US10920079B2 - Mixtures containing plastic and organic fibres - Google Patents

Mixtures containing plastic and organic fibres Download PDF

Info

Publication number
US10920079B2
US10920079B2 US15/768,354 US201615768354A US10920079B2 US 10920079 B2 US10920079 B2 US 10920079B2 US 201615768354 A US201615768354 A US 201615768354A US 10920079 B2 US10920079 B2 US 10920079B2
Authority
US
United States
Prior art keywords
mixture
groups
optionally
siloxane
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/768,354
Other languages
English (en)
Other versions
US20180312695A1 (en
Inventor
Oliver Schaefer
Peter Randel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Assigned to WACKER CHEMIE AG reassignment WACKER CHEMIE AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RANDEL, PETER, SCHAEFER, OLIVER
Publication of US20180312695A1 publication Critical patent/US20180312695A1/en
Application granted granted Critical
Publication of US10920079B2 publication Critical patent/US10920079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/458Block-or graft-polymers containing polysiloxane sequences containing polyurethane sequences

Definitions

  • the invention relates to fiber-filled mixtures containing siloxane-organo copolymers, to processes for the production thereof, and to the use thereof.
  • WPC wood polymer composite
  • the wood fiber fraction is typically between 10% to 90%, preferably between 30% to 80%, and the remaining fraction consists essentially of plastic, usually polyvinyl chloride (PVC) or polymers from the group of polyolefins, such as high-density polyethylene (HDPE) or polypropylene (PP) which may additionally be admixed with additives commonly used in plastics processing.
  • PVC polyvinyl chloride
  • HDPE high-density polyethylene
  • PP polypropylene
  • additives may be dyes and pigments, UV stabilizers, and flame retardants, in order that outdoor use may be ensured over many years and fire resistance may be enhanced so that these profiles may also be employed in the construction sector.
  • Additives against attack by bacteria, insects, fungi, in particular mildew, algae or termites etc. may likewise be incorporated into the WPC.
  • WPC may either be produced directly as a semifinished product, for example as a profile, or as a plastics ganulate which may be subjected to forming in further processing steps, for example extrusion or injection molding.
  • Natural fiber-/wood fiber-plastics mixtures are produced on typical plastics processing machines, for example twin-screw extruders or planetary gear extruders which are intended to ensure good mixing of the wood fibers with the plastic. Since the mechanical characteristics, for example stiffness and flexural strength, of the thus produced compounds continually increase and these compounds look increasingly similar to wood with increasing fiber fraction, the WPC producer aims to maximize the content of wood fibers.
  • the disadvantage of this is that at higher fiber contents internal friction continually increases, thus both impeding processing and intensifying wear on the mixing apparatuses.
  • so-called polymer processing aids (PPA) for example zinc stearates, are employed. These act as internal and external lubricants and facilitate the mixing and processing process and can also result in more homogeneous, more uniform surfaces of the extruded semifinished products.
  • couplers/adhesion promoters which, by the means of reactive groups, are intended to bring about better adhesion of the wood fibers to the employed matrix plastic and thus improve the mechanical properties of the WPC.
  • couplers/adhesion promoters which, by the means of reactive groups, are intended to bring about better adhesion of the wood fibers to the employed matrix plastic and thus improve the mechanical properties of the WPC.
  • EP 1 489 129 A1 discloses organopolysiloxane/polyurea/poly-urethane block copolymers and the use thereof for a broad spectrum of use, and inter alia, also the use thereof as an addition in polymer blends.
  • the invention thus provides mixtures containing
  • the organic segments in the copolymers (A) are preferably urea-, urethane- or amide-containing segments and more preferably urea-containing segments.
  • the siloxane segments and the organo segments may be distributed in any desired fashion, for example randomly.
  • Component (A) is preferably selected from block or comb polymers, more preferably block copolymers.
  • amorphous siloxane-organo copolymers is a term known to those skilled in the art.
  • the term “amorphous siloxane-organo copolymers” is preferably to be understood as meaning siloxane-organo copolymers which, in studies by differential scanning calorimetry (DSC) at a pressure of 1013 hPa in the temperature range between 20° C. and 200° C., show no melting enthalpies of crystalline fractions.
  • Component (A) is preferably selected from amorphous siloxane-organo copolymers of general formula (1)
  • R examples include alkyl radicals such as the methyl, ethyl, n-propyl, isopropyl, 1-n-butyl, 2-n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, and tert-pentyl radicals; hexyl radicals such as the n-hexyl radical; heptyl radicals such as the n-heptyl radical; octyl radicals such as the n-octyl radical and isooctyl radicals such as the 2,2,4-trimethylpentyl radical; nonyl radicals such as the n-nonyl radical; decyl radicals such as the n-decyl radical; dodecyl radicals such as the n-dodecylrest; octadecyl radicals such as the n-oct
  • halogenated radicals R are halogen alkyl radicals such as the 3,3,3-trifluoro-n-propyl radical, the 2,2,2,2′,2′,2′-hexafluoroisopropyl radical and the heptafluoroisopropyl radical.
  • Radical R is preferably a monovalent, optionally fluorine- and/or chlorine-substituted hydrocarbon radical having 1 to 20 carbon atoms, more preferably a hydrocarbon radical having 1 to 6 carbon atoms, and in particular a methyl, ethyl, vinyl or phenyl radical.
  • radical X examples include the alkylene radicals listed hereinbelow for radical Y.
  • Radical X is preferably an alkylene radical having 1 to 10 carbon atoms, more preferably a methylene or n-propylene radical.
  • Radical R′ is preferably hydrogen.
  • A preferably represents an —NR′— radical where R′ is as defined above, more preferably an —NH— radical.
  • Radical Z preferably represents —O— or —NH—.
  • radical Y examples include alkylene radicals such as the methylene, ethylene, n-propylene, isopropylene, n-butylene, isobutylene, tert-butylene, n-pentylene, isopentylene, neopentylene, and tert-pentylene radicals, hexylene radicals, heptylene radicals, octylene radicals, nonylene radicals, decylene radicals, dodecylene radicals or octadecylene radicals; cycloalkylene radicals such as cyclopentylene, 1,4-cyclohexylene, isophoronylene or 4,4′-methylenedicyclohexylene radicals; alkenylene radicals such as the vinylene, n-hexenylene, cyclohexenylene, 1-propenylene, allylene, butenylene or 4-pentenylene radicals; alkyny
  • Radical Y is preferably a hydrocarbon radical having 3 to 13 carbon atoms, more preferably linear or cyclic alkylene radicals.
  • radicals D are the examples listed for Y and also polyoxyalkylene radicals, such as polyoxyethylene radicals or polyoxypropylene radicals.
  • D preferably represents a divalent, optionally fluorine-, chlorine- or C 1 -C 6 -alkyl-ester-substituted hydrocarbon radical having 1 to 700 carbon atoms or a polyoxyalkylene radical.
  • D is an optionally substituted hydrocarbon radical, it is preferably selected from alkylene radicals having 2 to 12 carbon atoms, more preferably 4 to 12 carbon atoms.
  • D is polyoxyalkylene radical it is preferably selected from those having 20 to 800 carbon atoms, more preferably 20 to 200 carbon atoms, and in particular 20 to 100 carbon atoms, wherein it is most preferably selected from polyoxyethylene radicals or polyoxypropylene radicals.
  • Index n preferably represents a number from 10 to 800, more preferably 10 to 400, and in particular 40 to 300.
  • a preferably represents a number from 1 to 1000, more preferably from 3 to 250, and in particular from 5 to 100.
  • b preferably represents a number from 1 to 250, in particular 1 to 30.
  • b is 0.
  • Index c preferably denotes 0 or a number from 1 to 10, in particular 0 or a number from 1 to 5.
  • d preferably represents a number from 1 to 30, more particularly preferably from 1 to 20, and in particular from 1 to 10.
  • End groups B in formula (1) may be customary prior art end groups formed standardly in the synthesis of such polymers, for example hydrogen, amino or isocyanate end groups. These may be reacted with further groups during the polymer synthesis or subsequently, for example with aliphatic amines, alcohols or else aminosilanes or isocyanatosilanes. It is also possible even during the synthesis to add monofunctional organic compounds reactive toward isocyanate groups, for example primary or secondary alcohols or amines, thus making it possible to elegantly control also the rheological properties and the molecular weight of the siloxane-organo copolymers (A).
  • Radical B is preferably selected from structures of general formulae (3) or (4) or hydrogen.
  • Component (A) is preferably colorless.
  • Component (A) is preferably selected from thermoplastic amorphous copolymers, particularly preferably from those where the temperature at which the loss factor (G′′/G′) assumes the value 1 is preferably not more than 40° K, more preferably not more than 20° K, below the processing temperature of the composition according to the invention.
  • the loss factor of the component (A) at the temperature of the melt of the composition according to the invention during the mixing process is preferably below 5, more preferably below 3, and most preferably below 2. This ensures that the component (A) still forms an elastic film on the plant parts, for example the nozzle surface, thus affording a particular effectiveness here.
  • This loss factor is described in DIN EN ISO 6721-1:2011. Determination of the loss factor is performed according to DIN EN ISO 6721-2:2008 including applicable accompanying documents. The loss factor is determined at a frequency of 1 Hz and in a temperature range from 20° C. to 250° C. using the standard test specimens of section 6.2 of DIN EN ISO 6721-2:2008. The loss factor may alternatively also be determined by means of ISO 6721-10 including applicable accompanying documents at a frequency of 1 Hz and a deformation of below 1%.
  • Copolymers of formula (1) employed according to the invention are already known and are preferably produced by prior art processes as described in EP-A 250248, EP-A 822951 or DE-A 10137855 for example, more preferably as described in DE-A 10137855.
  • the content of diorganylsiloxy units is preferably between 80% and 99% by weight, more preferably between 90% and 99% by weight, and most preferably between 95% and 99% by weight.
  • siloxane-organo copolymers (A) of formula (1) are examples of siloxane-organo copolymers (A) of formula (1).
  • the proportion of the silicone copolymers (A) in the mixture according to the invention is preferably between 100 ppmw and 10,000 ppmw, more preferably between 250 ppmw and 6000 ppmw, and most preferably between 500 ppmw and 4000 ppmw.
  • the organic fibers (B) employed according to the invention are preferably cellulose-containing organic fibers, wherein organic fibers having a content of cellulose of 30% to 55% by weight are particularly preferred.
  • the cellulose-containing organic fibers (B) are preferably cellulose-containing natural fibers, preferably of a vegetable origin, in particular wood.
  • Wood which may be employed as component (B), preferably consists of 30% to 55% by weight of cellulose, 15% to 35% by weight of polyols and 15% to 35% by weight of lignin.
  • Organic fibers (B) employed according to the invention may assume any desired geometry but preference is given to fibers having a length/diameter ratio greater than 2 and more preferably greater than 4.
  • organic fibers (B) employed according to the invention are fibers from hard- or softwoods, for example maple, ash, cedar, pine and spruce, fibers from grasses or husks of fruits or from other fiber plants such as flax, cane sugar, groundnut plants, coconuts, sisal, bamboo, hemp and rice husks or fibers from processing residues from plant fibers, for example bagasse. Mixtures of the recited fiber types may likewise be used.
  • the wood and natural fibers may also be generated as waste from industrial processes, for example the furniture, wood flooring or paper industry.
  • component (B) employed according to the invention are wood wastes, for example bark, sawdust or lumber which must merely be selected with regard to color and particle size to influence the desired properties of the moldings to be produced therefrom.
  • wood is employed as component (B) it is preferably selected from wood fibers or wood flour, more preferably compacted wood flour, and in particular compacted wood flour having a particle size of 150 ⁇ m to 500 ⁇ m.
  • the water content thereof is preferably 6% to 8% by weight but may be reduced by drying to a preferred range from 0.5% to 2.0% by weight.
  • the wood to be used may optionally be comminuted into powder by grinding in ball mills or the like.
  • the proportion of the organic fibers (B) in the mixture according to the invention is preferably between 30% and 90% by weight, more preferably between 45% and 85% by weight, and in particular between 50% and 70% by weight.
  • the polymers (C) according to the invention may be any desired optionally substituted polymers known to date whose polymer backbone consists of carbon-carbon bonds.
  • Component (C) is preferably selected from optionally chlorine-, alkyl-, alkyl-carboxylate-, nitrile- or phenyl-substituted polyolefins, more preferably optionally chlorine- or methyl-substituted polyalkylenes.
  • Preferred monomers for producing component (C) are ethylene, propylene, vinyl chloride, vinyl acetate, methyl methacrylate, acrylonitrile, styrene, 1-butene, 1-hexene, 1-octene or butadiene or mixtures thereof, more preferably ethylene, propylene or vinyl chloride.
  • polymers (C) employed according to the invention are polyolefins, for example polyethylenes of low and high density (LDPE, LLDPE, HDPE), homo- and copolymers of propylene with for example ethylene, butene, hexene and octene (PP), olefin copolymers such as for example ethylene-methyl acrylate copolymer (EMA), polymethacrylates such as polymethyl methacrylate (PMMA), also polyvinylchloride (PVC) and polystyrenes (PS, HIPS, EPS) and styrene copolymers, for example polymers of acrylonitrile-butadiene-styrene (ABS), acrylic ester-acrylonitrile-styrene (ASA) and acrylonitrile-styrene (SAN), polymers of acrylonitrile-butadiene-methyl methacrylate-styrene (MABS), acrylonitrile-methyl methacryl
  • the polyolefins (C) employed according to the invention are preferably HDPE or polypropylene, more preferably polypropylene.
  • the substituted polyolefins (C) employed according to the invention are preferably polyvinylchloride (PVC) or polymethyl methacrylate, more preferably PVC.
  • the organic polymers (C) employed according to the invention are preferably thermoplastic, i.e. the temperature at which the loss factor (G′′/G′) according to DIN EN ISO 6721-2:2008 assumes the value 1 is preferably at least 40° C., more preferably at least 100° C.
  • the organic polymers (C) employed according to the invention preferably have an E-modulus (according to ISO 527) of greater than 1000 MPa.
  • the polymeric structure of the organic polymers (C) may be linear or branched.
  • the type of the organic polymers (C) employed substantially determines the processing temperature of the mixture according to the invention.
  • the proportion of the organic polymers (C) in the mixture according to the invention is preferably 10% to 70% by weight, more preferably 15% to 55% by weight, and most preferably 30% to 50% by weight.
  • the component (C) employed according to the invention is selected from products which are commercially available or can be produced by processes commonly used in chemistry.
  • component (C) it is preferable when both unsubstituted polyolefins and substituted polyolefins are employed as component (C). It is more preferable when a portion of the component (C) employed according to the invention is selected from polyolefins whose polymer backbone is partly substituted with acid anhydride groups, most preferably selected from polyolefins partly bearing maleic anhydride or succinic anhydride groups. Examples thereof are commercially available products of the Lotader®- and Orevac® product lines from ARKEMA SA (Colombes, France), products of the ADMER® family from Mitsui&Co Kunststoff GmbH (Düsseldorf, Germany) or products of the SCONA® product range from BYK Kometra GmbH (Schkopau, Germany).
  • acid-anhydride-substituted polyolefins are employed, then these are preferably employed in amounts from 0.1% by weight to 5% by weight, more preferably in amounts of 0.5% by weight to 3% by weight and most preferably in amounts of 1% by weight to 2.5% by weight, in each case based on the total weight of the mixture according to the invention.
  • the mixtures according to the invention may also contain further substances, for example inorganic fibers (D), flame retardants (E), biocides (F), pigments (G), UV absorbers (H) and HALS stabilizers (I).
  • inorganic fibers D
  • flame retardants E
  • biocides F
  • pigments G
  • UV absorbers H
  • HALS stabilizers I
  • inorganic fibers (D) optionally employed according to the invention are glass fibers, basalt fibers or wollastonite, wherein glass fibers are preferred.
  • inorganic fibers (D) are employed, amounts are preferably 1% to 30% by weight, more preferably 5% to 15% by weight.
  • the mixtures according to the invention preferably do not contain any component (D).
  • flame retardants (E) optionally employed according to the invention are organic flame retardants based on halogenated organic compounds or inorganic flame retardants, for example aluminum hydroxide (ATH) or magnesium hydroxide.
  • flame retardants (E) are employed inorganic flame retardants such as ATH are preferred.
  • biocides (F) optionally employed according to the invention are inorganic fungicides, such as borate, for example zinc borate, or organic fungicides, for example thiabendazole.
  • pigments (G) optionally employed according to the invention are organic pigments or inorganic pigments, for example iron oxide or titanium dioxide. When pigments (G) are employed, amounts are preferably 0.2% to 7% by weight, more preferably 0.5% to 3% by weight. It is preferable when pigments (G) are employed, in particular in the form of a premixture with component (C).
  • UV absorbers (H) optionally employed according to the invention are benzophenones, benzotriazoles or triazines. When UV absorbers (H) are employed benzotriazoles and triazines are preferred.
  • HALS stabilizers (I) optionally employed according to the invention are for example piperidine or piperidyl derivatives and are available inter alia under the brand name Tinuvin (BASF, Ludwigshafen, Germany).
  • mixtures according to the invention are preferably those containing
  • mixtures according to the invention are more preferably those containing
  • mixtures according to the invention preferably do not contain any further constituents beyond the components (A) to (I).
  • the individual constituents of the mixtures according to the invention may in each case be one type of such a constituent or else a mixture of at least two different types of such constituents.
  • the mixtures according to the invention may be produced by any desired processes known to date, for example mixing of the components in any desired sequence. Mixers or kneaders or extruders of the prior art may be used to this end.
  • the present invention further provides a process for producing the mixtures according to the invention by mixing the components (A), (B) and (C) and also optionally further components, preferably selected from the components (D) to (I), in any desired sequence.
  • the process according to the invention may be carried out in the presence or absence of solvent, wherein solvent-free production is preferred.
  • the process according to the invention may be performed continuously, discontinuously or semicontinuously, but preferably continuously.
  • the process according to the invention is preferably performed in continuously operated kneaders or mixers or extruders, wherein the individual components to be mixed according to the invention are each continuously supplied to the mixing apparatus by gravimetric or volumetric means either in pure form or as a premixture.
  • Components present in the overall mixture in a proportion of less than 1% by weight are preferably supplied as a premixture in one of the components having a greater proportion.
  • the temperatures at which the process according to the invention is performed depend primarily on the employed components and are known to the person skilled in the art, with the proviso that they are below the specific decomposition temperatures of the individual components employed.
  • the process according to the invention is preferably performed at temperatures below 250° C., more preferably in the range from 150° C. to 220° C.
  • the process according to the invention is preferably performed at the pressure of the ambient atmosphere, i.e. between 900 and 1100 hPa.
  • the pressure is for example markedly greater than 1000 hPa in different regions of the kneader, mixer or extruder employed.
  • component (A) is employed in a so-called masterbatch as a premixture with a portion of the organic polymer (C) and optionally one or more of the components (D) to (I).
  • This premixture is preferably produced by mixing the components (A), (C) and optionally one or more of components (D) to (I) at temperatures between 140° C. and 230° C., wherein the mixing may be performed continuously, discontinuously or semicontinuously.
  • the mixing operation may employ mixers, kneaders or extruders of the prior art.
  • the mixing of the components (A) and (C) is preferably performed continuously in an extruder or kneader of the prior art.
  • This premixture preferably contains the copolymer (A) in an amount between 5% and 35% by weight, more preferably between 10% and 30% by weight, and most preferably between 15% and 25% by weight, in each case based on the weight of the premixture.
  • the premixture produced according to the invention is preferably present in granulate form or in powder form, but most preferably in granulate form.
  • the granulate may also be processed into a powder by mechanical grinding or may be obtained as a microgranulate by means of a corresponding granulation plant.
  • the thus obtained premixture is then preferably continuously conveyed into a heatable mixer with the remaining portions of the component (C), component (F) and optionally one or more of the components (D) to (I).
  • Components may be added to the mixer separately or may be added together.
  • the mixing/homogenizing of the individual components is then preferably carried out at temperatures of 150° C. to 210° C., more preferably at 180° C. to 210° C.
  • the composition according to the invention is then preferably discharged from the reactor via a nozzle as a hot, high-viscosity melt.
  • the material is cooled with a cooling medium and subsequently comminuted/granulated after emerging.
  • the cooling of the material and the granulating may be performed simultaneously via a underwater granulation or successively.
  • Preferred cooling media employed are water or air.
  • Preferred processes for granulation are underwater granulation, granulation by air cutting and strand granulation.
  • the obtained granulates have a weight of preferably less than 0.5 g, more preferably less than 0.25 g, and in particular less than 0.125 g.
  • the granulates obtained according to the invention are preferably cylindrical or spherical.
  • the thus obtained granulates may be extruded to afford a molded article, preferably a profile, by means of a further thermoplastic processing operation.
  • the compositions according to the invention are continuously conveyed into a kneader or extruder of the prior art in the form of a granulate, heated and plasticized in this kneader or extruder by the action of temperature and subsequently pressed through a nozzle which confers the desired profile shape.
  • a nozzle which confers the desired profile shape.
  • the invention further provides molded articles produced by extrusion of the mixtures according to the invention.
  • composition according to the invention is immediately continuously extruded via an appropriate nozzle as a profile which may then likewise be cut to length/cut to size.
  • composition according to the invention may employ mixers or kneaders or extruders of the prior art.
  • the obtained mixtures are preferably thermoplastic, i.e. the temperature at which the loss factor (G′′/G′) according to DIN EN ISO 6721-2:2008 assumes the value 1 is preferably at least 40° C., more preferably at least 100° C.
  • the obtained mixtures preferably have an E-modulus (according to ISO 527) of greater than 1000 MPa.
  • the mixtures according to the invention exhibit exceptional properties in terms of stiffness and a low water absorption, as a result of which the mixtures may especially be employed in exterior applications.
  • Preferred applications of the polymer mixtures according to the invention are uses as a constituent of profiles in the construction sector or as a compound for automobile interior applications.
  • compositions according to the invention have the advantage that they are simple to produce.
  • compositions according to the invention further have the advantage that they have a low water absorption.
  • compositions according to the invention have the advantage that the mechanical properties of the finished mixture are improved through the addition of the siloxane-containing component (A).
  • the process according to the invention has the advantage that even at higher contents of organic fibres mechanical abrasion of the metallic mixer/extruder elements is strongly reduced.
  • Polymer C1 polypropylene having a melting point of 163° C. (commercially available as “PP HC205TF” from Borealis AG, Vienna, Austria);
  • Copolymer A1 amorphous urea-siloxane copolymer (commercially available as GENIOMER® 345 from Wacker Chemie AG, Kunststoff, Germany); the temperature at which the loss factor (G′′/G′) according to ISO 6721-10 assumes the value 1 is 184° C. (measurement frequency 1 Hz, deformation 0.1%). The loss factor at 190° C. is 1.13; Copolymer A2: semicrystalline urea-siloxane copolymer having a melting point of 161° C.
  • the temperature at which the loss factor (G′′/G′) according to ISO 6721-10 assumes the value 1 is 163.5° C. (measurement frequency 1 Hz, deformation 0.1%).
  • Polymer A3 amorphous silicone-containing additive based on a linear polydimethylsiloxane (commercially available as GENIOPLAST® Pellet P from Wacker Chemie AG, Kunststoff, Germany); PPA1: stearate-based processing aid (commercially available as “PHX369” from Chemson Polymer-Additive AG, Arnoldstein, Austria); Fibre B1: wood fibers (commercially available as Lignocell C320 from JRS Rettenmaier & Söhne GmbH and Co.
  • Polymer C2 maleic-anhydride-functionalized polypropylene (commercially available as “Scona TPPP 8112 FA” from BYK Kometra GmbH, Schkopau, Germany); Pigment 1: titanium dioxide (commercially available as “Titandioxid K 2450” from Kronos International, Leverkusen, Germany); Pigment 2: iron oxide (commercially available as Bayferrox® 360 from Lanxess, Leverkusen, Germany).
  • Wood fiber compounds were produced with the components recited in table 1 in the amounts reported therein (in kilograms in each case). The reported components were in each case independently of one another gravimetrically metered into zone 1 of a ZSK 26 Mc corotating twin-screw kneader from Coperion (Stuttgart, Germany). The temperature of zone 1 was 195° C., the temperature of zone 2 was 190° C., the temperature of zone 3 was 190° C., the temperature of zone 4 was 185° C. and the temperature of zone 5 was likewise 185° C. The nozzle temperature was 190° C.
  • the obtained polymer melt was granulated using a plant for underwater granulation from Econ (Weissön/Traun, Austria) at a cooling water temperature of 18° C.
  • the discharge rate of the polymer mixture was 15 kg/h.
  • the polymer mixtures obtained in examples 3-12 were gravimetrically metered into zone 1 of a counterrotating twin-screw extruder (battenfeld multiplinnati Austria, Fiberex K38) at 20 kg/h.
  • the temperature of zone 1 was 195° C.
  • the temperature of zone 2 was 170° C.
  • the temperature of zone 3 was 180° C.
  • the temperature of zone 4 was 180° C.
  • the temperature of zone 5 was likewise 180° C.
  • the nozzle temperature was 190° C.
  • the extruder speed was 20 rpm.
  • the melt temperature was in each case about 190° C. After emerging from the nozzle the obtained polymer melt was extruded as a profile having a width of 80 mm and a height of 25 mm, cooled to 32° C. on a cooling belt and cut to size.
  • Wood fiber compounds were produced with the components recited in table 3 in the amounts reported therein (in kilograms in each case). The reported components were in each case independently of one another gravimetrically metered into zone 1 of a ZSK 26 Mc corotating twin-screw kneader from Coperion (Stuttgart, Germany). The temperature of zone 1 was 195° C., the temperature of zone 2 was 190° C., the temperature of zone 3 was 190° C., the temperature of zone 4 was 185° C. and the temperature of zone 5 was likewise 185° C. The nozzle temperature was 190° C.
  • the obtained polymer melt was granulated using a plant for underwater granulation from Econ (Weissön/Traun, Austria) at a cooling water temperature of 18° C.
  • the discharge rate of the polymer mixture was 15 kg/h.
  • the polymer mixtures obtained in examples 23-28 were gravimetrically metered into zone 1 of a counterrotating twin-screw extruder (battenfeld multiplinnati Austria, Fiberex K38) at 20 kg/h.
  • the temperature of zone 1 was 195° C.
  • the temperature of zone 2 was 170° C.
  • the temperature of zone 3 was 180° C.
  • the temperature of zone 4 was 180° C.
  • the temperature of zone 5 was likewise 180° C.
  • the nozzle temperature was 190° C.
  • the extruder speed was 20 rpm.
  • the melt temperature was in each case about 190° C. After emerging from the nozzle the obtained polymer melt was extruded as a colored profile having a width of 80 mm and a height of 25 mm, cooled to 32° C. on a cooling belt and cut to size.
  • the flexural properties were each determined according to EN ISO 178.
  • the test velocity was 3 mm/min, the number of measured specimens was 6, the specimen size was 80 mm ⁇ 10 mm ⁇ 4 mm.
  • the Charpy impact strength (unnotched) was determined according to EN ISO 179.
  • the pendulum had an impact energy of 0.5 J.
  • the number of measured specimens was 10.
  • the specimen size was 80 mm ⁇ 10 mm ⁇ 4 mm.
  • inventive examples 4 and 5 and 6/14, 15 and 16/25 to 28 are the only polymer/natural fiber compounds which exhibit a strong reduction in power consumption during extrusion while simultaneously maintaining low water absorption and acceptable mechanical parameters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
US15/768,354 2015-10-30 2016-10-25 Mixtures containing plastic and organic fibres Active US10920079B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102015221364 2015-10-30
DE102015221364.1A DE102015221364A1 (de) 2015-10-30 2015-10-30 Mischungen enthaltend Kunststoffe und organische Fasern
DE102015221364.1 2015-10-30
PCT/EP2016/075613 WO2017072096A1 (de) 2015-10-30 2016-10-25 Mischungen enthaltend kunststoffe und organische fasern

Publications (2)

Publication Number Publication Date
US20180312695A1 US20180312695A1 (en) 2018-11-01
US10920079B2 true US10920079B2 (en) 2021-02-16

Family

ID=57200013

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/768,354 Active US10920079B2 (en) 2015-10-30 2016-10-25 Mixtures containing plastic and organic fibres

Country Status (7)

Country Link
US (1) US10920079B2 (ja)
EP (1) EP3368610B1 (ja)
JP (1) JP6698834B2 (ja)
KR (1) KR102030101B1 (ja)
CN (1) CN108026374A (ja)
DE (1) DE102015221364A1 (ja)
WO (1) WO2017072096A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3892441A1 (de) 2020-04-07 2021-10-13 Entex Rust & Mitschke GmbH Nachrüstung für eine extruderanlage
KR20230091988A (ko) * 2020-12-18 2023-06-23 와커 헤미 아게 옥사미드-작용성 실록산 및 유기 섬유를 함유하는 혼합물
CN113234329A (zh) * 2021-06-16 2021-08-10 东北林业大学 一种玄武岩纤维增强的阻燃型木塑复合材料的制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250248A2 (en) 1986-06-20 1987-12-23 Minnesota Mining And Manufacturing Company Block copolymer, method of making the same, diamine precursors of the same method, method of making such diamines and end products comprising the block copolymer
EP0822951B1 (en) 1995-04-25 2002-09-04 Minnesota Mining And Manufacturing Company Polydiorganosiloxane polyurea segmented copolymers and a process for making same
DE10137855A1 (de) 2001-08-02 2003-02-27 Consortium Elektrochem Ind Organopolysiloxan/Polyharnstoff/ Polyurethan-Blockcopolymere
JP2003247173A (ja) 2002-02-14 2003-09-05 Wacker Chemie Gmbh テキスタイル形成物および繊維、糸および編織布のための被覆材料もしくは仕上材料としてのブロックコポリマーの使用
US20040254268A1 (en) 2003-06-11 2004-12-16 3M Innovative Properties Company Compositions and method for improving the processing of polymer composites
US20040254325A1 (en) 2003-06-12 2004-12-16 Wacker-Chemie Gmbh Organopolysiloxane/polyurea/polyurethane block copolymers
US20060100340A1 (en) * 2004-11-05 2006-05-11 Howard Gao Polymer and water repellent compositions for wood product dimensional stability
WO2008088733A2 (en) * 2007-01-12 2008-07-24 Dow Corning Corporation Silicone-containing composition
US20080318065A1 (en) * 2007-06-22 2008-12-25 Sherman Audrey A Mixtures of polydiorganosiloxane polyamide-containing components and organic polymers
US20110009572A1 (en) * 2008-02-29 2011-01-13 Wacker Chemie Ag Polymer blends containing polydiorganosiloxane urea copolymers
US20130022807A1 (en) * 2010-03-26 2013-01-24 Igor Chorvath Preparation Of Lignocellulosic Products
WO2013188076A1 (en) * 2012-06-11 2013-12-19 3M Innovative Properties Company Melt-processable compositions having silicone-containing polymeric process additive and synergist
US20140275355A1 (en) * 2013-03-15 2014-09-18 Solazyme, Inc. Wood plastic and thermoplastic composites
JP2015063607A (ja) 2013-09-25 2015-04-09 日立化成株式会社 有機繊維基材を用いたプリプレグ、及びそれを用いた積層板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103146211B (zh) * 2013-03-07 2015-06-17 江西省科学院应用化学研究所 一种用于增强的木粉、硅氧烷封端的有机硅嵌段聚氨酯弹性体制备方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250248A2 (en) 1986-06-20 1987-12-23 Minnesota Mining And Manufacturing Company Block copolymer, method of making the same, diamine precursors of the same method, method of making such diamines and end products comprising the block copolymer
EP0822951B1 (en) 1995-04-25 2002-09-04 Minnesota Mining And Manufacturing Company Polydiorganosiloxane polyurea segmented copolymers and a process for making same
DE10137855A1 (de) 2001-08-02 2003-02-27 Consortium Elektrochem Ind Organopolysiloxan/Polyharnstoff/ Polyurethan-Blockcopolymere
US20040210024A1 (en) 2001-08-02 2004-10-21 Oliver Schafer Organopolysiloxane/polyurea/polyurethane block copolymers
JP2003247173A (ja) 2002-02-14 2003-09-05 Wacker Chemie Gmbh テキスタイル形成物および繊維、糸および編織布のための被覆材料もしくは仕上材料としてのブロックコポリマーの使用
US20030176613A1 (en) 2002-02-14 2003-09-18 Thomas Hohberg Textile structures comprising organopolysiloxane polyurea-polyurethane block copolymer
JP2007502355A (ja) 2003-06-11 2007-02-08 スリーエム イノベイティブ プロパティズ カンパニー ポリマー複合材料の加工を改善するための組成物および方法
US20040254268A1 (en) 2003-06-11 2004-12-16 3M Innovative Properties Company Compositions and method for improving the processing of polymer composites
US20040254325A1 (en) 2003-06-12 2004-12-16 Wacker-Chemie Gmbh Organopolysiloxane/polyurea/polyurethane block copolymers
EP1489129A1 (de) 2003-06-12 2004-12-22 Wacker-Chemie GmbH Organopolysiloxan/Polyharnstoff/Polyurethan-Blockcopolymere
US20060100340A1 (en) * 2004-11-05 2006-05-11 Howard Gao Polymer and water repellent compositions for wood product dimensional stability
WO2008088733A2 (en) * 2007-01-12 2008-07-24 Dow Corning Corporation Silicone-containing composition
US20080318065A1 (en) * 2007-06-22 2008-12-25 Sherman Audrey A Mixtures of polydiorganosiloxane polyamide-containing components and organic polymers
US20110009572A1 (en) * 2008-02-29 2011-01-13 Wacker Chemie Ag Polymer blends containing polydiorganosiloxane urea copolymers
US20130022807A1 (en) * 2010-03-26 2013-01-24 Igor Chorvath Preparation Of Lignocellulosic Products
WO2013188076A1 (en) * 2012-06-11 2013-12-19 3M Innovative Properties Company Melt-processable compositions having silicone-containing polymeric process additive and synergist
CN104685001A (zh) 2012-06-11 2015-06-03 3M创新有限公司 具有含有机硅的聚合物加工助剂和增效剂的可熔融加工的组合物
US20150175786A1 (en) 2012-06-11 2015-06-25 3M Innovative Properties Company Melt-processable compositions having silicone-containing polymeric process additive and synergist
US20140275355A1 (en) * 2013-03-15 2014-09-18 Solazyme, Inc. Wood plastic and thermoplastic composites
JP2015063607A (ja) 2013-09-25 2015-04-09 日立化成株式会社 有機繊維基材を用いたプリプレグ、及びそれを用いた積層板

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
English-language machine translation of JP2015063607, performed on Espacenet on Feb. 4, 2020. *
Hans-Georg Elias & Rolf Mulhaupt, "Plastics, General Survey, 3. Supermolecular Structures," in Ullmann's Encyclopedia of Industrial Chemistry, 17 pages, published online 2015. *
Properties and Quantitative Characterization for Polymer Composites_and_English_Abstract, ISBN 978-7-5623-41-5-5, (2013) 4 pages.
SciFinder Scholar entry for CAS Registry No. 1309649-67-9-silicone rubber, polyurea, two pages, accessed on Jul. 31, 2019. *
SciFinder Scholar entry for CAS Registry No. 1309649-67-9—silicone rubber, polyurea, two pages, accessed on Jul. 31, 2019. *
Velichko Hristov et al, "Thermoplastic Silicone Elastomer Lubricant in Extrusion of Polypropylene Wood Flour Composites", Advances in Polymer Technology, vol. 26, Issue 2, pp. 100-108.
Velichko Hristov, John Vlachopoulos, Advances in Polymer Technology, vol. 26, No. 2, p. 100-108, Jun. 7, 2007, Canada.

Also Published As

Publication number Publication date
KR102030101B1 (ko) 2019-10-08
WO2017072096A1 (de) 2017-05-04
JP2018532021A (ja) 2018-11-01
EP3368610A1 (de) 2018-09-05
DE102015221364A1 (de) 2017-05-04
JP6698834B2 (ja) 2020-05-27
EP3368610B1 (de) 2019-07-24
KR20180054765A (ko) 2018-05-24
CN108026374A (zh) 2018-05-11
US20180312695A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US8455574B2 (en) Composite compositions comprising cellulose and polymeric components
US10920079B2 (en) Mixtures containing plastic and organic fibres
Rowell Advances and challenges of wood polymer composites
JP2006232937A (ja) ポリアセタール樹脂組成物およびそれからなる成形品
CA2563673A1 (en) Method for improving mechanical properties of pvc-wood and other natural fiber composites using pvc stabilizers
CN115916873B (zh) 含有草酰胺官能化硅氧烷的组合物
US20230348702A1 (en) Compositions which have polyester-polysiloxane copolymers
EP4263713B1 (de) Mischungen enthaltend oxamidfunktionelle siloxane und organische fasern
JP7362897B2 (ja) 分岐ポリエステルシロキサン
US20210171738A1 (en) Cellulosic Composites Comprising Wood Pulp
Nandi et al. Effect of concentration of coupling agent on mechanical properties of coir–polypropylene composite
WO2018010782A1 (de) Siloxan-organo-copolymere enthaltende polymerzusammensetzungen
US20120130001A1 (en) Modified cellulose fibers, production and use thereof
CN112654679B (zh) 烯基官能化聚二有机硅氧烷组合物及其在形成木塑复合材料中的使用方法
CN112654673B (zh) 包含液体聚有机硅氧烷的固体载体组分及制备和使用该固体载体组分的方法
Khongrit Wood composite based on crosslinked polypropylene

Legal Events

Date Code Title Description
AS Assignment

Owner name: WACKER CHEMIE AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHAEFER, OLIVER;RANDEL, PETER;SIGNING DATES FROM 20161220 TO 20170110;REEL/FRAME:045536/0948

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCF Information on status: patent grant

Free format text: PATENTED CASE