US10584660B2 - Geared turbomachine fan and compressor rotation - Google Patents

Geared turbomachine fan and compressor rotation Download PDF

Info

Publication number
US10584660B2
US10584660B2 US15/411,459 US201715411459A US10584660B2 US 10584660 B2 US10584660 B2 US 10584660B2 US 201715411459 A US201715411459 A US 201715411459A US 10584660 B2 US10584660 B2 US 10584660B2
Authority
US
United States
Prior art keywords
low
fan
pressure
gas turbine
turbine engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/411,459
Other versions
US20170130673A1 (en
Inventor
William G. Sheridan
Michael E. McCune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Priority to US15/411,459 priority Critical patent/US10584660B2/en
Publication of US20170130673A1 publication Critical patent/US20170130673A1/en
Priority to US16/812,636 priority patent/US11566587B2/en
Application granted granted Critical
Publication of US10584660B2 publication Critical patent/US10584660B2/en
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: UNITED TECHNOLOGIES CORPORATION
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS. Assignors: UNITED TECHNOLOGIES CORPORATION
Priority to US18/161,340 priority patent/US20230167787A1/en
Assigned to RTX CORPORATION reassignment RTX CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RAYTHEON TECHNOLOGIES CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/166Sliding contact bearing
    • F01D25/168Sliding contact bearing for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/36Application in turbines specially adapted for the fan of turbofan engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • This disclosure relates to a geared turbomachine having a compressor rotor and a fan rotor that rotate together.
  • Turbomachines such as gas turbine engines, typically include a fan section, a turbine section, a compressor section, and a combustor section. Turbomachines may employ a geared architecture connecting the fan section and the turbine section.
  • the compressor section typically includes at least a high-pressure compressor and a low-pressure compressor.
  • the compressors include rotors that rotate separately from a rotor of fan.
  • various recent engine architectures have been proposed in which the fan rotates in a first direction and at a first speed as compared to a low-pressure compressor which rotates in the opposite direction and at a higher speed. These recent engine architectures can also be improved.
  • a high-bypass ratio geared turbomachine comprises a compressor section of a high-bypass ratio geared turbomachine, the compressor section providing at least a low-pressure compressor and a high-pressure compressor, wherein a rotor of the low-pressure compressor rotates together with a rotor of a fan.
  • the rotor of the low-pressure compressor and the rotor of the fan may rotate at the same speed and in the same direction.
  • the high-bypass ratio geared turbomachine may have a fan bypass ratio greater than about 8.
  • the high-bypass ratio geared turbomachine may have an overall compression ratio greater than about 40.
  • the high-pressure compressor may have a pressure ratio greater than about 20.
  • the fan may include a shaft that is rotatably supported by a plurality of tapered bearings.
  • the high-bypass ratio geared turbomachine may include a turbine shaft that rotates a geared architecture to rotate the rotor of the low-pressure compressor and the rotor of the fan.
  • At least one thrust bearing may rotatably support the turbine shaft, and the at least one thrust bearing may be located axially between the geared architecture and a turbine secured to the turbine shaft.
  • the at least one thrust bearing may be a bi-directional tapered bearing.
  • the shaft may be a low-pressure turbine shaft.
  • the geared architecture may be a planetary geared architecture.
  • a high-bypass ratio turbomachine comprises a fan rotor that rotates together with an compressor rotor at a first speed in a turbomachine having a high-bypass ratio, wherein the fan rotor and the compressor rotor are driven by a shaft that rotates at a second speed different than the first speed.
  • the shaft may rotate a geared architecture to rotate the fan rotor and the compressor rotor.
  • the compressor rotor may be axially forward of a fan frame extending radially across a fan bypass flow path.
  • the fan rotor and the compressor rotor may rotate at the same speed.
  • the high-bypass ratio geared turbomachine may include a high-pressure turbine, a combustor section, and a low-pressure turbine arranged axially sequentially within the geared turbomachine.
  • exclusively axial compressors may provide compression in the geared turbomachine.
  • the compressor may be a low-pressure compressor.
  • a method of operating a high-bypass ratio turbomachine comprises rotating a geared architecture with a first shaft, rotating a second shaft with the geared architecture, and rotating a fan rotor and a compressor rotor with the second shaft.
  • the turbomachine may have a fan bypass ratio greater than 8.
  • FIG. 1 shows a highly schematic view of a portion of an example turbomachine.
  • FIG. 2 shows a schematic view of another example turbomachine.
  • an example geared turbomachine 10 includes a first shaft 11 that provides a rotating input to a geared architecture 12 .
  • Rotating the geared architecture 12 rotates a second shaft 13 .
  • the example geared architecture 12 has a gear ratio that causes the second shaft 13 to rotate at a slower speed than the first shaft 11 .
  • a compressor rotor 14 and a fan rotor 15 are coupled to the second shaft 13 .
  • Rotating the second shaft 13 rotates the rotors 14 and 15 at the same rotational speed and in the same direction.
  • the compressor rotor 14 forms a portion of an axial compressor.
  • FIG. 2 schematically illustrates another example turbomachine, which is a gas turbine engine 20 in this example.
  • the gas turbine engine 20 is a two-spool turbofan gas turbine engine that generally includes a fan section 22 , a compressor section 24 , a combustion section 26 , and a turbine section 28 .
  • Other examples may include an augmentor section (not shown) among other systems or features.
  • the fan section 22 drives air along a bypass flowpath while the compressor section 24 drives air along a core flowpath.
  • Compressed air from the compressor section 24 communicates through the combustion section 26 .
  • the products of combustion expand through the turbine section 28 .
  • the example engine 20 generally includes a low-speed spool 30 and a high-speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 .
  • turbofan gas turbine engine depicted as a two-spool turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans. That is, the teachings may be applied to other types of turbomachines and turbine engines including three-spool architectures.
  • the low-speed spool 30 and the high-speed spool 32 are rotatably supported by several bearing systems 38 a - 38 d . It should be understood that various bearing systems 38 a - 38 d at various locations may alternatively, or additionally, be provided.
  • the low-speed spool 30 generally includes an inner shaft 40 that interconnects a geared architecture 48 and a low-pressure turbine rotor 46 .
  • the inner shaft 40 is a turbine shaft in this example as the inner shaft 40 is connected directly to the low-pressure turbine rotor 46 .
  • Rotating the geared architecture 48 rotatably drives a fan rotor 42 and a low-pressure compressor rotor 44 at a lower speed than the low-speed spool 30 .
  • the high-speed spool 32 includes an outer shaft 50 that interconnects a high-pressure compressor rotor 52 and high-pressure turbine rotor 54 .
  • the low-pressure compressor rotor 44 and the high-pressure compressor rotor 52 are both rotors of axial compressors, and there are no other types of compressors within the compressor section 24 of the engine 20 .
  • the combustion section 26 includes a circumferentially distributed array of combustors 56 generally arranged axially between the high-pressure compressor rotor 52 and the high-pressure turbine rotor 54 .
  • a mid-turbine frame 58 of the engine static structure 36 is generally arranged axially between the high-pressure turbine rotor 54 and the low-pressure turbine rotor 46 .
  • the mid-turbine frame 58 supports the bearing systems 38 c and 38 d in the turbine section 28 .
  • the mid-turbine frame 58 includes airfoils 60 within the path of the core airflow.
  • the inner shaft 40 and the outer shaft 50 are concentric and rotate via the bearing systems 38 b - 38 d about the engine central longitudinal axis A, which is collinear with the longitudinal axes of the inner shaft 40 and the outer shaft 50 .
  • the core airflow is compressed by the compressor section 24 , mixed and burned with fuel in the combustors 56 , then expanded within the turbine section 28 .
  • the high-pressure turbine rotor 54 and the low-pressure turbine rotor 46 rotatably drive the respective high-speed spool 32 and low-speed spool 30 in response to the expansion.
  • the engine 20 is a high-bypass geared aircraft engine.
  • the engine 20 has a fan bypass ratio that is greater than about six (6:1).
  • the engine 20 has a fan bypass ratio that is greater than about eight (8:1).
  • the overall compression ratio of such the example engine 20 is greater than 40 (40:1) in some examples, and the pressure ratio of the high-pressure compressor is greater than 20 (20:1).
  • the geared architecture 48 of the example engine 20 includes an epicyclic gear train, such as a planetary geared architecture or other geared architecture.
  • the example epicyclic gear train has a gear reduction ratio of greater than about 2.3 (2.3:1).
  • the low-pressure turbine pressure ratio is pressure measured prior to inlet of low-pressure turbine as related to the pressure at the outlet of the low-pressure turbine (and prior to an exhausting from the engine 20 ).
  • the bypass ratio of the engine 20 is greater than about ten (10:1)
  • the fan diameter is significantly larger than that of the low-pressure compressor
  • the low-pressure turbine has a pressure ratio that is greater than about 5 (5:1).
  • the geared architecture 48 of this embodiment is an epicyclic gear train with a gear reduction ratio of greater than about 2.5 (2.5:1). Examples of the geared architecture 48 include star architectures and planetary architectures. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present disclosure is applicable to other gas turbine engines including direct drive turbofans.
  • a significant amount of thrust is provided by the bypass flow B due to the high bypass ratio.
  • the fan section 22 of the engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet. This flight condition, with the engine 20 at its best fuel consumption, is also known as bucket cruise Thrust Specific Fuel Consumption (TSFC).
  • TSFC Thrust Specific Fuel Consumption
  • Fan Pressure Ratio is the pressure ratio across a blade of the fan section 22 (without the use of a Fan Exit Guide Vane system).
  • the low Fan Pressure Ratio according to one non-limiting embodiment of the example engine 20 is less than 1.45 (1.45:1).
  • Low Corrected Fan Tip Speed is the actual fan tip speed divided by an industry standard temperature correction of “T”/518.7 0.5 .
  • T represents the ambient temperature in degrees Rankine.
  • the Low Corrected Fan Tip Speed according to one non-limiting embodiment of the example engine 20 is less than about 1150 fps (351 m/s).
  • the fan rotor 42 and the low-pressure compressor rotor 44 are directly connected to a shaft 62 .
  • One axial end of the shaft 62 is directly connected to a carrier gear 64 of the geared architecture 48 .
  • the fan rotor 42 and the low-pressure compressor rotor 44 rotate at the same speed and in the same direction with the shaft 62 when the shaft 62 is driven by the carrier gear 64 of the geared architecture 48 .
  • the shaft 62 is rotated together with the carrier gear 64 when the geared architecture 48 is rotatably driven by the inner shaft 40 of the low-speed spool 30 .
  • the shaft 62 is considered a fan shaft in this example, because the fan rotor 42 is connected to the shaft 62 .
  • Rotating the fan rotor 42 and the low-pressure compressor rotor 44 with the shaft 62 facilitates positioning the low-pressure compressor of the compressor section 24 relatively axially close to the fan section 22 .
  • the low-pressure compressor rotor 44 (and thus the low-pressure compressor) is axially forward of a fan frame 68 in this example.
  • the fan frame 68 extends radially across a fan bypass passage of the engine 20 .
  • the fan frame 68 supports an outer duct 70 of the engine 20 relative to an engine core.
  • Bearings 38 a rotatably support the shaft 62 .
  • the bearings 38 a are tapered in this example. Tapered bearings mounted as shown in FIG. 2 will react to the fan 42 thrust loads as well as any radial or moment loads applied to shaft 62 which come from fan 42 .
  • bearings 38 a can be a ball and roller bearing combination. This combination will also react any thrust, radial or moment loads from the fan 42 to the shaft 62 .
  • One skilled in the art and having the benefit of this disclosure may arrive at other bearing configurations that support reaction loads applied to shaft 62
  • bearings 38 b rotatably support the low-speed spool 30 near the geared architecture 48 .
  • the bearings 38 b are thrust bearings in this example.
  • the bearings 38 b are bi-directional tapered thrust bearings.
  • the bearings 38 b are ball thrust bearings.
  • example bearings 38 b are located axially between the geared architecture 48 and the low-pressure turbine rotor 46 , and are positioned axially closer to the geared architecture 48 than the low-pressure turbine rotor 46 .
  • Positioning the bearings 38 b in this area has some performance advantages in the unlikely event that the inner shaft 40 fractures. After such a fracture of the inner shaft 40 , axially displacing the low-pressure turbine rotor 46 relative to other portions of the engine 20 is often desired. The axial displacement after a fracture will cause the low-pressure turbine rotor 46 to desirably clash.
  • Fractures of the inner shaft 40 that are axially forward of the bearings 38 b may not result in clash because the bearings 38 b (which are thrust bearings) hold the axial position of the fractured portion.
  • Positioning the bearings 38 b axially near the geared architecture 48 increases the axial locations aft the bearings 38 b , and thus the potential fracture locations of the inner shaft 40 that will result in clash.
  • the bearing 38 c and 38 d in this example, would permit axial displacement after a fracture.
  • the torsional strength of the inner shaft 40 is less than the torsional strength of the other drive shaft within the engine 20 (including the geared architecture 48 ).
  • the inner shaft 40 will fail before other areas of the engine 20 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Retarders (AREA)

Abstract

An exemplary gas turbine engine includes a fan section including a fan rotor and at least one fan blade. A fan pressure ratio across the at least one fan blade is less than 1.45, noninclusive of the pressure across any fan exit guide vane system. The engine further includes a low-pressure compressor having a low-pressure compressor rotor that rotates together with the fan rotor at a common speed in operation, and a geared architecture that drives the low-pressure compressor rotor and the fan rotor. The geared architecture has a gear reduction ratio of greater than 2.5. The engine further includes a high-pressure compressor having a pressure ratio greater than 20, a low-pressure turbine having a pressure ratio greater than 5, and a bypass ratio greater than 10.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. patent application Ser. No. 13/356,940, which was filed on 24 Jan. 2012 and is incorporated herein by reference.
BACKGROUND
This disclosure relates to a geared turbomachine having a compressor rotor and a fan rotor that rotate together.
Turbomachines, such as gas turbine engines, typically include a fan section, a turbine section, a compressor section, and a combustor section. Turbomachines may employ a geared architecture connecting the fan section and the turbine section. The compressor section typically includes at least a high-pressure compressor and a low-pressure compressor. The compressors include rotors that rotate separately from a rotor of fan. To maximize performance of such turbomachines, various recent engine architectures have been proposed in which the fan rotates in a first direction and at a first speed as compared to a low-pressure compressor which rotates in the opposite direction and at a higher speed. These recent engine architectures can also be improved.
SUMMARY
A high-bypass ratio geared turbomachine according to an exemplary aspect of the present disclosure comprises a compressor section of a high-bypass ratio geared turbomachine, the compressor section providing at least a low-pressure compressor and a high-pressure compressor, wherein a rotor of the low-pressure compressor rotates together with a rotor of a fan.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the rotor of the low-pressure compressor and the rotor of the fan may rotate at the same speed and in the same direction.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the high-bypass ratio geared turbomachine may have a fan bypass ratio greater than about 8.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the high-bypass ratio geared turbomachine may have an overall compression ratio greater than about 40.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the high-pressure compressor may have a pressure ratio greater than about 20.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the fan may include a shaft that is rotatably supported by a plurality of tapered bearings.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the high-bypass ratio geared turbomachine may include a turbine shaft that rotates a geared architecture to rotate the rotor of the low-pressure compressor and the rotor of the fan.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, at least one thrust bearing may rotatably support the turbine shaft, and the at least one thrust bearing may be located axially between the geared architecture and a turbine secured to the turbine shaft.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the at least one thrust bearing may be a bi-directional tapered bearing.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the shaft may be a low-pressure turbine shaft.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the geared architecture may be a planetary geared architecture.
A high-bypass ratio turbomachine according to another exemplary aspect of the present disclosure comprises a fan rotor that rotates together with an compressor rotor at a first speed in a turbomachine having a high-bypass ratio, wherein the fan rotor and the compressor rotor are driven by a shaft that rotates at a second speed different than the first speed.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the shaft may rotate a geared architecture to rotate the fan rotor and the compressor rotor.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the compressor rotor may be axially forward of a fan frame extending radially across a fan bypass flow path.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the fan rotor and the compressor rotor may rotate at the same speed.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the high-bypass ratio geared turbomachine may include a high-pressure turbine, a combustor section, and a low-pressure turbine arranged axially sequentially within the geared turbomachine.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, exclusively axial compressors may provide compression in the geared turbomachine.
In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the compressor may be a low-pressure compressor.
A method of operating a high-bypass ratio turbomachine according to an exemplary aspect of the present disclosure comprises rotating a geared architecture with a first shaft, rotating a second shaft with the geared architecture, and rotating a fan rotor and a compressor rotor with the second shaft.
In a further non-limiting embodiment of any of the foregoing methods of operating a high-bypass ratio geared turbomachine, the turbomachine may have a fan bypass ratio greater than 8.
DESCRIPTION OF THE FIGURES
The various features and advantages of the disclosed examples will become apparent to those skilled in the art from the detailed description. The figures that accompany the detailed description can be briefly described as follows:
FIG. 1 shows a highly schematic view of a portion of an example turbomachine.
FIG. 2 shows a schematic view of another example turbomachine.
DETAILED DESCRIPTION
Referring to FIG. 1, an example geared turbomachine 10 includes a first shaft 11 that provides a rotating input to a geared architecture 12. Rotating the geared architecture 12 rotates a second shaft 13. The example geared architecture 12 has a gear ratio that causes the second shaft 13 to rotate at a slower speed than the first shaft 11.
A compressor rotor 14 and a fan rotor 15 are coupled to the second shaft 13. Rotating the second shaft 13 rotates the rotors 14 and 15 at the same rotational speed and in the same direction. In this example, the compressor rotor 14 forms a portion of an axial compressor.
FIG. 2 schematically illustrates another example turbomachine, which is a gas turbine engine 20 in this example. The gas turbine engine 20 is a two-spool turbofan gas turbine engine that generally includes a fan section 22, a compressor section 24, a combustion section 26, and a turbine section 28. Other examples may include an augmentor section (not shown) among other systems or features.
In the example engine 20, the fan section 22 drives air along a bypass flowpath while the compressor section 24 drives air along a core flowpath. Compressed air from the compressor section 24 communicates through the combustion section 26. The products of combustion expand through the turbine section 28.
The example engine 20 generally includes a low-speed spool 30 and a high-speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36.
Although depicted as a two-spool turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans. That is, the teachings may be applied to other types of turbomachines and turbine engines including three-spool architectures.
The low-speed spool 30 and the high-speed spool 32 are rotatably supported by several bearing systems 38 a-38 d. It should be understood that various bearing systems 38 a-38 d at various locations may alternatively, or additionally, be provided.
The low-speed spool 30 generally includes an inner shaft 40 that interconnects a geared architecture 48 and a low-pressure turbine rotor 46. The inner shaft 40 is a turbine shaft in this example as the inner shaft 40 is connected directly to the low-pressure turbine rotor 46. Rotating the geared architecture 48 rotatably drives a fan rotor 42 and a low-pressure compressor rotor 44 at a lower speed than the low-speed spool 30.
The high-speed spool 32 includes an outer shaft 50 that interconnects a high-pressure compressor rotor 52 and high-pressure turbine rotor 54.
In this example, the low-pressure compressor rotor 44 and the high-pressure compressor rotor 52 are both rotors of axial compressors, and there are no other types of compressors within the compressor section 24 of the engine 20.
The combustion section 26 includes a circumferentially distributed array of combustors 56 generally arranged axially between the high-pressure compressor rotor 52 and the high-pressure turbine rotor 54.
A mid-turbine frame 58 of the engine static structure 36 is generally arranged axially between the high-pressure turbine rotor 54 and the low-pressure turbine rotor 46. The mid-turbine frame 58 supports the bearing systems 38 c and 38 d in the turbine section 28. The mid-turbine frame 58 includes airfoils 60 within the path of the core airflow.
The inner shaft 40 and the outer shaft 50 are concentric and rotate via the bearing systems 38 b-38 d about the engine central longitudinal axis A, which is collinear with the longitudinal axes of the inner shaft 40 and the outer shaft 50.
In the example engine 20, the core airflow is compressed by the compressor section 24, mixed and burned with fuel in the combustors 56, then expanded within the turbine section 28. The high-pressure turbine rotor 54 and the low-pressure turbine rotor 46 rotatably drive the respective high-speed spool 32 and low-speed spool 30 in response to the expansion.
In some non-limiting examples, the engine 20 is a high-bypass geared aircraft engine. In a further example, the engine 20 has a fan bypass ratio that is greater than about six (6:1). In a still further example, the engine 20 has a fan bypass ratio that is greater than about eight (8:1). The overall compression ratio of such the example engine 20 is greater than 40 (40:1) in some examples, and the pressure ratio of the high-pressure compressor is greater than 20 (20:1).
The geared architecture 48 of the example engine 20 includes an epicyclic gear train, such as a planetary geared architecture or other geared architecture. The example epicyclic gear train has a gear reduction ratio of greater than about 2.3 (2.3:1).
The low-pressure turbine pressure ratio is pressure measured prior to inlet of low-pressure turbine as related to the pressure at the outlet of the low-pressure turbine (and prior to an exhausting from the engine 20). In one non-limiting embodiment, the bypass ratio of the engine 20 is greater than about ten (10:1), the fan diameter is significantly larger than that of the low-pressure compressor, and the low-pressure turbine has a pressure ratio that is greater than about 5 (5:1). The geared architecture 48 of this embodiment is an epicyclic gear train with a gear reduction ratio of greater than about 2.5 (2.5:1). Examples of the geared architecture 48 include star architectures and planetary architectures. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present disclosure is applicable to other gas turbine engines including direct drive turbofans.
In some embodiments of the example engine 20, a significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet. This flight condition, with the engine 20 at its best fuel consumption, is also known as bucket cruise Thrust Specific Fuel Consumption (TSFC). TSFC is an industry standard parameter of fuel consumption per unit of thrust.
Fan Pressure Ratio is the pressure ratio across a blade of the fan section 22 (without the use of a Fan Exit Guide Vane system). The low Fan Pressure Ratio according to one non-limiting embodiment of the example engine 20 is less than 1.45 (1.45:1).
Low Corrected Fan Tip Speed is the actual fan tip speed divided by an industry standard temperature correction of “T”/518.70.5. T represents the ambient temperature in degrees Rankine. The Low Corrected Fan Tip Speed according to one non-limiting embodiment of the example engine 20 is less than about 1150 fps (351 m/s).
In the example engine 20, the fan rotor 42 and the low-pressure compressor rotor 44 are directly connected to a shaft 62. One axial end of the shaft 62 is directly connected to a carrier gear 64 of the geared architecture 48. The fan rotor 42 and the low-pressure compressor rotor 44 rotate at the same speed and in the same direction with the shaft 62 when the shaft 62 is driven by the carrier gear 64 of the geared architecture 48. The shaft 62 is rotated together with the carrier gear 64 when the geared architecture 48 is rotatably driven by the inner shaft 40 of the low-speed spool 30. The shaft 62 is considered a fan shaft in this example, because the fan rotor 42 is connected to the shaft 62.
Rotating the fan rotor 42 and the low-pressure compressor rotor 44 with the shaft 62 facilitates positioning the low-pressure compressor of the compressor section 24 relatively axially close to the fan section 22. The low-pressure compressor rotor 44 (and thus the low-pressure compressor) is axially forward of a fan frame 68 in this example. The fan frame 68 extends radially across a fan bypass passage of the engine 20. The fan frame 68 supports an outer duct 70 of the engine 20 relative to an engine core.
Bearings 38 a rotatably support the shaft 62. The bearings 38 a are tapered in this example. Tapered bearings mounted as shown in FIG. 2 will react to the fan 42 thrust loads as well as any radial or moment loads applied to shaft 62 which come from fan 42. In another example, bearings 38 a can be a ball and roller bearing combination. This combination will also react any thrust, radial or moment loads from the fan 42 to the shaft 62. One skilled in the art and having the benefit of this disclosure may arrive at other bearing configurations that support reaction loads applied to shaft 62
Other bearings 38 b rotatably support the low-speed spool 30 near the geared architecture 48. The bearings 38 b are thrust bearings in this example. In one specific example, the bearings 38 b are bi-directional tapered thrust bearings. In another specific example, the bearings 38 b are ball thrust bearings.
Notably, the example bearings 38 b are located axially between the geared architecture 48 and the low-pressure turbine rotor 46, and are positioned axially closer to the geared architecture 48 than the low-pressure turbine rotor 46.
Positioning the bearings 38 b in this area has some performance advantages in the unlikely event that the inner shaft 40 fractures. After such a fracture of the inner shaft 40, axially displacing the low-pressure turbine rotor 46 relative to other portions of the engine 20 is often desired. The axial displacement after a fracture will cause the low-pressure turbine rotor 46 to desirably clash.
Fractures of the inner shaft 40 that are axially forward of the bearings 38 b may not result in clash because the bearings 38 b (which are thrust bearings) hold the axial position of the fractured portion. Positioning the bearings 38 b axially near the geared architecture 48 increases the axial locations aft the bearings 38 b, and thus the potential fracture locations of the inner shaft 40 that will result in clash. The bearing 38 c and 38 d, in this example, would permit axial displacement after a fracture.
In some examples, the torsional strength of the inner shaft 40 is less than the torsional strength of the other drive shaft within the engine 20 (including the geared architecture 48). Thus, in the event of, for example, an overload of the fan rotor 42, the inner shaft 40 will fail before other areas of the engine 20.
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this disclosure. Thus, the scope of legal protection given to this disclosure can only be determined by studying the following claims.

Claims (20)

We claim:
1. A gas turbine engine, comprising:
a fan section including a fan rotor and at least one fan blade, with a fan pressure ratio across the at least one fan blade of less than 1.45, noninclusive of the pressure across any fan exit guide vane system;
a low-pressure compressor having a low-pressure compressor rotor that rotates together with the fan rotor at a common speed in operation;
a geared architecture that drives the low-pressure compressor rotor and the fan rotor, the geared architecture having a gear reduction ratio of greater than 2.5;
a high-pressure compressor having a pressure ratio greater than 20;
a low-pressure turbine having a pressure ratio greater than 5; and
a bypass ratio greater than 10.
2. The gas turbine engine of claim 1, wherein the geared architecture is a planetary geared architecture.
3. The gas turbine engine of claim 2, further comprising a low corrected fan tip speed less than 1150 ft/second, wherein the low corrected fan tip speed is an actual fan tip speed at a temperature divided by (T/518.7)0.5, where T represents the temperature in degrees Rankine.
4. The gas turbine engine of claim 3, further comprising a two-stage high-pressure turbine.
5. The gas turbine engine of claim 4, further comprising an engine overall compression ratio greater than 40.
6. The gas turbine engine of claim 5, further comprising a fan bypass passage and a fan frame extending radially across the fan bypass passage, wherein the low-pressure compressor is axially forward of the fan frame.
7. The gas turbine engine of claim 5, further comprising a low-speed spool that interconnects the geared architecture and the low-pressure turbine, and at least one bearing rotatably supporting the low-speed spool and positioned axially closer to the geared architecture between the geared architecture and the low-pressure turbine.
8. The gas turbine engine of claim 7, wherein the at least one bearing includes at least two bearings that are bi-directional tapered thrust bearings.
9. The gas turbine engine of claim 5, wherein the low-pressure turbine is a three-stage low-pressure turbine.
10. The gas turbine engine of claim 9, further comprising a fan bypass passage and a fan frame extending radially across the fan bypass passage, wherein the low-pressure compressor is axially forward of the fan frame.
11. The gas turbine engine of claim 5, wherein the high-pressure compressor is a nine-stage high-pressure compressor.
12. The gas turbine engine of claim 4, further comprising a low-speed spool that interconnects the geared architecture and the low-pressure turbine, and at least one bearing rotatably supporting the low-speed spool and positioned axially closer to the geared architecture between the geared architecture and the low-pressure turbine.
13. The gas turbine engine of claim 12, wherein the low-pressure turbine rotates an inner shaft, and the high-pressure compressor is rotated by an outer shaft, wherein a torsional strength of the inner shaft is less than a torsional strength of the outer shaft.
14. The gas turbine engine of claim 1, further comprising a two-stage high-pressure turbine.
15. The gas turbine engine of claim 14, wherein the geared architecture is positioned between the low-pressure compressor and the high-pressure compressor.
16. The gas turbine engine of claim 15, wherein the fan rotor and the low-pressure compressor rotor are directly connected to a fan shaft, and an axial end of the fan shaft is directly connected to a carrier gear of the geared architecture.
17. The gas turbine engine of claim 16, wherein the low-pressure turbine includes a low-pressure turbine rotor, and the low-pressure turbine drives the geared architecture through an inner shaft connected directly to the low-pressure turbine rotor.
18. The gas turbine engine of claim 17, wherein the fan shaft is rotatably supported by a plurality of tapered bearings.
19. The gas turbine engine of claim 15, wherein the low-pressure compressor includes a plurality of stages.
20. The gas turbine engine of claim 19, wherein each of the at least one fan blade is forward of the low-pressure compressor with respect to an engine central longitudinal axis.
US15/411,459 2012-01-24 2017-01-20 Geared turbomachine fan and compressor rotation Active 2032-09-10 US10584660B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/411,459 US10584660B2 (en) 2012-01-24 2017-01-20 Geared turbomachine fan and compressor rotation
US16/812,636 US11566587B2 (en) 2012-01-24 2020-03-09 Geared turbomachine fan and compressor rotation
US18/161,340 US20230167787A1 (en) 2012-01-24 2023-01-30 Geared turbomachine fan and compressor rotation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/356,940 US20130186058A1 (en) 2012-01-24 2012-01-24 Geared turbomachine fan and compressor rotation
US15/411,459 US10584660B2 (en) 2012-01-24 2017-01-20 Geared turbomachine fan and compressor rotation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/356,940 Continuation US20130186058A1 (en) 2012-01-24 2012-01-24 Geared turbomachine fan and compressor rotation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/812,636 Division US11566587B2 (en) 2012-01-24 2020-03-09 Geared turbomachine fan and compressor rotation

Publications (2)

Publication Number Publication Date
US20170130673A1 US20170130673A1 (en) 2017-05-11
US10584660B2 true US10584660B2 (en) 2020-03-10

Family

ID=48796076

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/356,940 Abandoned US20130186058A1 (en) 2012-01-24 2012-01-24 Geared turbomachine fan and compressor rotation
US15/411,459 Active 2032-09-10 US10584660B2 (en) 2012-01-24 2017-01-20 Geared turbomachine fan and compressor rotation
US16/812,636 Active 2033-06-14 US11566587B2 (en) 2012-01-24 2020-03-09 Geared turbomachine fan and compressor rotation
US18/161,340 Pending US20230167787A1 (en) 2012-01-24 2023-01-30 Geared turbomachine fan and compressor rotation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/356,940 Abandoned US20130186058A1 (en) 2012-01-24 2012-01-24 Geared turbomachine fan and compressor rotation

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/812,636 Active 2033-06-14 US11566587B2 (en) 2012-01-24 2020-03-09 Geared turbomachine fan and compressor rotation
US18/161,340 Pending US20230167787A1 (en) 2012-01-24 2023-01-30 Geared turbomachine fan and compressor rotation

Country Status (3)

Country Link
US (4) US20130186058A1 (en)
EP (3) EP3690215B1 (en)
WO (1) WO2013154636A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187212B1 (en) 2021-04-02 2021-11-30 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11754000B2 (en) 2021-07-19 2023-09-12 Rtx Corporation High and low spool configuration for a gas turbine engine

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242805B2 (en) 2007-08-01 2022-02-08 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US11346289B2 (en) 2007-08-01 2022-05-31 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US20150377123A1 (en) 2007-08-01 2015-12-31 United Technologies Corporation Turbine section of high bypass turbofan
US11149650B2 (en) 2007-08-01 2021-10-19 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US11486311B2 (en) 2007-08-01 2022-11-01 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US8844265B2 (en) 2007-08-01 2014-09-30 United Technologies Corporation Turbine section of high bypass turbofan
US9523422B2 (en) 2011-06-08 2016-12-20 United Technologies Corporation Flexible support structure for a geared architecture gas turbine engine
US9631558B2 (en) 2012-01-03 2017-04-25 United Technologies Corporation Geared architecture for high speed and small volume fan drive turbine
US9239012B2 (en) 2011-06-08 2016-01-19 United Technologies Corporation Flexible support structure for a geared architecture gas turbine engine
US20160348591A1 (en) * 2012-01-31 2016-12-01 United Technologies Corporation Geared turbofan engine with counter-rotating shafts
US10287914B2 (en) 2012-01-31 2019-05-14 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section and bearing support features
US10125693B2 (en) 2012-04-02 2018-11-13 United Technologies Corporation Geared turbofan engine with power density range
US10138809B2 (en) 2012-04-02 2018-11-27 United Technologies Corporation Geared turbofan engine with a high ratio of thrust to turbine volume
US20160138474A1 (en) 2012-09-28 2016-05-19 United Technologies Corporation Low noise compressor rotor for geared turbofan engine
US9624834B2 (en) 2012-09-28 2017-04-18 United Technologies Corporation Low noise compressor rotor for geared turbofan engine
US11719161B2 (en) 2013-03-14 2023-08-08 Raytheon Technologies Corporation Low noise turbine for geared gas turbine engine
US10605172B2 (en) 2013-03-14 2020-03-31 United Technologies Corporation Low noise turbine for geared gas turbine engine
US10280843B2 (en) 2014-03-07 2019-05-07 United Technologies Corporation Geared turbofan with integral front support and carrier
US10060289B2 (en) * 2014-07-29 2018-08-28 United Technologies Corporation Geared gas turbine engine with oil deaerator and air removal
US10221771B2 (en) 2014-09-24 2019-03-05 United Technologies Corporation Fan drive gear system
US20160084104A1 (en) * 2014-09-24 2016-03-24 United Technologies Corporation Fan drive gear system
CA2915343A1 (en) * 2015-01-09 2016-07-09 Frederick M. Schwarz Geared turbofan engine with a high ratio of thrust to turbine volume
CA2916866C (en) * 2015-01-09 2020-02-18 United Technologies Corporation Geared turbofan engine with power density range
US9879694B2 (en) 2015-02-03 2018-01-30 United Technologies Corporation Turbo-compressor with geared turbofan
US11067005B2 (en) 2015-02-03 2021-07-20 Raytheon Technologies Corporation Fan drive gear system
US20160245184A1 (en) * 2015-02-19 2016-08-25 United Technologies Corporation Geared turbine engine
US11225913B2 (en) 2015-02-19 2022-01-18 Raytheon Technologies Corporation Method of providing turbine engines with different thrust ratings
US10066734B2 (en) 2015-12-07 2018-09-04 United Technologies Corporation Gear driven gas turbine engine assembly
WO2018026408A2 (en) * 2016-05-25 2018-02-08 General Electric Company Method and system for a two frame gas turbine engine
US10883424B2 (en) 2016-07-19 2021-01-05 Pratt & Whitney Canada Corp. Multi-spool gas turbine engine architecture
US11415063B2 (en) 2016-09-15 2022-08-16 Pratt & Whitney Canada Corp. Reverse-flow gas turbine engine
US11035293B2 (en) 2016-09-15 2021-06-15 Pratt & Whitney Canada Corp. Reverse flow gas turbine engine with offset RGB
US10465611B2 (en) 2016-09-15 2019-11-05 Pratt & Whitney Canada Corp. Reverse flow multi-spool gas turbine engine with aft-end accessory gearbox drivingly connected to both high pressure spool and low pressure spool
US10815899B2 (en) 2016-11-15 2020-10-27 Pratt & Whitney Canada Corp. Gas turbine engine accessories arrangement
US10808624B2 (en) 2017-02-09 2020-10-20 Pratt & Whitney Canada Corp. Turbine rotor with low over-speed requirements
US10746188B2 (en) 2017-03-14 2020-08-18 Pratt & Whitney Canada Corp. Inter-shaft bearing connected to a compressor boost system
US10738646B2 (en) 2017-06-12 2020-08-11 Raytheon Technologies Corporation Geared turbine engine with gear driving low pressure compressor and fan at common speed, and failsafe overspeed protection and shear section
US10612555B2 (en) 2017-06-16 2020-04-07 United Technologies Corporation Geared turbofan with overspeed protection
EP3653859B1 (en) 2018-08-08 2024-02-07 Pratt & Whitney Canada Corp. Multi-engine system and method
GB201903261D0 (en) 2019-03-11 2019-04-24 Rolls Royce Plc Efficient gas turbine engine installation and operation
GB201903262D0 (en) 2019-03-11 2019-04-24 Rolls Royce Plc Efficient gas turbine engine installation and operation
GB201903257D0 (en) 2019-03-11 2019-04-24 Rolls Royce Plc Efficient gas turbine engine installation and operation
US11371354B2 (en) * 2020-06-03 2022-06-28 Honeywell International Inc. Characteristic distribution for rotor blade of booster rotor

Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3194487A (en) 1963-06-04 1965-07-13 United Aircraft Corp Noise abatement method and apparatus
US3287906A (en) 1965-07-20 1966-11-29 Gen Motors Corp Cooled gas turbine vanes
US3729957A (en) 1971-01-08 1973-05-01 Secr Defence Fan
US3747343A (en) 1972-02-10 1973-07-24 United Aircraft Corp Low noise prop-fan
US3754484A (en) 1971-01-08 1973-08-28 Secr Defence Gearing
US3892358A (en) 1971-03-17 1975-07-01 Gen Electric Nozzle seal
US3932058A (en) 1974-06-07 1976-01-13 United Technologies Corporation Control system for variable pitch fan propulsor
US3935558A (en) 1974-12-11 1976-01-27 United Technologies Corporation Surge detector for turbine engines
GB1516041A (en) 1977-02-14 1978-06-28 Secr Defence Multistage axial flow compressor stators
US4130872A (en) 1975-10-10 1978-12-19 The United States Of America As Represented By The Secretary Of The Air Force Method and system of controlling a jet engine for avoiding engine surge
GB2041090A (en) 1979-01-31 1980-09-03 Rolls Royce By-pass gas turbine engines
US5433674A (en) 1994-04-12 1995-07-18 United Technologies Corporation Coupling system for a planetary gear train
US5447411A (en) 1993-06-10 1995-09-05 Martin Marietta Corporation Light weight fan blade containment system
US5524847A (en) 1993-09-07 1996-06-11 United Technologies Corporation Nacelle and mounting arrangement for an aircraft engine
US5778659A (en) 1994-10-20 1998-07-14 United Technologies Corporation Variable area fan exhaust nozzle having mechanically separate sleeve and thrust reverser actuation systems
US5857836A (en) 1996-09-10 1999-01-12 Aerodyne Research, Inc. Evaporatively cooled rotor for a gas turbine engine
US5915917A (en) 1994-12-14 1999-06-29 United Technologies Corporation Compressor stall and surge control using airflow asymmetry measurement
US5975841A (en) 1997-10-03 1999-11-02 Thermal Corp. Heat pipe cooling for turbine stators
US6223616B1 (en) 1999-12-22 2001-05-01 United Technologies Corporation Star gear system with lubrication circuit and lubrication method therefor
US6318070B1 (en) 2000-03-03 2001-11-20 United Technologies Corporation Variable area nozzle for gas turbine engines driven by shape memory alloy actuators
EP1227255A2 (en) 2001-01-26 2002-07-31 United Technologies Corporation Bi-directional tapered roller bearing
US6607165B1 (en) 2002-06-28 2003-08-19 General Electric Company Aircraft engine mount with single thrust link
US6732502B2 (en) 2002-03-01 2004-05-11 General Electric Company Counter rotating aircraft gas turbine engine with high overall pressure ratio compressor
US6814541B2 (en) 2002-10-07 2004-11-09 General Electric Company Jet aircraft fan case containment design
US7021042B2 (en) 2002-12-13 2006-04-04 United Technologies Corporation Geartrain coupling for a turbofan engine
WO2007038674A1 (en) 2005-09-28 2007-04-05 Entrotech Composites, Llc Braid-reinforced composites and processes for their preparation
US20080003096A1 (en) 2006-06-29 2008-01-03 United Technologies Corporation High coverage cooling hole shape
US7328580B2 (en) 2004-06-23 2008-02-12 General Electric Company Chevron film cooled wall
US20080098716A1 (en) * 2006-10-31 2008-05-01 Robert Joseph Orlando Gas turbine engine assembly and methods of assembling same
EP1921290A2 (en) 2006-10-31 2008-05-14 General Electric Company Turbofan engine assembly and method of assembling same
US20080120839A1 (en) 2006-11-29 2008-05-29 Jan Christopher Schilling Turbofan engine assembly and method of assembling same
US20080149445A1 (en) 2006-12-22 2008-06-26 General Electric Company Variable Magnetic Coupling of Rotating Machinery
US20080190095A1 (en) 2007-02-08 2008-08-14 Baran Kenneth C Fan Variable Area Nozzle for a Gas Turbine engine Fan Nacelle with Cam Drive Ring Actuation System
US20090056343A1 (en) 2007-08-01 2009-03-05 Suciu Gabriel L Engine mounting configuration for a turbofan gas turbine engine
US20090081035A1 (en) 2007-09-21 2009-03-26 Merry Brian D Gas turbine engine compressor case mounting arrangement
US20090090096A1 (en) 2007-10-03 2009-04-09 United Technologies Corporation Epicyclic gear train for variable cycle engine
US7591754B2 (en) 2006-03-22 2009-09-22 United Technologies Corporation Epicyclic gear train integral sun gear coupling design
US20090314881A1 (en) 2008-06-02 2009-12-24 Suciu Gabriel L Engine mount system for a turbofan gas turbine engine
US20100148396A1 (en) 2007-04-17 2010-06-17 General Electric Company Methods of making articles having toughened and untoughened regions
US7806651B2 (en) 2004-04-02 2010-10-05 Mtu Aero Engines Gmbh Method for designing a low-pressure turbine of an aircraft engine, and low-pressure turbine
US20100331139A1 (en) 2009-06-25 2010-12-30 United Technologies Corporation Epicyclic gear system with superfinished journal bearing
US20110056208A1 (en) 2009-09-09 2011-03-10 United Technologies Corporation Reversed-flow core for a turbofan with a fan drive gear system
US7926260B2 (en) 2006-07-05 2011-04-19 United Technologies Corporation Flexible shaft for gas turbine engine
US7950237B2 (en) * 2007-06-25 2011-05-31 United Technologies Corporation Managing spool bearing load using variable area flow nozzle
US20110130256A1 (en) 2007-08-24 2011-06-02 Graham Evans Exercise Apparatus
US20110159797A1 (en) 2009-12-31 2011-06-30 Willem Beltman Quiet System Cooling Using Coupled Optimization Between Integrated Micro Porous Absorbers And Rotors
US7997868B1 (en) 2008-11-18 2011-08-16 Florida Turbine Technologies, Inc. Film cooling hole for turbine airfoil
US20110293423A1 (en) 2010-05-28 2011-12-01 General Electric Company Articles which include chevron film cooling holes, and related processes
US8074440B2 (en) * 2007-08-23 2011-12-13 United Technologies Corporation Gas turbine engine with axial movable fan variable area nozzle
US8166748B2 (en) 2008-11-21 2012-05-01 General Electric Company Gas turbine engine booster having rotatable radially inwardly extending blades and non-rotatable vanes
US20120124964A1 (en) 2007-07-27 2012-05-24 Hasel Karl L Gas turbine engine with improved fuel efficiency
US8672801B2 (en) * 2009-11-30 2014-03-18 United Technologies Corporation Mounting system for a planetary gear train in a gas turbine engine

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2258792A (en) 1941-04-12 1941-10-14 Westinghouse Electric & Mfg Co Turbine blading
US3021731A (en) 1951-11-10 1962-02-20 Wilhelm G Stoeckicht Planetary gear transmission
US2936655A (en) 1955-11-04 1960-05-17 Gen Motors Corp Self-aligning planetary gearing
US3357176A (en) * 1965-09-22 1967-12-12 Williams Res Corp Twin spool gas turbine engine with axial and centrifugal compressors
US3352178A (en) 1965-11-15 1967-11-14 Gen Motors Corp Planetary gearing
US3412560A (en) 1966-08-03 1968-11-26 Gen Motors Corp Jet propulsion engine with cooled combustion chamber, fuel heater, and induced air-flow
US3664612A (en) 1969-12-22 1972-05-23 Boeing Co Aircraft engine variable highlight inlet
US3765623A (en) 1971-10-04 1973-10-16 Mc Donnell Douglas Corp Air inlet
GB1418905A (en) 1972-05-09 1975-12-24 Rolls Royce Gas turbine engines
US3843277A (en) 1973-02-14 1974-10-22 Gen Electric Sound attenuating inlet duct
US3988889A (en) 1974-02-25 1976-11-02 General Electric Company Cowling arrangement for a turbofan engine
US4240250A (en) 1977-12-27 1980-12-23 The Boeing Company Noise reducing air inlet for gas turbine engines
US4284174A (en) 1979-04-18 1981-08-18 Avco Corporation Emergency oil/mist system
US4220171A (en) 1979-05-14 1980-09-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Curved centerline air intake for a gas turbine engine
US4289360A (en) 1979-08-23 1981-09-15 General Electric Company Bearing damper system
DE2940446C2 (en) 1979-10-05 1982-07-08 B. Braun Melsungen Ag, 3508 Melsungen Cultivation of animal cells in suspension and monolayer cultures in fermentation vessels
US4478551A (en) 1981-12-08 1984-10-23 United Technologies Corporation Turbine exhaust case design
US4722357A (en) 1986-04-11 1988-02-02 United Technologies Corporation Gas turbine engine nacelle
US4696156A (en) 1986-06-03 1987-09-29 United Technologies Corporation Fuel and oil heat management system for a gas turbine engine
US4979362A (en) 1989-05-17 1990-12-25 Sundstrand Corporation Aircraft engine starting and emergency power generating system
US5058617A (en) 1990-07-23 1991-10-22 General Electric Company Nacelle inlet for an aircraft gas turbine engine
US5141400A (en) 1991-01-25 1992-08-25 General Electric Company Wide chord fan blade
US5102379A (en) 1991-03-25 1992-04-07 United Technologies Corporation Journal bearing arrangement
US5317877A (en) 1992-08-03 1994-06-07 General Electric Company Intercooled turbine blade cooling air feed system
US5466198A (en) 1993-06-11 1995-11-14 United Technologies Corporation Geared drive system for a bladed propulsor
US5361580A (en) 1993-06-18 1994-11-08 General Electric Company Gas turbine engine rotor support system
RU2082824C1 (en) 1994-03-10 1997-06-27 Московский государственный авиационный институт (технический университет) Method of protection of heat-resistant material from effect of high-rapid gaseous flow of corrosive media (variants)
JP2969075B2 (en) 1996-02-26 1999-11-02 ジャパンゴアテックス株式会社 Degassing device
US5634767A (en) 1996-03-29 1997-06-03 General Electric Company Turbine frame having spindle mounted liner
US5985470A (en) 1998-03-16 1999-11-16 General Electric Company Thermal/environmental barrier coating system for silicon-based materials
US6517341B1 (en) 1999-02-26 2003-02-11 General Electric Company Method to prevent recession loss of silica and silicon-containing materials in combustion gas environments
US6410148B1 (en) 1999-04-15 2002-06-25 General Electric Co. Silicon based substrate with environmental/ thermal barrier layer
US6315815B1 (en) 1999-12-16 2001-11-13 United Technologies Corporation Membrane based fuel deoxygenator
US6444335B1 (en) 2000-04-06 2002-09-03 General Electric Company Thermal/environmental barrier coating for silicon-containing materials
EP1780387A3 (en) 2000-09-05 2007-07-18 Sudarshan Paul Dev Nested core gas turbine engine
US6708482B2 (en) 2001-11-29 2004-03-23 General Electric Company Aircraft engine with inter-turbine engine frame
US6619030B1 (en) * 2002-03-01 2003-09-16 General Electric Company Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors
US6709492B1 (en) 2003-04-04 2004-03-23 United Technologies Corporation Planar membrane deoxygenator
US7104918B2 (en) * 2003-07-29 2006-09-12 Pratt & Whitney Canada Corp. Compact epicyclic gear carrier
GB0506685D0 (en) 2005-04-01 2005-05-11 Hopkins David R A design to increase and smoothly improve the throughput of fluid (air or gas) through the inlet fan (or fans) of an aero-engine system
US7374403B2 (en) 2005-04-07 2008-05-20 General Electric Company Low solidity turbofan
BE1017135A3 (en) 2006-05-11 2008-03-04 Hansen Transmissions Int A GEARBOX FOR A WIND TURBINE.
JP4911344B2 (en) 2006-07-04 2012-04-04 株式会社Ihi Turbofan engine
US8585538B2 (en) 2006-07-05 2013-11-19 United Technologies Corporation Coupling system for a star gear train in a gas turbine engine
US8753243B2 (en) * 2006-08-15 2014-06-17 United Technologies Corporation Ring gear mounting arrangement with oil scavenge scheme
US7632064B2 (en) 2006-09-01 2009-12-15 United Technologies Corporation Variable geometry guide vane for a gas turbine engine
US7662059B2 (en) 2006-10-18 2010-02-16 United Technologies Corporation Lubrication of windmilling journal bearings
US8020665B2 (en) 2006-11-22 2011-09-20 United Technologies Corporation Lubrication system with extended emergency operability
US8844265B2 (en) * 2007-08-01 2014-09-30 United Technologies Corporation Turbine section of high bypass turbofan
US8307626B2 (en) 2009-02-26 2012-11-13 United Technologies Corporation Auxiliary pump system for fan drive gear system
US8181441B2 (en) 2009-02-27 2012-05-22 United Technologies Corporation Controlled fan stream flow bypass
US20130186060A1 (en) * 2012-01-20 2013-07-25 Patrick A. Kosheleff Piecemeal Turbojet
US8632301B2 (en) * 2012-01-31 2014-01-21 United Technologies Corporation Low noise compressor rotor for geared turbofan engine
WO2015047449A1 (en) * 2013-09-30 2015-04-02 United Technologies Corporation Compressor area splits for geared turbofan

Patent Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3194487A (en) 1963-06-04 1965-07-13 United Aircraft Corp Noise abatement method and apparatus
US3287906A (en) 1965-07-20 1966-11-29 Gen Motors Corp Cooled gas turbine vanes
US3729957A (en) 1971-01-08 1973-05-01 Secr Defence Fan
US3754484A (en) 1971-01-08 1973-08-28 Secr Defence Gearing
US3892358A (en) 1971-03-17 1975-07-01 Gen Electric Nozzle seal
US3747343A (en) 1972-02-10 1973-07-24 United Aircraft Corp Low noise prop-fan
US3932058A (en) 1974-06-07 1976-01-13 United Technologies Corporation Control system for variable pitch fan propulsor
US3935558A (en) 1974-12-11 1976-01-27 United Technologies Corporation Surge detector for turbine engines
US4130872A (en) 1975-10-10 1978-12-19 The United States Of America As Represented By The Secretary Of The Air Force Method and system of controlling a jet engine for avoiding engine surge
GB1516041A (en) 1977-02-14 1978-06-28 Secr Defence Multistage axial flow compressor stators
GB2041090A (en) 1979-01-31 1980-09-03 Rolls Royce By-pass gas turbine engines
US5447411A (en) 1993-06-10 1995-09-05 Martin Marietta Corporation Light weight fan blade containment system
US5524847A (en) 1993-09-07 1996-06-11 United Technologies Corporation Nacelle and mounting arrangement for an aircraft engine
US5433674A (en) 1994-04-12 1995-07-18 United Technologies Corporation Coupling system for a planetary gear train
US5778659A (en) 1994-10-20 1998-07-14 United Technologies Corporation Variable area fan exhaust nozzle having mechanically separate sleeve and thrust reverser actuation systems
US5915917A (en) 1994-12-14 1999-06-29 United Technologies Corporation Compressor stall and surge control using airflow asymmetry measurement
US5857836A (en) 1996-09-10 1999-01-12 Aerodyne Research, Inc. Evaporatively cooled rotor for a gas turbine engine
US5975841A (en) 1997-10-03 1999-11-02 Thermal Corp. Heat pipe cooling for turbine stators
US6223616B1 (en) 1999-12-22 2001-05-01 United Technologies Corporation Star gear system with lubrication circuit and lubrication method therefor
US6318070B1 (en) 2000-03-03 2001-11-20 United Technologies Corporation Variable area nozzle for gas turbine engines driven by shape memory alloy actuators
EP1227255A2 (en) 2001-01-26 2002-07-31 United Technologies Corporation Bi-directional tapered roller bearing
US6464401B1 (en) 2001-01-26 2002-10-15 United Technologies Corporation High load capacity bi-directional tapered roller bearing
US6732502B2 (en) 2002-03-01 2004-05-11 General Electric Company Counter rotating aircraft gas turbine engine with high overall pressure ratio compressor
US6607165B1 (en) 2002-06-28 2003-08-19 General Electric Company Aircraft engine mount with single thrust link
US6814541B2 (en) 2002-10-07 2004-11-09 General Electric Company Jet aircraft fan case containment design
US7021042B2 (en) 2002-12-13 2006-04-04 United Technologies Corporation Geartrain coupling for a turbofan engine
US7806651B2 (en) 2004-04-02 2010-10-05 Mtu Aero Engines Gmbh Method for designing a low-pressure turbine of an aircraft engine, and low-pressure turbine
US7328580B2 (en) 2004-06-23 2008-02-12 General Electric Company Chevron film cooled wall
WO2007038674A1 (en) 2005-09-28 2007-04-05 Entrotech Composites, Llc Braid-reinforced composites and processes for their preparation
US7591754B2 (en) 2006-03-22 2009-09-22 United Technologies Corporation Epicyclic gear train integral sun gear coupling design
US7824305B2 (en) 2006-03-22 2010-11-02 United Technologies Corporation Integral sun gear coupling
US20080003096A1 (en) 2006-06-29 2008-01-03 United Technologies Corporation High coverage cooling hole shape
US7926260B2 (en) 2006-07-05 2011-04-19 United Technologies Corporation Flexible shaft for gas turbine engine
US7966806B2 (en) 2006-10-31 2011-06-28 General Electric Company Turbofan engine assembly and method of assembling same
EP1921290A2 (en) 2006-10-31 2008-05-14 General Electric Company Turbofan engine assembly and method of assembling same
US20080098716A1 (en) * 2006-10-31 2008-05-01 Robert Joseph Orlando Gas turbine engine assembly and methods of assembling same
US7882693B2 (en) 2006-11-29 2011-02-08 General Electric Company Turbofan engine assembly and method of assembling same
US20080120839A1 (en) 2006-11-29 2008-05-29 Jan Christopher Schilling Turbofan engine assembly and method of assembling same
US20080149445A1 (en) 2006-12-22 2008-06-26 General Electric Company Variable Magnetic Coupling of Rotating Machinery
US20080190095A1 (en) 2007-02-08 2008-08-14 Baran Kenneth C Fan Variable Area Nozzle for a Gas Turbine engine Fan Nacelle with Cam Drive Ring Actuation System
US20100148396A1 (en) 2007-04-17 2010-06-17 General Electric Company Methods of making articles having toughened and untoughened regions
US7950237B2 (en) * 2007-06-25 2011-05-31 United Technologies Corporation Managing spool bearing load using variable area flow nozzle
US20120124964A1 (en) 2007-07-27 2012-05-24 Hasel Karl L Gas turbine engine with improved fuel efficiency
US20090056343A1 (en) 2007-08-01 2009-03-05 Suciu Gabriel L Engine mounting configuration for a turbofan gas turbine engine
US8074440B2 (en) * 2007-08-23 2011-12-13 United Technologies Corporation Gas turbine engine with axial movable fan variable area nozzle
US20110130256A1 (en) 2007-08-24 2011-06-02 Graham Evans Exercise Apparatus
US20090081035A1 (en) 2007-09-21 2009-03-26 Merry Brian D Gas turbine engine compressor case mounting arrangement
US8205432B2 (en) 2007-10-03 2012-06-26 United Technologies Corporation Epicyclic gear train for turbo fan engine
US20090090096A1 (en) 2007-10-03 2009-04-09 United Technologies Corporation Epicyclic gear train for variable cycle engine
US20090314881A1 (en) 2008-06-02 2009-12-24 Suciu Gabriel L Engine mount system for a turbofan gas turbine engine
US7997868B1 (en) 2008-11-18 2011-08-16 Florida Turbine Technologies, Inc. Film cooling hole for turbine airfoil
US8166748B2 (en) 2008-11-21 2012-05-01 General Electric Company Gas turbine engine booster having rotatable radially inwardly extending blades and non-rotatable vanes
US20100331139A1 (en) 2009-06-25 2010-12-30 United Technologies Corporation Epicyclic gear system with superfinished journal bearing
US20110056208A1 (en) 2009-09-09 2011-03-10 United Technologies Corporation Reversed-flow core for a turbofan with a fan drive gear system
US8672801B2 (en) * 2009-11-30 2014-03-18 United Technologies Corporation Mounting system for a planetary gear train in a gas turbine engine
US20110159797A1 (en) 2009-12-31 2011-06-30 Willem Beltman Quiet System Cooling Using Coupled Optimization Between Integrated Micro Porous Absorbers And Rotors
US20110293423A1 (en) 2010-05-28 2011-12-01 General Electric Company Articles which include chevron film cooling holes, and related processes

Non-Patent Citations (105)

* Cited by examiner, † Cited by third party
Title
"Civil Turbojet/Turbofan Specifications", Jet Engine Specification Database (Apr. 3, 2005).
Agarwal, B.D and Broutman, L.J. (1990). Analysis and performance of fiber composites, 2nd Edition. John Wiley & Sons, Inc. New York: New York. pp. 1-30, 50-51, 56-58, 60-61, 64-71, 87-89, 324-329, 436-437.
Avco Lycoming Divison. ALF 502L Maintenance Manual. Apr. 1981. pp. 1-118.
Aviadvigatel D-110. Jane's Aero-engines, Aero-engines-Turbofan. Jun. 1, 2010.
Aviadvigatel D-110. Jane's Aero-engines, Aero-engines—Turbofan. Jun. 1, 2010.
Brennan, P.J. and Kroliczek, E.J. (1979). Heat pipe design handbook. Prepared for National Aeronautics and Space Administration by B & K Engineering, Inc. Jun. 1979. pp. 1-348.
Brines, G.L. (1990). The turbofan of tomorrow. Mechanical Engineering: The Journal of the American Society of Mechanical Engineers,108(8), 65-67.
Carney, K., Pereira, M. Revilock, and Matheny, P. (2003). Jet engine fan blade containment using two alternate geometries. 4th European LS-DYNA Users Conference. pp. 1-10.
Cramoisi, G. Ed. (2012). Death in the Potomac: The crash of Air Florida Flight 90. Air Crash Investigations. Accident Report NTSB/AAR-82-8. p. 45-47.
Cusick, M. (1981). Avco Lycoming's ALF 502 high bypass fan engine. Society of Automotive Engineers, inc. Business Aircraft Meeting & Exposition. Wichita, Kansas. Apr. 7-10, 1981. pp. 1-9.
Daly, M. Ed. (2010). Jane's Aero-Engine. Issue Twenty-seven. Mar. 2010. p. 633-636.
Dassault Falcon 900EX Easy Systems Summary. Retrieved from: http://www.smartcockpit.com/docs/F900EX-Engines.pdf pp. 1-31.
Declaration of Dr. Magdy Aftia. In re U.S. Pat. No. 8,517,668. Executed Dec. 8, 2016. pp. 1-81.
Declaration of Dr. Magdy Attia. In re U.S. Pat. No. 8,313,280. Executed Oct. 21, 2016. pp. 1-88.
Declaration of John Eaton, Ph.D. In re U.S. Pat. No. 8,869,568. Executed Mar. 28, 2016. pp. 1-87.
Declaration of Reza Abhari, Ph.D. In re U.S. Pat. No. 8,844,265. Executed Jun. 28, 2016. pp. 1-91.
Declaration of Reza Abhari. In re U.S. Pat. No. 8,448,895. Executed Nov. 28. pp. 1-81.
Declaration of Reza Abhari. In re U.S. Pat. No. 8,695,920, claims 1-4, 7-14, 17 and 19. Executed Nov. 29. pp. 1-102.
Declaration of Reza Abhari. In re U.S. Pat. No. 8,695,920. Executed Nov. 30. pp. 1-67.
Dickey, T.A. and Dobak, E.R. (1972). The evolution and development status of ALF 502 turbofan engine. National Aerospace Engineering and Manufacturing Meeting. San Diego, California. Oct. 2-5, 1972. pp. 1-12.
European Search Report for Application No. 16171498.5 dated Sep. 6, 2016.
Extended European Search Report for Application No. 13774928.9.
Faghri, A. (1995). Heat pipe and science technology. Washington, D.C.: Taylor & Francis. pp. 1-60.
File History for U.S. Appl. No. 12/131,876.
Fledderjohn, K.R. (1983). The TFE731-5: Evolution of a decade of business jet service. SAE Technical Paper Series. Business Aircraft Meeting & Exposition. Wichita, Kansas. Apr. 12-15, 1983. pp. 1-12.
Garret TFE731 Turbofan Engine (CAT C). Chapter 79: Lubrciation System. TTFE731 Issue 2. 2010. pp. 1-24.
Gliebe, P.R. and Janardan, B.A. (2003). Ultra-high bypass engine aeroacoustic study. NASA/CR-2003-21252. GE Aircraft Engines, Cincinnati, Ohio. Oct. 2003. pp. 1-103.
Grady, J.E., Weir, D.S., Lamoureux, M.C., and Martinez, M.M. (2007). Engine noise research in NASA's quiet aircraft technology project. Papers from the International Symposium on Air Breathing Engines (ISABE). 2007.
Griffiths, B. (2005). Composite fan blade containment case. Modern Machine Shop. Retrieved from: http://www.mmsonline.com/articles/composite-fan-blade-containment-case pp. 1-4.
Gunston, B. (Ed.) (2000). Jane's aero-engines, Issue seven. Coulsdon, Surrey, UK: Jane's Information Group Limited. pp. 510-512.
Guynn, M. D., Berton, J.J., Fisher, K. L., Haller, W.J., Tong, M. T., and Thurman, D.R. (2011). Refined exploration of turbofan design options for an advanced single-aisle transport. NASA/TM-2011-216883. pp. 1-27.
Hague, A. and Shamsuzzoha, M., Hussain, F., and Dean, D. (2003). S20-glass/epoxy polymer nanocomposites: Manufacturing, structures, thermal and mechanical properties. Journal of Composite Materials, 37(20), 1821-1837.
Hall, C.A. and Crichton, D. (2007). Engine design studies for a silent aircraft. Journal of Turbomachinery, 129, 479-487.
Han, J., Dutta, S., and Ekkad, S.V. (2000). Gas turbine heat transfer and cooling technology. New York, NY: Taylor & Francis. pp. 1-25, 129-157, and 160-249.
Hendricks, E.S. and Tong, M.T. (2012). Performance and weight estimates for an advanced open rotor engine. NASA/TM-2012-217710. pp. 1-13.
Hess, C. (1998). Pratt & Whitney develops geared turbofan. Flug Revue 43(7). Oct. 1998.
Honeywell LF502. Jane's Aero-engines, Aero-engines-Turbofan. Aug. 17, 2016.
Honeywell LF502. Jane's Aero-engines, Aero-engines—Turbofan. Aug. 17, 2016.
Honeywell LF502. Jane's Aero-engines, Aero-engines-Turbofan. Feb. 9, 2012.
Honeywell LF502. Jane's Aero-engines, Aero-engines—Turbofan. Feb. 9, 2012.
Honeywell LF507. Jane's Aero-engines, Aero-engines-Turbofan. Feb. 9, 2012.
Honeywell LF507. Jane's Aero-engines, Aero-engines—Turbofan. Feb. 9, 2012.
Honeywell TFE731 Pilot Tips. pp. 1-143.
Honeywell TFE731. Jane's Aero-engines, Aero-engines-Turbofan. Jul. 18, 2012.
Honeywell TFE731. Jane's Aero-engines, Aero-engines—Turbofan. Jul. 18, 2012.
Honeywell TFE731-5AR to -5BR Engine Conversion Program. Sep. 2005. pp. 1-4.
Horikoshi, S. and Serpone, N. (2013). Introduction to nanoparticles. Microwaves in nanoparticle synthesis. Wiley-VCH Verlag GmbH & Co. KGaA. pp. 1-24.
Hughes, C. (2010). Geared turbofan technology. NASA Environmentally Responsible Aviation Project. Green Aviation Summit. NASA Ames Research Center. Sep. 8-9, 2010. pp. 1-8.
International Preliminary Report for Patentability for PCT Application No. PCT/US2013/021681 dated Aug. 7, 2014.
International Search Report and Written Opinion for International Application No. PCT/US2013/021681 completed on Sep. 11, 2013.
Ivchenko-Progress AI-727M. Jane's Aero-engines, Aero-engines-Turbofan. Nov. 27, 2011.
Ivchenko-Progress AI-727M. Jane's Aero-engines, Aero-engines—Turbofan. Nov. 27, 2011.
Ivchenko-Progress D-436. Jane's Aero-engines, Aero-engines-Turbofan. Feb. 8, 2012.
Ivchenko-Progress D-436. Jane's Aero-engines, Aero-engines—Turbofan. Feb. 8, 2012.
Ivchenko-Progress D-727. Jane's Aero-engines, Aero-engines-Turbofan. Feb. 7, 2007.
Ivchenko-Progress D-727. Jane's Aero-engines, Aero-engines—Turbofan. Feb. 7, 2007.
Kandebo, S.W. (1993). Geared-turbofan engine design targets cost, complexity. Aviation Week & Space Technology, 148(8). Start p. 32.
Kerrebrock, J.L. (1977). Aircraft engines and gas turbines. Cambridge, MA: The MIT Press. p. 11.
Kjelgaard, Chris, Gearing up for the GTF, Aircraft Technology, p. 86-95, Issue 105.
Knip, Jr., G. (1987). Analysis of an advanced technology subsonic turbofan incorporating revolutionary materials. NASA Technical Memorandum. May 1987. pp. 1-23.
Kojima, Y., Usuki, A. Kawasumi, M., Okada, A., Fukushim, Y., Kurauchi, T., and Kamigaito, O. (1992). Mechanical properties of nylon 6-clay hybrid. Journal of Materials Research, 8(5), 1185-1189.
Kollar, L.P. and Springer, G.S. (2003). Mechanics of composite structures. Cambridge, UK: Cambridge University Press. p. 465.
Kurzke, J. (2008). Preliminary Design, Aero-engine design: From state of the art turbofans towards innovative architectures. pp. 1-72.
Kurzke, J. (2009). Fundamental differences between conventional and geared turbofans. Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air. 2009, Orlando, Florida. pp. 145-153.
Langston, L. and Faghri, A. Heat pipe turbine vane cooling. Prepared for Advanced Turbine Systems Annual Program Review. Morgantown, West Virginia. Oct. 17-19, 1995. pp. 3-9.
Lau, K., Gu, C., and Hui, D. (2005). A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Composites: Part B 37(2006) 425-436.
Lord, W.K., MacMartin, D.G., and Tillman, T.G. (2000). Flow control opportunities in gas turbine engines. American Institute of Aeronautics and Astronautics. pp. 1-15.
Lynwander, P. (1983). Gear drive systems: Design and application. New York, New York: Marcel Dekker, Inc. pp. 145, 355-358.
Mattingly, J.D. (1996). Elements of gas turbine propulsion. New York, New York: McGraw-Hill, Inc. pp. 1-18, 50-62, 85-87, 95-104, 121-123, 223-234, 242-245, 278-280, 303-309, 323-326, 462-479, 517-520, 563-565, 673-675, 582-685, 697-699, 703-705, 802-805, 862-864, and 923-925.
Mattingly, J.D. (1996). Elements of gas turbine propulsion. New York, New York: McGraw-Hill, Inc. pp. 8-15.
McMillian, A. (2008) Material development for fan blade containment casing. Abstract. p. 1. Conference on Engineering and Physics: Synergy for Success 2006. Journal of Physics: Conference Series vol. 105. London, UK. Oct. 5, 2006.
Merriam-Webster's collegiate dictionary, 10th Ed. (2001). p. 1125-1126.
Merriam-Webster's collegiate dictionary, 11th Ed. (2009). p. 824.
Moxon, J. How to save fuel in tomorrow's engines. Flight International. Jul. 30, 1983. 3873(124). pp. 272-273.
Munt, R. (1981). Aircraft technology assessment: Progress in low emissions engine. Technical Report. May 1981. pp. 1-171.
Nanocor Technical Data for Epoxy Nanocomposites using Nanomer 1.30E Nanoclay. Nnacor, Inc. Oct. 2004.
NASA Conference Publication. Quiet, powered-lift propulsion. Cleveland, Ohio. Nov. 14-15, 1978. pp. 1-420.
Norton, M. and Karczub, D. (2003). Fundamentals of noise and vibration analysis for engineers. Press Syndicate of the University of Cambridge. New York: New York. p. 524.
Oates, G&C. (Ed). (1989). Aircraft propulsion systems and technology and design. Washington, D.C.: American Institute of Aeronautics, Inc. pp. 341-344.
Pratt & Whitney, PurePower Engine-This Changes Everything, p. 4-6, Digital Press Kit.
Pratt & Whitney, PurePower Engine—This Changes Everything, p. 4-6, Digital Press Kit.
Pyrograf-III Carbon Nanofiber. Product guide. Retrieved Dec. 1, 2015 from: http://pyrografproducts.com/Merchant5/merchant.mvc?Screen=cp_nanofiber.
Ramsden, J.M. (Ed). (1978). The new European airliner. Flight International, 113(3590). Jan. 7, 1978. pp. 39-43.
Ratna, D. (2009). Handbook of thermoset resins. Shawbury, UK: iSmithers. pp. 187-216.
Rauch, D. (1972). Design study of an air pump and integral lift engine ALF-504 using the Lycoming 502 core. Prepare for NASA. Jul. 1972. pp. 1-182.
Rolls-Royce M45H. Jane's Aero-engines, Aero-engines-Turbofan. Feb. 24, 2010.
Rolls-Royce M45H. Jane's Aero-engines, Aero-engines—Turbofan. Feb. 24, 2010.
Roux, E. (2007). Turbofan and turbojet engines database handbook. Editions Elodie Roux. Blagnac: France. pp. 1-595.
Shorter Oxford English dictionary, 6th Edition. (2007). vol. 2, N-Z. p. 1888.
Silverstein, C.C., Gottschlich, J.M., and Meininger, M. The feasibility of heat pipe turbine vane cooling. Presented at the International Gas Turbine and Aeroengine Congress and Exposition, The Hague, Netherlands. Jun. 13-16, 1994.pp. 1-7.
Sweetman, B. and Sutton, O. (1998). Pratt & Whitney's surprise leap. Interavia Business & Technology, 53.621, p. 25.
Trembley, Jr., H.F. (1977). Determination of effects of ambient conditions on aircraft engine emissions. Prepared for Environmental Protection Agency. Ann Arbor, Michigan. Sep. 1977 pp. 1-256.
Turbomeca Aubisque. Jane's Aero-engines, Aero-engines-Turbofan. Nov. 2, 2009.
Turbomeca Aubisque. Jane's Aero-engines, Aero-engines—Turbofan. Nov. 2, 2009.
Type Certificate Data Sheet No. E6NE. Department of Transportation Federal Aviation Administration. Jun. 7, 2002. pp. 1-10.
U.S. Department of Transportation: Federal Aviation Administration Advisory Circular. Runway overrun prevention. Dated: Nov. 6, 2007. p. 1-8 and Appendix 1 p. 1-15, Appendix 2 p. 1-6, Appendix 3 p. 1-3, and Appendix 4 p. 1-5.
U.S. Department of Transportation: Federal Aviation Administration Advisory Circular. Standard operating procedures for flight deck crewmembers. Dated: Feb. 27, 2003 . . . p. 1-6 and Appendices.
Waters, M.H. and Schairer, E.T. (1977). Analysis of turbofan propulsion system weight and dimensions. NASA Technical Memorandum. Jan. 1977. pp. 1-65.
Wendus, B.E., Stark, D.F., Holler, R.P., and Funkhouser, M.E. (2003). Follow-on technology requirement study for advanced subsonic transport. NASA/CR-2003-212467. pp. 1-37.
Whitaker, R. (1982). ALF 502: plugging the turbofan gap. Flight International, p. 237-241, Jan. 30, 1982.
Wilfert, G. (2008). Geared fan. Aero-Engine Design: From State of the Art Turbofans Towards Innovative Architectures, von Karman Institute for Fluid Dynamics, Belgium, Mar. 3-7, 2008. pp. 1-26.
Willis, W.S. (1979). Quiet clean short-haul experimental engine (QCSEE) final report. NASA/CR-159473 pp. 1-289.
Xie, M. (2008). Intelligent engine systems: Smart case system. NASA/CR-2008-215233. pp. 1-31.
Zalud, T. (1998). Gears put a new spin on turbofan performance. Machine Design, 70(20), p. 104.
Zamboni, G. and Xu, L. (2009). Fan root aerodynamics for large bypass gas turbine engines: Influence on the engine performance and 3D design. Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air. Jun. 8-12, 2009, Orlando, Florida, USA. pp. 1-12.

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11578706B2 (en) 2021-04-02 2023-02-14 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11959466B2 (en) 2021-04-02 2024-04-16 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11255315B1 (en) 2021-04-02 2022-02-22 Ice Thermal Harvesting, Llc Controller for controlling generation of geothermal power in an organic Rankine cycle operation during hydrocarbon production
US11274663B1 (en) 2021-04-02 2022-03-15 Ice Thermal Harvesting, Llc Controller for controlling generation of geothermal power in an organic rankine cycle operation during hydrocarbon production
US11280322B1 (en) 2021-04-02 2022-03-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11359612B1 (en) 2021-04-02 2022-06-14 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11187212B1 (en) 2021-04-02 2021-11-30 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11421625B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486330B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11542888B2 (en) 2021-04-02 2023-01-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11549402B2 (en) 2021-04-02 2023-01-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11572849B1 (en) 2021-04-02 2023-02-07 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11359576B1 (en) 2021-04-02 2022-06-14 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11236735B1 (en) 2021-04-02 2022-02-01 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11680541B2 (en) 2021-04-02 2023-06-20 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11624355B2 (en) 2021-04-02 2023-04-11 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644014B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11668209B2 (en) 2021-04-02 2023-06-06 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11598320B2 (en) 2021-04-02 2023-03-07 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11732697B2 (en) 2021-04-02 2023-08-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11971019B2 (en) 2021-04-02 2024-04-30 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11761353B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11761433B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11773805B2 (en) 2021-04-02 2023-10-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11879409B2 (en) 2021-04-02 2024-01-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11905934B2 (en) 2021-04-02 2024-02-20 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11933279B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11933280B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11946459B2 (en) 2021-04-02 2024-04-02 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11754000B2 (en) 2021-07-19 2023-09-12 Rtx Corporation High and low spool configuration for a gas turbine engine

Also Published As

Publication number Publication date
US11566587B2 (en) 2023-01-31
US20130186058A1 (en) 2013-07-25
WO2013154636A1 (en) 2013-10-17
EP2807358A4 (en) 2015-10-21
US20230167787A1 (en) 2023-06-01
EP2807358B1 (en) 2020-05-06
EP2807358A1 (en) 2014-12-03
US20200217273A1 (en) 2020-07-09
EP3085927B1 (en) 2020-04-22
EP3690215A1 (en) 2020-08-05
EP3085927A1 (en) 2016-10-26
US20170130673A1 (en) 2017-05-11
EP3690215B1 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
US11566587B2 (en) Geared turbomachine fan and compressor rotation
US10125694B2 (en) Geared fan with inner counter rotating compressor
US20180066590A1 (en) Method for setting a gear ratio of a fan drive gear system of a gas turbine engine
US8814494B1 (en) Method for setting a gear ratio of a fan drive gear system of a gas turbine engine
US8807916B2 (en) Method for setting a gear ratio of a fan drive gear system of a gas turbine engine
US9816442B2 (en) Gas turbine engine with high speed low pressure turbine section
EP3473834B1 (en) Gas turbine engine shaft bearing configuration
EP3101258B1 (en) Geared architecture for a gas turbine engine and a corresponding method
US10612462B2 (en) Turbomachinery with high relative velocity
US20210010426A1 (en) Gear reduction for lower thrust geared turbofan
US20130195648A1 (en) Gas turbine engine with high speed low pressure turbine section and bearing support features
US20150089959A1 (en) Gas turbine engine shaft bearing configuration
US20130195646A1 (en) Gas turbine engine shaft bearing arrangement
EP3081768B1 (en) Gas turbine engine shaft bearing configuration
US20150240712A1 (en) Mid-turbine duct for geared gas turbine engine

Legal Events

Date Code Title Description
STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:054062/0001

Effective date: 20200403

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, CONNECTICUT

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:055659/0001

Effective date: 20200403

AS Assignment

Owner name: RTX CORPORATION, CONNECTICUT

Free format text: CHANGE OF NAME;ASSIGNOR:RAYTHEON TECHNOLOGIES CORPORATION;REEL/FRAME:064714/0001

Effective date: 20230714

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4