interwoven corresponding to the plurality of external threads 115 c.
The front aperture 121 d may have substantially the same diameter as the diameter of the first section 113. As such, the front aperture 121 d may no longer be moved laterally over the first section 113. Moreover, upon contact of the front aperture 121 d with the second end 113 b of the first section 113, the user may rotate the forward nut 120 in the first direction, such that the plurality of internal threads 121 e are interwoven corresponding to the plurality of external threads 113 c. The forward nut 120 may be rotated in the first direction until the front surface 121 a has made substantial contact with the rear surface 20 b of the second object 20 and there is substantial resistance to further rotation thereof. Thus, the forward nut 120 and the square flange bolt 110 may be considered interlocked.
The combination of the square flange bolt 110 and the forward nut 120 may extend laterally away from the rear surface 20 b of the second object 20. The user may affix and/or adhere the aft nut 130 to the forward nut 120. The user may grasp the aft nut 130 via at least a portion of the front portion 131 and/or at least a portion of the stub portion 132. Specifically, the user may grasp the knurled surface 132 c via at least a portion of the stub portion 132. The user may orient the aft nut 130, such that the front surface 131 a and the front aperture 131 d are facing the rear surface 121 b of the forward nut 120. Subsequently, the front aperture 131 d may be moved laterally toward the rear surface 121 b of the forward nut 120 and maneuvered to encapsulate at least a portion of the square flange bolt 110 and the forward nut 120. In other words, the front aperture 131 d may be positioned and moved by the user, such that as the user may move the aft nut 130 towards the rear surface 121 b of the forward nut 120. As such, the front aperture 131 d may receive the third section 115, first, followed by at least a portion of the second section 114.
The rear aperture 132 d may have substantially the same diameter as the diameter of the third section 115. As such, at least a portion of the rear aperture 131 d may no longer be moved laterally over the third section 115. Moreover, upon contact of the rear aperture 132 d with the second end 115 b of the third section 115, the user may rotate the aft nut 130 in the first direction, such that the plurality of internal threads 132 e are interwoven corresponding to the plurality of external threads 115 c.
The front aperture 131 d may have substantially the same diameter as the diameter of the stub portion 122 of the forward nut 120. As such, the front aperture 131 d may no longer be moved laterally over the stub portion 122. Moreover, upon contact of the front aperture 131 d with the second end 122 b of the stub portion 122, the user may rotate the aft nut 130 in the first direction such that the plurality of internal threads 131 e are interwoven corresponding to the plurality of external threads 122 c. The aft nut 130 may be rotated in the first direction until the front surface 131 a has made substantial contact with the rear surface 121 b of the forward nut 120 and there is substantial resistance to further rotation thereof. As such, the contact of the front surface 131 a of the aft nut 130 and the rear surface 121 b of the forward nut 120 may be near at least a portion of the second section 114 of the square flange bolt 110, such that it may be considered substantially at the center of the second section 114. Thus, the aft nut 130, the forward nut 120, and the square flange bolt 110 may be considered interlocked.
The interlocked arrangement of the forward nut 120 and the aft nut 130 may reduce vibration to a minimum. Specifically, the interwoven arrangement of the plurality of the internal threads 131 e with the plurality of external threads 122 c in the first direction may cancel any loosening motion of the forward nut 120 in the second direction. As such, the aft nut 130 may oppose any motion of the forward nut 120 rotating in the second direction.
The application of the anti-vibration fastener 100 to any article and/or process of manufacture and/or assembly in relevant industries may significantly improve the article and/or process. The specific combination of the square flange bolt 110, the difference in diameter of the first section 113 with respect to the third section 115, the forward nut 120, the difference in diameter of the front aperture 121 d with respect to the rear aperture 122 d, the aft nut 130, the difference in diameter of the front aperture 131 d with respect to the rear aperture 132 d, and the interwoven arrangement of the plurality of external threads 122 c and the plurality of internal threads 131 e may create a stronger bond than the conventional bolt and nut. As such, the anti-vibration fastener 100 may withstand any vibration force, including at least one of wind, seismic activity, volcanic eruption, etc., but is not limited thereto.
FIG. 6 illustrates an exploded view of an anti-vibration fastener 200, according to another exemplary embodiment of the present general inventive concept;
FIG. 7A illustrates an isometric view of a square bolt 210, according to another exemplary embodiment of the present general inventive concept;
FIG. 7B illustrates a top view of a front end 210 a of the square bolt 210, according to another exemplary embodiment of the present general inventive concept.
The anti-vibration fastener 200 may be constructed from at least one of metal, plastic, wood, and rubber, etc., but is not limited thereto.
The anti-vibration fastener 200 may include a square bolt 210, a forward nut 120, and an aft nut 130, but is not limited thereto.
Although, the square bolt 210 is illustrated to be a bolt type fastener, the square bolt 210 may be at least one of a nail, a screw, a pin, a peg, a rivet, a threaded insert, and a threaded rod, etc., but is not limited thereto.
The square flange bolt 210 may include a front end 210 a, a rear end 210 b, a head 211, an intermediary surface 212, a first section 213, a second section 214, and a third section 215 but is not limited thereto.
Referring to FIGS. 6 through 7B, the head 211 is illustrated to have a rectangular prism shape. However, the head 211 may be rectangular, circular, pentagonal, hexagonal, octagonal, or any other shape known to one of ordinary skill in the art, but is not limited thereto.
The head 211 may include at least one screwdriver-receiving groove 211 a, but is not limited thereto.
The head 211 may be of any predetermined size to include the at least one screwdriver-receiving groove 211 a of any predetermined size. The at least one screwdriver-receiving groove 211 a may receive at least one of a Phillips-head screwdriver and a flat-head screwdriver, etc., but is not limited thereto. Furthermore, the head 211 may receive at least one of a socket wrench and a torque wrench, etc., but is not limited thereto.
The first section 213 may include a first end 213 a, a second end 213 b, and a plurality of external threads 213 c, but is not limited thereto.
The third section 215 may include a first end 215 a, a second end 215 b, and a plurality of external threads 215 c, but is not limited thereto.
The first section 213 may be substantially larger in diameter with respect to the diameter of the second section 214 and the diameter of the third section 215. The plurality of external threads 213 c may be disposed on at least a portion of the first section 213. The plurality of external threads 213 c may be oriented in a first direction (e.g., counterclockwise), but are not limited thereto. Alternatively, the plurality of external threads 213 c may be oriented in a second direction (e.g., clockwise), but are not limited thereto. The second section 214 may be a substantially smooth surface, but is not limited thereto. The plurality of external threads 215 c may be disposed on at least a portion of the third section 215. The plurality of external threads 215 c may be oriented in the first direction, but are not limited thereto. Alternatively, the plurality of external threads 215 c may be oriented in the second direction, but are not limited thereto. The rear end 210 b may be shaped by at least one of tapered, pointed, flat, etc., but is not limited thereto.
Alternatively, the first section 213 may also be referred to as the first threaded portion 213, and the third section 215 may also be referred to as the second threaded portion 215, for at least the reason that the first section 213 includes the plurality of external threads 213 c, and the third section 215 includes the plurality of external threads 215 c.
Alternatively, the second section 214 may also be referred to as a none threaded portion 214, for at least the reason that the second section 214 does not include any threading. Also, the second section 214 may be an optional portion of the square flange bolt 210, and may be excluded from the square flange bolt 210 based on a manufacturer's preference.
FIG. 8 illustrates an isometric rear end view of the anti-vibration fastener 200 using the square bolt 210 affixed to a wall, according to another exemplary embodiment of the present general inventive concept.
Referring to FIGS. 1 and 8, the user may affix and/or adhere the forward nut 120 to the square bolt 210. The user may grasp at least one of a portion of the front end 210 a, a portion of the first section 213, a portion of the second section 214, and a portion of the third section 215 to apply a lateral force to the square bolt 210 into the forward nut 120 via the front aperture 121 d. The user may grasp the forward nut 120 via at least a portion of the front portion 121 and/or at least a portion of the stub portion 122. The user may orient the forward nut 120, such that the front surface 121 a and the front aperture 121 d are facing the head 211. Subsequently, the front aperture 121 d may be moved laterally toward the head 211 and maneuvered to encapsulate at least a portion of the square bolt 210. As such, the front aperture 121 d will first receive the first section 213, followed by the second section 214, and at least a portion of the third section 215.
At least a portion of the third section 215, a portion of the second section 214, and a portion of the first section 213 may extend laterally away from a front surface 30 a of the first object 30. The user may affix and/or adhere the forward nut 120 to the square bolt 210. The user may grasp the forward nut 120 via at least a portion of the front portion 121 and/or at least a portion of the stub portion 122.
The rear aperture 122 d may have substantially the same diameter as the diameter of the first section 213. As such, at least a portion of the rear aperture 122 d may no longer be moved laterally over the first section 213. Moreover, upon contact of the rear aperture 122 d with the first end 213 a of the first section 213, the user may rotate the forward nut 120 in the first direction, such that the plurality of internal threads 122 e are interwoven corresponding to the plurality of external threads 213 c.
The front aperture 121 d may have substantially the same diameter as the diameter of the third section 215. As such, the front aperture 121 d may no longer be moved laterally over the first section 215. Moreover, upon contact of the front aperture 121 d with the first end 215 a of the third section 215, the user may rotate the forward nut 120 in the first direction such that the plurality of internal threads 121 e are interwoven with the plurality of external threads 215 c. The forward nut 120 may be rotated in the first direction until the square bolt 210 protrudes from the second end 122 b and/or as desired by the user. Thus, the forward nut 120 and the square bolt 210 may be considered interlocked.
The user may affix and/or adhere the aft nut 130 to the combination of the square bolt 210 and the forward nut 120. The user may grasp the aft nut 130 via at least a portion of the front portion 131 and/or at least a portion of the stub portion 132. Specifically, the user may grasp the knurled surface 132 c via at least a portion of the stub portion 132. The user may orient the aft nut 130, such that the front surface 131 a and the front aperture 131 d are facing the rear surface 121 b of the forward nut 120. Subsequently, the front aperture 131 d may be moved laterally toward the rear surface 121 b of the forward nut 120 and maneuvered to encapsulate at least a portion of the square bolt 210 and the forward nut 120. In other words, the front aperture 131 d may be positioned and moved by the user, such that as the user may move the aft nut 130 towards the rear surface 121 b of the forward nut 120. As such, the front aperture 131 d may receive the first section 213, first, followed by at least a portion of the second section 214.
The rear aperture 132 d may have substantially the same diameter as the diameter of the first section 213. As such, at least a portion of the rear aperture 131 d may no longer be moved laterally over the first section 213. Moreover, upon contact of the rear aperture 132 d with the first end 213 a of the first section 213, the user may rotate the aft nut 130 in the first direction, such that the plurality of internal threads 132 e are interwoven corresponding to the plurality of external threads 213 c.
The front aperture 131 d may have substantially the same diameter as the diameter of the stub portion 122 of the forward nut 120. As such, the front aperture 131 d may no longer be moved laterally over the stub portion 122. Moreover, upon contact of the front aperture 131 d with the second end 122 b of the stub portion 122, the user may rotate the aft nut 130 in the first direction such that the plurality of internal threads 131 e are interwoven corresponding to the plurality of external threads 122 c. The aft nut 130 may be rotated in the first direction until the front surface 131 a has made substantial contact with the rear surface 121 b of the forward nut 120 and there is substantial resistance to further rotation thereof. As such, the contact of the front surface 131 a of the aft nut 130 and the rear surface 121 b of the forward nut 120 may be near at least a portion of the second section 214 of the square bolt 210, such that it may be considered substantially at the center of the second section 214. Thus, the aft nut 130, the forward nut 120, and the square bolt 210 may be considered interlocked.
Referring to FIG. 8, the user may orient the anti-vibration fastener 200 toward the front surface 30 a of the first object 30 disposed against the wall 50. More specifically, the forward nut 120 and at least a portion of the third section 215 of the square bolt 210 protruding from the front aperture 121 d may be oriented to face the first object 30, such that the front surface 121 a, the front aperture 121 d, and the rear end 210 b are facing the front surface 30 a of the first object 30. Subsequently, the anti-vibration fastener 200 may be moved laterally toward the front surface 30 a of the first object 30. In other words, the front aperture 121 d may be positioned and moved by the user, such that as the user may move the forward nut 120 towards the front surface 30 a of the first object 30.
The user may affix and/or adhere the first object 30 to the wall 50 by applying a lateral force of the combination of the square bolt 210, the forward nut 120, and the aft nut 130 through the wall 50.
The interlocked arrangement of the forward nut 120 and the aft nut 130 may reduce vibration to a minimum. Specifically, the interwoven arrangement of the plurality of the internal threads 131 e with the plurality of external threads 122 c in the first direction may cancel any loosening motion of the forward nut 120 in the second direction. As such, the aft nut 130 may oppose any motion of the forward nut 120 rotating in the second direction.
The application of the anti-vibration fastener 200 to any article and/or process of manufacture and/or assembly in relevant industries may significantly improve the article and/or process. The specific combination of the square bolt 210, the difference in diameter of the first section 213 with respect to the third section 215, the forward nut 120, the difference in diameter of the front aperture 121 d with respect to the rear aperture 122 d, the aft nut 130, the difference in diameter of the front aperture 131 d with respect to the rear aperture 132 d, and the interwoven arrangement of the plurality of external threads 122 c and the plurality of internal threads 132 e may create a stronger bond than the conventional bolt and nut. As such, the anti-vibration fastener 200 may withstand any vibration force, including at least one of wind, seismic activity, volcanic eruption, etc., but is not limited thereto.
FIG. 9 illustrates an isometric view of a square flange bolt 310, according to another exemplary embodiment of the present general inventive concept.
Although, the square flange bolt 310 is illustrated to be a bolt type fastener, the square flange bolt 310 may be at least one of a nail, a screw, a pin, a peg, a rivet, a threaded insert, and a threaded rod, etc., but is not limited thereto.
The square flange bolt 310 may include a front end 310 a, a rear end 310 b, a head 311, a flange 312, a first section 313, a second section 314, and a third section 315, but is not limited thereto.
Referring to AG. 9, the head 311 is illustrated to have a rectangular prism shape. However, the head 311 may be rectangular, circular, pentagonal, hexagonal, octagonal, or any other shape known to one of ordinary skill in the art, but is not limited thereto.
The head 311 may include at least one screwdriver-receiving groove 311 a, but is not limited thereto.
The head 311 may be of any predetermined size to include the at least one screwdriver-receiving groove 311 a of any predetermined size. The at least one screwdriver-receiving groove 311 a may receive at least one of a Phillips-head screwdriver and a flat-head screwdriver, etc., but is not limited thereto. Furthermore, the head 311 may receive at least one of a socket wrench and a torque wrench, etc., but is not limited thereto.
The flange 312 may include a front surface 312 a and a bearing surface 312 h, but is not limited thereto.
The first section 313 may include a first end 313 a, a second end 313 b, and a plurality of external threads 313 c, but is not limited thereto.
The third section 315 may include a first end 315 a, a second end 315 b, and a plurality of external threads 315 c, but is not limited thereto.
Referring to FIG. 9, the first section 313 may be substantially larger in diameter with respect to the diameter of the second section 314 and the diameter of the third section 315. The plurality of external threads 313 c may be disposed on at least a portion of the first section 313. The plurality of external threads 313 c may be oriented in a first direction (e.g., counterclockwise), but are not limited thereto. Alternatively, the plurality of external threads 313 c may be oriented in a second direction (e.g., clockwise), but are not limited thereto. The second section 314 may include a substantially smooth surface, but is not limited thereto. The plurality of external threads 315 c may be disposed on at least a portion of the third section 315. The plurality of external threads 315 c may be oriented in the second direction, but are not limited thereto. Alternatively, the plurality of external threads 315 c may be oriented in the first direction, but are not limited thereto. The rear end 310 b may be shaped by at least one of tapered, pointed, flat, etc., but is not limited thereto.
Alternatively, the first section 313 may also be referred to as the first threaded portion 313, and the third section 315 may also be referred to as the second threaded portion 315, for at least the reason that the first section 313 includes the plurality of external threads 313 c, and the third section 315 includes the plurality of external threads 315 c.
Alternatively, the second section 314 may also be referred to as a non-threaded portion 314, for at least the reason that the second section 114 does not include any threading. Also, the second section 314 may be an optional portion of the square flange bolt 310, and may be excluded from the square flange bolt 310 based on a manufacturer's preference.
FIG. 10A a front view of a forward nut 320, according to another exemplary embodiment of the present general inventive concept.
FIG. 10B illustrates an isometric bottom view of a forward nut 320, according to another exemplary embodiment of the present general inventive concept.
Referring to FIGS. 10A through 10B, the forward nut 320 may include a front portion 321 and a stub portion 322, but is not limited thereto.
Referring to FIG. 10A, the front portion 321 is illustrated to have an octagonal shape. However, the front portion 321 may be rectangular prism, rectangular, circular, pentagonal, hexagonal, or any other shape known to one of ordinary skill in the art, but is not limited thereto.
Referring to FIG. 10A, the front portion 321 may include a front surface 321 a, a rear surface 321 b, an octagonal surface 321 c, a front aperture 321 d, and a plurality of internal threads 321 e, but is not limited thereto.
Referring to FIG. 10B, the stub portion 322 may include a first end 322 a, a second end 322 b, a plurality of external threads 322 c, a rear aperture 322 d, and a non-threaded inner surface 322 e, but is not limited thereto.
Referring to FIGS. 10A through 10B, the front aperture 321 d may be disposed at a portion of a center of the front portion 321. Furthermore, the front aperture section 321 d may be substantially larger in diameter with respect to the diameter of the rear aperture 322 d and may extend across at least a portion of a length of the front portion 321, beginning from the front surface 321 a and terminating at a juncture of the rear surface 321 b and the first end 322 a. The rear aperture 322 d may be disposed at a portion of a center of the stub portion 322. Additionally, the rear aperture 322 d may extend across at least a portion of the length of the stub portion 322, beginning from the second end 322 b and terminating at the juncture of the rear surface 321 b and the first end 322 a.
The front aperture 321 d may be larger than the rear aperture 322 d, in order to allow the third section 315 including the plurality of external threads 315 c to slide therethrough without being stopped by and/or interfering with the plurality of internal threads 321 e. Also, the non-threaded inner surface 322 e allows the third section 315 including the plurality of external threads 315 c to slide through an entirety of the stub portion 322, such that an end portion of the third section 315 protrudes outside from a back end of the stub portion 322.
The plurality of internal threads 321 e may be disposed within the front aperture 321 d. The plurality of external threads 322 c may be disposed on at least a portion of the stub portion 322. The plurality of external threads 322 c may be oriented in the second direction, but are not limited thereto. Alternatively, the plurality of external threads 322 c may be oriented in the first direction, but are not limited thereto.
The square flange bolt 310 may be used to affix and/or adhere a first object to a second object. Specifically, the user may arrange the square flange bolt 310 on one side of the first object that is placed next to the second object and placing the forward nut 320 on the opposite end with respect to the square flange bolt 310 protruding from the first object and the second object. More specifically, the user may affix and/or adhere the forward nut 320 to the square flange bolt 310. The user may grasp the forward nut 320 via at least a portion of the front portion 321 and/or at least a portion of the stub portion 322. The user may orient the forward nut 320, such that the front surface 321 a and the front aperture 321 d are facing the rear end 310 b. Subsequently, the front aperture 321 d may be moved laterally toward the rear 310 b and maneuvered to encapsulate at least a portion of the square flange bolt 310. As such, the front aperture 321 d may receive the third section 315, first, followed by the second section 314, and at least a portion of the first section 313.
The rear aperture 322 d may have diameter that is slightly larger than the diameter of the third section 315.
The front aperture 321 d may have substantially the same diameter as the diameter of the first section 313. As such, the front aperture 321 d may no longer be moved laterally over the first section 313. Moreover, upon contact of the front aperture 321 d with the second end 313 b of the first section 313, the user may rotate the forward nut 320 in the first direction, such that the plurality of internal threads 321 e are interwoven corresponding to the plurality of external threads 313 c. Thus, the forward nut 320 and the square flange bolt 310 may be considered interlocked.
Referring to FIGS. 4 and 10A through 10B, the user may affix and/or adhere the aft nut 130 to the forward nut 320. The user may grasp the aft nut 130 via at least a portion of the front portion 131 and/or at least a portion of the stub portion 132. Specifically, the user may grasp the knurled surface 132 c via at least a portion of the stub portion 132. The user may orient the aft nut 130, such that the front surface 131 a and the front aperture 131 d are facing the rear surface 321 b of the forward nut 320. Subsequently, the front aperture 131 d may be moved laterally toward the rear surface 321 b of the forward nut 320 and maneuvered to encapsulate at least a portion of the square flange bolt 310 and the forward nut 320. In other words, the front aperture 131 d may be positioned and moved by the user, such that as the user may move the aft nut 130 towards the rear surface 321 b of the forward nut 320. As such, the front aperture 131 d may receive the third section 315, first, followed by at least a portion of the second section 314.
Referring to FIGS. 4 and 9, the rear aperture 132 d may have a diameter that is slightly smaller than the diameter of the third section 315. As such, at least a portion of the rear aperture 131 d may no longer be moved laterally over the third section 315. Moreover, upon contact of the rear aperture 132 d with the second end 315 b of the third section 315, the user may rotate the aft nut 130 in the second direction, such that the plurality of internal threads 132 e are interwoven corresponding to the plurality of external threads 315 c that are disposed outside the stub portion 322.
The front aperture 131 d may have substantially the same diameter as the diameter of the stub portion 322 of the forward nut 320. As such, the front aperture 131 d may no longer be moved laterally over the stub portion 322. Moreover, upon contact of the front aperture 131 d with the second end 322 b of the stub portion 322, the user may rotate the aft nut 130 in the second direction such that the plurality of internal threads 131 e are interwoven corresponding to the plurality of external threads 322 c. The aft nut 130 may be rotated in the second direction until the front surface 131 a has made substantial contact with the rear surface 321 b of the forward nut 320 and there is substantial resistance to further rotation thereof. As such, the contact of the front surface 131 a of the aft nut 130 and the rear surface 321 b of the forward nut 320 may be near at least a portion of the second section 314 of the square flange bolt 310, such that it may be considered substantially at the center of the second section 314. Thus, the aft nut 130, the forward nut 320, and the square flange bolt 310 may be considered interlocked.
FIG. 11 illustrates an isometric view of a square bolt 410, according to another exemplary embodiment of the present general inventive concept.
Although, the square bolt 410 is illustrated to be a bolt type fastener, the square bolt 410 may be at least one of a nail, a screw, a pin, a peg, a rivet, a threaded insert, and a threaded rod, etc., but is not limited thereto.
The square flange bolt 410 may include a front end 410 a, a rear end 410 b, a head 411, an intermediary surface 412, a first section 413, a second section 414, and a third section 415, but is not limited thereto.
Referring to FIG. 11, the head 411 is illustrated to have a rectangular prism shape. However, the head 411 may be rectangular, circular, pentagonal, hexagonal, octagonal, or any other shape known to one of ordinary skill in the art, but is not limited thereto.
The head 411 may include at least one screwdriver-receiving groove 411 a, but is not limited thereto.
The head 411 may be of any predetermined size to include the at least one screwdriver-receiving groove 411 a of any predetermined size. The at least one screwdriver-receiving groove 411 a may receive at least one of a Phillips-head screwdriver and a flat-head screwdriver, etc., but is not limited thereto. Furthermore, the head 411 may receive at least one of a socket wrench and a torque wrench, etc., but is not limited thereto.
The first section 413 may include a first end 413 a, a second end 413 b, and a plurality of external threads 413 c, but is not limited thereto.
The third section 115 may include a first end 415 a a second end 415 b, and a plurality of external threads 415 c, but is not limited thereto.
Referring to FIGS. 6 through 7A, the first section 413 may be substantially larger in diameter with respect to the diameter of the second section 414 and the diameter of the third section 415. The plurality of external threads 413 c may be disposed on at least a portion of the first section 413. The plurality of external threads 413 c may be oriented in a first direction (e.g., clockwise), but are not limited thereto. Alternatively, the plurality of external threads 413 c may be oriented in a second direction (e.g., counterclockwise), but are not limited thereto. The second section 414 may be a substantially smooth surface, but is not limited thereto. The plurality of external threads 415 c may be disposed on at least a portion of the third section 415. The plurality of external threads 415 c may be oriented in the second direction, but are not limited thereto. Alternatively, the plurality of external threads 415 c may be oriented in the first direction, but are not limited thereto. The rear end 410 b may be shaped by at least one of tapered, pointed, flat, etc., but is not limited thereto.
Alternatively, the first section 413 may also be referred to as the first threaded portion 413, and the third section 415 may also be referred to as the second threaded portion 415, for at least the reason that the first section 413 includes the plurality of external threads 413 c, and the third section 415 includes the plurality of external threads 415 c.
Alternatively, the second section 414 may also be referred to as a non-threaded portion 414, for at least the reason that the second section 414 does not include any threading. Also, the second section 414 may be an optional portion of the square flange bolt 410, and may be excluded from the square flange bolt 410 based on a manufacturer's preference.
Referring to FIGS. 10A through 11, the user may affix and/or adhere the forward nut 320 to the square bolt 410. The user may grasp at least one of a portion of the front end 410 a, a portion of the first section 413, a portion of the second section 414, and a portion of the third section 415 to apply a lateral force to the square bolt 410 into the forward nut 320 via the front aperture 321 d. The user may grasp the forward nut 320 via at least a portion of the front portion 321 and/or at least a portion of the stub portion 322. The user may orient the forward nut 320, such that the front surface 321 a and the front aperture 321 d are facing the head 411. Subsequently, the front aperture 321 d may be moved laterally toward the head 411 and maneuvered to encapsulate at least a portion of the square bolt 410. As such, the front aperture 321 d will first receive the first section 413, followed by the second section 414, and at least a portion of the third section 415.
The user may affix and/or adhere the forward nut 320 to the square bolt 410. The user may grasp the forward nut 320 via at least a portion of the front portion 321 and/or at least a portion of the stub portion 322.
The rear aperture 322 d may have substantially the same diameter as the diameter of the first section 413. As such, at least a portion of the rear aperture 322 d may no longer be moved laterally over the first section 413. Moreover, upon contact of the rear aperture 322 d with the first end 413 a of the first section 413, the user may rotate the forward nut 320 in the first direction, such that the plurality of internal threads 322 e are interwoven corresponding to the plurality of external threads 413 c.
The front aperture 321 d may have substantially the same diameter as the diameter of the third section 415. As such, the front aperture 321 d may no longer be moved laterally over the first section 415. Moreover, upon contact of the front aperture 321 d with the first end 415 a of the third section 415, the user may rotate the forward nut 320 in the second direction such that the plurality of internal threads 321 e are interwoven with the plurality of external threads 415 c. The forward nut 320 may be rotated in the first direction until the square bolt 410 protrudes from the second end 322 b and/or as desired by the user. Thus, the forward nut 320 and the square bolt 410 may be considered interlocked.
Referring to FIGS. 4 and 10A through 11, the user may affix and/or adhere the aft nut 130 to the combination of the square bolt 410 and the forward nut 320. The user may grasp the aft nut 130 via at least a portion of the front portion 131 and/or at least a portion of the stub portion 132. Specifically, the user may grasp the knurled surface 132 c via at least a portion of the stub portion 132. The user may orient the aft nut 130, such that the front surface 131 a and the front aperture 131 d are facing the rear surface 321 b of the forward nut 320. Subsequently, the front aperture 131 d may be moved laterally toward the rear surface 321 b of the forward nut 320 and maneuvered to encapsulate at least a portion of the square bolt 410 and the forward nut 320. In other words, the front aperture 131 d may be positioned and moved by the user, such that as the user may move the aft nut 130 towards the rear surface 321 b of the forward nut 320. As such, the front aperture 131 d may receive the first section 413, first, followed by at least a portion of the second section 414.
Referring to FIGS. 4 and 10A through 11, the rear aperture 132 d may have substantially the same diameter as the diameter of the first section 413. As such, at least a portion of the rear aperture 131 d may no longer be moved laterally over the first section 413. Moreover, upon contact of the rear aperture 132 d with the first end 413 a of the first section 413, the user may rotate the aft nut 130 in the first direction, such that the plurality of internal threads 132 e are interwoven corresponding to the plurality of external threads 413 c.
The front aperture 131 d may have substantially the same diameter as the diameter of the stub portion 322 of the forward nut 320. As such, the front aperture 131 d may no longer be moved laterally over the stub portion 322. Moreover, upon contact of the front aperture 131 d with the second end 322 b of the stub portion 322, the user may rotate the aft nut 130 in the first direction such that the plurality of internal threads 131 e are interwoven corresponding to the plurality of external threads 322 c. The aft nut 130 may be rotated in the first direction until the front surface 131 a has made substantial contact with the rear surface 321 b of the forward nut 320 and there is substantial resistance to further rotation thereof. As such, the contact of the front surface 131 a of the aft nut 130 and the rear surface 321 b of the forward nut 320 may be near at least a portion of the second section 414 of the square bolt 410, such that it may be considered substantially at the center of the second section 414. Thus, the aft nut 130, the forward nut 320, and the square bolt 410 may be considered interlocked.
The combination of the square bolt 410, the forward nut 320, and the aft nut 130 may be used to affix and/or adhere an object to a wall. Specifically, the user may move the combination of the square bolt 410, the forward nut 320, and the aft nut 130, such that the rear end 410 b and the front surface 320 a are facing the object and wall and are disposed on the wall.
Referring to FIGS. 1 through 5, the first section 113 of the square flange bolt 110 may include the plurality of external threads 113 c oriented in a counterclockwise direction. The forward nut 120 may include the plurality of internal threads 121 e oriented in a counterclockwise direction and the plurality of internal threads 122 e oriented in a counterclockwise direction. The plurality of external threads 113 c correspond to the plurality of internal threads 121 e, such that the user may rotate the forward nut 120 around the first section 113 in a counterclockwise direction in response to the front aperture 121 d being directed to encase the first section 113. In other words, the plurality of external threads 113 c may be interwoven corresponding to the plurality of internal threads 121 e. Concordantly, the aft nut 130 may include the plurality of internal threads 131 e oriented in a counterclockwise direction and the plurality of internal threads 132 e oriented in a counterclockwise direction. The plurality of external threads 115 c correspond to the plurality of internal threads 132 e, such that the user may move the rear aperture 132 d to encase the third section and rotate the aft nut 130 around the third section 115 in a counterclockwise direction. In other words, the plurality of external threads 115 c may be interwoven corresponding to the plurality of internal threads 132 e. Moreover, the diameter of the first section 113 near the flange 112 may have a substantially larger diameter than the third section 115. Additionally, the first section 113 and the third section may be separated by a second section 114, which may be smaller in size with respect to the first section 113 and the third section 115. The stub portion 122 of the forward nut 120 may receive the front portion 131 of the aft nut 130. The rear surface 121 b may be in substantial contact with the front surface 131 a at a portion of the second section 114, such that it may be considered a center of the second section 114. The head 111 of the square flange bolt 110 may include at least one screwdriver-receiving groove 111 a that may receive at least one of a Phillips-head screwdriver, flat head screwdriver, and a socket wrench, but is not limited thereto.
Referring to FIGS. 1 through 5, the forward nut 120 may include the plurality of internal threads 121 e oriented in a counterclockwise direction. The diameter of the front aperture 121 d may be substantially similar to the diameter of the first section 113 of the square flange bolt 110. The plurality of external threads 113 c correspond to the plurality of internal threads 121 e, such that the user may rotate the forward nut 120 around the first section 113 in a counterclockwise direction in response to the front aperture 121 d being directed to encase the first section 113. In other words, the plurality of external threads 113 c may be interwoven corresponding to the plurality of internal threads 121 e. The first object 10 and the second object 20 may be affixed and/or adhered using the square flange bolt 110 and the forward nut 120. The user may laterally direct the square flange bolt 110 through the hole 15. The third section 115 may protrude first, followed by the second section 114, and at least a portion of the first section 113. Moreover, the square flange bolt 110 may be supported by the flange 112 due to the bearing surface 112 b in substantial contact with the front surface 10 a of the first object 10. The forward nut 120 may be affixed and/or adhered on the rear surface 22 b of the second object 20 via the first section 113 and the third section 115. The stub portion 122 of the forward nut 120 may receive the front portion 131 of the aft nut 130.
Referring to FIGS. 1 through 5, the stub portion 122 of the forward nut 120 may receive the front portion 131 of the aft nut 130. The front portion 131 of the aft nut 130 may include the front aperture 131 d and the plurality of internal threads 131 e oriented in a counterclockwise direction. The stub portion 122 of the forward nut 120 may include the plurality of external threads 122 c oriented in a counterclockwise direction. The diameter of the front aperture 131 d may be substantially the same in diameter as the stub portion 122 of the forward nut 120. Additionally, the user may laterally move the front aperture 131 d towards the stub portion 122. As such, the user may interconnect the front portion 131 of the aft nut 130 with the stud portion 122 of the forward nut 120 by rotating the aft nut 130 in a counterclockwise direction, such that the plurality of internal threads 132 e are interwoven with the corresponding plurality of external threads 122 c. Moreover, the aft nut 130 may include the plurality of internal threads 131 e oriented in a counterclockwise direction and the plurality of internal threads 132 e oriented in a counterclockwise direction. The plurality of external threads 115 c correspond to the plurality of internal threads 132 e, such that the user may move the rear aperture 132 d to encase the third section and rotate the aft nut 130 around the third section 115 in a counterclockwise direction. In other words, the plurality of external threads 115 c may be interwoven with the plurality of internal threads 132 e. The stub portion 132 may include the knurled surface 132 c to allow the user to grasp the stub portion 132 due to the knurled surface 132 c being a textured surface.
Referring to FIGS. 6 through 8, the square bolt 210 may function differently than the square flange bolt 110. The head 211 of the square bolt 210 may be directed toward the front surface 121 a of the forward nut 120. Additionally, the first section 213 of the square bolt 210 may be substantially smaller in diameter than the front aperture 121 d. As such, the first section 213 may move through the front aperture 121 d until it reaches the rear aperture 122 d. The rear aperture 122 d may be substantially similar in diameter to the diameter of the first section 213. As such, the user may rotate the forward nut 120 in the counterclockwise direction to interweave the plurality of internal threads 122 e with the plurality of external threads 213 c. Furthermore, the user may continue to rotate the forward nut 120 until at least a portion of the square bolt 210 protrudes from the second end 132 b.
Moreover, the user may direct the stub portion 122 of the forward nut 120 toward the front surface 131 a of the aft nut 130. Additionally, the first section 213 of the square bolt 210 may be substantially smaller in diameter than the front aperture 131 d. As such, the first section 213 may move through the front aperture 131 d until it reaches the rear aperture 132 d. The rear aperture 132 d may be substantially similar in diameter to the diameter of the first section 213. As such, the user may rotate the aft nut 130 in the counterclockwise direction to interweave the plurality of internal threads 132 e with the plurality of external threads 213 c. Furthermore, the user may continue to rotate the aft nut 130 until at least a portion of the square bolt 210 protrudes from the second end 132 b.
Concordantly, the third section 215 of the square bolt 210 may be substantially similar in diameter to the diameter of the front aperture 131 d. As such, the user may rotate the aft nut 130 in the counterclockwise direction to interweave the plurality of internal threads 131 e corresponding to the plurality of external threads 215 c.
The anti-vibration fastener 200 may be used when the user lacks access to a rear portion of an object and/or the object needs to be affixed and/or adhered to a front surface of the object and/or a wall. As such, the diameter of the first section 213 and the diameter of the third section 215 may be reversed on the square bolt 210, which corresponds respectively to the diameter of the third section 115 and the diameter of the first section 113 on the square flange bolt 110. Moreover, the second section 214 of the square bolt 210 and the second section 114 of the square flange bolt 110 may be similar in construction, such that those portions are a non-threaded space between the first and third sections. The head 211 of the square flange bolt 210 may include at least one screwdriver-receiving grooves 211 a that may receive at least one of a Phillips-head screwdriver, flat head screwdriver, and a socket wrench, but is not limited thereto.
Although a few embodiments of the present general inventive concept have been shown and described, it will be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the general inventive concept, the scope of which is defined in the appended claims and their equivalents.

Claims (5)

The invention claimed is:
1. An anti-vibration fastener, comprising:
a bolt with a square-shaped head to affix a first object to a second object, the bolt with the square-shaped head comprising:
a first threaded portion disposed at a front end of the bolt with the square-shaped head, the first threaded portion comprising:
a plurality of external threads oriented in a first direction, and
a second threaded portion disposed at a rear end of the bolt with the square-shaped head having a diameter smaller than a diameter of the first threaded portion, the second threaded portion comprising:
a plurality of external threads oriented in a second direction;
a forward nut to encapsulate at least a portion of the bolt with the square-shaped head such that the first object and the second object are disposed between the forward nut and the front end of the bolt with the square-shaped head, the forward nut comprising:
a front portion, comprising:
a front aperture disposed at substantially center portion of the front portion to receive at least a portion of the first threaded portion therein, the front aperture having a diameter substantially similar to the diameter of the first threaded portion, and
a plurality of internal threads disposed within an inner surface of the front aperture oriented in the first direction to correspond to and interweave with the plurality of external threads of the first threaded portion, and
a stub portion connected to the front portion of the forward nut, the stub portion comprising:
a rear aperture disposed at a substantially center portion of the stub portion to receive at least a portion of the second threaded portion, the rear aperture having a diameter larger than the diameter of the second threaded portion, and
a non-threaded inner surface disposed within the rear aperture to receive the plurality of external threads of the second threaded portion; and
an aft nut to encapsulate at least a portion of the bolt with the square-shaped head and the forward nut.
2. The anti-vibration fastener of claim 1, wherein the bolt with the square-shaped head further comprises:
a non-threaded portion disposed between the first threaded portion and the second threaded portion to separate the first threaded portion from the second threaded portion.
3. The anti-vibration fastener of claim 1, wherein the stub portion further comprises:
a plurality of external threads disposed on an external surface of the stub portion of the forward nut.
4. The anti-vibration fastener of claim 3, wherein the aft nut further comprises:
a front portion, comprising:
a front aperture disposed at a portion of a center of the front portion to receive at least a portion of the stub portion of the forward nut and having a diameter substantially similar to the diameter of the stub portion of the forward nut, and
a plurality of internal threads disposed within the front aperture oriented in the second direction to interweave with the plurality of external threads disposed on the stub portion of the forward nut.
5. The anti-vibration fastener of claim 4, wherein the aft nut further comprises:
a stub portion, comprising:
a rear aperture disposed at a portion of a center of the stub portion to receive at least a portion of the second threaded portion and having a diameter substantially similar to the diameter of the second threaded portion, and
a plurality of internal threads disposed within the rear aperture oriented in the second direction to interweave with the plurality of external threads on the second threaded portion.
US16/198,357 2018-11-21 2018-11-21 Anti-vibration fastener Active 2039-07-01 US10989246B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/198,357 US10989246B2 (en) 2018-11-21 2018-11-21 Anti-vibration fastener
US17/176,924 US20210164512A1 (en) 2018-11-21 2021-02-16 Anti-vibration fastener

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/198,357 US10989246B2 (en) 2018-11-21 2018-11-21 Anti-vibration fastener

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/176,924 Division US20210164512A1 (en) 2018-11-21 2021-02-16 Anti-vibration fastener

Publications (2)

Publication Number Publication Date
US20200158159A1 US20200158159A1 (en) 2020-05-21
US10989246B2 true US10989246B2 (en) 2021-04-27

Family

ID=70727675

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/198,357 Active 2039-07-01 US10989246B2 (en) 2018-11-21 2018-11-21 Anti-vibration fastener
US17/176,924 Abandoned US20210164512A1 (en) 2018-11-21 2021-02-16 Anti-vibration fastener

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/176,924 Abandoned US20210164512A1 (en) 2018-11-21 2021-02-16 Anti-vibration fastener

Country Status (1)

Country Link
US (2) US10989246B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200386258A1 (en) * 2019-03-12 2020-12-10 Earl Allen Size, JR. Fastener assembly
US20230092273A1 (en) * 2021-09-23 2023-03-23 Caterpillar Inc. Systems and methods for assembling a hammer tool
US11629737B2 (en) * 2017-07-12 2023-04-18 Norma Germany Gmbh Profile clamp with a screw having a section of reduced diameter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11904375B2 (en) * 2016-12-14 2024-02-20 Richard J. Greenleaf Fastener enabled multi-plate securement and alignment arrangement
US11684002B2 (en) * 2020-12-15 2023-06-27 Deere & Company Sway adjustment apparatus

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US655704A (en) * 1899-11-27 1900-08-14 Richard A Gage Nut-lock.
US778107A (en) * 1904-09-26 1904-12-20 Roy E Burks Nut and bolt lock.
US857526A (en) * 1907-02-07 1907-06-18 Charles M Mccurdy Nut-lock.
US876081A (en) * 1907-09-03 1908-01-07 George Herbert Orr Nut-lock.
US889319A (en) * 1908-01-03 1908-06-02 Elijah B Martin Nut-lock.
US921003A (en) * 1907-09-21 1909-05-11 Lula L Roberts Nut-lock.
US1077119A (en) * 1912-12-27 1913-10-28 Robert Bixby Nut-lock.
US1413024A (en) * 1920-12-04 1922-04-18 Annie L Harrell Lock nut and bolt
US1806506A (en) * 1931-05-19 Nut lock
US2024593A (en) * 1934-05-07 1935-12-17 Moore Harrington Method of making square-head screws
US2060593A (en) * 1934-04-25 1936-11-10 Bauer & Schaurte Rheinische Sc Metal element and method of making the same
US20050129484A1 (en) * 2002-05-01 2005-06-16 Joker Industrial Co., Ltd. Anchoring screw with double heads and triple threads of different depths of thread
US20060104742A1 (en) * 2004-11-12 2006-05-18 Fleming David T Stud for parts assembly

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US611847A (en) * 1898-10-04 Belon bee smith
US914053A (en) * 1908-02-28 1909-03-02 James B Etherington Nut-lock.
US995468A (en) * 1909-11-22 1911-06-20 William F Kenney Nut-lock.
US1093050A (en) * 1912-02-10 1914-04-14 Otto A Heckel Nut-lock.
US1116760A (en) * 1912-08-06 1914-11-10 Edward Thomas Nut-lock.
US1588478A (en) * 1924-10-28 1926-06-15 Lerch Shumate Bolt Company Nut lock
US1656116A (en) * 1926-04-14 1928-01-10 Walter E Hull Electrical measuring instrument
US3402613A (en) * 1966-08-01 1968-09-24 Trw Inc Differential screw with variable adjustments
US6027294A (en) * 1999-01-25 2000-02-22 Newby; John C. Double nut thread friction locking safety cap device with opposing threads with a captured spring or spring lock washer
GB0024485D0 (en) * 2000-10-06 2000-11-22 Wheelsure Ltd Wheel nut assembly
US7213999B2 (en) * 2004-01-30 2007-05-08 Torque-Traction Technologies, Llc. Fastener with opposite hand threads for securing two components together
FR3010690B1 (en) * 2013-08-02 2017-12-22 Valeo Vision DEVICE FOR FIXING A LIGHTING AND / OR SIGNALING MODULE ON A STRUCTURAL ELEMENT

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1806506A (en) * 1931-05-19 Nut lock
US655704A (en) * 1899-11-27 1900-08-14 Richard A Gage Nut-lock.
US778107A (en) * 1904-09-26 1904-12-20 Roy E Burks Nut and bolt lock.
US857526A (en) * 1907-02-07 1907-06-18 Charles M Mccurdy Nut-lock.
US876081A (en) * 1907-09-03 1908-01-07 George Herbert Orr Nut-lock.
US921003A (en) * 1907-09-21 1909-05-11 Lula L Roberts Nut-lock.
US889319A (en) * 1908-01-03 1908-06-02 Elijah B Martin Nut-lock.
US1077119A (en) * 1912-12-27 1913-10-28 Robert Bixby Nut-lock.
US1413024A (en) * 1920-12-04 1922-04-18 Annie L Harrell Lock nut and bolt
US2060593A (en) * 1934-04-25 1936-11-10 Bauer & Schaurte Rheinische Sc Metal element and method of making the same
US2024593A (en) * 1934-05-07 1935-12-17 Moore Harrington Method of making square-head screws
US20050129484A1 (en) * 2002-05-01 2005-06-16 Joker Industrial Co., Ltd. Anchoring screw with double heads and triple threads of different depths of thread
US20060104742A1 (en) * 2004-11-12 2006-05-18 Fleming David T Stud for parts assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wikipedia, Square Nut, Dec. 28, 2016, <https://web.archive.org/web/20161228021318/https://en.wikipedia.org/wiki/Square_nut> (Year: 2016). *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11629737B2 (en) * 2017-07-12 2023-04-18 Norma Germany Gmbh Profile clamp with a screw having a section of reduced diameter
US20200386258A1 (en) * 2019-03-12 2020-12-10 Earl Allen Size, JR. Fastener assembly
US11499583B2 (en) * 2019-03-12 2022-11-15 Earl Allen Size, JR. Fastener assembly
US20230092273A1 (en) * 2021-09-23 2023-03-23 Caterpillar Inc. Systems and methods for assembling a hammer tool
US11946501B2 (en) * 2021-09-23 2024-04-02 Caterpillar Inc. Systems and methods for assembling a hammer tool

Also Published As

Publication number Publication date
US20210164512A1 (en) 2021-06-03
US20200158159A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
US10989246B2 (en) Anti-vibration fastener
US5921734A (en) Lock nut device
US20100098511A1 (en) Locking system and fastening elements
US20080240883A1 (en) Threaded Insert and Method of Using Same
US20180119722A1 (en) Bolt with Locked Nut
WO2008129854A1 (en) Fastening device
US11098748B2 (en) One-piece self-locking nut
US8702363B2 (en) Lock nut and a fastening unit comprising the same
JP4418899B2 (en) Locking nut
US20170114820A1 (en) Fastening element made of plastic with self-tapping and locking thread for components
JP2008170004A (en) Two-piece free running prevailing torque nut
US3667339A (en) Friction controlled torque fastening
KR101513433B1 (en) Magnetic bolt assembly with hight-tension
EP2238359B1 (en) Locking fastener
US20190101151A1 (en) Male screw body, female screw body, screw body design method, screw thread structure
US20200362906A1 (en) Anti-loosening fastener
KR20190119403A (en) A bolt to be fastened bidirectionally for extension
JP2011133009A (en) Fastener with conical surface
CA2497932A1 (en) Threaded fastener assembly
US9343823B2 (en) Fastener for a connector in an electrical coupling
KR20150005285A (en) Fasting member
US11629737B2 (en) Profile clamp with a screw having a section of reduced diameter
KR101656584B1 (en) Bolt and nut assembling module to add torque
KR20050096268A (en) Bolt
US20190309787A1 (en) Multi-piece bolts and methods of making the same

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: MICROENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO MICRO (ORIGINAL EVENT CODE: MICR); ENTITY STATUS OF PATENT OWNER: MICROENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO MICRO (ORIGINAL EVENT CODE: MICR); ENTITY STATUS OF PATENT OWNER: MICROENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE