US10659019B2 - Nanosecond pulser ADC system - Google Patents

Nanosecond pulser ADC system Download PDF

Info

Publication number
US10659019B2
US10659019B2 US16/525,357 US201916525357A US10659019B2 US 10659019 B2 US10659019 B2 US 10659019B2 US 201916525357 A US201916525357 A US 201916525357A US 10659019 B2 US10659019 B2 US 10659019B2
Authority
US
United States
Prior art keywords
pulser
nanosecond pulser
nanosecond
pulses
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/525,357
Other versions
US20200036367A1 (en
Inventor
Ilia Slobodov
John Carscadden
Kenneth Miller
Timothy Ziemba
Huatsern Yeager
Eric Hanson
TaiSheng Yeager
Kevin Muggli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Harbor Technologies Inc
Original Assignee
Eagle Harbor Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/525,357 priority Critical patent/US10659019B2/en
Application filed by Eagle Harbor Technologies Inc filed Critical Eagle Harbor Technologies Inc
Assigned to Eagle Harbor Technologies, Inc. reassignment Eagle Harbor Technologies, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZIEMBA, TIMOTHY, CARSCADDEN, JOHN, HANSON, ERIC, MILLER, KENNETH, MUGGLI, Kevin, SLOBODOV, ILIA, YEAGER, Huatsern, YEAGER, Taisheng
Publication of US20200036367A1 publication Critical patent/US20200036367A1/en
Priority to US16/779,270 priority patent/US10903047B2/en
Priority to US16/848,830 priority patent/US11101108B2/en
Publication of US10659019B2 publication Critical patent/US10659019B2/en
Application granted granted Critical
Priority to US16/937,948 priority patent/US11430635B2/en
Priority to US17/234,773 priority patent/US11532457B2/en
Priority to US17/366,000 priority patent/US11824454B2/en
Priority to US17/411,028 priority patent/US11810761B2/en
Priority to US18/451,094 priority patent/US20240048056A1/en
Priority to US18/493,515 priority patent/US20240234090A9/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32146Amplitude modulation, includes pulsing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32128Radio frequency generated discharge using particular waveforms, e.g. polarised waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20154Heat dissipaters coupled to components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20172Fan mounting or fan specifications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20281Thermal management, e.g. liquid flow control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20509Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • Some embodiments include a nanosecond pulser comprising: a plurality of switches; one or more transformers; an output configured to output high voltage waveforms with a amplitude greater than 5 kV and a frequency greater than 1 kHz; and an ADC control module that sensors the output waveform.
  • the nanosecond pulser system may include a nanosecond pulser, a pulser output, and a control system.
  • the nanosecond pulser comprises: a pulser input; a high voltage DC power supply; one or more solid-state switches coupled with the high voltage DC power supply and the pulser input, the one or more solid-state switches switching the high voltage DC power supply based on input pulses provided by the pulser input; one or more transformers coupled with the one or more switches; and a pulser output coupled with the one or more transformers that outputs a high voltage waveform with an amplitude greater than about 2 kV and a pulse repetition frequency greater than about 1 kHz based on the pulser input.
  • the control system may be coupled with the nanosecond pulser at a measurement point, the control system providing the input pulses to the pulser input.
  • the measurement point comprises a point between the transformer and the pulser output.
  • the nanosecond pulser system further comprises an electrode coupled with the pulser output; and the measurement point is at the electrode.
  • control system measures the voltage at the measurement point, and adjusts the voltage, pulse repetition frequency, or duty cycle of the input pulses based on the measured voltage.
  • control system measures the pulse repetition frequency at the measurement point, and adjusts the pulse repetition frequency of the input pulses based on the measured pulsed repetition frequency.
  • the input pulses include a first burst comprising a first plurality of low voltage pulses, each of the first plurality of low voltage pulses having a first pulse width; the input pulses include a second burst comprising a second plurality of low voltage pulses each of the second plurality of low voltage pulses having a second pulse width; and the second pulse width is greater than the first pulse width.
  • control system receives input data specifying a voltage and a pulse repetition frequency corresponding to an desired high voltage waveform; compares an output pulser waveform measured at the measurement point with the desired high voltage waveform; and determines adjustments to the pulser input to produce the desired high voltage waveform.
  • control system includes a voltage divider that reduces the high voltage waveform by a factor of 1000.
  • control system includes an analog to digital converter that converts the measured high voltage waveform into a digital signal.
  • the nano second pulser system includes a metal shielding disposed between the nanosecond pulser and the control system.
  • the nanosecond pulser comprises a resistive output stage, and wherein the measurement point is across a resistor in the resistive output stage.
  • a nanosecond pulser system is disclosed.
  • the nanosecond pulser system may include a nanosecond pulser
  • a nanosecond pulser having a pulser output that outputs a high voltage waveform that includes a plurality of bursts where each burst comprises a plurality of pulses with an amplitude greater than 2 kV and a pulse repetition frequency greater than 1 kHz;
  • control system that controls a number of characteristics of the high voltage waveform in real-time including the number of pulses in each burst, a pulse repetition frequency, a pulse width, and a pulse voltage.
  • the pulser system controls at least one characteristics of the high voltage waveform with a resolution of less than about 1 ⁇ s.
  • the pulser system controls at the period between pulses with an accuracy less than about 10 ⁇ s.
  • control system controls the number of characteristics of the high voltage waveform in response to a plasma processing recipe.
  • the plasma processing recipe comprises a plurality of stages and each stage is associated with an ion current, a chamber pressure, and a gas mixture.
  • the plasma processing recipe corresponds with an electric field or voltage at a wafer surface.
  • the high voltage waveform includes a first burst comprising a first plurality of pulses, each of the first plurality of pulses having a first pulse width; the high voltage waveform includes a second burst comprising a second plurality of pulses each of the second plurality of pulses having a second pulse width; and the second pulse width is greater than the first pulse width.
  • the nanosecond pulser comprises a transformer and the output that outputs the high voltage waveform; and the control system is coupled with the nanosecond pulser at a point between the transformer and the pulser output.
  • control system comprises a voltage divider and a fast analog to digital converter.
  • Some embodiments include a nanosecond pulser system comprising a nanosecond pulser having a pulser output that outputs pulses with an amplitude greater than 2 kV and a pulse repetition frequency greater than 1 kHz; a plurality of sensors that measure an environmental characteristic of the nanosecond pulser system and each of the plurality of sensors provide a sensor signal representing a respective environmental characteristic; a sensor that provides an electronic sensor signal representing a physical characteristic of the nanosecond pulser system; and an interlock electrically coupled with the sensor and the nanosecond pulser that stops operation of the nanosecond pulser in the event the electronic sensor signal is above a first threshold.
  • the nanosecond pulser system may also include a control module electrically coupled with the sensor that stops operation of the nanosecond pulser in the event the electronic sensor signal is above a second threshold, the second threshold being different than the first threshold.
  • the nanosecond pulser system may also include a liquid cooling subsystem.
  • the sensors comprises a liquid flow sensor disposed within the liquid cooling subsystem; the first threshold comprises a first flow rate; and the second threshold comprises a second flow rate that is greater than the first flow rate.
  • the nanosecond pulser system may also include a cooling subsystem.
  • one of the sensor comprises a temperature sensor disposed within the cooling subsystem; the first threshold comprises a first temperature; and the second threshold comprises a second temperature that is less than the first temperature.
  • the nanosecond pulser system may also include a cooling subsystem that includes a liquid coolant; and a temperature sensor that measures the temperature of the liquid coolant.
  • FIG. 1 is a circuit diagram of a nanosecond pulser according to some embodiments.
  • FIG. 2 shows example waveforms produced by the nanosecond pulser.
  • FIG. 3 is a circuit diagram of a nanosecond pulser system with a pulser and transformer stage and an energy recovery circuit according to some embodiments.
  • FIG. 4 is a block diagram of an control system for a nanosecond pulser according to some embodiments.
  • FIG. 5 is a block diagram of a flowchart of process according to some embodiments.
  • FIG. 6 shows an illustrative computational system for performing functionality to facilitate implementation of embodiments described herein.
  • Some embodiments include a high voltage nanosecond pulser system with an control system.
  • the control system can monitor and/or measure and/or record waveforms produce by the high voltage nanosecond pulser.
  • the control system may monitor the output waveforms produced by the high voltage nanosecond pulser system.
  • the control system may perform waveform digitization and/or waveform processing.
  • a high voltage nanosecond pulser system may pulse voltages with amplitudes of about 2 kV to about 40 kV. In some embodiments, a high voltage nanosecond pulser system may switch with frequencies up to about 500 kHz. In some embodiments, a high voltage nanosecond pulser system may provide single pulses of varying pulse widths from about 50 seconds to about 1 nanosecond. In some embodiments, a high voltage nanosecond pulser system may switch at pulse repetition frequencies greater than about 10 kHz. In some embodiments, a high voltage nanosecond pulser system may operate with rise times less than about 20 ns.
  • FIG. 1 is a circuit diagram of a nanosecond pulser system 100 according to some embodiments.
  • the nanosecond pulser system 100 can be implemented within a high voltage nanosecond pulser system.
  • the nanosecond pulser system 100 can be generalized into five stages (these stages could be broken down into other stages or generalized into fewer stages and/or may or may not include the components shown in the figure).
  • the nanosecond pulser system 100 includes a pulser and transformer stage 101 , a resistive output stage 102 , a lead stage 103 , a DC bias compensation circuit 104 , and a load stage 106 .
  • the nanosecond pulser system 100 can produce pulses from the power supply with voltages greater than 2 kV, with rise times less than about 20 ns, and frequencies greater than about 10 kHz.
  • the pulser and transformer stage 101 can produce a plurality of high voltage pulses with a high frequency and fast rise times and fall times.
  • the high voltage pulser may comprise a nanosecond pulser.
  • the pulser and transformer stage 101 can include one or more solid state switches S 1 (e.g., solid state switches such as, for example, IGBTs, a MOSFETs, a SiC MOSFETs, SiC junction transistors, FETs, SiC switches, GaN switches, photoconductive switches, etc.), one or more snubber resistors R 3 , one or more snubber diodes D 4 , one or more snubber capacitors C 5 , and/or one or more freewheeling diodes D 2 .
  • One or more switches and or circuits can be arranged in parallel or series.
  • the load stage 106 may represent an effective circuit for a plasma deposition system, plasma etch system, or plasma sputtering system.
  • the capacitance C 2 may represent the capacitance of the dielectric material upon which a wafer may sit or capacitance C 2 may represent the capacitance between an electrode and a wafer which are separated by a dielectric material.
  • the capacitor C 3 may represent the sheath capacitance of the plasma to the wafer.
  • the capacitor C 9 may represent capacitance within the plasma between a chamber wall and the top surface of the wafer.
  • the current source 12 and the current source I 1 may represent the ion current through the plasma sheaths.
  • the resistive output stage 102 may include one or more inductive elements represented by inductor L 1 and/or inductor L 5 .
  • the inductor L 5 may represent the stray inductance of the leads in the resistive output stage 102 .
  • Inductor L 1 may be set to minimize the power that flows directly from the pulser and transformer stage 101 into resistor R 1 .
  • the resistor R 1 may dissipate charge from the load stage 106 , for example, on fast time scales (e.g., 1 ns, 10 ns, 50 ns, 100 ns, 250 ns, 500 ns, 1,000 ns, etc. time scales).
  • the resistance of resistor R 1 may be low to ensure the pulse across the load stage 106 has a fast fall time t f .
  • the resistor R 1 may include a plurality of resistors arranged in series and/or parallel.
  • the capacitor C 11 may represent the stray capacitance of the resistor R 1 including the capacitance of the arrangement series and/or parallel resistors.
  • the capacitance of stray capacitance C 11 may be less than 5 nF, 2 nF, 1 nF, 500 pF, 250 pF, 100 pF, 50 pF, 10 pF, 1 pF, etc.
  • the capacitance of stray capacitance C 11 may be less than the load capacitance such as, for example, less than the capacitance of C 2 , C 3 , and/or C 9 .
  • a plurality of pulser and transformer stages 101 can be arranged in parallel and coupled with the resistive output stage 102 across the inductor L 1 and/or the resistor R 1 .
  • Each of the plurality of pulser and transformer stages 101 may each also include diode D 1 and/or diode D 6 .
  • the capacitor C 8 may represent the stray capacitance of the blocking diode D 1 . In some embodiments, the capacitor C 4 may represent the stray capacitance of the diode D 6 .
  • the DC bias compensation circuit 104 may include a DC voltage source V 1 that can be used to bias the output voltage either positively or negatively.
  • the capacitor C 12 isolates/separates the DC bias voltage from the resistive output stage and other circuit elements. It allows for a potential shift from one portion of the circuit to another. In some applications the potential shift it establishes is used to hold a wafer in place.
  • Resistance R 2 may protect/isolate the DC bias supply from the high voltage pulsed output from the pulser and transformer stage 101 .
  • the DC bias compensation circuit 104 is a passive bias compensation circuit and can include a bias compensation diode D 1 and a bias compensation capacitor C 15 .
  • the bias compensation diode C 15 can be arranged in series with offset supply voltage V 1 .
  • the bias compensation capacitor C 15 can be arranged across either or both the offset supply voltage V 1 and the resistor R 2 .
  • the bias compensation capacitor C 15 can have a capacitance less than 100 nH to 100 ⁇ F such as, for example, about 100 ⁇ F, 50 ⁇ F, 25 ⁇ F, 10 ⁇ F, 2 ⁇ , 500 nH, 200 nH, etc.
  • the bias capacitor C 12 may allow for a voltage offset between the output of the pulser and transformer stage 101 (e.g., at the position labeled 125 ) and the voltage on the electrode (e.g., at the position labeled 124 ).
  • the electrode may, for example, be at a DC voltage of ⁇ 2 kV during a burst, while the output of the nanosecond pulser alternates between +6 kV during pulses and 0 kV between pulses.
  • the bias compensation capacitor C 15 and the bias compensation diode D 1 may allow for the voltage offset between the output of the pulser and transformer stage 101 (e.g., at the position labeled 125 ) and the voltage on the electrode (e.g., at the position labeled 124 ) to be established at the beginning of each burst, reaching the needed equilibrium state. For example, charge is transferred from bias capacitor C 12 into bias compensation capacitor C 15 at the beginning of each burst, over the course of a plurality of pulses (e.g., about 5-100 pulses), establishing the correct voltages in the circuit.
  • a plurality of pulses e.g., about 5-100 pulses
  • the DC bias compensation circuit 104 may include one or more high voltage switches placed across the bias compensation diode D 1 and coupled with the power supply V 1 .
  • a high voltage switch may include a plurality of switches arranged in series to collectively open and close high voltages.
  • a high voltage switch may be coupled in series with either or both an inductor and a resistor.
  • the inductor may limit peak current through high voltage switch.
  • the inductor for example, may have an inductance less than about 100 ⁇ H such as, for example, about 250 ⁇ H, 100 ⁇ H, 50 ⁇ H, 25 ⁇ H, 10 ⁇ H, 5 ⁇ H, 1 ⁇ H, etc.
  • the resistor for example, may shift power dissipation to the resistive output stage 102 .
  • the resistance of resistor may have a resistance of less than about 1,000 ohms, 500 ohms, 250 ohms, 100 ohms, 50 ohms, 10 ohms, etc.
  • a high voltage switch may include a snubber circuit.
  • the high voltage switch may include a plurality of switches arranged in series to collectively open and close high voltages.
  • the high voltage switch may, for example, include any switch described in U.S. patent application Ser. No. 16/178,565, filed Nov. 1, 2018, titled “High Voltage Switch with Isolated Power,” which is incorporated into this disclosure in its entirety for all purposes.
  • a high voltage switch may be open while the pulser and transformer stage 101 is pulsing and closed when the pulser and transformer stage 101 is not pulsing.
  • the high voltage switch is closed, for example, current can short across the bias compensation diode C 15 . Shorting this current may allow the bias between the wafer and the chuck to be less than 2 kV, which may be within acceptable tolerances.
  • the pulser and transformer stage 101 can produce pulses having a high pulse voltage (e.g., voltages greater than 1 kV, 10 kV, 20 kV, 50 kV, 100 kV, etc.), high pulse repetition frequencies (e.g., frequencies greater than 1 kHz, 10 kHz, 100 kHz, 200 kHz, 500 kHz, 1 MHz, etc.), fast rise times (e.g., rise times less than about 1 ns, 10 ns, 50 ns, 100 ns, 250 ns, 500 ns, 1,000 ns, etc.), fast fall times (e.g., fall times less than about 1 ns, 10 ns, 50 ns, 100 ns, 250 ns, 500 ns, 1,000 ns, etc.) and/or short pulse widths (e.g., pulse widths less than about 1,000 ns, 500 ns, 250 ns, 100 ns, 20 ns, etc.) and/or
  • the various stages or components shown in FIG. 1 are optional.
  • the resistive output stage 102 may be removed or replaced.
  • FIG. 2 shows example waveforms produced by the nanosecond pulser system 100 .
  • the pulse waveform 205 may represent the voltage provided by the pulser and transformer stage 101 .
  • the pulse waveform 205 produces a pulse with the following qualities: high voltage (e.g., greater than about 4 kV as shown in the waveform), a fast rise time (e.g., less than about 200 ns as shown in the waveform), a fast fall time (e.g., less than about 200 ns as shown in the waveform), and short pulse width (e.g., less than about 300 ns as shown in the waveform).
  • the waveform 210 may represent the voltage at the surface of a wafer represented in the circuit shown in FIG.
  • the pulse waveform 215 represent the current flowing from the pulser and transformer stage 101 to the plasma.
  • the nanosecond pulser system 100 may or may not include either or both diodes D 1 or D 2 .
  • the high voltage pulses from the pulser and transformer stage 101 charge the capacitor C 2 . Because the capacitance of capacitor C 2 is large compared to the capacitance of capacitor C 3 and/or capacitor C 1 , and and/or because of the short pulse widths of the pulses, the capacitor C 2 may take a number of pulses from the high voltage pulser to fully charge. Once the capacitor C 2 is charged the circuit reaches a steady state, as shown by the waveforms in FIG. 2 .
  • the capacitor C 2 In steady state and when the switch S 1 is open, the capacitor C 2 is charged and slowly dissipates through the resistive output stage 102 , as shown by the slightly rising slope of waveform 210 .
  • the voltage at the surface of the waver (the point between capacitor C 2 and capacitor C 3 ) is negative. This negative voltage may be the negative value of the voltage of the pulses provided by the pulser and transformer stage 101 .
  • the voltage of each pulse is about 4 kV; and the steady state voltage at the wafer is about ⁇ 4 kV.
  • the voltage across the capacitor C 2 may flip (the pulse from the pulser is high as shown in the pulse waveform 205 ) as the capacitor C 2 is charged.
  • the voltage at the point between capacitor C 2 and capacitor C 3 e.g., at the surface of the wafer
  • the pulses from the high voltage pulser produce a plasma potential (e.g., a potential in a plasma) that rise from a negative high voltage to zero and returns to the negative high voltage at high frequencies, with fast rise times, fast fall times, and/or short pulse widths.
  • the action of the resistive output stage may rapidly discharge the stray capacitance C 1 , and may allow the voltage at the point between capacitor C 2 and capacitor C 3 to rapidly return to its steady negative value of about ⁇ 4 kV as shown by waveform 210 .
  • the resistive output stage may allow the voltage at the point between capacitor C 2 and capacitor C 3 to exists for about % of the time, and thus maximizes the time which ions are accelerated into the wafer.
  • the components contained within the resistive output stage may be specifically selected to optimize the time during which the ions are accelerated into the wafer, and to hold the voltage during this time approximately constant. Thus, for example, a short pulse with fast rise time and a fast fall time may be useful, so there can be a long period of fairly uniform negative potential.
  • Various other waveforms may be produced by the nanosecond pulser system 100 .
  • FIG. 3 is a circuit diagram of a nanosecond pulser system 300 with the pulser and transformer stage 101 and an energy recovery circuit 305 according to some embodiments.
  • the energy recovery circuit may replace the resistive output stage 102 shown in FIG. 1 .
  • the energy recovery circuit 305 may be positioned on or electrically coupled with the secondary side of the transformer T 1 .
  • the energy recovery circuit 305 may include a diode 330 (e.g., a crowbar diode) across the secondary side of the transformer T 1 .
  • the energy recovery circuit 305 may include diode 310 and inductor 315 (arranged in series), which can allow current to flow from the secondary side of the transformer T 1 to charge the power supply C 7 .
  • the diode 310 and the inductor 315 may be electrically connected with the secondary side of the transformer T 1 and the power supply C 7 .
  • the energy recovery circuit 305 may include diode 335 and/or inductor 340 electrically coupled with the secondary of the transformer T 1 .
  • the inductor 340 may represent the stray inductance and/or may include the stray inductance of the transformer T 1 .
  • the nanosecond pulser When the nanosecond pulser is turned on, current may charge the load stage 106 (e.g., charge the capacitor C 3 , capacitor C 2 , or capacitor C 9 ). Some current, for example, may flow through inductor 315 when the voltage on the secondary side of the transformer T 1 rises above the charge voltage on the power supply C 7 . When the nanosecond pulser is turned off, current may flow from the capacitors within the load stage 106 through the inductor 315 to charge the power supply C 7 until the voltage across the inductor 315 is zero.
  • the diode 330 may prevent the capacitors within the load stage 106 from ringing with the inductance in the load stage 106 or the bias compensation circuit 104 .
  • the diode 310 may, for example, prevent charge from flowing from the power supply C 7 to the capacitors within the load stage 106 .
  • the value of inductor 315 can be selected to control the current fall time.
  • the inductor 315 can have an inductance value between 1 ⁇ H-500 ⁇ H.
  • the energy recovery circuit 305 may include an energy recovery switch that can be used to control the flow of current through the inductor 315 .
  • the energy recovery switch for example, may be placed in series with the inductor 315 .
  • the energy recovery switch may be closed when the switch S 1 is open and/or no longer pulsing to allow current to flow from the load stage 106 back to the high voltage load C 7 .
  • the energy recovery switch may include a plurality of switches arranged in series to collectively open and close high voltages.
  • the energy recovery switch may, for example, include any switch described in U.S. patent application Ser. No. 16/178,565, filed Nov. 1, 2018, titled “High Voltage Switch with Isolated Power,” which is incorporated into this disclosure in its entirety for all purposes.
  • the nanosecond pulser system 300 may produce similar waveforms as those shown in FIG. 2 .
  • FIG. 4 is a block diagram of an control system 400 for a nanosecond pulser system 100 (or nanosecond pulser system 300 ) according to some embodiments.
  • the control system 400 may be electrically coupled with the nanosecond pulser system 100 at one or more locations.
  • a first HV signal 405 A (or a second HV signal 405 B) may include the voltage signal at point 120 of the nanosecond pulser system 100 , which is between the pulser and transformer stage 101 and the bias compensation circuit 104 .
  • a first HV signal 405 A (or a second HV signal 405 B) may include the voltage signal at point 124 of the nanosecond pulser system 100 , which is between the load stage 106 and the bias compensation circuit 104 .
  • a first HV signal 405 A may include the voltage signal at point 125 of the nanosecond pulser system 100 , which is prior to the resistive output stage 102 .
  • a first HV signal 405 A may include the voltage on the wafer, chuck, or electrode. While two signals are shown, any number of signals may be received.
  • a first HV signal 405 A may include the voltage across the resistor R 1 in resistive output stage 102 , which may be representative of the ion current in the chamber.
  • a first HV signal 405 A may include the voltage in the energy recovery stage, such as, for example, the voltage across inductor 315 , which may be representative of the ion current in the chamber.
  • the first HV signal 405 A and the second HV signal 405 B may include the voltage signals on each side of the capacitor C 12 of the bias compensation circuit 104 . Any number of other signals may be received.
  • the first HV signal 405 A or the second HV signal 405 B may include the voltage signals provided to the load stage 106 . In some embodiments, the first HV signal 405 A or the second HV signal 405 B may include the voltage signals provided to the bias compensation circuit 104 . In some embodiments, the first HV signal 405 A or the second HV signal 405 B may include the voltage signals provided to the lead stage 103 . In some embodiments, the first HV signal 405 A or the second HV signal 405 B may include the voltage signals provided to the pulser and transformer stage 101 may be measured. In some embodiments, the first HV signal 405 A or the second HV signal 405 B may include the voltage signals provided to the resistive output stage 102 .
  • the first HV signal 405 A and the second HV signal 405 B collectively or individually may be referred to as the HV input signal 405 .
  • the HV input signal 405 may divided at voltage divider 410 .
  • the voltage divider 410 may include high value resistors or low value capacitors to divide the high voltage HV input signal (e.g., greater than 1 KV) to a low voltage signal (e.g., less than 50 V).
  • the voltage divider 410 may divide the voltage with a 500:1 ratio, 1,000:1 ratio, a 10,000:1 ratio, a 100,000:1 ratio, etc.
  • the voltage divider 410 may divide the HV input signal 405 voltage of 0-10 kV to a voltage of 0-20 V.
  • the voltage divider 410 may divide the voltage with minimal power loss such as, for example, less than about 5 W of power loss.
  • the voltage divider 410 may include a low value capacitor, a large value capacitor, a low value resistor, and a large value resistor.
  • the low value capacitor for example, may comprise a capacitor that has a capacitance value of about 0.1 pF, 0.5 pF, 1.0 pF, 2.5 pF, 5.0 pF, 10.0 pF, 100 pF, 1 nF, 10 nF, etc.
  • the large value capacitor for example, may comprise a capacitor that has a capacitance value of about 500 pf. In some embodiments, the large value capacitor may have a capacitance value that is about 50, 100, 250, 500, 1,000, 2,500, 5,000 pF, etc. greater than the capacitance value of the low value capacitor.
  • the low value resistor may have a resistance value of about 1.0 k ⁇ , 2.5 k ⁇ , 5.0 k ⁇ , 10 k ⁇ , 25 k ⁇ , 50 k ⁇ , 100 k ⁇ , etc.
  • the large value resistor may have a resistance value of about 0.5 M ⁇ , 1.0 M ⁇ , 2.5 M ⁇ , 5.0 M ⁇ , 10 M ⁇ , 25 M ⁇ , 50 M ⁇ , 100 M ⁇ , etc.
  • the large value resistor may have a resistance value that is about 50 ⁇ , 100 ⁇ , 250 ⁇ , 500 ⁇ , 1,000 ⁇ , 2,500 ⁇ , 5,000 ⁇ , etc. greater than the resistance value of the low value resistor.
  • the ratio of the low value capacitor to the large value capacitor may be substantially the same as the ratio of the low value resistor to the large value resistor.
  • the voltage divider 410 may receive the HV input signal and output a divided voltage signal.
  • the divided voltage signal for example, may be 100, 250, 500, 750, 1,000, etc. times smaller than the HV input signal.
  • a filter 415 may be included such as, for example, to filter out any noise from the divided voltage signal.
  • the filter for example, may include any type of low pass filter, a band pass filter, a band stop filter, or a high pass filter.
  • the divided voltage signal may be digitized by the first ADC 420 .
  • Any type of analog to digital converter may be used.
  • the first ADC 420 may produce a digitized waveform signal.
  • the first ADC 420 may capture data at 100, 250, 500, 1,000, 2,000, 5,000 MSPS (megasamples per second or millions of samples per second).
  • the digitized waveform signal may be communicated to the controller 425 using any type of communication protocol such as, for example, SPI, UART, RS-232, USB, I2C, etc.
  • any of the voltage divider 410 , the filter 415 , or the first ADC 420 may be isolated from the nanosecond pulser system 100 via galvanic isolation or via fiber optic link.
  • the controller 425 may comprise any type of controller such as, for example, an FPGA, ASIC, complex programmable logic device, microcontroller, system on a chip (SoC), or any combination thereof.
  • the controller 425 may include any or all the components of the computational system 600 .
  • the controller 425 may include a standard microcontroller such as, for example, Broadcom Arm Cortex, Intel ARM Cortex, PIC32, etc.
  • the controller 425 may receive a trigger signal from trigger 430 .
  • the first ADC 420 may receive the trigger signal from trigger 430 .
  • the trigger signal may provide the timing of data acquisition at the first ADC 420 .
  • the trigger signal for example, may be a 5V TTL trigger.
  • the trigger signal for example, may, have a 50 ohm termination.
  • the digitized signal may then be output from the controller 425 via one or more output ports such as, for example, a first output 435 A or a second output 435 B (individually or collectively output 435 ). These outputs may be coupled with a nanosecond pulser controller. Either or both the output 435 may include an electrical connecter such as, for example, an LVDS, TTL, LVTTL connector. Either or both the output 435 may provide data to the nanosecond pulser controller using any type of communication protocol such as, for example, SPI, UART, RS-232, USB, I2C, EtherCat, Ethernet, Profibus, PROFINET.
  • any type of communication protocol such as, for example, SPI, UART, RS-232, USB, I2C, EtherCat, Ethernet, Profibus, PROFINET.
  • control system 400 may couple with the nanosecond pulser system 100 via a 4 mm Multilam receptacles on the control system 400 .
  • the control system 400 may include a second ADC 445 , which may receive inputs from a first sensor 450 A and a second sensor 450 B (individually or collectively sensor 450 ) (or any number of sensors).
  • the second ADC 445 may digitize analog signals from the sensors 450 .
  • the sensors 450 may include, for example, a sensor that senses inlet water temperature, dielectric fluid temperature, dielectric fluid pressure, chassis air temperature, voltage, fluid flow, fluid leak sensor, etc.
  • the second ADC 445 may include ARM, PIC32, AVR, PSOC, or PIC32.
  • the second ADC 445 and the first ADC 420 may comprise a single ADC device. In some embodiments, either or both the second ADC 445 or the first ADC 420 may be part of the controller 425 . In some embodiments, the first ADC 420 may operate at a higher acquisition rate than the second ADC.
  • control system may measure the full-width half-max, peak voltage, DC bias, rise time, fall time, etc. of pulses in the nanosecond pulser system 100 .
  • control system 400 may monitor the voltage, frequency, pulse width, etc. of pulses and, in response, may adjust the voltage, pulse repetition frequency, pulse width, burst repetition frequency (where a burst includes a plurality of pulses), etc. provided to the input of the nanosecond pulser system 100 .
  • the first ADC 420 may monitor the voltage amplitude of a waveform. This voltage data may be provided to the nanosecond pulser controller. The nanosecond pulser controller may adjust the amplitude or frequency of the signal provided to the nanosecond pulser system 100 .
  • control system 400 may output arbitrary pulse signals via output 435 to one or more nanosecond pulser systems 100 .
  • the output 435 may include either fiber or electric connections.
  • control system 400 can include a plurality of output pulse channels (e.g., 1, 2, 5, 8, 20, 50, 100, etc.) that may, for example, be independent from each other.
  • the plurality of output pulse channels may, for example, output pulses with sub-nanosecond resolution.
  • the controller 425 may send a signal to the nanosecond pulser system 100 to produce pulses with a higher voltage. If the pulse voltage is greater than a predetermined voltage, the first ADC 420 may send a signal to the nanosecond pulser system 100 to produce pulses with a lower voltage.
  • the signal to the nanosecond pulser to increase the pulse voltage may comprise a low voltage pulse that has a longer pulse width than the previously sent signal, and the signal to the nanosecond pulser to decrease the pulse voltage may comprise a low voltage pulse that has a shorter pulse width than the previously sent signal.
  • the controller 425 may send a signal to the nanosecond pulser system 100 to produce pulses with a lower frequency. If the burst repetition frequency is less than an desired burst repetition frequency, the controller 425 may send a signal to the nanosecond pulser system 100 to produce pulses with a higher pulse repetition frequency. If the full width half max of the measured pulse is different than an desired burst repetition frequency, the controller 425 may send a signal to the nanosecond pulser system 100 to produce a pulses with an adjusted pulse width or pulse repetition frequency.
  • the first ADC 420 may send a signal to the nanosecond pulser system 100 to produce a waveform with a shorter or longer pulse width. If the waveform duty cycle is shorter or longer than an desired duty cycle, the first ADC 420 may send a signal to the nanosecond pulser system 100 to produce a pulses with the appropriate duty cycle.
  • the control system 400 may monitor other waveform characteristics and/or adjust these other characteristics.
  • control system 400 may output arbitrary pulse signals via output 435 to one or more nanosecond pulser systems 100 .
  • the control system may comprise an arbitrary pulse generator.
  • the output 435 may include either fiber or electric connections.
  • control system 400 can include a plurality of output pulse channels (e.g., 1, 2, 5, 8, 20, 50, 100, etc.) that may, for example, be independent from each other.
  • the plurality of output pulse channels may, for example, output pulses with sub-nanosecond resolution.
  • the control system 400 may output pulses with resolution less than about 0.1 ns.
  • the control system 400 may output pulses with jitter less than about 100 ps.
  • each output pulse channel of the control system 400 may output pulses to a nanosecond pulser system 100 that triggers the nanosecond pulser system 100 .
  • the control system 400 may, for example, adjust parameters of the output pulses in real-time or between pulses. These parameters may include pulse width, pulse repetition frequency, duty cycle, burst repetition frequency, voltage, number of pulses in a burst, the number of burst, etc. In some embodiments, one or more parameters may be adjusted or changed based on input to the control system 400 or based on a recipe or a program.
  • a recipe may include alternating high bursts and low bursts.
  • a high burst for example, may include a plurality of high voltage pulses.
  • a low burst for example, may include a plurality of lower voltage pulses.
  • the high burst and the low burst may, for example, include the same number of pulses or a different number of pulses within each burst.
  • a low burst for example, may have a voltage that is 10%, 20%, 30%, 40%, 50%, etc. lower than the voltage of the high burst voltage.
  • the alternating high bursts and low bursts may include 5%, 20%, 50%, 100%, 125%, 150%, etc. ratio of low bursts to high bursts (low-high ratio).
  • a 20% low-high ratio may include a train of 10 bursts, where each burst includes about 500 pulses (or any number of pulses from 1 to 10,000 pulses.
  • 2 bursts may be low voltage bursts and 8 bursts may be high voltage bursts.
  • the controller 425 may communicate pulses with longer low voltage pulses to produce the high bursts and communicate pulses with shorter low voltage pulses to produce the low bursts to the nanosecond pulser to produce alternating high bursts and low bursts as described in U.S. patent application Ser. No. 16/114,195, titled “ARBITRARY WAVEFORM GENERATION USING NANOSECOND PULSES,” which is incorporated herein for all purposes.
  • control system 400 comprises an electrical shield.
  • An electrical shield for example, can separate the high voltage components from the low voltage components.
  • An electrical shield for example, may be disposed physically between the divider 410 and the controller 425 or the first ADC 420 .
  • the electric shield may be disposed physically between the nanosecond pulser system 100 and the controller 425 or the first ADC 420 .
  • the electric shield may be disposed physically between resistors in the divider 410 . In some embodiments, the electric shield may be disposed physically between capacitors in the divider 410 .
  • the electrical shield may comprise any type of electrically conductive material or metal such as, for example, copper, nickel, aluminum, bronze, steel, brass, etc.
  • the electrical shield may comprise sheet metal, metal screen, or metal foam.
  • control system 400 may monitor the sensors 150 and take action. A number of examples are provided below.
  • the nanosecond pulser system 100 may include a cooling subsystem.
  • the cooling subsystem may include a fluid, such as, for example, either water or a dielectric fluid, that flows through the cooling subsystem to remove heat from the nanosecond pulser system 100 .
  • one of the sensors 450 may include a flow rate sensor for fluid in the cooling system. If the controller 425 determines the flow rate is below a flow rate threshold, the control system 400 will not allow the nanosecond pulser system 100 to turn on. If the controller 425 determines the flow rate is below a flow rate threshold, the controller 425 may turn off the nanosecond pulser system 100 .
  • the flow rate sensor in some cases with the controller 425 ) may be a flow rate interlock. A flow rate interlock, for example, may prevent the nanosecond pulser system 100 from turning on or may turn off the nanosecond pulser system 100 , if it is already on, if the flow rate is below the flow rate threshold.
  • one of the sensors 450 may include a thermometer coupled with the cooling subsystem. If the controller 425 determines the temperature of the cooling subsystem (e.g., the temperature of the fluid) is above a water temperature threshold, the control system 400 will not allow the nanosecond pulser system 100 to turn on. If the controller 425 determines the temperature of the water is above the water temperature threshold, the controller 425 may turn off the nanosecond pulser system 100 .
  • a temperature interlock which is distinct from the controller 425 , for example, may prevent the nanosecond pulser system 100 from turning on or may turn off the nanosecond pulser system 100 , if it is already on, if the temperature is above the water temperature threshold.
  • one of the sensors 450 may include a liquid level sensor for a fluid reservoir in a cooling system. If the controller 425 determines the reservoir liquid level is above a liquid level threshold, the control system 400 will not turn on. If the controller 425 determines the reservoir liquid level is above the liquid level threshold, the controller 425 may turn off the nanosecond pulser system 100 .
  • a liquid level interlock which is distinct from the controller 425 , for example, may prevent the nanosecond pulser system 100 from turning on or may turn off the nanosecond pulser system 100 , if it is already on, if the liquid level is below the liquid level threshold.
  • the nanosecond pulser system 100 may include a nitrogen purge subsystem that pumps nitrogen into the nanosecond pulser system.
  • the nitrogen purge system may introduce dry nitrogen into an enclosure within which the high voltage nanosecond pulser system is disposed.
  • one of the sensors 450 may include a nitrogen pressure sensor. If the controller 425 determines the nitrogen pressure level is below a pressure threshold the control system 400 will not turn on. If the controller 425 determines the nitrogen pressure level is below the pressure threshold the controller 425 may turn off the nanosecond pulser system 100 .
  • a pressure interlock which is distinct from the controller 425 , for example, may prevent the nanosecond pulser system 100 from turning on or may turn off the nanosecond pulser system 100 , if it is already on, if the pressure is below the pressure threshold.
  • one of the sensors 450 may include a DC voltage sensor that may be coupled with a DC power supply in the nanosecond pulser system 100 .
  • a DC voltage sensor that may be coupled with a DC power supply in the nanosecond pulser system 100 .
  • the controller 425 may turn off the nanosecond pulser system 100 .
  • the controller 425 may turn off pulsing.
  • output 435 may include an EtherCat module that may communicate with a third party system (e.g., an external system).
  • the EtherCat module may comprise any type of communication module.
  • the EtherCat may include one or more components of the computational system 600 .
  • control system 400 may include one or more interlocks coupled with one or more sensors 450 .
  • An interlock may, for example, automatically interrupt operation of the nanosecond pulser system 100 without interaction with the controller 425 if the one of the sensor detects a parameter out of tolerance.
  • An interlock signal for example, may be coupled with a nanosecond pulser system 100 control signal using an AND gate that only allows the control signal to operate the nanosecond pulser if the interlock provides a positive signal.
  • a sensor 450 may be coupled with both the controller 425 and an interlock.
  • the interlock may operate at a first threshold level and the controller 425 may operate at a second, different threshold level.
  • the interlock for example, may operate at a first threshold that protects the nanosecond pulser system from immediate or near-term damage.
  • the controller for example, may operate at a second threshold that is out of tolerance and the controller may adjust various parameters to bring the system into tolerance, or monitor the system for a period of time before turning off the nanosecond pulser, or may turn off the nanosecond pulser.
  • a 24V DC interlock may be included may be coupled with a voltage sensor that measures input voltage from a 24V DC power supplier. If the voltage from the 24 V DC power supply exceeds 24V by a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
  • a high voltage DC interlock may be included may be coupled with a voltage sensor that measures input voltage from a high voltage DC power supplier. If the voltage from the high voltage DC power supply exceeds the expected voltage by a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
  • a dry N 2 pressure interlock may be coupled with a pressure sensor coupled with a nitrogen purge subsystem. If the pressure from the nitrogen purge subsystem exceeds a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
  • a water flow interlock may be coupled with a water line in the thermal management system. If the flow rate of the water exceeds a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
  • a dielectric fluid flow interlock may be coupled with a dielectric fluid line in the thermal management system. If the flow rate of the dielectric fluid exceeds a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
  • a reservoir level interlock may be coupled with a water or dielectric fluid reservoir in the thermal management system. If the reservoir level exceeds a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
  • a water temperature interlock may be coupled with a thermometer in the thermal management system. If the temperature of the water exceeds a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
  • a dielectric fluid temperature interlock may be coupled with a thermometer in the thermal management system. If the temperature of the dielectric fluid exceeds a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
  • control system may control the operation of a pulsing system such as, for example, pulse width, duty cycle, high voltage set point, on/off, returns current output voltage, high voltage current set point, returns current output current, enable high voltage output, returns high voltage enable state, emergency shutdown, etc.
  • a pulsing system such as, for example, pulse width, duty cycle, high voltage set point, on/off, returns current output voltage, high voltage current set point, returns current output current, enable high voltage output, returns high voltage enable state, emergency shutdown, etc.
  • a user may interface with the control system through an EtherCat module.
  • a user may issue a PW command to set the output pulse width.
  • user may issue DUTY command to set the duty cycle.
  • a user may issue a PWR command to turn the power on and begin operation of unit or off to end operation of the unit.
  • the unit may continue to operate as set until issued another command to change duty cycle, pulse width, or issued another PWR command to shut off.
  • control system 400 may receive commands from an external source in any type of communication protocols such as, for example, EtherCat, LXI, Ethernet, Profibus, PROFINET, RS-232, ModBus, USB, UART, SPI, CC-Lin, etc.
  • EtherCat EtherCat
  • LXI Ethernet
  • Profibus Profibus
  • PROFINET PROFINET
  • RS-232 ModBus
  • USB UART
  • SPI CC-Lin, etc.
  • FIG. 5 is a block diagram of a flowchart of process 500 according to some embodiments.
  • Process 500 includes a number of blocks. Any additional blocks may be added or any blocks may be removed.
  • the process 500 may, for example, be executed by one or more components of computational system 600 .
  • the process 500 may, for example be executed by the control system 400 .
  • the process 500 can send a plurality of low voltage pulses to a high voltage pulser system (e.g., nanosecond pulser 100 or nanosecond pulser 300 ) based on a recipe.
  • the low voltage pulses may have a peak voltage of less than 20 V such as, for example, 5V.
  • the low voltage pulses may have a pulse repetition frequency and each pulse may have a pulse width.
  • the recipe may include alternating high bursts and low bursts as described above. In some embodiments, the recipe may be adjusted or changed in real time. In some embodiments, the recipe may be dependent on various parameters or characteristics of the plasma chamber.
  • high voltage pulses can be measured at the high voltage pulser.
  • the high voltage pulsers may have a peak voltage greater than 2 kV. In some embodiments, the high voltage pulses may have a peak voltage that is more then 100 times the peak voltage of the low voltage pulses. In some embodiments, the high voltage pulses may be measured at the electrode within a plasma chamber. In some embodiments, the high voltage pulses may be measured across a resistor within a resistive output stage or an energy recover stage of the high voltage pulser. In some embodiments, the high voltage pulses may be measured at a bias capacitor within the high voltage pulser.
  • the full-width half-max, peak voltage, DC bias, rise time, fall time, etc. of the high voltage pulses can be measured.
  • the measure pulses can be compared with the desired (or anticipated) pulses. If the measured pulses are consistent with the desired pulses (e.g., within some tolerance), the process 500 proceeds to block 505 and the process repeats.
  • process 500 proceeds to block 520 .
  • the pulse width or the pulse repetition frequency of the low voltage pulses are adjusted. For example, if the voltage of the high voltage pulses is lower than desired, then the pulse width of the low voltage pulses may be increased. As another example, if the voltage of the high voltage pulses is higher than desired, then the pulse width of the low voltage pulses may be decreased.
  • the pulse repetition frequency (or the pulse repetition period) of the high voltage pulses may be lower than desired, then the pulse repetition frequency of the low voltage pulses may be increased. As another example, if the pulse repetition frequency (or the pulse repetition period) of the high voltage pulses is higher than desired, then the pulse repetition frequency of the low voltage pulses may be decreased.
  • the process 500 may be executed in real time.
  • the process 500 may repeat in less than about 20 ⁇ s, 10 ⁇ s, 5 ⁇ s, 1 ⁇ s, etc.
  • the process 500 may control the accuracy of the period between pulses (e.g., the pulse repetition period) with an accuracy less than about 50 ⁇ s, 20 ⁇ s, 10 ⁇ s, 5 ⁇ s, 1 ⁇ s, etc.
  • control system 400 may include a computational system that includes some or all of the components of computational system 600 , shown in FIG. 6 .
  • computational system 600 can be used perform any calculation, identification and/or determination described in this document.
  • the computational system 600 may include hardware elements that can be electrically coupled via a bus 605 (or may otherwise be in communication, as appropriate).
  • the hardware elements can include one or more processors 610 , including without limitation one or more general-purpose processors and/or one or more special-purpose processors (such as digital signal processing chips, graphics acceleration chips, and/or the like); one or more input devices 615 , which can include without limitation a mouse, a keyboard and/or the like; and one or more output devices 620 , which can include without limitation a display device, a printer and/or the like.
  • processors 610 including without limitation one or more general-purpose processors and/or one or more special-purpose processors (such as digital signal processing chips, graphics acceleration chips, and/or the like);
  • input devices 615 which can include without limitation a mouse, a keyboard and/or the like;
  • output devices 620 which can include without limitation a display device, a printer and/or the like.
  • the computational system 600 may further include (and/or be in communication with) one or more storage devices 625 , which can include, without limitation, local and/or network accessible storage and/or can include, without limitation, a disk drive, a drive array, an optical storage device, a solid-state storage device, such as a random access memory (“RAM”) and/or a read-only memory (“ROM”), which can be programmable, flash-updateable and/or the like.
  • storage devices 625 can include, without limitation, local and/or network accessible storage and/or can include, without limitation, a disk drive, a drive array, an optical storage device, a solid-state storage device, such as a random access memory (“RAM”) and/or a read-only memory (“ROM”), which can be programmable, flash-updateable and/or the like.
  • RAM random access memory
  • ROM read-only memory
  • the computational system 600 might also include a communications subsystem 630 , which can include without limitation a modem, a network card (wireless or wired), an infrared communication device, a wireless communication device and/or chipset (such as a Bluetooth device, an 802.6 device, a Wi-Fi device, a WiMax device, cellular communication facilities, etc.), and/or the like.
  • the communications subsystem 630 may permit data to be exchanged with a network (such as the network described below, to name one example), and/or any other devices described herein.
  • the computational system 600 will further include a working memory 635 , which can include a RAM or ROM device, as described above.
  • the computational system 600 also can include software elements, shown as being currently located within the working memory 635 , including an operating system 640 and/or other code, such as one or more application programs 645 , which may include computer programs of the invention, and/or may be designed to implement methods of the invention and/or configure systems of the invention, as described herein.
  • an operating system 640 and/or other code such as one or more application programs 645 , which may include computer programs of the invention, and/or may be designed to implement methods of the invention and/or configure systems of the invention, as described herein.
  • application programs 645 which may include computer programs of the invention, and/or may be designed to implement methods of the invention and/or configure systems of the invention, as described herein.
  • one or more procedures described with respect to the method(s) discussed above might be implemented as code and/or instructions executable by a computer (and/or a processor within a computer).
  • a set of these instructions and/or codes might be stored on a computer-readable storage medium, such as the storage device(s
  • the storage medium might be incorporated within the computational system 600 or in communication with the computational system 600 .
  • the storage medium might be separate from a computational system 600 (e.g., a removable medium, such as a compact disc, etc.), and/or provided in an installation package, such that the storage medium can be used to program a general-purpose computer with the instructions/code stored thereon.
  • These instructions might take the form of executable code, which is executable by the computational system 600 and/or might take the form of source and/or installable code, which, upon compilation and/or installation on the computational system 600 (e.g., using any of a variety of generally available compilers, installation programs, compression/decompression utilities, etc.) then takes the form of executable code.
  • the term “substantially” means within 5% or 10% of the value referred to or within manufacturing tolerances. Unless otherwise specified, the term “about” means within 5% or 10% of the value referred to or within manufacturing tolerances.
  • a computing device can include any suitable arrangement of components that provides a result conditioned on one or more inputs.
  • Suitable computing devices include multipurpose microprocessor-based computer systems accessing stored software that programs or configures the computing system from a general-purpose computing apparatus to a specialized computing apparatus implementing one or more embodiments of the present subject matter. Any suitable programming, scripting, or other type of language or combinations of languages may be used to implement the teachings contained herein in software to be used in programming or configuring a computing device.
  • Embodiments of the methods disclosed herein may be performed in the operation of such computing devices.
  • the order of the blocks presented in the examples above can be varied—for example, blocks can be re-ordered, combined, and/or broken into sub-blocks. Certain blocks or processes can be performed in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A nanosecond pulser system is disclosed. In some embodiments, the nanosecond pulser system may include a nanosecond pulser having a nanosecond pulser input; a plurality of switches coupled with the nanosecond pulser input; one or more transformers coupled with the plurality of switches; and an output coupled with the one or more transformers and providing a high voltage waveform with a amplitude greater than 2 kV and a frequency greater than 1 kHz based on the nanosecond pulser input. The nanosecond pulser system may also include a control module coupled with the nanosecond pulser input; and an control system coupled with the nanosecond pulser at a point between the transformer and the output, the control system providing waveform data regarding an high voltage waveform produced at the point between the transformer and the output.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Provisional Patent Application No. 62/711,464 filed Jul. 27, 2018, titled “NANOSECOND PULSER SYSTEM,” which is incorporated by reference in its entirety.
This application claims priority to U.S. Provisional Patent Application No. 62/711,334 filed Jul. 27, 2018, titled “NANOSECOND PULSER THERMAL MANAGEMENT,” which is incorporated by reference in its entirety.
This application claims priority to U.S. Provisional Patent Application No. 62/711,457 filed Jul. 27, 2018, titled “NANOSECOND PULSER PULSE GENERATION,” which is incorporated by reference in its entirety.
This application claims priority to U.S. Provisional Patent Application No. 62/711,347 filed Jul. 27, 2018, titled “NANOSECOND PULSER ADC SYSTEM,” which is incorporated by reference in its entirety.
This application claims priority to U.S. Provisional Patent Application No. 62/711,467 filed Jul. 27, 2018, titled “EDGE RING POWER SYSTEM,” which is incorporated by reference in its entirety.
This application claims priority to U.S. Provisional Patent Application No. 62/711,406 filed Jul. 27, 2018, titled “NANOSECOND PULSER BIAS COMPENSATION,” which is incorporated by reference in its entirety.
This application claims priority to U.S. Provisional Patent Application No. 62/711,468 filed Jul. 27, 2018, titled “NANOSECOND PULSER CONTROL MODULE,” which is incorporated by reference in its entirety.
This application claims priority to U.S. Provisional Patent Application No. 62/711,523 filed Aug. 10, 2018, titled “PLASMA SHEATH CONTROL FOR RF PLASMA REACTORS,” which is incorporated by reference in its entirety.
This application claims priority to U.S. Provisional Patent Application No. 62/789,523 filed Jan. 1, 2019, titled “EFFICIENT NANOSECOND PULSER WITH SOURCE AND SINK CAPABILITY FOR PLASMA CONTROL APPLICATIONS,” which is incorporated by reference in its entirety.
This application claims priority to U.S. Provisional Patent Application No. 62/789,526 filed Jan. 1, 2019, titled “EFFICIENT ENERGY RECOVERY IN A NANOSECOND PULSER CIRCUIT,” which is incorporated by reference in its entirety.
This application claims priority to and is a continuation-in-part of U.S. Non-Provisional patent application Ser. No. 16/523,840 filed Jul. 26, 2019, titled “NANOSECOND PULSER BIAS COMPENSATION,” which is incorporated by reference in its entirety.
BACKGROUND
Producing high voltage pulses with fast rise times and/or fast fall times is challenging. For instance, to achieve a fast rise time and/or a fast fall time (e.g., less than about 50 ns) for a high voltage pulse (e.g., greater than about 5 kV), the slope of the pulse rise and/or fall must be incredibly steep (e.g., greater than 1011 V/s). Such steep rise times and/or fall times are very difficult to produce especially in circuits driving a load with low capacitance. Such pulse may be especially difficult to produce using standard electrical components in a compact manner; and/or with pulses having variable pulse widths, voltages, and repetition rates; and/or within applications having capacitive loads such as, for example, a plasma.
SUMMARY
Some embodiments include a nanosecond pulser comprising: a plurality of switches; one or more transformers; an output configured to output high voltage waveforms with a amplitude greater than 5 kV and a frequency greater than 1 kHz; and an ADC control module that sensors the output waveform.
A nanosecond pulser system is disclosed. In some embodiments, the nanosecond pulser system may include a nanosecond pulser, a pulser output, and a control system. In some embodiments, the nanosecond pulser comprises: a pulser input; a high voltage DC power supply; one or more solid-state switches coupled with the high voltage DC power supply and the pulser input, the one or more solid-state switches switching the high voltage DC power supply based on input pulses provided by the pulser input; one or more transformers coupled with the one or more switches; and a pulser output coupled with the one or more transformers that outputs a high voltage waveform with an amplitude greater than about 2 kV and a pulse repetition frequency greater than about 1 kHz based on the pulser input. In some embodiments, the control system may be coupled with the nanosecond pulser at a measurement point, the control system providing the input pulses to the pulser input.
In some embodiments, the measurement point comprises a point between the transformer and the pulser output.
In some embodiments, the nanosecond pulser system further comprises an electrode coupled with the pulser output; and the measurement point is at the electrode.
In some embodiments, the control system measures the voltage at the measurement point, and adjusts the voltage, pulse repetition frequency, or duty cycle of the input pulses based on the measured voltage.
In some embodiments, the control system measures the pulse repetition frequency at the measurement point, and adjusts the pulse repetition frequency of the input pulses based on the measured pulsed repetition frequency.
In some embodiments, the input pulses include a first burst comprising a first plurality of low voltage pulses, each of the first plurality of low voltage pulses having a first pulse width; the input pulses include a second burst comprising a second plurality of low voltage pulses each of the second plurality of low voltage pulses having a second pulse width; and the second pulse width is greater than the first pulse width.
In some embodiments, the control system receives input data specifying a voltage and a pulse repetition frequency corresponding to an desired high voltage waveform; compares an output pulser waveform measured at the measurement point with the desired high voltage waveform; and determines adjustments to the pulser input to produce the desired high voltage waveform.
In some embodiments, the control system includes a voltage divider that reduces the high voltage waveform by a factor of 1000.
In some embodiments, the control system includes an analog to digital converter that converts the measured high voltage waveform into a digital signal.
In some embodiments, the nano second pulser system includes a metal shielding disposed between the nanosecond pulser and the control system.
In some embodiments, the nanosecond pulser comprises a resistive output stage, and wherein the measurement point is across a resistor in the resistive output stage.
A nanosecond pulser system is disclosed. In some embodiments, the nanosecond pulser system may include a nanosecond pulser,
a nanosecond pulser having a pulser output that outputs a high voltage waveform that includes a plurality of bursts where each burst comprises a plurality of pulses with an amplitude greater than 2 kV and a pulse repetition frequency greater than 1 kHz; and
a control system that controls a number of characteristics of the high voltage waveform in real-time including the number of pulses in each burst, a pulse repetition frequency, a pulse width, and a pulse voltage.
In some embodiments, the pulser system controls at least one characteristics of the high voltage waveform with a resolution of less than about 1 μs.
In some embodiments, the pulser system controls at the period between pulses with an accuracy less than about 10 μs.
In some embodiments, control system controls the number of characteristics of the high voltage waveform in response to a plasma processing recipe.
In some embodiments, the plasma processing recipe comprises a plurality of stages and each stage is associated with an ion current, a chamber pressure, and a gas mixture.
In some embodiments, the plasma processing recipe corresponds with an electric field or voltage at a wafer surface.
In some embodiments, the high voltage waveform includes a first burst comprising a first plurality of pulses, each of the first plurality of pulses having a first pulse width; the high voltage waveform includes a second burst comprising a second plurality of pulses each of the second plurality of pulses having a second pulse width; and the second pulse width is greater than the first pulse width.
In some embodiments, the nanosecond pulser comprises a transformer and the output that outputs the high voltage waveform; and the control system is coupled with the nanosecond pulser at a point between the transformer and the pulser output.
In some embodiments, the control system comprises a voltage divider and a fast analog to digital converter.
Some embodiments include a nanosecond pulser system comprising a nanosecond pulser having a pulser output that outputs pulses with an amplitude greater than 2 kV and a pulse repetition frequency greater than 1 kHz; a plurality of sensors that measure an environmental characteristic of the nanosecond pulser system and each of the plurality of sensors provide a sensor signal representing a respective environmental characteristic; a sensor that provides an electronic sensor signal representing a physical characteristic of the nanosecond pulser system; and an interlock electrically coupled with the sensor and the nanosecond pulser that stops operation of the nanosecond pulser in the event the electronic sensor signal is above a first threshold.
In some embodiments, the nanosecond pulser system may also include a control module electrically coupled with the sensor that stops operation of the nanosecond pulser in the event the electronic sensor signal is above a second threshold, the second threshold being different than the first threshold.
In some embodiments, the nanosecond pulser system may also include a liquid cooling subsystem. In some embodiments, the sensors comprises a liquid flow sensor disposed within the liquid cooling subsystem; the first threshold comprises a first flow rate; and the second threshold comprises a second flow rate that is greater than the first flow rate.
In some embodiments, the nanosecond pulser system may also include a cooling subsystem. In some embodiments, one of the sensor comprises a temperature sensor disposed within the cooling subsystem; the first threshold comprises a first temperature; and the second threshold comprises a second temperature that is less than the first temperature.
In some embodiments, the nanosecond pulser system may also include a cooling subsystem that includes a liquid coolant; and a temperature sensor that measures the temperature of the liquid coolant.
These illustrative embodiments are mentioned not to limit or define the disclosure, but to provide examples to aid understanding thereof. Additional embodiments are discussed in the Detailed Description, and further description is provided there. Advantages offered by one or more of the various embodiments may be further understood by examining this specification or by practicing one or more embodiments presented.
BRIEF DESCRIPTION OF THE FIGURES
These and other features, aspects, and advantages of the present disclosure are better understood when the following Detailed Description is read with reference to the accompanying drawings.
FIG. 1 is a circuit diagram of a nanosecond pulser according to some embodiments.
FIG. 2 shows example waveforms produced by the nanosecond pulser.
FIG. 3 is a circuit diagram of a nanosecond pulser system with a pulser and transformer stage and an energy recovery circuit according to some embodiments.
FIG. 4 is a block diagram of an control system for a nanosecond pulser according to some embodiments.
FIG. 5 is a block diagram of a flowchart of process according to some embodiments.
FIG. 6 shows an illustrative computational system for performing functionality to facilitate implementation of embodiments described herein.
DETAILED DESCRIPTION
Some embodiments include a high voltage nanosecond pulser system with an control system. In some embodiments, the control system can monitor and/or measure and/or record waveforms produce by the high voltage nanosecond pulser. In some embodiments, the control system may monitor the output waveforms produced by the high voltage nanosecond pulser system. In some embodiments, the control system may perform waveform digitization and/or waveform processing.
In some embodiments, a high voltage nanosecond pulser system may pulse voltages with amplitudes of about 2 kV to about 40 kV. In some embodiments, a high voltage nanosecond pulser system may switch with frequencies up to about 500 kHz. In some embodiments, a high voltage nanosecond pulser system may provide single pulses of varying pulse widths from about 50 seconds to about 1 nanosecond. In some embodiments, a high voltage nanosecond pulser system may switch at pulse repetition frequencies greater than about 10 kHz. In some embodiments, a high voltage nanosecond pulser system may operate with rise times less than about 20 ns.
FIG. 1 is a circuit diagram of a nanosecond pulser system 100 according to some embodiments. The nanosecond pulser system 100 can be implemented within a high voltage nanosecond pulser system. The nanosecond pulser system 100 can be generalized into five stages (these stages could be broken down into other stages or generalized into fewer stages and/or may or may not include the components shown in the figure). The nanosecond pulser system 100 includes a pulser and transformer stage 101, a resistive output stage 102, a lead stage 103, a DC bias compensation circuit 104, and a load stage 106.
In some embodiments, the nanosecond pulser system 100 can produce pulses from the power supply with voltages greater than 2 kV, with rise times less than about 20 ns, and frequencies greater than about 10 kHz.
In some embodiments, the pulser and transformer stage 101 can produce a plurality of high voltage pulses with a high frequency and fast rise times and fall times. In all of the circuits shown, the high voltage pulser may comprise a nanosecond pulser.
In some embodiments, the pulser and transformer stage 101 can include one or more solid state switches S1 (e.g., solid state switches such as, for example, IGBTs, a MOSFETs, a SiC MOSFETs, SiC junction transistors, FETs, SiC switches, GaN switches, photoconductive switches, etc.), one or more snubber resistors R3, one or more snubber diodes D4, one or more snubber capacitors C5, and/or one or more freewheeling diodes D2. One or more switches and or circuits can be arranged in parallel or series.
In some embodiments, the load stage 106 may represent an effective circuit for a plasma deposition system, plasma etch system, or plasma sputtering system. The capacitance C2 may represent the capacitance of the dielectric material upon which a wafer may sit or capacitance C2 may represent the capacitance between an electrode and a wafer which are separated by a dielectric material. The capacitor C3 may represent the sheath capacitance of the plasma to the wafer. The capacitor C9 may represent capacitance within the plasma between a chamber wall and the top surface of the wafer. The current source 12 and the current source I1 may represent the ion current through the plasma sheaths.
In some embodiments, the resistive output stage 102 may include one or more inductive elements represented by inductor L1 and/or inductor L5. The inductor L5, for example, may represent the stray inductance of the leads in the resistive output stage 102. Inductor L1 may be set to minimize the power that flows directly from the pulser and transformer stage 101 into resistor R1.
In some embodiments, the resistor R1 may dissipate charge from the load stage 106, for example, on fast time scales (e.g., 1 ns, 10 ns, 50 ns, 100 ns, 250 ns, 500 ns, 1,000 ns, etc. time scales). The resistance of resistor R1 may be low to ensure the pulse across the load stage 106 has a fast fall time tf.
In some embodiments, the resistor R1 may include a plurality of resistors arranged in series and/or parallel. The capacitor C11 may represent the stray capacitance of the resistor R1 including the capacitance of the arrangement series and/or parallel resistors. The capacitance of stray capacitance C11, for example, may be less than 5 nF, 2 nF, 1 nF, 500 pF, 250 pF, 100 pF, 50 pF, 10 pF, 1 pF, etc. The capacitance of stray capacitance C11, for example, may be less than the load capacitance such as, for example, less than the capacitance of C2, C3, and/or C9.
In some embodiments, a plurality of pulser and transformer stages 101 can be arranged in parallel and coupled with the resistive output stage 102 across the inductor L1 and/or the resistor R1. Each of the plurality of pulser and transformer stages 101 may each also include diode D1 and/or diode D6.
In some embodiments, the capacitor C8 may represent the stray capacitance of the blocking diode D1. In some embodiments, the capacitor C4 may represent the stray capacitance of the diode D6.
In some embodiments, the DC bias compensation circuit 104 may include a DC voltage source V1 that can be used to bias the output voltage either positively or negatively. In some embodiments, the capacitor C12 isolates/separates the DC bias voltage from the resistive output stage and other circuit elements. It allows for a potential shift from one portion of the circuit to another. In some applications the potential shift it establishes is used to hold a wafer in place. Resistance R2 may protect/isolate the DC bias supply from the high voltage pulsed output from the pulser and transformer stage 101.
In this example, the DC bias compensation circuit 104 is a passive bias compensation circuit and can include a bias compensation diode D1 and a bias compensation capacitor C15. The bias compensation diode C15 can be arranged in series with offset supply voltage V1. The bias compensation capacitor C15 can be arranged across either or both the offset supply voltage V1 and the resistor R2. The bias compensation capacitor C15 can have a capacitance less than 100 nH to 100 μF such as, for example, about 100 μF, 50 μF, 25 μF, 10 μF, 2μ, 500 nH, 200 nH, etc.
In some embodiments, the bias capacitor C12 may allow for a voltage offset between the output of the pulser and transformer stage 101 (e.g., at the position labeled 125) and the voltage on the electrode (e.g., at the position labeled 124). In operation, the electrode may, for example, be at a DC voltage of −2 kV during a burst, while the output of the nanosecond pulser alternates between +6 kV during pulses and 0 kV between pulses.
In some embodiments, the bias compensation capacitor C15 and the bias compensation diode D1 may allow for the voltage offset between the output of the pulser and transformer stage 101 (e.g., at the position labeled 125) and the voltage on the electrode (e.g., at the position labeled 124) to be established at the beginning of each burst, reaching the needed equilibrium state. For example, charge is transferred from bias capacitor C12 into bias compensation capacitor C15 at the beginning of each burst, over the course of a plurality of pulses (e.g., about 5-100 pulses), establishing the correct voltages in the circuit.
In some embodiments, the DC bias compensation circuit 104 may include one or more high voltage switches placed across the bias compensation diode D1 and coupled with the power supply V1. In some embodiments, a high voltage switch may include a plurality of switches arranged in series to collectively open and close high voltages.
A high voltage switch may be coupled in series with either or both an inductor and a resistor. The inductor may limit peak current through high voltage switch. The inductor, for example, may have an inductance less than about 100 μH such as, for example, about 250 μH, 100 μH, 50 μH, 25 μH, 10 μH, 5 μH, 1 μH, etc. The resistor, for example, may shift power dissipation to the resistive output stage 102. The resistance of resistor may have a resistance of less than about 1,000 ohms, 500 ohms, 250 ohms, 100 ohms, 50 ohms, 10 ohms, etc.
In some embodiments, a high voltage switch may include a snubber circuit.
In some embodiments, the high voltage switch may include a plurality of switches arranged in series to collectively open and close high voltages. For example, the high voltage switch may, for example, include any switch described in U.S. patent application Ser. No. 16/178,565, filed Nov. 1, 2018, titled “High Voltage Switch with Isolated Power,” which is incorporated into this disclosure in its entirety for all purposes.
In some embodiments, a high voltage switch may be open while the pulser and transformer stage 101 is pulsing and closed when the pulser and transformer stage 101 is not pulsing. When the high voltage switch is closed, for example, current can short across the bias compensation diode C15. Shorting this current may allow the bias between the wafer and the chuck to be less than 2 kV, which may be within acceptable tolerances.
In some embodiments, the pulser and transformer stage 101 can produce pulses having a high pulse voltage (e.g., voltages greater than 1 kV, 10 kV, 20 kV, 50 kV, 100 kV, etc.), high pulse repetition frequencies (e.g., frequencies greater than 1 kHz, 10 kHz, 100 kHz, 200 kHz, 500 kHz, 1 MHz, etc.), fast rise times (e.g., rise times less than about 1 ns, 10 ns, 50 ns, 100 ns, 250 ns, 500 ns, 1,000 ns, etc.), fast fall times (e.g., fall times less than about 1 ns, 10 ns, 50 ns, 100 ns, 250 ns, 500 ns, 1,000 ns, etc.) and/or short pulse widths (e.g., pulse widths less than about 1,000 ns, 500 ns, 250 ns, 100 ns, 20 ns, etc.).
In some embodiments, the various stages or components shown in FIG. 1 are optional. For example, the resistive output stage 102 may be removed or replaced.
FIG. 2 shows example waveforms produced by the nanosecond pulser system 100. In these example waveforms, the pulse waveform 205 may represent the voltage provided by the pulser and transformer stage 101. As shown, the pulse waveform 205 produces a pulse with the following qualities: high voltage (e.g., greater than about 4 kV as shown in the waveform), a fast rise time (e.g., less than about 200 ns as shown in the waveform), a fast fall time (e.g., less than about 200 ns as shown in the waveform), and short pulse width (e.g., less than about 300 ns as shown in the waveform). The waveform 210 may represent the voltage at the surface of a wafer represented in the circuit shown in FIG. 1 by the point between capacitor C2 and capacitor C3 or the voltage across capacitor C3. The pulse waveform 215 represent the current flowing from the pulser and transformer stage 101 to the plasma. The nanosecond pulser system 100 may or may not include either or both diodes D1 or D2.
During the transient state (e.g., during an initial number of pulses not shown in the figure), the high voltage pulses from the pulser and transformer stage 101 charge the capacitor C2. Because the capacitance of capacitor C2 is large compared to the capacitance of capacitor C3 and/or capacitor C1, and and/or because of the short pulse widths of the pulses, the capacitor C2 may take a number of pulses from the high voltage pulser to fully charge. Once the capacitor C2 is charged the circuit reaches a steady state, as shown by the waveforms in FIG. 2.
In steady state and when the switch S1 is open, the capacitor C2 is charged and slowly dissipates through the resistive output stage 102, as shown by the slightly rising slope of waveform 210. Once the capacitor C2 is charged and while the switch S1 is open, the voltage at the surface of the waver (the point between capacitor C2 and capacitor C3) is negative. This negative voltage may be the negative value of the voltage of the pulses provided by the pulser and transformer stage 101. For the example waveform shown in FIG. 2, the voltage of each pulse is about 4 kV; and the steady state voltage at the wafer is about −4 kV. This results in a negative potential across the plasma (e.g., across capacitor C3) that accelerates positive ions from the plasma to the surface of the wafer. While the switch S1 is open, the charge on capacitor C2 slowly dissipates through the resistive output stage.
When the switch S1 is closed, the voltage across the capacitor C2 may flip (the pulse from the pulser is high as shown in the pulse waveform 205) as the capacitor C2 is charged. In addition, the voltage at the point between capacitor C2 and capacitor C3 (e.g., at the surface of the wafer) changes to about zero as the capacitor C2 charges, as shown in waveform 210. Thus, the pulses from the high voltage pulser produce a plasma potential (e.g., a potential in a plasma) that rise from a negative high voltage to zero and returns to the negative high voltage at high frequencies, with fast rise times, fast fall times, and/or short pulse widths.
In some embodiments, the action of the resistive output stage, elements represented by the resistive output stage 102, that may rapidly discharge the stray capacitance C1, and may allow the voltage at the point between capacitor C2 and capacitor C3 to rapidly return to its steady negative value of about −4 kV as shown by waveform 210. The resistive output stage may allow the voltage at the point between capacitor C2 and capacitor C3 to exists for about % of the time, and thus maximizes the time which ions are accelerated into the wafer. In some embodiments, the components contained within the resistive output stage may be specifically selected to optimize the time during which the ions are accelerated into the wafer, and to hold the voltage during this time approximately constant. Thus, for example, a short pulse with fast rise time and a fast fall time may be useful, so there can be a long period of fairly uniform negative potential.
Various other waveforms may be produced by the nanosecond pulser system 100.
FIG. 3 is a circuit diagram of a nanosecond pulser system 300 with the pulser and transformer stage 101 and an energy recovery circuit 305 according to some embodiments. The energy recovery circuit, for example, may replace the resistive output stage 102 shown in FIG. 1. In this example, the energy recovery circuit 305 may be positioned on or electrically coupled with the secondary side of the transformer T1. The energy recovery circuit 305, for example, may include a diode 330 (e.g., a crowbar diode) across the secondary side of the transformer T1. The energy recovery circuit 305, for example, may include diode 310 and inductor 315 (arranged in series), which can allow current to flow from the secondary side of the transformer T1 to charge the power supply C7. The diode 310 and the inductor 315 may be electrically connected with the secondary side of the transformer T1 and the power supply C7. In some embodiments, the energy recovery circuit 305 may include diode 335 and/or inductor 340 electrically coupled with the secondary of the transformer T1. The inductor 340 may represent the stray inductance and/or may include the stray inductance of the transformer T1.
When the nanosecond pulser is turned on, current may charge the load stage 106 (e.g., charge the capacitor C3, capacitor C2, or capacitor C9). Some current, for example, may flow through inductor 315 when the voltage on the secondary side of the transformer T1 rises above the charge voltage on the power supply C7. When the nanosecond pulser is turned off, current may flow from the capacitors within the load stage 106 through the inductor 315 to charge the power supply C7 until the voltage across the inductor 315 is zero. The diode 330 may prevent the capacitors within the load stage 106 from ringing with the inductance in the load stage 106 or the bias compensation circuit 104.
The diode 310 may, for example, prevent charge from flowing from the power supply C7 to the capacitors within the load stage 106.
The value of inductor 315 can be selected to control the current fall time. In some embodiments, the inductor 315 can have an inductance value between 1 μH-500 μH.
In some embodiments, the energy recovery circuit 305 may include an energy recovery switch that can be used to control the flow of current through the inductor 315. The energy recovery switch, for example, may be placed in series with the inductor 315. In some embodiments, the energy recovery switch may be closed when the switch S1 is open and/or no longer pulsing to allow current to flow from the load stage 106 back to the high voltage load C7.
In some embodiments, the energy recovery switch may include a plurality of switches arranged in series to collectively open and close high voltages. For example, the energy recovery switch may, for example, include any switch described in U.S. patent application Ser. No. 16/178,565, filed Nov. 1, 2018, titled “High Voltage Switch with Isolated Power,” which is incorporated into this disclosure in its entirety for all purposes.
In some embodiments, the nanosecond pulser system 300 may produce similar waveforms as those shown in FIG. 2.
FIG. 4 is a block diagram of an control system 400 for a nanosecond pulser system 100 (or nanosecond pulser system 300) according to some embodiments. In some embodiments, the control system 400 may be electrically coupled with the nanosecond pulser system 100 at one or more locations. For example, a first HV signal 405A (or a second HV signal 405B) may include the voltage signal at point 120 of the nanosecond pulser system 100, which is between the pulser and transformer stage 101 and the bias compensation circuit 104. As another example, a first HV signal 405A (or a second HV signal 405B) may include the voltage signal at point 124 of the nanosecond pulser system 100, which is between the load stage 106 and the bias compensation circuit 104. As another example, a first HV signal 405A (or a second HV signal 405B) may include the voltage signal at point 125 of the nanosecond pulser system 100, which is prior to the resistive output stage 102. As another example, a first HV signal 405A (or a second HV signal 405B) may include the voltage on the wafer, chuck, or electrode. While two signals are shown, any number of signals may be received. As another example, a first HV signal 405A (or a second HV signal 405B) may include the voltage across the resistor R1 in resistive output stage 102, which may be representative of the ion current in the chamber. As another example, a first HV signal 405A (or a second HV signal 405B) may include the voltage in the energy recovery stage, such as, for example, the voltage across inductor 315, which may be representative of the ion current in the chamber.
In some embodiments, the first HV signal 405A and the second HV signal 405B may include the voltage signals on each side of the capacitor C12 of the bias compensation circuit 104. Any number of other signals may be received.
In some embodiments, the first HV signal 405A or the second HV signal 405B may include the voltage signals provided to the load stage 106. In some embodiments, the first HV signal 405A or the second HV signal 405B may include the voltage signals provided to the bias compensation circuit 104. In some embodiments, the first HV signal 405A or the second HV signal 405B may include the voltage signals provided to the lead stage 103. In some embodiments, the first HV signal 405A or the second HV signal 405B may include the voltage signals provided to the pulser and transformer stage 101 may be measured. In some embodiments, the first HV signal 405A or the second HV signal 405B may include the voltage signals provided to the resistive output stage 102.
The first HV signal 405A and the second HV signal 405B collectively or individually may be referred to as the HV input signal 405.
In some embodiments, the HV input signal 405 may divided at voltage divider 410. The voltage divider 410, for example, may include high value resistors or low value capacitors to divide the high voltage HV input signal (e.g., greater than 1 KV) to a low voltage signal (e.g., less than 50 V). The voltage divider 410, for example, may divide the voltage with a 500:1 ratio, 1,000:1 ratio, a 10,000:1 ratio, a 100,000:1 ratio, etc. The voltage divider 410, for example, may divide the HV input signal 405 voltage of 0-10 kV to a voltage of 0-20 V. The voltage divider 410, for example, may divide the voltage with minimal power loss such as, for example, less than about 5 W of power loss.
In some embodiments, the voltage divider 410 may include a low value capacitor, a large value capacitor, a low value resistor, and a large value resistor. The low value capacitor, for example, may comprise a capacitor that has a capacitance value of about 0.1 pF, 0.5 pF, 1.0 pF, 2.5 pF, 5.0 pF, 10.0 pF, 100 pF, 1 nF, 10 nF, etc. The large value capacitor, for example, may comprise a capacitor that has a capacitance value of about 500 pf. In some embodiments, the large value capacitor may have a capacitance value that is about 50, 100, 250, 500, 1,000, 2,500, 5,000 pF, etc. greater than the capacitance value of the low value capacitor.
The low value resistor may have a resistance value of about 1.0 kΩ, 2.5 kΩ, 5.0 kΩ, 10 kΩ, 25 kΩ, 50 kΩ, 100 kΩ, etc. The large value resistor may have a resistance value of about 0.5 MΩ, 1.0 MΩ, 2.5 MΩ, 5.0 MΩ, 10 MΩ, 25 MΩ, 50 MΩ, 100 MΩ, etc. In some embodiments, the large value resistor may have a resistance value that is about 50Ω, 100Ω, 250Ω, 500Ω, 1,000Ω, 2,500Ω, 5,000Ω, etc. greater than the resistance value of the low value resistor. In some embodiments, the ratio of the low value capacitor to the large value capacitor may be substantially the same as the ratio of the low value resistor to the large value resistor.
In some embodiments, the voltage divider 410 may receive the HV input signal and output a divided voltage signal. The divided voltage signal, for example, may be 100, 250, 500, 750, 1,000, etc. times smaller than the HV input signal.
In some embodiments, a filter 415 may be included such as, for example, to filter out any noise from the divided voltage signal. The filter, for example, may include any type of low pass filter, a band pass filter, a band stop filter, or a high pass filter.
In some embodiments, the divided voltage signal may be digitized by the first ADC 420. Any type of analog to digital converter may be used. The first ADC 420 may produce a digitized waveform signal. In some embodiments, the first ADC 420 may capture data at 100, 250, 500, 1,000, 2,000, 5,000 MSPS (megasamples per second or millions of samples per second). In some embodiments, the digitized waveform signal may be communicated to the controller 425 using any type of communication protocol such as, for example, SPI, UART, RS-232, USB, I2C, etc.
In some embodiments, any of the voltage divider 410, the filter 415, or the first ADC 420 may be isolated from the nanosecond pulser system 100 via galvanic isolation or via fiber optic link.
In some embodiments, the controller 425 may comprise any type of controller such as, for example, an FPGA, ASIC, complex programmable logic device, microcontroller, system on a chip (SoC), or any combination thereof. In some embodiments, the controller 425 may include any or all the components of the computational system 600. In some embodiments, the controller 425 may include a standard microcontroller such as, for example, Broadcom Arm Cortex, Intel ARM Cortex, PIC32, etc.
In some embodiments, the controller 425 may receive a trigger signal from trigger 430. In other embodiments, the first ADC 420 may receive the trigger signal from trigger 430. The trigger signal may provide the timing of data acquisition at the first ADC 420. The trigger signal, for example, may be a 5V TTL trigger. The trigger signal, for example, may, have a 50 ohm termination.
The digitized signal may then be output from the controller 425 via one or more output ports such as, for example, a first output 435A or a second output 435B (individually or collectively output 435). These outputs may be coupled with a nanosecond pulser controller. Either or both the output 435 may include an electrical connecter such as, for example, an LVDS, TTL, LVTTL connector. Either or both the output 435 may provide data to the nanosecond pulser controller using any type of communication protocol such as, for example, SPI, UART, RS-232, USB, I2C, EtherCat, Ethernet, Profibus, PROFINET.
In some embodiments, the control system 400 may couple with the nanosecond pulser system 100 via a 4 mm Multilam receptacles on the control system 400.
In some embodiments, the control system 400 may include a second ADC 445, which may receive inputs from a first sensor 450A and a second sensor 450B (individually or collectively sensor 450) (or any number of sensors). In some embodiments, the second ADC 445 may digitize analog signals from the sensors 450. The sensors 450 may include, for example, a sensor that senses inlet water temperature, dielectric fluid temperature, dielectric fluid pressure, chassis air temperature, voltage, fluid flow, fluid leak sensor, etc. In some embodiments, the second ADC 445 may include ARM, PIC32, AVR, PSOC, or PIC32.
In some embodiments, the second ADC 445 and the first ADC 420 may comprise a single ADC device. In some embodiments, either or both the second ADC 445 or the first ADC 420 may be part of the controller 425. In some embodiments, the first ADC 420 may operate at a higher acquisition rate than the second ADC.
In some embodiments, the control system may measure the full-width half-max, peak voltage, DC bias, rise time, fall time, etc. of pulses in the nanosecond pulser system 100.
In some embodiments, the control system 400 may monitor the voltage, frequency, pulse width, etc. of pulses and, in response, may adjust the voltage, pulse repetition frequency, pulse width, burst repetition frequency (where a burst includes a plurality of pulses), etc. provided to the input of the nanosecond pulser system 100. For example, the first ADC 420 may monitor the voltage amplitude of a waveform. This voltage data may be provided to the nanosecond pulser controller. The nanosecond pulser controller may adjust the amplitude or frequency of the signal provided to the nanosecond pulser system 100.
In some embodiments, the control system 400 may output arbitrary pulse signals via output 435 to one or more nanosecond pulser systems 100. The output 435, for example, may include either fiber or electric connections. In some embodiments, control system 400 can include a plurality of output pulse channels (e.g., 1, 2, 5, 8, 20, 50, 100, etc.) that may, for example, be independent from each other. The plurality of output pulse channels may, for example, output pulses with sub-nanosecond resolution.
For example, if the pulse voltage is less than a predetermined voltage, the controller 425 may send a signal to the nanosecond pulser system 100 to produce pulses with a higher voltage. If the pulse voltage is greater than a predetermined voltage, the first ADC 420 may send a signal to the nanosecond pulser system 100 to produce pulses with a lower voltage. In some embodiments, the signal to the nanosecond pulser to increase the pulse voltage may comprise a low voltage pulse that has a longer pulse width than the previously sent signal, and the signal to the nanosecond pulser to decrease the pulse voltage may comprise a low voltage pulse that has a shorter pulse width than the previously sent signal.
As another example, if the pulse repetition frequency is greater than an desired pulse repetition frequency, the controller 425 may send a signal to the nanosecond pulser system 100 to produce pulses with a lower frequency. If the burst repetition frequency is less than an desired burst repetition frequency, the controller 425 may send a signal to the nanosecond pulser system 100 to produce pulses with a higher pulse repetition frequency. If the full width half max of the measured pulse is different than an desired burst repetition frequency, the controller 425 may send a signal to the nanosecond pulser system 100 to produce a pulses with an adjusted pulse width or pulse repetition frequency.
As another example, if the waveform pulse width is longer than an desired pulse width, the first ADC 420 may send a signal to the nanosecond pulser system 100 to produce a waveform with a shorter or longer pulse width. If the waveform duty cycle is shorter or longer than an desired duty cycle, the first ADC 420 may send a signal to the nanosecond pulser system 100 to produce a pulses with the appropriate duty cycle.
The control system 400 may monitor other waveform characteristics and/or adjust these other characteristics.
In some embodiments, the control system 400 may output arbitrary pulse signals via output 435 to one or more nanosecond pulser systems 100. For example, the control system may comprise an arbitrary pulse generator. The output 435, for example, may include either fiber or electric connections. In some embodiments, control system 400 can include a plurality of output pulse channels (e.g., 1, 2, 5, 8, 20, 50, 100, etc.) that may, for example, be independent from each other. The plurality of output pulse channels may, for example, output pulses with sub-nanosecond resolution. In some embodiments, the control system 400 may output pulses with resolution less than about 0.1 ns. In some embodiments, the control system 400 may output pulses with jitter less than about 100 ps.
In some embodiments, each output pulse channel of the control system 400 may output pulses to a nanosecond pulser system 100 that triggers the nanosecond pulser system 100. The control system 400 may, for example, adjust parameters of the output pulses in real-time or between pulses. These parameters may include pulse width, pulse repetition frequency, duty cycle, burst repetition frequency, voltage, number of pulses in a burst, the number of burst, etc. In some embodiments, one or more parameters may be adjusted or changed based on input to the control system 400 or based on a recipe or a program.
For example, a recipe may include alternating high bursts and low bursts. A high burst, for example, may include a plurality of high voltage pulses. A low burst, for example, may include a plurality of lower voltage pulses. The high burst and the low burst may, for example, include the same number of pulses or a different number of pulses within each burst. A low burst, for example, may have a voltage that is 10%, 20%, 30%, 40%, 50%, etc. lower than the voltage of the high burst voltage.
The alternating high bursts and low bursts may include 5%, 20%, 50%, 100%, 125%, 150%, etc. ratio of low bursts to high bursts (low-high ratio). For example, a 20% low-high ratio may include a train of 10 bursts, where each burst includes about 500 pulses (or any number of pulses from 1 to 10,000 pulses. In a train of 10 bursts with a 10% low-high ratio, 2 bursts may be low voltage bursts and 8 bursts may be high voltage bursts.
In some embodiments, the controller 425 may communicate pulses with longer low voltage pulses to produce the high bursts and communicate pulses with shorter low voltage pulses to produce the low bursts to the nanosecond pulser to produce alternating high bursts and low bursts as described in U.S. patent application Ser. No. 16/114,195, titled “ARBITRARY WAVEFORM GENERATION USING NANOSECOND PULSES,” which is incorporated herein for all purposes.
In some embodiments, the control system 400 comprises an electrical shield. An electrical shield, for example, can separate the high voltage components from the low voltage components. An electrical shield, for example, may be disposed physically between the divider 410 and the controller 425 or the first ADC 420. As another example, the electric shield may be disposed physically between the nanosecond pulser system 100 and the controller 425 or the first ADC 420.
In some embodiments, the electric shield may be disposed physically between resistors in the divider 410. In some embodiments, the electric shield may be disposed physically between capacitors in the divider 410.
In some embodiments, the electrical shield may comprise any type of electrically conductive material or metal such as, for example, copper, nickel, aluminum, bronze, steel, brass, etc. In some embodiments, the electrical shield may comprise sheet metal, metal screen, or metal foam.
In some embodiments, the control system 400 may monitor the sensors 150 and take action. A number of examples are provided below.
In some embodiments, the nanosecond pulser system 100 may include a cooling subsystem. In some embodiments, the cooling subsystem may include a fluid, such as, for example, either water or a dielectric fluid, that flows through the cooling subsystem to remove heat from the nanosecond pulser system 100. For example, one of the sensors 450 may include a flow rate sensor for fluid in the cooling system. If the controller 425 determines the flow rate is below a flow rate threshold, the control system 400 will not allow the nanosecond pulser system 100 to turn on. If the controller 425 determines the flow rate is below a flow rate threshold, the controller 425 may turn off the nanosecond pulser system 100. In some embodiments, the flow rate sensor (in some cases with the controller 425) may be a flow rate interlock. A flow rate interlock, for example, may prevent the nanosecond pulser system 100 from turning on or may turn off the nanosecond pulser system 100, if it is already on, if the flow rate is below the flow rate threshold.
For example, one of the sensors 450 may include a thermometer coupled with the cooling subsystem. If the controller 425 determines the temperature of the cooling subsystem (e.g., the temperature of the fluid) is above a water temperature threshold, the control system 400 will not allow the nanosecond pulser system 100 to turn on. If the controller 425 determines the temperature of the water is above the water temperature threshold, the controller 425 may turn off the nanosecond pulser system 100. A temperature interlock, which is distinct from the controller 425, for example, may prevent the nanosecond pulser system 100 from turning on or may turn off the nanosecond pulser system 100, if it is already on, if the temperature is above the water temperature threshold.
For example, one of the sensors 450 may include a liquid level sensor for a fluid reservoir in a cooling system. If the controller 425 determines the reservoir liquid level is above a liquid level threshold, the control system 400 will not turn on. If the controller 425 determines the reservoir liquid level is above the liquid level threshold, the controller 425 may turn off the nanosecond pulser system 100. A liquid level interlock, which is distinct from the controller 425, for example, may prevent the nanosecond pulser system 100 from turning on or may turn off the nanosecond pulser system 100, if it is already on, if the liquid level is below the liquid level threshold.
In some embodiments, the nanosecond pulser system 100 may include a nitrogen purge subsystem that pumps nitrogen into the nanosecond pulser system. The nitrogen purge system, for example, may introduce dry nitrogen into an enclosure within which the high voltage nanosecond pulser system is disposed. For example, one of the sensors 450 may include a nitrogen pressure sensor. If the controller 425 determines the nitrogen pressure level is below a pressure threshold the control system 400 will not turn on. If the controller 425 determines the nitrogen pressure level is below the pressure threshold the controller 425 may turn off the nanosecond pulser system 100. A pressure interlock, which is distinct from the controller 425, for example, may prevent the nanosecond pulser system 100 from turning on or may turn off the nanosecond pulser system 100, if it is already on, if the pressure is below the pressure threshold.
In some embodiments, one of the sensors 450 may include a DC voltage sensor that may be coupled with a DC power supply in the nanosecond pulser system 100. For example, if multiple DC power supply systems are used in nanosecond pulser system 100 and during operation the voltage varies by more than a set percentage (e.g., 1%, 5%, 10%, 20%, etc.) or more than an absolute voltage (e.g., 5V, 10V, 50V, 100V, etc.) then the controller 425 may turn off the nanosecond pulser system 100. As another example, if power supply systems are used and during operation the voltage output differs by more than a percentage from a set voltage (e.g., 1%, 5%, 10%, 20%, etc.) or more than an absolute voltage from the set voltage (e.g., 5V, 10V, 50V, 100V, etc.) then the controller 425 may turn off pulsing.
In some embodiments, output 435 may include an EtherCat module that may communicate with a third party system (e.g., an external system). In some embodiments, the EtherCat module may comprise any type of communication module. In some embodiments, the EtherCat may include one or more components of the computational system 600.
In some embodiments, the control system 400 may include one or more interlocks coupled with one or more sensors 450. An interlock may, for example, automatically interrupt operation of the nanosecond pulser system 100 without interaction with the controller 425 if the one of the sensor detects a parameter out of tolerance. An interlock signal, for example, may be coupled with a nanosecond pulser system 100 control signal using an AND gate that only allows the control signal to operate the nanosecond pulser if the interlock provides a positive signal.
In some embodiments, a sensor 450 may be coupled with both the controller 425 and an interlock. For example, the interlock may operate at a first threshold level and the controller 425 may operate at a second, different threshold level. The interlock, for example, may operate at a first threshold that protects the nanosecond pulser system from immediate or near-term damage. The controller, for example, may operate at a second threshold that is out of tolerance and the controller may adjust various parameters to bring the system into tolerance, or monitor the system for a period of time before turning off the nanosecond pulser, or may turn off the nanosecond pulser.
For example, a 24V DC interlock may be included may be coupled with a voltage sensor that measures input voltage from a 24V DC power supplier. If the voltage from the 24 V DC power supply exceeds 24V by a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
As another example, a high voltage DC interlock may be included may be coupled with a voltage sensor that measures input voltage from a high voltage DC power supplier. If the voltage from the high voltage DC power supply exceeds the expected voltage by a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
As another example, a dry N2 pressure interlock may be coupled with a pressure sensor coupled with a nitrogen purge subsystem. If the pressure from the nitrogen purge subsystem exceeds a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
As another example, a water flow interlock may be coupled with a water line in the thermal management system. If the flow rate of the water exceeds a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
As another example, a dielectric fluid flow interlock may be coupled with a dielectric fluid line in the thermal management system. If the flow rate of the dielectric fluid exceeds a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
As another example, a reservoir level interlock may be coupled with a water or dielectric fluid reservoir in the thermal management system. If the reservoir level exceeds a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
As another example, a water temperature interlock may be coupled with a thermometer in the thermal management system. If the temperature of the water exceeds a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
As another example, a dielectric fluid temperature interlock may be coupled with a thermometer in the thermal management system. If the temperature of the dielectric fluid exceeds a predetermined threshold or percentage, then the interlock will send a negative signal to the nanosecond pulser system 100 and the nanosecond pulser system 100 will not operate.
In some embodiments, the control system may control the operation of a pulsing system such as, for example, pulse width, duty cycle, high voltage set point, on/off, returns current output voltage, high voltage current set point, returns current output current, enable high voltage output, returns high voltage enable state, emergency shutdown, etc.
In some embodiments, a user may interface with the control system through an EtherCat module. A user, for example, may issue a PW command to set the output pulse width. As another example, user may issue DUTY command to set the duty cycle. As another example, a user may issue a PWR command to turn the power on and begin operation of unit or off to end operation of the unit. As another example, the unit may continue to operate as set until issued another command to change duty cycle, pulse width, or issued another PWR command to shut off.
In some embodiments, the control system 400 may receive commands from an external source in any type of communication protocols such as, for example, EtherCat, LXI, Ethernet, Profibus, PROFINET, RS-232, ModBus, USB, UART, SPI, CC-Lin, etc.
FIG. 5 is a block diagram of a flowchart of process 500 according to some embodiments. Process 500 includes a number of blocks. Any additional blocks may be added or any blocks may be removed. The process 500 may, for example, be executed by one or more components of computational system 600. The process 500 may, for example be executed by the control system 400.
At block 505, the process 500 can send a plurality of low voltage pulses to a high voltage pulser system (e.g., nanosecond pulser 100 or nanosecond pulser 300) based on a recipe. The low voltage pulses, for example, may have a peak voltage of less than 20 V such as, for example, 5V. The low voltage pulses may have a pulse repetition frequency and each pulse may have a pulse width.
In some embodiments, the recipe may include alternating high bursts and low bursts as described above. In some embodiments, the recipe may be adjusted or changed in real time. In some embodiments, the recipe may be dependent on various parameters or characteristics of the plasma chamber.
At block 510, high voltage pulses can be measured at the high voltage pulser. The high voltage pulsers, for example, may have a peak voltage greater than 2 kV. In some embodiments, the high voltage pulses may have a peak voltage that is more then 100 times the peak voltage of the low voltage pulses. In some embodiments, the high voltage pulses may be measured at the electrode within a plasma chamber. In some embodiments, the high voltage pulses may be measured across a resistor within a resistive output stage or an energy recover stage of the high voltage pulser. In some embodiments, the high voltage pulses may be measured at a bias capacitor within the high voltage pulser.
In some embodiments, the full-width half-max, peak voltage, DC bias, rise time, fall time, etc. of the high voltage pulses can be measured.
At block 515, the measure pulses can be compared with the desired (or anticipated) pulses. If the measured pulses are consistent with the desired pulses (e.g., within some tolerance), the process 500 proceeds to block 505 and the process repeats.
If the measured pulses are not consistent with the desired pulses, then process 500 proceeds to block 520. At block 520 the pulse width or the pulse repetition frequency of the low voltage pulses are adjusted. For example, if the voltage of the high voltage pulses is lower than desired, then the pulse width of the low voltage pulses may be increased. As another example, if the voltage of the high voltage pulses is higher than desired, then the pulse width of the low voltage pulses may be decreased.
For example, if the pulse repetition frequency (or the pulse repetition period) of the high voltage pulses is lower than desired, then the pulse repetition frequency of the low voltage pulses may be increased. As another example, if the pulse repetition frequency (or the pulse repetition period) of the high voltage pulses is higher than desired, then the pulse repetition frequency of the low voltage pulses may be decreased.
In some embodiments, the process 500 may be executed in real time. For example, the process 500 may repeat in less than about 20 μs, 10 μs, 5 μs, 1 μs, etc. As another example, the process 500 may control the accuracy of the period between pulses (e.g., the pulse repetition period) with an accuracy less than about 50 μs, 20 μs, 10 μs, 5 μs, 1 μs, etc.
In some embodiments, the control system 400 may include a computational system that includes some or all of the components of computational system 600, shown in FIG. 6. As another example, computational system 600 can be used perform any calculation, identification and/or determination described in this document. The computational system 600 may include hardware elements that can be electrically coupled via a bus 605 (or may otherwise be in communication, as appropriate). The hardware elements can include one or more processors 610, including without limitation one or more general-purpose processors and/or one or more special-purpose processors (such as digital signal processing chips, graphics acceleration chips, and/or the like); one or more input devices 615, which can include without limitation a mouse, a keyboard and/or the like; and one or more output devices 620, which can include without limitation a display device, a printer and/or the like.
The computational system 600 may further include (and/or be in communication with) one or more storage devices 625, which can include, without limitation, local and/or network accessible storage and/or can include, without limitation, a disk drive, a drive array, an optical storage device, a solid-state storage device, such as a random access memory (“RAM”) and/or a read-only memory (“ROM”), which can be programmable, flash-updateable and/or the like. The computational system 600 might also include a communications subsystem 630, which can include without limitation a modem, a network card (wireless or wired), an infrared communication device, a wireless communication device and/or chipset (such as a Bluetooth device, an 802.6 device, a Wi-Fi device, a WiMax device, cellular communication facilities, etc.), and/or the like. The communications subsystem 630 may permit data to be exchanged with a network (such as the network described below, to name one example), and/or any other devices described herein. In many embodiments, the computational system 600 will further include a working memory 635, which can include a RAM or ROM device, as described above.
The computational system 600 also can include software elements, shown as being currently located within the working memory 635, including an operating system 640 and/or other code, such as one or more application programs 645, which may include computer programs of the invention, and/or may be designed to implement methods of the invention and/or configure systems of the invention, as described herein. For example, one or more procedures described with respect to the method(s) discussed above might be implemented as code and/or instructions executable by a computer (and/or a processor within a computer). A set of these instructions and/or codes might be stored on a computer-readable storage medium, such as the storage device(s) 625 described above.
In some cases, the storage medium might be incorporated within the computational system 600 or in communication with the computational system 600. In other embodiments, the storage medium might be separate from a computational system 600 (e.g., a removable medium, such as a compact disc, etc.), and/or provided in an installation package, such that the storage medium can be used to program a general-purpose computer with the instructions/code stored thereon. These instructions might take the form of executable code, which is executable by the computational system 600 and/or might take the form of source and/or installable code, which, upon compilation and/or installation on the computational system 600 (e.g., using any of a variety of generally available compilers, installation programs, compression/decompression utilities, etc.) then takes the form of executable code.
Unless otherwise specified, the term “substantially” means within 5% or 10% of the value referred to or within manufacturing tolerances. Unless otherwise specified, the term “about” means within 5% or 10% of the value referred to or within manufacturing tolerances.
Numerous specific details are set forth herein to provide a thorough understanding of the claimed subject matter. However, those skilled in the art will understand that the claimed subject matter may be practiced without these specific details. In other instances, methods, apparatuses or systems that would be known by one of ordinary skill have not been described in detail so as not to obscure claimed subject matter.
Some portions are presented in terms of algorithms or symbolic representations of operations on data bits or binary digital signals stored within a computing system memory, such as a computer memory. These algorithmic descriptions or representations are examples of techniques used by those of ordinary skill in the data processing arts to convey the substance of their work to others skilled in the art. An algorithm is a self-consistent sequence of operations or similar processing leading to a desired result. In this context, operations or processing involves physical manipulation of physical quantities. Typically, although not necessarily, such quantities may take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared or otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to such signals as bits, data, values, elements, symbols, characters, terms, numbers, numerals or the like. It should be understood, however, that all of these and similar terms are to be associated with appropriate physical quantities and are merely convenient labels. Unless specifically stated otherwise, it is appreciated that throughout this specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” and “identifying” or the like refer to actions or processes of a computing device, such as one or more computers or a similar electronic computing device or devices, that manipulate or transform data represented as physical electronic or magnetic quantities within memories, registers, or other information storage devices, transmission devices, or display devices of the computing platform.
The system or systems discussed herein are not limited to any particular hardware architecture or configuration. A computing device can include any suitable arrangement of components that provides a result conditioned on one or more inputs. Suitable computing devices include multipurpose microprocessor-based computer systems accessing stored software that programs or configures the computing system from a general-purpose computing apparatus to a specialized computing apparatus implementing one or more embodiments of the present subject matter. Any suitable programming, scripting, or other type of language or combinations of languages may be used to implement the teachings contained herein in software to be used in programming or configuring a computing device.
Embodiments of the methods disclosed herein may be performed in the operation of such computing devices. The order of the blocks presented in the examples above can be varied—for example, blocks can be re-ordered, combined, and/or broken into sub-blocks. Certain blocks or processes can be performed in parallel.
The use of “adapted to” or “configured to” herein is meant as open and inclusive language that does not foreclose devices adapted to or configured to perform additional tasks or steps. Additionally, the use of “based on” is meant to be open and inclusive, in that a process, step, calculation, or other action “based on” one or more recited conditions or values may, in practice, be based on additional conditions or values beyond those recited. Headings, lists, and numbering included herein are for ease of explanation only and are not meant to be limiting.
While the present subject matter has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, it should be understood that the present disclosure has been presented for purposes of example rather than limitation, and does not preclude inclusion of such modifications, variations and/or additions to the present subject matter as would be readily apparent to one of ordinary skill in the art.

Claims (25)

That which is claimed:
1. A nanosecond pulser system comprising:
a nanosecond pulser comprising:
a pulser input;
a high voltage DC power supply;
one or more solid-state switches coupled with the high voltage DC power supply and the pulser input, the one or more solid-state switches switching the high voltage DC power supply based on input pulses provided by the pulser input;
one or more transformers coupled with the one or more switches; and
a pulser output coupled with the one or more transformers that outputs a high voltage waveform with an amplitude greater than about 2 kV and a pulse repetition frequency greater than about 1 kHz based on the pulser input; and
a control system coupled with the nanosecond pulser at a measurement point, the control system providing the input pulses to the pulser input.
2. The nanosecond pulser system according to claim 1, wherein the measurement point comprises a point between the transformer and the pulser output.
3. The nanosecond pulser system according to claim 1, wherein:
the nanosecond pulser system further comprises an electrode coupled with the pulser output; and
the measurement point is at the electrode.
4. The nanosecond pulser system according to claim 1, wherein the control system measures the voltage at the measurement point, and adjusts the voltage, pulse repetition frequency, or duty cycle of the input pulses based on the measured voltage.
5. The nanosecond pulser system according to claim 1, wherein the control system measures the pulse repetition frequency at the measurement point, and adjusts the pulse repetition frequency of the input pulses based on the measured pulsed repetition frequency.
6. The nanosecond pulser system according to claim 1,
wherein the input pulses include a first burst comprising a first plurality of low voltage pulses, each of the first plurality of low voltage pulses having a first pulse width;
wherein the input pulses include a second burst comprising a second plurality of low voltage pulses each of the second plurality of low voltage pulses having a second pulse width; and
wherein the second pulse width is greater than the first pulse width.
7. The nanosecond pulser system according to claim 1, wherein the control system:
receives input data specifying a voltage and a pulse repetition frequency corresponding to an desired high voltage waveform;
compares an output pulser waveform measured at the measurement point with the desired high voltage waveform; and
determines adjustments to the pulser input to produce the desired high voltage waveform.
8. The nanosecond pulser system according to claim 1, wherein the control system comprises a voltage divider that reduces the high voltage waveform by a factor of 1000.
9. The nanosecond pulser system according to claim 1, wherein the control system includes an analog to digital converter that converts the measured high voltage waveform into a digital signal.
10. The nanosecond pulser system according to claim 1, further comprising metal shielding disposed between the nanosecond pulser and the control system.
11. The nanosecond pulser system according to claim 1, wherein the nanosecond pulser comprises a resistive output stage, and wherein the measurement point is across a resistor in the resistive output stage.
12. A nanosecond pulser system comprising:
a nanosecond pulser having a pulser output that outputs a high voltage waveform that includes a plurality of bursts where each burst comprises a plurality of pulses with an amplitude greater than 2 kV and a pulse repetition frequency greater than 1 kHz; and
a control system that controls a number of characteristics of the high voltage waveform in real-time including the number of pulses in each burst, a pulse repetition frequency, a pulse width, and a pulse voltage.
13. The nanosecond pulser system according to claim 12, wherein the pulser system controls at least one characteristics of the high voltage waveform with a resolution of less than about 1 μs.
14. The nanosecond pulser system according to claim 12, wherein the pulser system controls at the period between pulses with an accuracy less than about 10 μs.
15. The nanosecond pulser system according to claim 12, wherein control system controls the number of characteristics of the high voltage waveform in response to a plasma processing recipe.
16. The nanosecond pulser system according to claim 15, wherein the plasma processing recipe comprises a plurality of stages and each stage is associated with an ion current, a chamber pressure, and a gas mixture.
17. The nanosecond pulser system according to claim 15, wherein the plasma processing recipe corresponds with an electric field or voltage at a wafer surface.
18. The nanosecond pulser system according to claim 12,
wherein the high voltage waveform includes a first burst comprising a first plurality of pulses, each of the first plurality of pulses having a first pulse width;
wherein the high voltage waveform includes a second burst comprising a second plurality of pulses each of the second plurality of pulses having a second pulse width; and
wherein the second pulse width is greater than the first pulse width.
19. The nanosecond pulser system according to claim 12,
wherein the nanosecond pulser comprises a transformer and the output that outputs the high voltage waveform; and
wherein the control system is coupled with the nanosecond pulser at a point between the transformer and the pulser output.
20. The nanosecond pulser system according to claim 12, wherein the control system comprises a voltage divider and a fast analog to digital converter.
21. A nanosecond pulser system comprising:
a nanosecond pulser having a pulser output that outputs pulses with an amplitude greater than 2 kV and a pulse repetition frequency greater than 1 kHz;
a plurality of sensors that measure an environmental characteristic of the nanosecond pulser system and each of the plurality of sensors provide a sensor signal representing a respective environmental characteristic;
a sensor that provides an electronic sensor signal representing a physical characteristic of the nanosecond pulser system; and
an interlock electrically coupled with the sensor and the nanosecond pulser that stops operation of the nanosecond pulser in the event the electronic sensor signal is above a first threshold.
22. The nanosecond pulser system according to claim 21, further comprising a control module electrically coupled with the sensor that stops operation of the nanosecond pulser in the event the electronic sensor signal is above a second threshold, the second threshold being different than the first threshold.
23. The nanosecond pulser system according to claim 22,
further comprising a liquid cooling subsystem;
wherein the sensors comprises a liquid flow sensor disposed within the liquid cooling subsystem;
wherein the first threshold comprises a first flow rate; and
wherein the second threshold comprises a second flow rate that is greater than the first flow rate.
24. The nanosecond pulser system according to claim 22,
further comprising a cooling subsystem;
wherein one of the sensor comprises a temperature sensor disposed within the cooling subsystem;
wherein the first threshold comprises a first temperature; and
wherein the second threshold comprises a second temperature that is less than the first temperature.
25. The nanosecond pulser system according to claim 21,
further comprising a cooling subsystem that includes a liquid coolant; and
a temperature sensor that measures the temperature of the liquid coolant.
US16/525,357 2016-06-21 2019-07-29 Nanosecond pulser ADC system Active US10659019B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US16/525,357 US10659019B2 (en) 2018-07-27 2019-07-29 Nanosecond pulser ADC system
US16/779,270 US10903047B2 (en) 2018-07-27 2020-01-31 Precise plasma control system
US16/848,830 US11101108B2 (en) 2018-07-27 2020-04-14 Nanosecond pulser ADC system
US16/937,948 US11430635B2 (en) 2018-07-27 2020-07-24 Precise plasma control system
US17/234,773 US11532457B2 (en) 2018-07-27 2021-04-19 Precise plasma control system
US17/366,000 US11824454B2 (en) 2016-06-21 2021-07-01 Wafer biasing in a plasma chamber
US17/411,028 US11810761B2 (en) 2018-07-27 2021-08-24 Nanosecond pulser ADC system
US18/451,094 US20240048056A1 (en) 2016-06-21 2023-08-16 Wafer biasing in a plasma chamber
US18/493,515 US20240234090A9 (en) 2018-07-27 2023-10-24 Nanosecond pulser adc system

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201862711334P 2018-07-27 2018-07-27
US201862711464P 2018-07-27 2018-07-27
US201862711347P 2018-07-27 2018-07-27
US201862711468P 2018-07-27 2018-07-27
US201862711457P 2018-07-27 2018-07-27
US201862711406P 2018-07-27 2018-07-27
US201862711467P 2018-07-27 2018-07-27
US201862717523P 2018-08-10 2018-08-10
US201962789526P 2019-01-08 2019-01-08
US201962789523P 2019-01-08 2019-01-08
US16/523,840 US10892140B2 (en) 2018-07-27 2019-07-26 Nanosecond pulser bias compensation
US16/525,357 US10659019B2 (en) 2018-07-27 2019-07-29 Nanosecond pulser ADC system

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US16/523,840 Continuation US10892140B2 (en) 2013-11-14 2019-07-26 Nanosecond pulser bias compensation
US16/523,840 Continuation-In-Part US10892140B2 (en) 2013-11-14 2019-07-26 Nanosecond pulser bias compensation
US17/234,773 Continuation-In-Part US11532457B2 (en) 2018-07-27 2021-04-19 Precise plasma control system

Related Child Applications (5)

Application Number Title Priority Date Filing Date
US16/697,173 Continuation-In-Part US11004660B2 (en) 2016-06-21 2019-11-26 Variable output impedance RF generator
US16/697,173 Continuation US11004660B2 (en) 2016-06-21 2019-11-26 Variable output impedance RF generator
US16/779,270 Continuation-In-Part US10903047B2 (en) 2016-06-21 2020-01-31 Precise plasma control system
US16/779,270 Continuation US10903047B2 (en) 2016-06-21 2020-01-31 Precise plasma control system
US16/848,830 Continuation US11101108B2 (en) 2018-07-27 2020-04-14 Nanosecond pulser ADC system

Publications (2)

Publication Number Publication Date
US20200036367A1 US20200036367A1 (en) 2020-01-30
US10659019B2 true US10659019B2 (en) 2020-05-19

Family

ID=69178277

Family Applications (10)

Application Number Title Priority Date Filing Date
US16/523,840 Active US10892140B2 (en) 2013-11-14 2019-07-26 Nanosecond pulser bias compensation
US16/524,950 Active US10892141B2 (en) 2018-07-27 2019-07-29 Nanosecond pulser pulse generation
US16/525,357 Active US10659019B2 (en) 2016-06-21 2019-07-29 Nanosecond pulser ADC system
US16/524,967 Active US10811230B2 (en) 2016-06-21 2019-07-29 Spatially variable wafer bias power system
US16/524,926 Active 2039-11-11 US10991553B2 (en) 2018-07-27 2019-07-29 Nanosecond pulser thermal management
US16/721,396 Active 2039-09-27 US11075058B2 (en) 2016-06-21 2019-12-19 Spatially variable wafer bias power system
US16/848,830 Active US11101108B2 (en) 2018-07-27 2020-04-14 Nanosecond pulser ADC system
US17/142,069 Active US11636998B2 (en) 2018-07-27 2021-01-05 Nanosecond pulser pulse generation
US17/231,923 Active US11587768B2 (en) 2018-07-27 2021-04-15 Nanosecond pulser thermal management
US17/359,498 Active US11551908B2 (en) 2018-07-27 2021-06-25 Spatially variable wafer bias power system

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US16/523,840 Active US10892140B2 (en) 2013-11-14 2019-07-26 Nanosecond pulser bias compensation
US16/524,950 Active US10892141B2 (en) 2018-07-27 2019-07-29 Nanosecond pulser pulse generation

Family Applications After (7)

Application Number Title Priority Date Filing Date
US16/524,967 Active US10811230B2 (en) 2016-06-21 2019-07-29 Spatially variable wafer bias power system
US16/524,926 Active 2039-11-11 US10991553B2 (en) 2018-07-27 2019-07-29 Nanosecond pulser thermal management
US16/721,396 Active 2039-09-27 US11075058B2 (en) 2016-06-21 2019-12-19 Spatially variable wafer bias power system
US16/848,830 Active US11101108B2 (en) 2018-07-27 2020-04-14 Nanosecond pulser ADC system
US17/142,069 Active US11636998B2 (en) 2018-07-27 2021-01-05 Nanosecond pulser pulse generation
US17/231,923 Active US11587768B2 (en) 2018-07-27 2021-04-15 Nanosecond pulser thermal management
US17/359,498 Active US11551908B2 (en) 2018-07-27 2021-06-25 Spatially variable wafer bias power system

Country Status (7)

Country Link
US (10) US10892140B2 (en)
EP (3) EP3830957A4 (en)
JP (6) JP7503047B2 (en)
KR (6) KR102579260B1 (en)
CN (1) CN115943735A (en)
TW (2) TWI843981B (en)
WO (3) WO2020023965A1 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892140B2 (en) * 2018-07-27 2021-01-12 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US10903047B2 (en) * 2018-07-27 2021-01-26 Eagle Harbor Technologies, Inc. Precise plasma control system
US10916408B2 (en) 2019-01-22 2021-02-09 Applied Materials, Inc. Apparatus and method of forming plasma using a pulsed waveform
US11004660B2 (en) 2018-11-30 2021-05-11 Eagle Harbor Technologies, Inc. Variable output impedance RF generator
US11159156B2 (en) 2013-11-14 2021-10-26 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser
US11171568B2 (en) 2017-02-07 2021-11-09 Eagle Harbor Technologies, Inc. Transformer resonant converter
US11222767B2 (en) 2018-07-27 2022-01-11 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US11227745B2 (en) 2018-08-10 2022-01-18 Eagle Harbor Technologies, Inc. Plasma sheath control for RF plasma reactors
US20220020566A1 (en) * 2018-07-27 2022-01-20 Eagle Harbor Technologies, Inc. Nanosecond pulser adc system
US11284500B2 (en) 2018-05-10 2022-03-22 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator
US11302518B2 (en) 2018-07-27 2022-04-12 Eagle Harbor Technologies, Inc. Efficient energy recovery in a nanosecond pulser circuit
US11387076B2 (en) 2017-08-25 2022-07-12 Eagle Harbor Technologies, Inc. Apparatus and method of generating a waveform
US11404246B2 (en) 2019-11-15 2022-08-02 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation with correction
US11430635B2 (en) 2018-07-27 2022-08-30 Eagle Harbor Technologies, Inc. Precise plasma control system
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11502672B2 (en) 2013-11-14 2022-11-15 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser with variable pulse width and pulse repetition frequency
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11527383B2 (en) 2019-12-24 2022-12-13 Eagle Harbor Technologies, Inc. Nanosecond pulser RF isolation for plasma systems
US11532457B2 (en) 2018-07-27 2022-12-20 Eagle Harbor Technologies, Inc. Precise plasma control system
US11539352B2 (en) 2013-11-14 2022-12-27 Eagle Harbor Technologies, Inc. Transformer resonant converter
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11631573B2 (en) 2014-02-28 2023-04-18 Eagle Harbor Technologies, Inc. High voltage resistive output stage circuit
US11646176B2 (en) 2019-01-08 2023-05-09 Eagle Harbor Technologies, Inc. Efficient nanosecond pulser with source and sink capability for plasma control applications
US11689107B2 (en) 2014-02-28 2023-06-27 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US11776788B2 (en) 2021-06-28 2023-10-03 Applied Materials, Inc. Pulsed voltage boost for substrate processing
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US12106938B2 (en) 2021-09-14 2024-10-01 Applied Materials, Inc. Distortion current mitigation in a radio frequency plasma processing chamber

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10607814B2 (en) 2018-08-10 2020-03-31 Eagle Harbor Technologies, Inc. High voltage switch with isolated power
WO2021059194A1 (en) * 2019-09-24 2021-04-01 Dh Technologies Development Pte. Ltd. Ultra low noise floated high voltage supply for mass spectrometer ion detector
CN115552571A (en) 2020-05-12 2022-12-30 鹰港科技有限公司 High frequency RF generator and DC pulse
US11967484B2 (en) 2020-07-09 2024-04-23 Eagle Harbor Technologies, Inc. Ion current droop compensation
WO2022011315A1 (en) * 2020-07-09 2022-01-13 Eagle Harbor Technologies, Inc. Ion current droop compensation
JP2023544584A (en) * 2020-10-02 2023-10-24 イーグル ハーバー テクノロジーズ,インク. Ion current droop compensation
CN112583295B (en) * 2020-12-15 2022-03-29 中国工程物理研究院激光聚变研究中心 High repetition frequency and high voltage nanosecond pulse driving power supply system and operation method
US11863089B2 (en) * 2021-03-26 2024-01-02 Applied Materials, Inc. Live measurement of high voltage power supply output
US20220399185A1 (en) 2021-06-09 2022-12-15 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11639818B2 (en) 2021-06-24 2023-05-02 Booz Allen Hamilton Inc. Thermal management systems
US11997767B2 (en) 2021-10-20 2024-05-28 Goodrich Corporation Pulse switch-based power supply systems, methods, and devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339108A (en) * 1965-01-28 1967-08-29 Gen Radio Co Capacitor charging and discharging circuitry
US20190131110A1 (en) * 2017-08-25 2019-05-02 Eagle Harbor Technologies, Inc. Arbitarary waveform generation using nanosecond pulses

Family Cites Families (242)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1542662A (en) 1975-09-12 1979-03-21 Matsushita Electric Ind Co Ltd Power supply
US4070589A (en) 1976-10-29 1978-01-24 The Singer Company High speed-high voltage switching with low power consumption
US4438331A (en) 1981-12-02 1984-03-20 Power Spectra, Inc. Bulk semiconductor switch
US4504895A (en) 1982-11-03 1985-03-12 General Electric Company Regulated dc-dc converter using a resonating transformer
US5038051A (en) * 1984-05-08 1991-08-06 The United States Of America As Represented By The Secretary Of The Navy Solid state modulator for microwave transmitters
GB2164513A (en) 1984-09-01 1986-03-19 Marconi Co Ltd A pulse generator
GB2170663B (en) 1985-02-02 1989-06-14 Brian Ernest Attwood Harmonic-resonant power supply
US4885074A (en) 1987-02-24 1989-12-05 International Business Machines Corporation Plasma reactor having segmented electrodes
US4924191A (en) 1989-04-18 1990-05-08 Erbtec Engineering, Inc. Amplifier having digital bias control apparatus
DE69020076T2 (en) 1989-09-14 1996-03-14 Hitachi Metals Ltd High voltage pulse generator circuit and electrostatic precipitator with this circuit.
JP3283476B2 (en) * 1989-09-22 2002-05-20 株式会社日立製作所 Discharge state fluctuation monitor
US4992919A (en) 1989-12-29 1991-02-12 Lee Chu Quon Parallel resonant converter with zero voltage switching
US5140510A (en) 1991-03-04 1992-08-18 Motorola, Inc. Constant frequency power converter
FR2674385A1 (en) 1991-03-22 1992-09-25 Alsthom Gec GALVANIC ISOLATION DEVICE FOR CONTINUOUS ELECTRIC SIGNALS OR LIKELY TO CONTAIN A CONTINUOUS COMPONENT.
US6518195B1 (en) * 1991-06-27 2003-02-11 Applied Materials, Inc. Plasma reactor using inductive RF coupling, and processes
US5325021A (en) * 1992-04-09 1994-06-28 Clemson University Radio-frequency powered glow discharge device and method with high voltage interface
US5418707A (en) 1992-04-13 1995-05-23 The United States Of America As Represented By The United States Department Of Energy High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs
US6369576B1 (en) 1992-07-08 2002-04-09 Texas Instruments Incorporated Battery pack with monitoring function for use in a battery charging system
US5392187A (en) 1992-08-12 1995-02-21 North Carolina State University At Raleigh Integrated circuit power device with transient responsive current limiting means
JP3366058B2 (en) 1992-10-07 2003-01-14 浩 坂本 Power supply
GB9313614D0 (en) 1993-07-01 1993-08-18 Serck Baker Ltd Separation apparatus
US5313481A (en) 1993-09-29 1994-05-17 The United States Of America As Represented By The United States Department Of Energy Copper laser modulator driving assembly including a magnetic compression laser
US5392043A (en) 1993-10-04 1995-02-21 General Electric Company Double-rate sampled signal integrator
US5451846A (en) 1993-12-14 1995-09-19 Aeg Automation Systems Corporation Low current compensation control for thyristor armature power supply
US5483731A (en) 1994-01-26 1996-01-16 Aeroquip Corporation Universal hydraulic tool
DE69628514T2 (en) 1995-02-17 2004-04-29 Cymer, Inc., San Diego POWER PULSE GENERATOR WITH ENERGY RECOVERY
US5656123A (en) 1995-06-07 1997-08-12 Varian Associates, Inc. Dual-frequency capacitively-coupled plasma reactor for materials processing
WO1997013266A2 (en) 1995-06-19 1997-04-10 The University Of Tennessee Research Corporation Discharge methods and electrodes for generating plasmas at one atmosphere of pressure, and materials treated therewith
US6042686A (en) * 1995-06-30 2000-03-28 Lam Research Corporation Power segmented electrode
JP3373704B2 (en) 1995-08-25 2003-02-04 三菱電機株式会社 Insulated gate transistor drive circuit
US6253704B1 (en) 1995-10-13 2001-07-03 Mattson Technology, Inc. Apparatus and method for pulsed plasma processing of a semiconductor substrate
WO1997018630A1 (en) 1995-11-15 1997-05-22 Kardo Syssoev Alexei F Pulse generating circuits using drift step recovery devices
IT1289479B1 (en) 1996-01-26 1998-10-15 Schlafhorst & Co W CIRCUITAL ARRANGEMENT OF VOLTAGE TRANSFORMATION FOR THE POWER SUPPLY OF A HIGH ELECTRIC USER
GB9607381D0 (en) 1996-04-04 1996-06-12 Council Cent Lab Res Councils Dc power converter
US5917286A (en) 1996-05-08 1999-06-29 Advanced Energy Industries, Inc. Pulsed direct current power supply configurations for generating plasmas
JP3040358B2 (en) * 1996-05-24 2000-05-15 積水化学工業株式会社 Glow discharge plasma processing method and apparatus
CA2205817C (en) * 1996-05-24 2004-04-06 Sekisui Chemical Co., Ltd. Treatment method in glow-discharge plasma and apparatus thereof
US5836943A (en) 1996-08-23 1998-11-17 Team Medical, L.L.C. Electrosurgical generator
US5930125A (en) 1996-08-28 1999-07-27 Siemens Medical Systems, Inc. Compact solid state klystron power supply
SE9604814D0 (en) 1996-12-20 1996-12-20 Scanditronix Medical Ab Power modulator
EP0947048B2 (en) 1996-12-20 2012-05-02 ScandiNova Systems AB Power modulator
JPH10223952A (en) * 1997-02-04 1998-08-21 Nissin Electric Co Ltd Electric discharge pumping gas laser device
US6300720B1 (en) 1997-04-28 2001-10-09 Daniel Birx Plasma gun and methods for the use thereof
US6815633B1 (en) * 1997-06-26 2004-11-09 Applied Science & Technology, Inc. Inductively-coupled toroidal plasma source
US6330261B1 (en) * 1997-07-18 2001-12-11 Cymer, Inc. Reliable, modular, production quality narrow-band high rep rate ArF excimer laser
CN1103655C (en) 1997-10-15 2003-03-26 东京电子株式会社 Apparatus and method for utilizing a plasma density gradient to produce a flow of particles
FR2771563B1 (en) 1997-11-25 2000-02-18 Dateno Sa ADJUSTABLE SUPPLY DEVICE FOR KLYSTRON-TYPE RADIO TRANSMISSION TUBE FOR REDUCING ENERGY CONSUMPTION
WO1999062594A1 (en) 1998-06-03 1999-12-09 Neurocontrol Corporation Percutaneous intramuscular stimulation system
GB2341288B (en) 1998-06-23 2003-12-10 Eev Ltd Switching arrangement
US6642149B2 (en) 1998-09-16 2003-11-04 Tokyo Electron Limited Plasma processing method
US6066901A (en) 1998-09-17 2000-05-23 First Point Scientific, Inc. Modulator for generating high voltage pulses
US6362604B1 (en) 1998-09-28 2002-03-26 Alpha-Omega Power Technologies, L.L.C. Electrostatic precipitator slow pulse generating circuit
JP3496560B2 (en) * 1999-03-12 2004-02-16 東京エレクトロン株式会社 Plasma processing equipment
US6198761B1 (en) 1999-05-07 2001-03-06 Lambda Physik Gmbh Coaxial laser pulser with solid dielectrics
US6738275B1 (en) 1999-11-10 2004-05-18 Electromed Internationale Ltee. High-voltage x-ray generator
JP2001181830A (en) * 1999-12-22 2001-07-03 Shin Meiwa Ind Co Ltd Ion machining apparatus
US6674836B2 (en) 2000-01-17 2004-01-06 Kabushiki Kaisha Toshiba X-ray computer tomography apparatus
JP2001238470A (en) 2000-02-21 2001-08-31 Ngk Insulators Ltd Switching circuit for generating pulse power
US6205074B1 (en) 2000-02-29 2001-03-20 Advanced Micro Devices, Inc. Temperature-compensated bias generator
US6831377B2 (en) 2000-05-03 2004-12-14 University Of Southern California Repetitive power pulse generator with fast rising pulse
KR100394171B1 (en) 2000-05-30 2003-08-09 고범종 Output device protection circuit for power amplifier
US7549461B2 (en) * 2000-06-30 2009-06-23 Alliant Techsystems Inc. Thermal management system
JP2002043281A (en) * 2000-07-19 2002-02-08 Hitachi Ltd Power source device for generating high frequency ac pulse
US6483731B1 (en) 2000-07-31 2002-11-19 Vanner, Inc. Alexander topology resonance energy conversion and inversion circuit utilizing a series capacitance multi-voltage resonance section
US7223676B2 (en) 2002-06-05 2007-05-29 Applied Materials, Inc. Very low temperature CVD process with independently variable conformality, stress and composition of the CVD layer
US6939434B2 (en) 2000-08-11 2005-09-06 Applied Materials, Inc. Externally excited torroidal plasma source with magnetic control of ion distribution
US7037813B2 (en) 2000-08-11 2006-05-02 Applied Materials, Inc. Plasma immersion ion implantation process using a capacitively coupled plasma source having low dissociation and low minimum plasma voltage
US6359542B1 (en) 2000-08-25 2002-03-19 Motorola, Inc. Securement for transformer core utilized in a transformer power supply module and method to assemble same
JP4612947B2 (en) 2000-09-29 2011-01-12 日立プラズマディスプレイ株式会社 Capacitive load driving circuit and plasma display device using the same
JP4717295B2 (en) * 2000-10-04 2011-07-06 株式会社半導体エネルギー研究所 Dry etching apparatus and etching method
US6529387B2 (en) 2001-06-06 2003-03-04 Siemens Medical Solutions Usa. Inc. Unified power architecture
GB2378065B (en) 2001-06-15 2004-09-15 Marconi Applied Technologies High voltage switching apparatus
EP1278294B9 (en) 2001-07-16 2010-09-01 CPAutomation S.A. An electrical power supply suitable in particular for dc plasma processing
US6741120B1 (en) 2001-08-07 2004-05-25 Globespanvirata, Inc. Low power active filter and method
WO2003027613A1 (en) 2001-09-19 2003-04-03 Micro-Epsilon Messtechnik Gmbh & Co. Kg Circuit for measuring distances travelled
US7100532B2 (en) 2001-10-09 2006-09-05 Plasma Control Systems, Llc Plasma production device and method and RF driver circuit with adjustable duty cycle
US6855906B2 (en) 2001-10-16 2005-02-15 Adam Alexander Brailove Induction plasma reactor
AU2002335107A1 (en) 2001-10-19 2003-04-28 Clare Micronix Integrated Systems, Inc. Method and system for adjusting the voltage of a precharge circuit
TWI282658B (en) 2001-10-23 2007-06-11 Delta Electronics Inc A parallel connection system of DC/AC voltage converter
US6741484B2 (en) 2002-01-04 2004-05-25 Scandinova Ab Power modulator having at least one pulse generating module; multiple cores; and primary windings parallel-connected such that each pulse generating module drives all cores
US6768621B2 (en) 2002-01-18 2004-07-27 Solectria Corporation Contactor feedback and precharge/discharge circuit
US7354501B2 (en) 2002-05-17 2008-04-08 Applied Materials, Inc. Upper chamber for high density plasma CVD
JP4257770B2 (en) * 2002-05-31 2009-04-22 芝浦メカトロニクス株式会社 Arc interruption circuit, power supply for sputtering and sputtering equipment
JP2004022822A (en) * 2002-06-17 2004-01-22 Shibaura Mechatronics Corp Plasma processing method and device
JP2004101788A (en) * 2002-09-09 2004-04-02 Sony Corp Method of driving plasma display
US7477529B2 (en) 2002-11-01 2009-01-13 Honeywell International Inc. High-voltage power supply
US7115104B2 (en) 2002-11-15 2006-10-03 Hill-Rom Services, Inc. High frequency chest wall oscillation apparatus
US20040178752A1 (en) 2002-12-13 2004-09-16 International Rectifier Corporation Gate driver ASIC for an automotive starter/alternator
JP2004222485A (en) 2002-12-27 2004-08-05 Sony Corp Switching power supply circuit
DE10306809A1 (en) 2003-02-18 2004-09-02 Siemens Ag Operation of a half-bridge, in particular a field-effect transistor half-bridge
JP2004340036A (en) * 2003-05-15 2004-12-02 Toyota Motor Corp Exhaust emission control device
WO2004103033A1 (en) 2003-05-15 2004-11-25 Hitachi Medical Corporation X-ray generation device
US7247218B2 (en) 2003-05-16 2007-07-24 Applied Materials, Inc. Plasma density, energy and etch rate measurements at bias power input and real time feedback control of plasma source and bias power
JP4392746B2 (en) 2003-05-23 2010-01-06 株式会社日立メディコ X-ray high voltage device
US7002443B2 (en) * 2003-06-25 2006-02-21 Cymer, Inc. Method and apparatus for cooling magnetic circuit elements
EP1515430A1 (en) 2003-09-15 2005-03-16 IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A. Mixer for the conversion of radio frequency signals into baseband signals
US7062310B2 (en) 2003-10-06 2006-06-13 Tyco Electronics Corporation Catheter tip electrode assembly and method for fabricating same
US20070018504A1 (en) 2003-10-14 2007-01-25 Wiener Scott A Short duration variable amplitude high voltage pulse generator
GB2426392B (en) 2003-12-09 2007-05-30 Nujira Ltd Transformer based voltage supply
US20050130620A1 (en) * 2003-12-16 2005-06-16 Andreas Fischer Segmented radio frequency electrode apparatus and method for uniformity control
US7379309B2 (en) 2004-01-14 2008-05-27 Vanner, Inc. High-frequency DC-DC converter control
US7180082B1 (en) 2004-02-19 2007-02-20 The United States Of America As Represented By The United States Department Of Energy Method for plasma formation for extreme ultraviolet lithography-theta pinch
US7095179B2 (en) * 2004-02-22 2006-08-22 Zond, Inc. Methods and apparatus for generating strongly-ionized plasmas with ionizational instabilities
US7492138B2 (en) 2004-04-06 2009-02-17 International Rectifier Corporation Synchronous rectifier circuits and method for utilizing common source inductance of the synchronous FET
JP2005303099A (en) 2004-04-14 2005-10-27 Hitachi High-Technologies Corp Apparatus and method for plasma processing
US7396746B2 (en) * 2004-05-24 2008-07-08 Varian Semiconductor Equipment Associates, Inc. Methods for stable and repeatable ion implantation
US7243706B2 (en) 2004-05-28 2007-07-17 Ixys Corporation Heatsink for power devices
US7948185B2 (en) 2004-07-09 2011-05-24 Energetiq Technology Inc. Inductively-driven plasma light source
US7307375B2 (en) 2004-07-09 2007-12-11 Energetiq Technology Inc. Inductively-driven plasma light source
JP2006042410A (en) 2004-07-22 2006-02-09 Toshiba Corp Snubber device
EP1779089A4 (en) 2004-07-28 2010-03-24 Univ Community College Sys Nev Electrode-less discharge extreme ultraviolet light source
KR100649508B1 (en) 2005-02-02 2006-11-27 권오영 Hybrid power supply system
ES2401289T3 (en) 2005-03-24 2013-04-18 Oerlikon Trading Ag, Trübbach Vacuum Plasma Generator
JP5102615B2 (en) * 2005-04-04 2012-12-19 パナソニック株式会社 Plasma processing method and apparatus
US7767433B2 (en) 2005-04-22 2010-08-03 University Of Southern California High voltage nanosecond pulse generator using fast recovery diodes for cell electro-manipulation
EP1878107B1 (en) 2005-04-26 2012-08-15 Koninklijke Philips Electronics N.V. Resonant dc/dc converter with zero current switching
US7615931B2 (en) 2005-05-02 2009-11-10 International Technology Center Pulsed dielectric barrier discharge
US7852008B2 (en) 2005-05-13 2010-12-14 Panasonic Corporation Dielectric barrier discharge lamp lighting device
CN100362619C (en) 2005-08-05 2008-01-16 中微半导体设备(上海)有限公司 RF matching coupling network for vacuum reaction chamber and its configuration method
US20070114981A1 (en) 2005-11-21 2007-05-24 Square D Company Switching power supply system with pre-regulator for circuit or personnel protection devices
EP1961117B1 (en) 2005-12-16 2014-01-22 Nicholas Patrick Roland Hill Resonant circuits
WO2007082388A1 (en) 2006-01-23 2007-07-26 Audera International Sales Inc. Power supply for limited power sources and audio amplifier using power supply
DE102006024938B3 (en) 2006-05-23 2007-08-30 Ltb Lasertechnik Berlin Gmbh High power switching module for direct pulse energy supply of load, has control network that contains delay unit for adjusting offset voltage at switch, and auxiliary diode and capacitance for extraction and storage of auxiliary energy
US7439716B2 (en) 2006-09-12 2008-10-21 Semiconductor Components Industries, L.L.C. DC-DC converter and method
KR100820171B1 (en) 2006-11-02 2008-04-07 한국전기연구원 Pulse power generator using semiconductor switch
WO2008118393A1 (en) 2007-03-23 2008-10-02 University Of Southern California Compact subnanosecond high voltage pulse generation system for cell electro-manipulation
US20090004836A1 (en) 2007-06-29 2009-01-01 Varian Semiconductor Equipment Associates, Inc. Plasma doping with enhanced charge neutralization
DE112007003667A5 (en) 2007-07-23 2010-07-01 Hüttinger Elektronik GmbH & Co. KG Plasma supply device
JP5390230B2 (en) * 2008-03-31 2014-01-15 日本碍子株式会社 Silicon-based thin film deposition apparatus and method
JP5319150B2 (en) 2008-03-31 2013-10-16 東京エレクトロン株式会社 Plasma processing apparatus, plasma processing method, and computer-readable storage medium
US8754589B2 (en) 2008-04-14 2014-06-17 Digtial Lumens Incorporated Power management unit with temperature protection
US8093797B2 (en) 2008-05-01 2012-01-10 Mflex Uk Limited Electroluminescent displays
US8115343B2 (en) 2008-05-23 2012-02-14 University Of Southern California Nanosecond pulse generator
WO2009146439A1 (en) 2008-05-30 2009-12-03 Colorado State University Research Foundation System, method and apparatus for generating plasma
EP2144070B1 (en) 2008-07-11 2012-03-21 Liaisons Electroniques-Mecaniques Lem S.A. Sensor for high voltage environment
US8259476B2 (en) 2008-07-29 2012-09-04 Shmuel Ben-Yaakov Self-adjusting switched-capacitor converter with multiple target voltages and target voltage ratios
US8436602B2 (en) * 2008-08-15 2013-05-07 Technology Reasearch Corporation Voltage compensation circuit
TWI380151B (en) * 2008-09-01 2012-12-21 Grenergy Opto Inc Primary-side feedback control device with dynamic reference voltage control and method for a power converter
CN101872272A (en) 2009-04-23 2010-10-27 联想(北京)有限公司 Surface capacitance type touch screen and electronic equipment
US9287092B2 (en) 2009-05-01 2016-03-15 Advanced Energy Industries, Inc. Method and apparatus for controlling ion energy distribution
US9287086B2 (en) 2010-04-26 2016-03-15 Advanced Energy Industries, Inc. System, method and apparatus for controlling ion energy distribution
US11615941B2 (en) 2009-05-01 2023-03-28 Advanced Energy Industries, Inc. System, method, and apparatus for controlling ion energy distribution in plasma processing systems
US9767988B2 (en) 2010-08-29 2017-09-19 Advanced Energy Industries, Inc. Method of controlling the switched mode ion energy distribution system
US9435029B2 (en) 2010-08-29 2016-09-06 Advanced Energy Industries, Inc. Wafer chucking system for advanced plasma ion energy processing systems
US8199545B2 (en) 2009-05-05 2012-06-12 Hamilton Sundstrand Corporation Power-conversion control system including sliding mode controller and cycloconverter
WO2010138485A1 (en) 2009-05-29 2010-12-02 3M Innovative Properties Company High speed multi-touch touch device and controller therefor
US8404598B2 (en) * 2009-08-07 2013-03-26 Applied Materials, Inc. Synchronized radio frequency pulsing for plasma etching
US8222936B2 (en) 2009-09-13 2012-07-17 International Business Machines Corporation Phase and frequency detector with output proportional to frequency difference
US8450985B2 (en) 2009-09-16 2013-05-28 Solarbridge Technologies, Inc. Energy recovery circuit
CN102549724B (en) * 2009-09-29 2015-01-28 株式会社东芝 Substrate processing device
CA2779747C (en) 2009-11-16 2017-11-07 Dh Technologies Development Pte. Ltd. Apparatus for providing power to a multipole in a mass spectrometer
US8481905B2 (en) 2010-02-17 2013-07-09 Accuflux Inc. Shadow band assembly for use with a pyranometer and a shadow band pyranometer incorporating same
US20130059448A1 (en) 2011-09-07 2013-03-07 Lam Research Corporation Pulsed Plasma Chamber in Dual Chamber Configuration
US8861681B2 (en) 2010-12-17 2014-10-14 General Electric Company Method and system for active resonant voltage switching
US8552902B2 (en) 2011-05-04 2013-10-08 Sabertek Methods and apparatus for suppression of low-frequency noise and drift in wireless sensors or receivers
GB2492597B (en) 2011-07-08 2016-04-06 E2V Tech Uk Ltd Transformer with an inverter system and an inverter system comprising the transformer
US20130024784A1 (en) 2011-07-18 2013-01-24 Ivy Lifton Systems and methods for life transition website
KR20130011812A (en) 2011-07-22 2013-01-30 엘에스산전 주식회사 Method for driving igbt
US8531822B2 (en) 2011-07-29 2013-09-10 Hamilton Sundstrand Corporation Cooling and controlling electronics
US8879190B1 (en) 2011-08-08 2014-11-04 Marvell International Ltd. Method and apparatus for initial self-servo writing
JP2013069602A (en) 2011-09-26 2013-04-18 Tokyo Electron Ltd Microwave processor and workpiece processing method
JP5358655B2 (en) * 2011-12-02 2013-12-04 ウシオ電機株式会社 High voltage pulse generator and discharge excitation gas laser device using the same
US8963377B2 (en) 2012-01-09 2015-02-24 Eagle Harbor Technologies Inc. Efficient IGBT switching
CN103477550B (en) 2012-02-23 2015-06-17 株式会社京三制作所 Current source inverter device, and method for controlling current source inverter device
TWI579751B (en) 2012-03-16 2017-04-21 原相科技股份有限公司 Optical touch apparatus capable of detecting displacement and optical touch method thereof
US9881772B2 (en) 2012-03-28 2018-01-30 Lam Research Corporation Multi-radiofrequency impedance control for plasma uniformity tuning
JP5534365B2 (en) 2012-06-18 2014-06-25 株式会社京三製作所 High frequency power supply device and reflected wave power control method
US10112251B2 (en) 2012-07-23 2018-10-30 Illinois Tool Works Inc. Method and apparatus for providing welding type power
KR101909571B1 (en) 2012-08-28 2018-10-19 어드밴스드 에너지 인더스트리즈 인코포레이티드 Wide dynamic range ion energy bias control; fast ion energy switching; ion energy control and pulsed bias supply; and a virtual front panel
US20140077611A1 (en) 2012-09-14 2014-03-20 Henry Todd Young Capacitor bank, laminated bus, and power supply apparatus
US20140109886A1 (en) 2012-10-22 2014-04-24 Transient Plasma Systems, Inc. Pulsed power systems and methods
US9535440B2 (en) 2012-10-30 2017-01-03 Samsung Display Co., Ltd. DC-DC converter and organic light emitting display device using the same
US9067788B1 (en) 2012-11-01 2015-06-30 Rick B. Spielman Apparatus for highly efficient cold-plasma ozone production
KR101444734B1 (en) 2012-11-26 2014-09-26 한국전기연구원 Pulse power system with active voltage droop control
US8773184B1 (en) 2013-03-13 2014-07-08 Futurewei Technologies, Inc. Fully integrated differential LC PLL with switched capacitor loop filter
US20140263181A1 (en) 2013-03-15 2014-09-18 Jaeyoung Park Method and apparatus for generating highly repetitive pulsed plasmas
EP3005220B1 (en) 2013-06-04 2019-09-04 Eagle Harbor Technologies Inc. Analog integrator system and method
US9655221B2 (en) 2013-08-19 2017-05-16 Eagle Harbor Technologies, Inc. High frequency, repetitive, compact toroid-generation for radiation production
JP2017504955A (en) 2013-11-06 2017-02-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Particle generation suppression device by DC bias modulation
US9706630B2 (en) 2014-02-28 2017-07-11 Eagle Harbor Technologies, Inc. Galvanically isolated output variable pulse generator disclosure
US9960763B2 (en) 2013-11-14 2018-05-01 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser
US10020800B2 (en) * 2013-11-14 2018-07-10 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser with variable pulse width and pulse repetition frequency
US10978955B2 (en) * 2014-02-28 2021-04-13 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US10892140B2 (en) * 2018-07-27 2021-01-12 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
DE102013227188A1 (en) 2013-12-27 2015-07-02 Federal-Mogul Wiesbaden Gmbh Self-lubricating thermoplastic layers with addition of PTFE with polymodal molecular weight
KR20150087702A (en) 2014-01-22 2015-07-30 삼성전자주식회사 Plasma generating apparatus
US10790816B2 (en) 2014-01-27 2020-09-29 Eagle Harbor Technologies, Inc. Solid-state replacement for tube-based modulators
US10483089B2 (en) 2014-02-28 2019-11-19 Eagle Harbor Technologies, Inc. High voltage resistive output stage circuit
US9525274B2 (en) 2014-04-29 2016-12-20 Federal-Mogul Ignition Company Distribution of corona igniter power signal
JP2015220929A (en) 2014-05-20 2015-12-07 国立大学法人 熊本大学 Pulse power supply device and design method thereof
CN104065253B (en) 2014-06-25 2017-12-19 台达电子企业管理(上海)有限公司 Power-converting device, drive device and driving method
EP3528386B1 (en) * 2014-07-11 2022-12-21 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser with variable pulse width and pulse repetition frequency
KR101660830B1 (en) 2014-07-16 2016-09-29 피에스케이 주식회사 Apparatus for generating plasma using dual plasma source and apparatus for treating substrate comprising the same
US9929625B2 (en) * 2014-07-17 2018-03-27 Rolls-Royce Corporation Negative pressure motor sealing
US10121641B2 (en) 2014-07-21 2018-11-06 Lam Research Corporation Large dynamic range RF voltage sensor and method for voltage mode RF bias application of plasma processing systems
SI3213608T1 (en) 2014-10-30 2019-11-29 Tae Tech Inc Systems and methods for forming and maintaining a plasma in a high performance frc
US20160182001A1 (en) 2014-12-19 2016-06-23 Hitachi, Ltd Common mode noise filter
US9525412B2 (en) 2015-02-18 2016-12-20 Reno Technologies, Inc. Switching circuit
US10340879B2 (en) 2015-02-18 2019-07-02 Reno Technologies, Inc. Switching circuit
US9729122B2 (en) 2015-02-18 2017-08-08 Reno Technologies, Inc. Switching circuit
US10679823B2 (en) 2015-02-18 2020-06-09 Reno Technologies, Inc. Switching circuit
US9306533B1 (en) 2015-02-20 2016-04-05 Reno Technologies, Inc. RF impedance matching network
US11542927B2 (en) 2015-05-04 2023-01-03 Eagle Harbor Technologies, Inc. Low pressure dielectric barrier discharge plasma thruster
KR101616231B1 (en) * 2015-11-20 2016-04-27 주식회사 지웰코리아 High voltage generation apparatus for generating an ion
US10373755B2 (en) 2015-11-30 2019-08-06 Eagle Harbor Technologies, Inc. High voltage transformer
WO2018186901A1 (en) 2017-04-07 2018-10-11 IonQuest LLC High power resonance pulse ac hedp sputtering source and method for material processing
US11482404B2 (en) 2015-12-21 2022-10-25 Ionquest Corp. Electrically and magnetically enhanced ionized physical vapor deposition unbalanced sputtering source
US11195697B2 (en) * 2016-01-22 2021-12-07 Spp Technologies Co., Ltd. Plasma control apparatus
US9966231B2 (en) * 2016-02-29 2018-05-08 Lam Research Corporation Direct current pulsing plasma systems
US10148186B2 (en) * 2016-04-12 2018-12-04 Dialog Semiconductor Inc. Switching power converter with efficient VCC charging
US20170314133A1 (en) 2016-04-29 2017-11-02 Retro-Semi Technologies, Llc Plasma reactor having divided electrodes
JP6574737B2 (en) * 2016-05-31 2019-09-11 東京エレクトロン株式会社 Matching device and plasma processing apparatus
US20170358431A1 (en) * 2016-06-13 2017-12-14 Applied Materials, Inc. Systems and methods for controlling a voltage waveform at a substrate during plasma processing
US11004660B2 (en) 2018-11-30 2021-05-11 Eagle Harbor Technologies, Inc. Variable output impedance RF generator
WO2017223118A1 (en) 2016-06-21 2017-12-28 Eagle Harbor Technologies, Inc. High voltage pre-pulsing
US10903047B2 (en) * 2018-07-27 2021-01-26 Eagle Harbor Technologies, Inc. Precise plasma control system
GB2551824A (en) 2016-06-30 2018-01-03 Univ Nottingham High frequency high power converter system
JP6555562B2 (en) * 2016-07-08 2019-08-07 パナソニックIpマネジメント株式会社 Plasma discharge device and air purifier
US10566177B2 (en) * 2016-08-15 2020-02-18 Applied Materials, Inc. Pulse shape controller for sputter sources
CN106384144B (en) 2016-10-11 2019-01-22 卓捷创芯科技(深圳)有限公司 A kind of half-duplex RF ID oscillating maintaining circuit generating pulse by comparator
US10320373B2 (en) 2016-10-11 2019-06-11 Eagle Harbor Technologies, Inc. RF production using nonlinear semiconductor junction capacitance
US9947517B1 (en) 2016-12-16 2018-04-17 Applied Materials, Inc. Adjustable extended electrode for edge uniformity control
US10373804B2 (en) 2017-02-03 2019-08-06 Applied Materials, Inc. System for tunable workpiece biasing in a plasma reactor
WO2018148182A1 (en) 2017-02-07 2018-08-16 Eagle Harbor Technologies, Inc. Transformer resonant converter
EP3832691A1 (en) 2017-03-31 2021-06-09 Eagle Harbor Technologies, Inc. Method of plasma processing a substrate and plasma processing chamber
US10483090B2 (en) 2017-07-10 2019-11-19 Reno Technologies, Inc. Restricted capacitor switching
US10447222B2 (en) 2017-09-07 2019-10-15 Qorvo Us, Inc. Dynamic thermal compensation in a power amplifier
US10510575B2 (en) 2017-09-20 2019-12-17 Applied Materials, Inc. Substrate support with multiple embedded electrodes
KR20200100643A (en) 2017-11-17 2020-08-26 에이이에스 글로벌 홀딩스 피티이 리미티드 Improved application of modulating supplies in plasma processing systems
KR20200039840A (en) 2018-01-22 2020-04-16 어플라이드 머티어리얼스, 인코포레이티드 Processing with power edge ring
EP3732703B1 (en) 2018-01-22 2022-08-31 Transient Plasma Systems, Inc. Inductively coupled pulsed rf voltage multiplier
US10304660B1 (en) 2018-03-21 2019-05-28 Lam Research Corporation Multi-level pulsing of DC and RF signals
US10876241B2 (en) 2018-03-30 2020-12-29 Midea Group Co., Ltd. Clothes pre-wash compartment for an appliance
JP7061918B2 (en) 2018-04-23 2022-05-02 東京エレクトロン株式会社 Plasma etching method and plasma processing equipment
US10555412B2 (en) * 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US11302518B2 (en) 2018-07-27 2022-04-12 Eagle Harbor Technologies, Inc. Efficient energy recovery in a nanosecond pulser circuit
US11222767B2 (en) * 2018-07-27 2022-01-11 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US10607814B2 (en) 2018-08-10 2020-03-31 Eagle Harbor Technologies, Inc. High voltage switch with isolated power
US11476145B2 (en) * 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
TWI783203B (en) 2019-01-08 2022-11-11 美商鷹港科技股份有限公司 A nanosecond pulser circuit
CN113169026B (en) * 2019-01-22 2024-04-26 应用材料公司 Feedback loop for controlling pulse voltage waveform
TWI778449B (en) * 2019-11-15 2022-09-21 美商鷹港科技股份有限公司 High voltage pulsing circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339108A (en) * 1965-01-28 1967-08-29 Gen Radio Co Capacitor charging and discharging circuitry
US20190131110A1 (en) * 2017-08-25 2019-05-02 Eagle Harbor Technologies, Inc. Arbitarary waveform generation using nanosecond pulses

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11558048B2 (en) 2013-11-14 2023-01-17 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser
US11539352B2 (en) 2013-11-14 2022-12-27 Eagle Harbor Technologies, Inc. Transformer resonant converter
US11502672B2 (en) 2013-11-14 2022-11-15 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser with variable pulse width and pulse repetition frequency
US11159156B2 (en) 2013-11-14 2021-10-26 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser
US11689107B2 (en) 2014-02-28 2023-06-27 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US11631573B2 (en) 2014-02-28 2023-04-18 Eagle Harbor Technologies, Inc. High voltage resistive output stage circuit
US11171568B2 (en) 2017-02-07 2021-11-09 Eagle Harbor Technologies, Inc. Transformer resonant converter
US11387076B2 (en) 2017-08-25 2022-07-12 Eagle Harbor Technologies, Inc. Apparatus and method of generating a waveform
US11284500B2 (en) 2018-05-10 2022-03-22 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator
US11532457B2 (en) 2018-07-27 2022-12-20 Eagle Harbor Technologies, Inc. Precise plasma control system
US11810761B2 (en) * 2018-07-27 2023-11-07 Eagle Harbor Technologies, Inc. Nanosecond pulser ADC system
US20240136152A1 (en) * 2018-07-27 2024-04-25 Eagle Harbor Technologies, Inc. Nanosecond pulser adc system
US20220020566A1 (en) * 2018-07-27 2022-01-20 Eagle Harbor Technologies, Inc. Nanosecond pulser adc system
US11101108B2 (en) 2018-07-27 2021-08-24 Eagle Harbor Technologies Inc. Nanosecond pulser ADC system
US11302518B2 (en) 2018-07-27 2022-04-12 Eagle Harbor Technologies, Inc. Efficient energy recovery in a nanosecond pulser circuit
US11075058B2 (en) 2018-07-27 2021-07-27 Eagle Harbor Technologies, Inc. Spatially variable wafer bias power system
US11875971B2 (en) 2018-07-27 2024-01-16 Eagle Harbor Technologies, Inc. Efficient energy recovery in a nanosecond pulser circuit
US11430635B2 (en) 2018-07-27 2022-08-30 Eagle Harbor Technologies, Inc. Precise plasma control system
US11222767B2 (en) 2018-07-27 2022-01-11 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US10903047B2 (en) * 2018-07-27 2021-01-26 Eagle Harbor Technologies, Inc. Precise plasma control system
US11587768B2 (en) 2018-07-27 2023-02-21 Eagle Harbor Technologies, Inc. Nanosecond pulser thermal management
US10991553B2 (en) * 2018-07-27 2021-04-27 Eagle Harbor Technologies, Inc. Nanosecond pulser thermal management
US10892140B2 (en) * 2018-07-27 2021-01-12 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US11227745B2 (en) 2018-08-10 2022-01-18 Eagle Harbor Technologies, Inc. Plasma sheath control for RF plasma reactors
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11670484B2 (en) 2018-11-30 2023-06-06 Eagle Harbor Technologies, Inc. Variable output impedance RF generator
US11004660B2 (en) 2018-11-30 2021-05-11 Eagle Harbor Technologies, Inc. Variable output impedance RF generator
US11646176B2 (en) 2019-01-08 2023-05-09 Eagle Harbor Technologies, Inc. Efficient nanosecond pulser with source and sink capability for plasma control applications
US11699572B2 (en) 2019-01-22 2023-07-11 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US12057292B2 (en) 2019-01-22 2024-08-06 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US10923321B2 (en) 2019-01-22 2021-02-16 Applied Materials, Inc. Apparatus and method of generating a pulsed waveform
US10916408B2 (en) 2019-01-22 2021-02-09 Applied Materials, Inc. Apparatus and method of forming plasma using a pulsed waveform
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11404246B2 (en) 2019-11-15 2022-08-02 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation with correction
US11527383B2 (en) 2019-12-24 2022-12-13 Eagle Harbor Technologies, Inc. Nanosecond pulser RF isolation for plasma systems
US11776789B2 (en) 2020-07-31 2023-10-03 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11887813B2 (en) 2021-06-23 2024-01-30 Applied Materials, Inc. Pulsed voltage source for plasma processing
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11776788B2 (en) 2021-06-28 2023-10-03 Applied Materials, Inc. Pulsed voltage boost for substrate processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US12106938B2 (en) 2021-09-14 2024-10-01 Applied Materials, Inc. Distortion current mitigation in a radio frequency plasma processing chamber
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Also Published As

Publication number Publication date
CN115943735A (en) 2023-04-07
US20200036367A1 (en) 2020-01-30
US20200035457A1 (en) 2020-01-30
KR20230137474A (en) 2023-10-04
US20200126760A1 (en) 2020-04-23
US10991553B2 (en) 2021-04-27
US20210125812A1 (en) 2021-04-29
KR102579260B1 (en) 2023-09-18
TW202020926A (en) 2020-06-01
US11101108B2 (en) 2021-08-24
EP3830859A4 (en) 2022-06-08
EP3831169A4 (en) 2022-08-17
EP3830957A1 (en) 2021-06-09
KR102575498B1 (en) 2023-09-08
JP7038897B2 (en) 2022-03-18
EP3831169A1 (en) 2021-06-09
CN112823405A (en) 2021-05-18
EP3830859B1 (en) 2024-01-17
WO2020023974A1 (en) 2020-01-30
US11075058B2 (en) 2021-07-27
US20210351009A1 (en) 2021-11-11
US20200035458A1 (en) 2020-01-30
JP7367157B2 (en) 2023-10-23
WO2020023965A1 (en) 2020-01-30
JP2021524659A (en) 2021-09-13
JP7503047B2 (en) 2024-06-19
KR20210040404A (en) 2021-04-13
TWI756551B (en) 2022-03-01
US11587768B2 (en) 2023-02-21
WO2020023964A1 (en) 2020-01-30
KR102572562B1 (en) 2023-08-31
US20200035459A1 (en) 2020-01-30
US20200037468A1 (en) 2020-01-30
JP2021524660A (en) 2021-09-13
JP2021524658A (en) 2021-09-13
US11551908B2 (en) 2023-01-10
US10892141B2 (en) 2021-01-12
TW202220024A (en) 2022-05-16
KR20230129609A (en) 2023-09-08
JP2022066475A (en) 2022-04-28
KR20230128133A (en) 2023-09-01
JP2023182762A (en) 2023-12-26
TWI843981B (en) 2024-06-01
KR20210038943A (en) 2021-04-08
US10892140B2 (en) 2021-01-12
US20210327682A1 (en) 2021-10-21
KR20210031516A (en) 2021-03-19
US11636998B2 (en) 2023-04-25
US10811230B2 (en) 2020-10-20
JP2022188063A (en) 2022-12-20
EP3830859A1 (en) 2021-06-09
JP7324326B2 (en) 2023-08-09
US20200244254A1 (en) 2020-07-30
EP3830957A4 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
US11101108B2 (en) Nanosecond pulser ADC system
US10903047B2 (en) Precise plasma control system
US11532457B2 (en) Precise plasma control system
US11430635B2 (en) Precise plasma control system
US11810761B2 (en) Nanosecond pulser ADC system
US11875971B2 (en) Efficient energy recovery in a nanosecond pulser circuit
US11824454B2 (en) Wafer biasing in a plasma chamber
JP7261891B2 (en) Precision plasma control system
TW202041106A (en) Precise plasma control system and method thereof
US20240048056A1 (en) Wafer biasing in a plasma chamber
CN112514254A (en) Spatially variable wafer bias power system

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: EAGLE HARBOR TECHNOLOGIES, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZIEMBA, TIMOTHY;CARSCADDEN, JOHN;MILLER, KENNETH;AND OTHERS;SIGNING DATES FROM 20190807 TO 20190819;REEL/FRAME:050094/0134

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY