US10425146B2 - Mobile communications network, methods and base station for coordinating relay node access - Google Patents
Mobile communications network, methods and base station for coordinating relay node access Download PDFInfo
- Publication number
- US10425146B2 US10425146B2 US15/552,595 US201615552595A US10425146B2 US 10425146 B2 US10425146 B2 US 10425146B2 US 201615552595 A US201615552595 A US 201615552595A US 10425146 B2 US10425146 B2 US 10425146B2
- Authority
- US
- United States
- Prior art keywords
- communications
- base station
- data
- relay node
- relay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000010295 mobile communication Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title abstract description 53
- 238000005259 measurement Methods 0.000 claims abstract description 48
- 238000004891 communication Methods 0.000 claims description 255
- 230000005540 biological transmission Effects 0.000 claims description 54
- 230000004044 response Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 description 14
- 230000011664 signaling Effects 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 7
- 238000007726 management method Methods 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 235000008694 Humulus lupulus Nutrition 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000001934 delay Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000013439 planning Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 3
- 230000004931 aggregating effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/155—Ground-based stations
- H04B7/15557—Selecting relay station operation mode, e.g. between amplify and forward mode, decode and forward mode or FDD - and TDD mode
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/24—Traffic characterised by specific attributes, e.g. priority or QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/80—Actions related to the user profile or the type of traffic
- H04L47/805—QOS or priority aware
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0268—Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/08—Load balancing or load distribution
- H04W28/086—Load balancing or load distribution among access entities
- H04W28/0861—Load balancing or load distribution among access entities between base stations
- H04W28/0864—Load balancing or load distribution among access entities between base stations of different hierarchy levels, e.g. Master Evolved Node B [MeNB] or Secondary Evolved node B [SeNB]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/08—Load balancing or load distribution
- H04W28/09—Management thereof
- H04W28/0925—Management thereof using policies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/08—Load balancing or load distribution
- H04W28/09—Management thereof
- H04W28/0958—Management thereof based on metrics or performance parameters
- H04W28/0967—Quality of Service [QoS] parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/12—Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/22—Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
-
- H04W72/085—
-
- H04W72/087—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/543—Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
- H04W84/047—Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
Definitions
- the present disclosure relates to mobile communications networks, methods of controlling the communication of data in a mobile communications network, and base stations which can be arranged to request and analyse measurement information from one or more relay nodes and one or more mobile communication terminals. According to some embodiments the base stations can then determine the forwarding rules in a relay node according to the measurement information reported so that the relay node can forward any data received as soon as possible or aggregate data over a period of time and only forward the aggregated data once predetermined conditions have been satisfied.
- Embodiments of the present technique can provide methods of communicating data in a small cell environment where relay nodes may be used.
- Third and fourth generation mobile telecommunication systems such as those based on the 3GPP defined UMTS and Long Term Evolution (LTE) architecture are able to support more sophisticated services than simple voice and messaging services offered by previous generations of mobile telecommunication systems.
- LTE Long Term Evolution
- a user is able to enjoy high data rate applications such as mobile video streaming and mobile video conferencing that would previously only have been available via a fixed line data connection.
- the demand to deploy third and fourth generation networks is therefore strong and the coverage area of these networks, i.e. geographic locations where access to the networks is possible, is expected to increase rapidly.
- an MTC-type terminal is preferably relatively simple and inexpensive, having a reduced capability.
- MTC machine type communication
- Examples include so-called smart meters which, for example, are located in a customer's house and periodically transmit information back to a central MTC server data relating to the customers consumption of a utility such as gas, water, electricity and so on.
- Other examples include relay nodes which provide assistance to local terminal communicating with a base station.
- Radio Access network capacity With the continuous growth in data transmitted in mobile networks, continually increasing network capacity comparatively is a problem faced by the industry. There are three parameters which can be changed in order to increase Radio Access network capacity: higher spectral efficiency, more radio spectrum and denser cell layout. The two former of these have limitations on the expected gains over today's LTE, and certainly improvements on the order of magnitude or more are not possible. Thus, in order to meet the stated 1000 ⁇ capacity targets, small cells are getting a lot of attention [1].
- An objective technical problem addressed by the present disclosure is to increase network capacity through the employment of small cells and relay nodes. This in itself has its own set of challenges to overcome.
- a mobile communications system comprising a base station, which includes a transmitter and a receiver.
- the transmitter is configured to transmit signals in accordance with a wireless access interface to one or more communications terminals, and to transmit signals via the wireless access interface to one or more relay nodes
- the receiver is configured to receive signals via the wireless access interface from the one or more communications terminals, and to receive signals via the wireless access interface from the one or more relay nodes.
- Each of the one of more relay nodes includes a transmitter for transmitting signals representing data received from one or more of the communications terminals to the base station or to transmit data received from the base station to one or more of the communications terminals, and a receiver for receiving signals representing the data from one or more of the communications terminals for transmission to the base station or to receive signals representing the data for transmitting to the one or more communications terminals.
- the mobile communications system further comprises a controller operatively coupled to the base station, which is configured to receive from the base station measurement information comprising a relative quality of the communication paths measured by one of the communications terminals and a relative quality of the communication paths measured by each of the relay nodes, to determine from the measurement information an association between the communications terminal and one of the relay nodes, and to control the communications terminal to transmit the signals representing the data to the associated relay node for transmission to the base station and to receive the signals from the associated relay node which represent the data for transmission to the communications terminal transmitted by the base station.
- a controller operatively coupled to the base station, which is configured to receive from the base station measurement information comprising a relative quality of the communication paths measured by one of the communications terminals and a relative quality of the communication paths measured by each of the relay nodes, to determine from the measurement information an association between the communications terminal and one of the relay nodes, and to control the communications terminal to transmit the signals representing the data to the associated relay node for transmission to the base station and to receive the signals from the associated relay node
- the controller is configured to receive an indication of a capability of the communications terminal to transmit the signals representing the data and an indication of a quality of service of data to be transmitted via a communications bearer from the communications terminal and the base station, and to determine whether the communications terminal should transmit the data for the communications bearer to the associated relay node or whether the communications terminal should transmit the data to the base station via the wireless access interface, based on the quality of service indicated for the communications bearer and the indicated capability of the communications terminal.
- the controller is further configured to receive from the base station measurement information comprising a relative quality of the communication paths measured by one or more other communications terminals, to determine from the measurement information an association between one or more the other communications terminals and the associated relay node, to receive indications of the UE capability parameters of the communications device and of a quality of service of data to be transmitted via a communications bearer from the one or more other communications terminals and the base station, to identify, based on the UE capability parameters of the communications device and of the quality of service of data to be transmitted via the communications bearers of the one or more other communications terminals and the communications terminal data which can be transmitted to the base station via the associated relay node, whether the communications terminal should transmit the data for the communications bearer to the associated relay node or whether the communications terminal should transmit the data to the base station via the wireless access interface, and if the data for the communications bearer of one or more of the communications terminal should be transmitted by the associated relay node, to aggregate the data from the associated communications terminal and the one or more other associated communications terminals, and upon predetermined conditions
- the present disclosure can provide an arrangement for setting up the forwarding rules in a relay node according to the capability information reported by a communications device as well as the quality of communications links in a mobile communications network.
- the arrangement can provide for the optimisations of communications in the network by aggregating data at a common gateway relay from devices with a particular capability, for example MTC devices, and forwarding data upon predetermined conditions being met, and by forwarding data from devices with a different capability which is not delay tolerant to the serving base station as quickly as possible, either directly or via one or more hops across relay nodes.
- the present technique allows for less power consumption in a mobile network comprising a base station, a controller, one or more communications terminals and one or more relay nodes. Due to aggregation of data at the relay nodes through one or more hops from the communications terminals, fewer uplink transmissions are required in order for data from the communications terminals to reach the base station.
- the controller is aware which data transmissions are delay tolerant and may be aggregated at the relay nodes, and this data may be transmitted by, for example, MTC devices.
- the controller is also aware if data transmissions are not tolerant of delays, and using the forwarding rules set up as a result of the measurement information received, is able to instruct the network as to the fastest possible way of getting that data from communications terminal to base station.
- a mobile communications network comprising a base station, a relay node and a communications terminal, a method of operating a base station as a network controller, and a base station forming part of a mobile communications network.
- FIG. 1 provides a schematic diagram of a mobile communications system according to an example of an LTE standard
- FIG. 2 schematically illustrates an example of a small cell environment
- FIG. 3 illustrates another example of a small cell environment
- FIG. 4 illustrates an example system for communicating with at least a terminal in a heterogeneous network
- FIG. 5 illustrates an example of the current relay types in 3GPP LTE Release 10 and onwards
- FIG. 6 illustrates an example mobile communications network in accordance with the present technique
- FIG. 7 illustrates an example of anchor points in a dense relay assisted network in accordance with the present technique
- FIG. 8 illustrates an example in which transmissions may be aggregated through a gateway node in accordance with the present technique
- FIG. 9 illustrates an example in which transmissions may be set independently by each relay node in accordance with the present technique
- FIG. 10 illustrates an example relay topology in LTE based radio access networks in accordance with the present technique
- FIG. 11 illustrates an example of reporting of communication terminal capability and quality of service requirements and the impact of this on the mode of the relay node in accordance with the present technique
- FIG. 12 illustrates an example of clustering of MTC devices and the aggregation of traffic via a gateway node in accordance with the present technique
- FIG. 13 represents an example flow diagram illustrating an example of a relay node process for determining how to forward incoming data from the communication terminal in accordance with the present technique
- FIG. 14 is a flow diagram illustrating an example of an eNodeB process for determining how to assign look-up tables and forwarding schemes in accordance with the present technique
- FIG. 15 illustrates an example of an association of communication terminals in a cluster with relay nodes in accordance with the present technique
- FIG. 16 illustrates an example of the LTE protocol stack with a non-transparent relay node in accordance with the present technique
- FIG. 17 represents an example flow diagram illustrating a process performed by a communications terminal for determining relay association in accordance with the present technique.
- FIG. 1 provides a schematic diagram illustrating some basic functionality of a conventional mobile telecommunications network, using for example a 3GPP defined UMTS and/or Long Term Evolution (LTE) architecture.
- the mobile telecommunications network/system 100 of FIG. 1 operates in accordance with LTE principles and which may be adapted to implement embodiments of the disclosure as described further below.
- Various elements of FIG. 1 and their respective modes of operation are well-known and defined in the relevant standards administered by the 3GPP® body, and also described in many books on the subject, for example, Holma H. and Toskala A [2]. It will be appreciated that operational aspects of the telecommunications network which are not specifically described below may be implemented in accordance with any known techniques, for example according to the relevant standards.
- the network 100 includes a plurality of base stations 101 connected to a core network 102 .
- Each base station provides a coverage area 103 (i.e. a cell) within which data can be communicated to and from terminal devices 104 .
- Data is transmitted from base stations 101 to terminal devices 104 within their respective coverage areas 103 via a radio downlink.
- Data is transmitted from terminal devices 104 to the base stations 101 via a radio uplink.
- the uplink and downlink communications are made using radio resources that are licenced for use by the operator of the network 100 .
- the core network 102 routes data to and from the terminal devices 104 via the respective base stations 101 and provides functions such as authentication, mobility management, charging and so on.
- the terminal devices may also be referred to as mobile stations, user equipment (UE), user terminal, mobile terminal, mobile device, terminal, mobile radio, and so forth.
- Base stations may also be referred to as transceiver stations/nodeBs/e-nodeBs/eNodeB, and so forth.
- Mobile telecommunications systems such as those arranged in accordance with the 3GPP defined Long Term Evolution (LTE) architecture use an orthogonal frequency division multiplex (OFDM) based interface for the radio downlink (so-called OFDMA) and the radio uplink (so-called SC-FDMA).
- OFDM orthogonal frequency division multiplex
- the base stations 101 of FIG. 1 may be realised as any type of evolved Node B (eNodeB) such as a macro eNodeB and a small eNodeB.
- the small eNodeB may be an eNodeB such as a pico eNodeB, a micro eNodeB, and a home (femto) eNodeB that covers a cell smaller than a macro cell.
- the base station 101 may be realized as any other types of base stations such as a NodeB and a base transceiver station (BTS).
- BTS base transceiver station
- the base station 101 may include a main body (that is also referred to as a base station apparatus) configured to control radio communication, and one or more remote radio heads (RRH) disposed in a different place from the main body.
- a main body that is also referred to as a base station apparatus
- RRH remote radio heads
- various types of terminals which will be described below, may each operate as the base station 101 by temporarily or semi-persistently executing a base station function.
- any of the communications devices 104 may be realized as a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera, or an in-vehicle terminal such as a car navigation apparatus.
- the communications device 104 may also be realized as a terminal (that is also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
- the terminal apparatus 104 may be a radio communication module (such as an integrated circuit module including a single die) mounted on each of the terminals.
- a base station providing a small cell is generally differentiated from a conventional base station mostly (and sometimes exclusively) in the range provided by the base station.
- Small cells include for example the cells also called femtocell, picocell or microcell.
- small cells can be considered as similar to macrocells in the channels and features provided to the terminals, but with the use of less power for base station transmissions, which results in a smaller range.
- a small cell can therefore be interpreted as being the cell or coverage provided by a small cell base station.
- the term small cell can also refer to a component carrier when more than one component carrier is available.
- FIG. 2 illustrates an example of a small cell environment 200 wherein a plurality of base stations 201 to 204 are operable to communicate with terminals, such as terminal 211 .
- the terminal 211 is in communication with base station 201 providing a first small cell but is within the range of the small cell for each of base stations 202 , 203 and 204 .
- the signals sent by base station 201 to terminal 211 can suffer from interference from signals transmitted by base stations 202 to 204 .
- the mobile operator is in a position to carry out frequency planning, distributing frequencies amongst base stations in a static or dynamic manner. Accordingly, the level of interference can be significantly reduced for macrocells.
- interference between small cells can be significant when a number of deployed small cells increases such that in a dense small cell environment, interference reduction can be challenging.
- terminals may not even be able to discover and connect to small cells.
- FIG. 3 An example of a small cell environment 300 is illustrated in FIG. 3 , where a macrocell base station 311 is provided in the same area as small cells provided by a base station 301 in or in the vicinity of a building, by a base station 302 in a first lamppost, by a base station 303 in a second lamppost, by a base station 305 provided in a bus stop and by a mobile base station 306 provided in a cyclist back-pack.
- planning for interference may vary depending on traffic and on time. For example a cyclist may enter an interference zone this zone.
- the base station 301 if serving an office, may potentially only be used during office hours and may be turned off during the rest of the day or the rest of the week.
- a variety of base stations may thus be providing a small or macro cell and the base station may have very different profile regarding time of use, frequency capabilities, power/range, additional functionalities, etc.
- FIG. 4 illustrates an example system 400 for communicating with at least a terminal 431 .
- a base station 401 provides a macrocell and six base stations 411 to 416 provide small cell coverage, potentially overlapping with the coverage of the base station 401 .
- three relay nodes 421 to 423 are provided and are operating with base stations 401 , 414 and 412 , respectively.
- a relay node can generally be defined as a wireless radio access point for relaying transmission and which thus does not implement all of the functionalities of a base station.
- the core network It is in general not directly connected to the core network but uses wireless access (inband or outband) for backhaul link to connect with a base station.
- the backhaul link may also be provided over a wired connection.
- This is in contrast to a small cell base station which, as mentioned above, can generally operate like a base station and is thus connected to the core network, as illustrated by the arrows between the small cell base stations 411 to 416 and the Serving Gateway “S-GW” in FIG. 4 .
- Relay nodes may also send or receive data with the terminals or base stations which can also add to the complexity of dealing with interference in an environment as illustrated in FIG. 4 .
- Relay technologies are known generally to provide an arrangement for receiving signals from a base station and for retransmitting the received signals to a UE in a mobile communications network, or to receive signals transmitted from a UE for re-transmission to a base station of a mobile communications network.
- the aim of such relay nodes is to try to extend a radio coverage area provided by a mobile communications network to reach communications devices which would otherwise be out of range of the mobile communications network or to improve the ratio of successful transmissions between a terminal and a base station.
- 3GPP LTE Release 10 introduced support for decode-and-forward relays, which are intended to extend network coverage or increase network density.
- the relay node is connected to a UE over an access link and to the eNodeB over a backhaul link.
- This backhaul link may be either inband with the access link or outband.
- inband relaying the backhaul and access links operate using the same spectrum resources.
- outband relaying the backhaul link operates in a spectrum separate from that of the access link.
- the relay node For the reason of backwards compatibility to Release 8 and Release 9 UEs, the relay node must be available for these UEs to connect to. This was achieved in Release 10 by the relay appearing to the UE as if it were a conventional base station, known as Type 1 Relay in LTE specifications.
- a Type 1 Relay has its own cell ID, and for all means and purposes appears as an independent base station for the UEs around it.
- the Type 1 relay node itself is seen as a UE by the serving eNodeB.
- Type 2 relay refers to a relay node that does not have a cell ID and does not imitate a base station to UEs.
- the relay node is transparent to the UEs, which are unable to distinguish it from the serving cell itself.
- FIG. 5 displays the current relay types in 3GPP LTE Release 10, and onwards.
- a relay node 501 in 3GPP LTE Release 10 can be either a Type 1 relay 502 , which has its own cell ID which is broadcast to the UEs around it, or a Type 2 relay 503 , which is transparent to the UEs.
- the relay node 501 being a Type 1 relay 502
- the relay node can be either an inband relay 504 , where the backhaul and access links operate using the same spectrum resources, or an outband relay 505 , where the backhaul link operates in a spectrum separate from that of the access link.
- Some key concepts in LTE relevant to the present technique are the capability and category of the UE, as well as Quality of Service (QoS).
- QoS Quality of Service
- the parties exchange information on their capabilities so that neither party requests capability which is not supported by the other entity.
- capabilities may be the supported LTE release, supported frequency bands, the UE category and MIMO capabilities.
- the mobile network informs on its capability via various system information block (SIB) messages, and the UE informs on its capability via a UE capability information report.
- SIB system information block
- the network wants to know the capability of a UE (most typically during registration) it sends a UE capability enquiry message specifying which information it would like to receive. The UE then has to report all of the capability information requested by the network.
- Bearer Packet Packet QCI Type Priority Delay Loss Example 1 GBR 2 100 ms 10 ⁇ 2 Conversational voice 2 4 150 ms 10 ⁇ 3 Conversational video (live streaming) 3 3 50 ms Online gaming (real time) 4 5 300 ms 10 ⁇ 6 Non-conversational video (buffered streaming) 65 0.7 75 ms 10 ⁇ 2 Mission critical user plane Push to Talk voice (e.g.
- MCPTT 66 2 100 ms 10 ⁇ 2 Non-mission critical user plane Push to talk voice 5
- GBR 6 300 ms Video (buffered streaming), TCP based services e.g. email, chat, ftp etc. 7 7 100 ms 10 ⁇ 3 Voice, video (live streaming), interactive gaming 8
- 9 9 TCP based services e.g. email, chat, ftp etc. 69 0.5 60 ms Mission critical delay sensitive signalling (e.g. MCPTT signalling) 70 5.5 200 ms Mission critical data (e.g. example services are the same as QCI 6/8/9)
- the LTE UE categories are needed to ensure that the eNodeB can communicate correctly with the UE.
- the network By receiving the LTE UE category information at the base station, the network is able to determine the performance of the UE, and communicate with it accordingly.
- the LTE category defines the overall performance and the capabilities of the UE, it is possible for the eNodeB to communicate using capabilities that it knows the UE possesses. Accordingly, the eNodeB will not communicate beyond the performance of the UE.
- This evolved packet system (EPS) bearer consists of a radio bearer (between the UE and eNodeB), an S1 bearer (between the eNodeB and serving gateway (S-GW)) and an S5/S8 bearer (between the S-GW and P-GW).
- the default bearer that is initially set up is always a non-guaranteed bit rate (Non-GBR) bearer, and it remains so as long as the UE is attached to the network.
- Any dedicated bearer will be an additional bearer on top of a default bearer, and can be either GBR or non-GBR.
- the bearers may belong to different QoS classes, which are identified by the Quality Class Identifier (QCI) as shown in Table I on the previous page.
- QCI Quality Class Identifier
- a controller for use with a base station which can be arranged to request and analyse measurement information from one or more infrastructure units, comprising one or more relay nodes and one or more mobile communication terminals.
- the base station can then set the forwarding rules in a relay node according to the measurement information reported so that the relay node may forward any data received as soon as possible, or aggregate data over a period of time and only forward it once predetermined conditions have been met.
- FIG. 6 illustrates a mobile communications network 600 in accordance with an arrangement of the present disclosure.
- the network includes an eNodeB 601 , which may serve as a controller for controlling transmissions, a mobile communication terminal, or UE 602 , and a relay node 603 , both of which are served by the eNodeB 601 .
- the eNodeB 601 comprises a transmitter configured to transmit data across a wireless access interface to the UE 602 and the relay node 603 , and a receiver configured to receive data from the relay node and UE 602 in return.
- the eNodeB 601 is configured to receive measurement information from both the UE 602 and the relay node 603 .
- This measurement information comprises a relative quality of signals, indicated by the solid arrows 604 , an indication of communications parameters (the QoS), indicated by the dashed arrows 605 , and capability information of the UE 602 , indicated by the longer dashed arrow 606 .
- the eNodeB 601 decides whether it should instruct the UE 602 to communicate on the uplink with the relay node 603 , or directly with the eNodeB 601 itself. These uplink communications are indicated by the double-lined arrows 607 .
- the present technique proposes to manage the relaying of traffic from different types of UE in the relay network by setting the forwarding and retransmission rules relevant to the session in question. For example, MTC UEs, when they engage in sessions transmitting delay tolerant, small packets of data, would benefit from being able to transmit at a very low power to the nearest relay node they are associated with. This relay node would then aggregate that traffic with traffic from other MTC UEs associated to it, and forward the aggregated data to the next relay node upon predetermined conditions being met.
- the predetermined conditions include identifying that the quality service requirement for the communications bearer can allow the data is delay tolerant to an effect that the data can be aggregated by the associated relay node.
- One relay node under the serving cell (typically the one with the best uplink link budget to the eNodeB) would be designated as the gateway through which all of this delay tolerant MTC traffic is forwarded.
- the relay network may be seen as a cloud which has anchor points at the top end towards the eNodeB, and anchor points at the bottom end for the UEs.
- FIG. 7 illustrates these anchor points in a dense relay assisted network 700 in accordance with the present technique.
- the network comprises an eNodeB 701 which has designated a relay node as the gateway relay 702 .
- the network comprises three further relay nodes 703 to 705 as anchor points at the bottom end of the cloud 706 , where the gateway relay 702 is an anchor point at the top end of the cloud 706 .
- Each of the further relay nodes 703 to 705 as the anchor points at the bottom end of the cloud 706 has a number of UEs associated with it.
- the UEs are MTC devices, and are divided into three separate groups of UEs.
- the UEs in MTC group A 707 communicate data with the first relay 703
- the UEs in MTC group B 708 communicate data with the second relay 704
- the UEs in MTC group C 709 communicate data with the third relay 705 .
- the relays in FIG. 7 by no means operate as coverage extension relays. All of the UEs would likely be camping under the serving eNodeB, and receive common downlink channels from it. An extension of the concept could of course cover UEs that are out of network coverage, but this is not relevant to the present disclosure.
- the relay node that receives the UE data would try to forward the data to the eNodeB as directly and quickly as possible, either with direct uplink connection or via minimum amount of hops, and not necessarily via a designated gateway relay.
- PDUs user plane protocol data units
- FIG. 8 shows an example mobile communications network 800 in accordance with the present technique where transmissions may be aggregated through a gateway relay node.
- This example mobile communications network is for the case where the network comprises communication terminals which transmit delay tolerant data, and the primary concern of the system is minimising overheads for the management of the communication terminals.
- the network comprises an eNodeB 801 which has designated a relay node as the gateway relay 802 .
- the network comprises two further relay nodes 803 and 804 , as well as three separate groups of UEs 805 to 807 , which may be MTC devices.
- the UEs in MTC group A 805 communicate data with the first relay 803
- the UEs in MTC group B 806 communicate data with the gateway relay 802
- the UEs in MTC group C 807 communicate data with the second relay 804 .
- the first and second relay nodes 803 and 804 transmit data received from their group of UEs 805 and 807 to the gateway relay 802 , which aggregates this incoming data with the data received from its own group of UEs 806 , before transmitting the aggregated data to the eNodeB 801 concurrently upon predetermined conditions being met.
- FIG. 9 shows an additional example mobile communications network 900 in accordance with the present technique where transmissions may be sent independently by each relay node.
- This example mobile communications network is for the case where the network comprises communication terminals which transmit data which is not delay tolerant, and the primary concern of the system is to allow the data to be communicated on the uplink to reach the serving eNodeB as quickly as possible.
- the network comprises an eNodeB 901 and three relay nodes 902 to 904 , as well as three UEs 905 , 906 907 .
- UE A 905 communicates data with the first relay 902
- UE B 906 communicates data with the second relay 903
- UE C 907 communicates data with the third relay 904 .
- Each of the three relays may communicate directly with the eNodeB 901 or with each other in order to transmit data received from the UEs to the eNodeB 901 as quickly and efficiently as possible.
- the way in which the UE establishes communications to the relay nodes may be transparent or non-transparent.
- transparent it is meant that the UE is not aware that a relay node is involved in its communications with the eNodeB. This is similar to the mode 2 relay in 3GPP LTE Release 10.
- non-transparent it is meant that the UE is explicitly communicating with a relay node, and may receive acknowledgement messages for retransmission purposes.
- the existing LTE relay types displayed in FIG. 5 may be extended to relays operating on a device-to-device (D2D) basis as illustrated by FIG. 10 .
- D2D device-to-device
- an LTE relay node 1001 may be, but is not limited to, one of a D2D relay 1002 or a 3GPP LTE Release 10 relay 1003 .
- the relay node can be further categorised as either of a broadcast type 1004 , which is transparent, or a unicast type 1005 , which is non-transparent.
- the relay node can be either a Type 1 relay 1006 , which has its own cell ID which is broadcast to the UEs around it, or a Type 2 relay 1007 , which is transparent to the UEs.
- the relay node 1003 being a Type 1 relay 1006
- the relay node can be either an inband relay 1008 , where the backhaul and access links operate using the same spectrum resources, or an outband relay 1009 , where the backhaul link operates in a spectrum separate from that of the access link.
- a UE may communicate data to any type of relay, and it may be seen in the architectural sense as an anchor point regardless of whether it is transparent or non-transparent to the UE. It is when the role that the relay has in relation to the specific radio bearer between the UE and the eNodeB is considered that the transparency becomes relevant.
- Devices in the current 3GPP LTE Release 12 proximity services (ProSe) broadcast messages over the D2D resource, and one or more devices receive the messages. There is no retransmission protocol between the devices, and the transmission thus takes place in a ‘best-effort’ manner. In some cases, as elaborated below, it may be of benefit to introduce quality control measures between the two end points of a D2D connection.
- the end point for such a connection is non-transparent unless some multicast examples are considered, where one negative acknowledgment (NACK) message would cause the transmitter to send the packet again to all of the receivers.
- NACK negative acknowledgment
- an entity sending feedback over a D2D interface to the transmitting device is connected at some protocol layer level above L1 to the transmitter, and thus is visible to it. Accordingly, the entity is non-transparent.
- the process of network assisted relay discovery and the reporting of inter-node channel quality information is the basis for building the edges that may be chosen to be used for inter-node connections, and for establishing, for example, network coding subgraphs.
- the inter-node connections which are relevant for forwarding user plane PDUs from a source UE to the eNodeB in uplink, and vice-versa in downlink, constitute look-up tables that the eNodeB provides for the relay nodes.
- individual look-up tables can be provided for each relay node, which assists the relay node in determining which incoming edges are connected to which outgoing edges, and how the PDUs from the incoming edges can be combined, or indeed not combined.
- this concept of relay look-up tables is extended to cover different end-to-end sessions that pass through a given relay node. The examples given above would clearly use different routes across the relay assisted network and thus assigning one unique look-up table for a relay node would not suffice.
- the EPS bearer quality class and the presence of UE capability information at the network controller helps the controller in determining how the PDUs from that UE would be forwarded in the relay assisted network.
- Different forwarding routes can be addressed by different look-up tables.
- the same inter-node channel quality measurements are relevant regardless of how many look-up tables are established, so this would not introduce any change in how the UEs and relay nodes discover, measure and report intra-node links. It is not expected that there would be several look-up tables per relay node.
- a relay node would have two look-up tables. The first of these look-up tables would be used for forwarding packets from MTC UEs, where the incoming packets can be buffered and aggregated without QoS impact. The second of these look-up tables would be used for all of the remaining traffic.
- the relay node would further separate sessions that it forwards directly to the eNodeB, which does not necessitate a separate look-up table.
- the UE When the UE registers itself under the eNodeB and reports its capability, it is associated with a relay node which has been determined after the relay discovery process. Based on the UE's capability, this relay node will either set up a protocol layer end-to-end connection with the UE or only assist in a transparent fashion. This may be referred to as a mode, which typifies how the relay node communicates with a UE. Additionally, when the look-up tables for relay nodes are set up after the inter-node measurements, the assigned edges in the inter-relay connections may be different depending on which UE the traffic carried towards the eNodeB came from.
- the relay node for that particular UE in its incoming edge would have the outgoing edge towards the eNodeB.
- the outgoing edge would be towards the gateway relay node, either directly, or via a number of hops.
- FIG. 11 provides an example mobile communications network 1100 in accordance with the present technique, illustrating how the reporting of communication terminal capability and quality of service requirements takes place and the impact of this on the mode of a relay node in the network.
- the mobile communications network comprises a communications terminal, or UE 1101 , a relay node 1102 , an eNodeB, or EUTRAN (evolved UMTS [universal mobile telecommunications system] terrestrial radio access network node B) 1103 , a mobility management entity (MME) 1104 , an S-GW 1105 and a P-GW 1106 .
- MME mobility management entity
- the network further comprises an EPS bearer formed from a combination of a radio bearer 1107 which provides connectivity between the UE 1101 , the relay node 1102 and the eNodeB 1103 , an S1 bearer 1108 which provides connectivity between the eNodeB 1103 , the MME 1104 and the S-GW 1105 , and S5/S8 bearers 1109 , which provide connectivity between the S-GW 1105 and P-GW 1106 .
- a radio bearer 1107 which provides connectivity between the UE 1101 , the relay node 1102 and the eNodeB 1103
- an S1 bearer 1108 which provides connectivity between the eNodeB 1103 , the MME 1104 and the S-GW 1105
- S5/S8 bearers 1109 which provide connectivity between the S-GW 1105 and P-GW 1106 .
- the UE 1101 sends the eNodeB 1103 a radio resource control (RRC) connection request 1110 , and in response the eNodeB 1103 sets up an RRC connection 1111 with the UE 1101 .
- the UE 1101 reports to the eNodeB 1103 that the RRC connection setup has been completed successfully, and also transmits a non-access stratum (NAS) service request 1112 .
- the eNodeB 1103 then transmits in accordance with the S1 application protocol (S1AP) an initial UE message and NAS service request 1113 to the MME 1104 .
- S1AP S1 application protocol
- the MME 1104 transmits an initial context setup request 1114 to the eNodeB 1103 .
- the eNodeB 1103 transmits to the UE 1101 an RRC connection reconfiguration and activate dedicated EPS bearer context request message 1115 , and in response receives an RRC connection reconfiguration and activate dedicated EPS bearer context accept message 1116 .
- the eNodeB 1103 communicates to the MME 1104 in accordance with the S1AP a message indicating that the initial context setup is complete 1117 , and then receives from the UE 1101 a UE capability report 1118 .
- the eNodeB 1103 next receives an inter-node measurement report 1119 from the relay node 1102 and an inter-node measurement report 1120 from the UE 1101 , and with this information and the capability report, establishes look-up tables 1121 for the network.
- the eNodeB 1103 then communicates 1122 to the relay node 1102 assigning it towards the UE 1101 , and transmits a message 1123 to the UE 1101 associating it with the relay node 1102 .
- a relay node may assume a different set of incoming and outgoing edges, which are indicated in the look-up table provided by the network controller.
- the interaction across the two nodes at the opposite ends of an edge may be set differently.
- RLC radio link control
- the relay node may assign incoming data across the incoming edges to different outgoing edges, depending on how the transport blocks in a particular session would be treated according to the look-up table for a particular UE capability. It is only necessary for the relay node to know the capability of a UE which is associated with it, since further onwards, the relay chooses a relevant look-up table and indicates in the header information it appends what sessions are aggregated to the overall transmission.
- FIG. 12 provides an example mobile communications network 1200 in accordance with the present technique, illustrating the clustering of MTC devices and how the aggregation of traffic via a gateway node is organised in accordance with the present technique.
- the network comprises a cluster of UEs 1201 which may be MTC devices, a relay node 1202 , a relay node configured as the gateway relay 1203 and an eNodeB, or EUTRAN 1204 .
- Each of the UEs in the cluster 1201 transmits their individual data 1205 to 1208 to the relay 1202 , which responds with an acknowledgement message 1209 to 1212 .
- the relay node 1202 aggregates all of the UE u-plane data it has received 1213 from the cluster of UEs 1201 , before transmitting this aggregated data 1214 to the gateway relay 1203 upon predetermined conditions being met.
- the gateway relay 1203 communicates an acknowledgement message 1215 to the relay node 1202 in response to this, before communicating the aggregated data onwards 1216 to the eNodeB 1204 , which further transmits an acknowledgement message 1217 to the gateway relay 1203 .
- the relay node mode is not an overarching rule that applies to all data that is processed by the relay node.
- a relay node may, and likely does, deploy more than one mode at the same time, depending on the nature of the incoming data in question.
- the flow chart of FIG. 13 shows an example of the process 1300 that the relay node follows for UEs at its incoming edges in accordance with the present disclosure.
- step S 1301 with the relay node receiving look-up tables for inter-relay incoming and outgoing edges from the network, and in step S 1302 , the relay node receives an indication of the UEs associated with it for non-transparent relaying.
- the relay node receives an indication of the UEs associated with it for non-transparent relaying.
- the relay node determines whether the data is associated with non-transparent relaying, which it does in step S 1303 . If the UE data is not associated with non-transparent relaying, the relay node either forwards, or combines and then forwards, the incoming packets according to the look-up table into the relevant outgoing edge, in accordance with step S 1304 .
- the relay node first in step S 1305 checks whether the packet was received correctly, and if so sends an acknowledgement (ACK or NACK) message to the UE.
- the relay node then chooses the look-up table for non-transparent relaying, and in step S 1307 , aggregates the data packet with other incoming packets according to the look-up table and forwards the aggregated data into the relevant outgoing edge.
- the network controller determines whether the transmissions from the UE to the eNodeB are assigned to a specific relay node that will take the responsibility of acknowledging and forwarding PDUs from the device. This is the above-mentioned non-transparent mode, where the UE has established a L2 connection with a specific relay node, and is communicating with that relay node. In the case that no relay association is needed, the eNodeB forwards the look-up tables to all of the relay nodes, and any transmissions from the UE are transparently received and forwarded across the relay network to the eNodeB. In most cases the UE also directly transmits in uplink.
- a controller may also determine that one relay node should be specified as a gateway through which all the traffic from UEs having a capability and a QoS requirement which can tolerate buffering and delays would be forwarded to the eNodeB.
- the intended gateway node does not itself have to know that it is acting as a funnel to different radio bearers. It is sufficient that the look-up tables connecting relay nodes to other relay nodes guide the traffic originating from UEs associated with a non-transparent relay towards this specific relay acting as a gateway.
- the network controller may decide only to use the non-transparent mode at the relay node that is associated with a UE, and allow the bearers to pass through multiple relay nodes to the eNodeB based on whichever combining and routing scheme is seen beneficial. In this case, no gateway relay node is specified.
- the flow chart of FIG. 14 shows in detail an example of the process 1400 that the eNodeB follows in order to determine how to assign look-up tables and forwarding schemes in accordance with the present disclosure.
- the process begins with step S 1401 , with the controller (typically the serving eNodeB) receives capability information from the UE as well as its QoS class indicator.
- the eNodeB analyses this information in step S 1402 , and determines whether or not they indicate non-transparent relaying.
- the eNodeB determines that they do not indicate non-transparent relaying, as laid out in step S 1403 , it will send the look-up table with the UE's information to all of the relay nodes that are indicated in the UE measurement reports as exceeding a predetermined threshold in terms of link quality and QoS.
- the eNodeB determines that the measurement information from the UE does indicate non-transparent relaying, it moves to step S 1404 , and associates the UE with a relay node which has the UE on an incoming edge, and informs both the UE and the relay node of this association in step S 1405 .
- the eNodeB selects one relay node and designates it as the gateway relay through which all of the traffic from the non-transparent relays in the network is aggregated and forwarded through to it.
- the eNodeB may designate more than one relay node as a gateway relay through which traffic is aggregated and forwarded.
- step S 1407 designs the look-up tables so that all of the traffic from the non-transparent relays is headed to the incoming edges of the gateway relay node, and finally provides these look-up tables on non-transparent forwarding to the appropriate relay nodes in step S 1408 .
- the relay node for the purpose of UE association can be selected from the inter-node and UE-node measurement reports that were provided after the relay node discovery process.
- the network controller would decide that the relay node that was reported by a UE as having the best channel quality with the UE would be selected as the node that is associated with the UE.
- the network controller may associate UEs from a close cluster of devices to different nearby relay nodes in order to avoid overloading a particular relay node, which happens to be closest to the cluster of devices.
- FIG. 15 illustrates an example of the association of UEs in a cluster with relay nodes in a mobile communications network 1500 in accordance with the present disclosure.
- the mobile communications network comprises an eNodeB 1501 , a relay node designated as the gateway relay 1502 , two additional relay nodes 1503 and 1504 , and three clusters of UEs 1505 to 1507 , which may be MTC devices.
- the first of these UE clusters 1505 comprises a further subgroup of two UEs 1508 .
- the UEs 1505 to 1508 are configured to communicate with the relay nodes 1502 to 1504 , to which they are associated by the eNodeB 1501 , and the additional relay nodes 1503 and 1504 are configured to communicate in turn with the gateway relay 1502 , which is configured to further communicate with the eNodeB 1501 .
- the UEs in MTC group B 1506 have been associated with the gateway relay node 1502
- the UEs in MTC group A 1505 have been associated with the first relay node 1503
- the UEs in MTC group C 1507 have been associated with the second relay node 1504 .
- the eNodeB has associated two UEs 1508 from the UEs in MTC group A 1505 with the gateway relay node 1502 , rather than the first relay node 1503 , with which the other UEs in MTC group A 1505 have been associated.
- the association may for example be indicated via RRC signalling where an information element provides the discoverable and known ID of a relay node to a UE, and in turn, the identity of the UE to a relay node. Since the UEs and relay nodes searched for nodes with distinct identities during the original discovery process, those identities are already known to the nodes in the relay network, and to the UEs camping under the eNodeB.
- the relay node that is associated with a UE establishes an L2 connection with the UE, such that all the medium access control (MAC) PDUs received from the device are checked for errors, and retransmissions are requested when needed.
- the retransmissions may include both of some type of hybrid automatic repeat request (HARQ) protocol and RLC protocol.
- HARQ hybrid automatic repeat request
- the association could also be made with the MAC retransmission protocol only, in which case the RLC layer between the UE and eNodeB would take care of retransmissions, in addition to in sequence delivery and other RLC responsibilities.
- FIG. 16 illustrates an example of the LTE protocol stack having a non-transparent relay node, in accordance with the present disclosure.
- the protocol stack comprises a number of layers, including the physical (PHY) layer 1601 , the medium access control (MAC) layer 1602 , the radio link control (RLC) layer 1603 , the packet data convergence control (PDCP) layer 1604 , the radio resource control (RRC) layer 1605 , and the non-access stratum (NAS) protocols layer 1606 .
- PHY physical
- MAC medium access control
- RLC radio link control
- PDCP packet data convergence control
- RRC radio resource control
- NAS non-access stratum
- FIG. 16 shows these layers and their roles in a mobile communications network comprising a UE 1607 , a relay node 1608 , an eNodeB 1609 and a mobility management entity (MME) 1610 .
- NAS signalling takes place on the NAS layer 1606 between the UE 1607 and MME 1610 , and maintains connectivity and active sessions with the UE 1607 as it moves.
- RRC signalling takes place on the RRC layer 1605 between the UE 1607 and the eNodeB 1609 , includes the broadcast of system information and the establishment, reconfiguration and release of communications bearers.
- the PDCP layer 1604 exists between the UE 107 and the eNodeB 1609 , and provides a number of services and functions including header compression and decompression.
- the RLC layer 1603 is responsible for the transfer of upper layer PDUs, as well as error correction and retransmission.
- the RLC layer 1603 exists between the UE 1607 , the relay node 1608 and the eNodeB 1609 , but as shown in FIG. 16 , may not be visible to the relay node 1608 .
- the MAC layer 1602 between the UE 1607 , the relay node 1608 and the eNodeB 1609 , is responsible for, among other things, mapping between transparent and logical channels, and error correction through HARQ.
- the final layer displayed in FIG. 16 the PHY layer 1601 , exists between the UE 1607 , the relay node 1608 and the eNodeB 1609 . Data communication takes place over the physical channels of the PHY layer 1601 .
- the UE From the UE point of view, it does not attempt to connect to a specific relay until it is told to do so. During the relay node discovery and measurement process, it will have detected all of the relay nodes that are near enough to be audible, and has reported on the respective radio link quality. Unless the eNodeB directs the UE via RRC signaling to associate with a specific relay node, the UE communicates directly in both uplink and downlink with the serving eNodeB, and any relay assisted activity is completely transparent to it.
- the flow chart of FIG. 17 shows in detail an example of the process 1700 that the UE follows in order to determine whether it associates with relay nodes in accordance with the present disclosure.
- the process begins with step S 1701 , with the UE sending its capability information and bearer QoS requirements to the controller, typically the serving eNodeB.
- step S 1702 the UE reads the downlink RRC signalling on relay association.
- the UE has to determine in step S 1703 whether the eNodeB has associated it with a specific relay, and if so, in step S 1704 , the UE sets out to communicate directly with the specified relay node. However, if the UE is associated with a specific relay, the UE is configured by the eNodeB to communicate with its associated relay directly, and the UE is additionally configured to expect acknowledgement messages from the associated relay node.
- the term infrastructure unit aims to refer to any network node in the radio access network which can be found on the part from a source terminal (excluded) to a base station (included). It is noteworthy that although conventional terminals operating in a legacy network are unlikely to be considered as an infrastructure unit, in some examples, such as in some D2D cases, a terminal may sometimes be considered as an infrastructure unit, for example if it relays data or transmissions from other terminals to a base station (directly or indirectly).
- This term can thus include a base station for a macrocell, a base station for a small cell, a femtocell, a picocell, a relay node (operating in uplink and/or downlink), a terminal providing connectivity to one or more further terminals, etc.
- transmitting information or a message to an element may involve sending one or more messages to the element and may involve sending part of the information separately from the rest of the information.
- the number of “messages” involved may also vary depending on the layer or granularity considered.
- an uplink only relay node when it relays uplink signals, it may transmit relayed signals to the base station via one or more nodes (where the relayed signals are based on the received first uplink signals). For example, the signals may be transmitted to the base station via one or more relay nodes where some or all of them may be operating in one of an uplink-only mode or an uplink-and-downlink mode.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15161539 | 2015-03-27 | ||
EP15161539 | 2015-03-27 | ||
EP15161539.0 | 2015-03-27 | ||
PCT/EP2016/053942 WO2016155953A1 (fr) | 2015-03-27 | 2016-02-25 | Réseau de communications mobile, procédés et station de base |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2016/053942 A-371-Of-International WO2016155953A1 (fr) | 2015-03-27 | 2016-02-25 | Réseau de communications mobile, procédés et station de base |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/535,099 Continuation US11159227B2 (en) | 2015-03-27 | 2019-08-08 | Mobile communications network, methods and base station for coordinating relay node access |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180054248A1 US20180054248A1 (en) | 2018-02-22 |
US10425146B2 true US10425146B2 (en) | 2019-09-24 |
Family
ID=52779560
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/552,595 Active 2036-03-24 US10425146B2 (en) | 2015-03-27 | 2016-02-25 | Mobile communications network, methods and base station for coordinating relay node access |
US16/535,099 Active US11159227B2 (en) | 2015-03-27 | 2019-08-08 | Mobile communications network, methods and base station for coordinating relay node access |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/535,099 Active US11159227B2 (en) | 2015-03-27 | 2019-08-08 | Mobile communications network, methods and base station for coordinating relay node access |
Country Status (4)
Country | Link |
---|---|
US (2) | US10425146B2 (fr) |
EP (1) | EP3262885B1 (fr) |
CN (1) | CN107409345B (fr) |
WO (1) | WO2016155953A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10904778B1 (en) * | 2020-03-04 | 2021-01-26 | Cisco Technology, Inc. | Detection and deduction of urgent messages in low power and lossy networks |
US20210168687A1 (en) * | 2019-03-29 | 2021-06-03 | Honda Motor Co., Ltd. | Controller, terminal device, control method, and program for handover connections |
US11159227B2 (en) * | 2015-03-27 | 2021-10-26 | Sony Corporation | Mobile communications network, methods and base station for coordinating relay node access |
US20210385794A1 (en) * | 2019-01-04 | 2021-12-09 | Ntt Docomo, Inc. | Method and device for wireless communication |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016155990A1 (fr) * | 2015-03-31 | 2016-10-06 | Sony Corporation | Réseau de communication mobile, procédés, station de base, nœud relais et terminal de communication |
CN107431946B (zh) | 2015-03-31 | 2021-08-10 | 索尼公司 | 具有基站和中继节点的网络中的拥塞避免 |
EP3434046A1 (fr) * | 2016-03-24 | 2019-01-30 | Telefonaktiebolaget LM Ericsson (PUBL) | Noeud de réseau, procédé et produit de programme informatique pour la planification de messages de radiomessagerie par rapport à des transmissions de signaux de découverte |
WO2017171592A1 (fr) * | 2016-03-30 | 2017-10-05 | Telefonaktiebolaget Lm Ericsson (Publ) | Définition de liaison de commande dans un système de commande en réseau |
CN108781385B (zh) * | 2016-06-03 | 2021-03-30 | 华为技术有限公司 | V2x消息通信方法及装置 |
FR3058864B1 (fr) * | 2016-11-16 | 2019-08-02 | Thales | Procede de determination d'une configuration de relais entre un point d'acces et des terminaux dans une architecture reseau |
WO2018164885A1 (fr) * | 2017-03-10 | 2018-09-13 | Kyocera Corporation | Transmissions de communication de type machine (mtc) à rach en masse |
FR3074632B1 (fr) * | 2017-12-04 | 2019-11-15 | Ecole Nationale Des Ponts Et Chaussees | Procede et ensemble permettant a des terminaux utilisateurs finaux d'echanger par l'intermediaire d'un reseau multi-sauts sans fil de proximite de communication a architecture dynamique |
WO2019169596A1 (fr) * | 2018-03-08 | 2019-09-12 | Nokia Technologies Oy | Procédé, appareil et programme informatique |
US11665576B2 (en) * | 2018-08-10 | 2023-05-30 | Verizon Patent And Licensing Inc. | Systems and methods for wireless low latency traffic scheduler |
EP3888310A1 (fr) | 2018-11-30 | 2021-10-06 | Sony Group Corporation | Restriction d'accès au spectre et re-routage de données |
CN110943765B (zh) * | 2019-10-31 | 2021-05-07 | 厦门大学 | 基于网络编码的毫米波与微波混合中继传输协助系统 |
TWI746083B (zh) * | 2020-07-24 | 2021-11-11 | 聯陽半導體股份有限公司 | 訊號中繼系統 |
US11800573B2 (en) | 2021-04-09 | 2023-10-24 | Qualcomm Incorporated | Disaggregated UE |
KR20230164677A (ko) * | 2021-04-09 | 2023-12-04 | 퀄컴 인코포레이티드 | Mr-dc 개선들 |
CN117793696A (zh) * | 2022-09-29 | 2024-03-29 | 大唐移动通信设备有限公司 | 多终端聚合传输方法、终端、网络设备、装置及存储介质 |
CN118828742A (zh) * | 2023-04-18 | 2024-10-22 | 北京三星通信技术研究有限公司 | 无线通信系统中的节点及其执行的方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090219853A1 (en) | 2004-03-02 | 2009-09-03 | Michael John Beems Hart | Wireless Communication Systems |
US20100167743A1 (en) | 2008-12-30 | 2010-07-01 | Qualcomm Incorporated | Centralized control of relay operation |
US20100309837A1 (en) | 2009-06-07 | 2010-12-09 | Seung June Yi | Apparatus and method for Setting Up Radio Bearer in Wireless Communication System |
US20120236782A1 (en) * | 2009-12-22 | 2012-09-20 | Fujitsu Limited | Quality of service control in a relay |
US20120244796A1 (en) * | 2009-10-07 | 2012-09-27 | Fujitsu Limited | Base station, relay station, and method |
US20130273838A1 (en) * | 2010-12-10 | 2013-10-17 | Ntt Docomo, Inc. | Radio relay station apparatus, radio base station apparatus and radio communication method |
US20140087736A1 (en) * | 2011-03-10 | 2014-03-27 | Elta Systems Ltd. | Cellular communication system utilizing upgraded moving relays and methods useful in conjunction therewith |
WO2016102441A1 (fr) | 2014-12-23 | 2016-06-30 | Sony Corporation | Procédés, unité d'infrastructure, station de base et unité de réseau |
WO2016116289A1 (fr) | 2015-01-21 | 2016-07-28 | Sony Corporation | Procédés, station de base, nœud mobile et nœud relais |
WO2016135082A1 (fr) | 2015-02-23 | 2016-09-01 | Sony Corporation | Système, procédés et station de base de communications mobiles |
US20170325243A1 (en) * | 2014-11-14 | 2017-11-09 | Ntt Docomo, Inc. | User equipment apparatus and d2d communication method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060124401A (ko) * | 2005-05-31 | 2006-12-05 | 삼성전자주식회사 | 무선 통신 시스템에서 중계국을 이용한 스케줄링 방법 및그 시스템 |
JP4952135B2 (ja) * | 2006-08-17 | 2012-06-13 | 富士通株式会社 | 無線端末、中継局、無線基地局及び通信方法 |
CN101527947B (zh) * | 2008-03-06 | 2013-01-23 | 上海贝尔阿尔卡特股份有限公司 | 无线中继网络中为移动终端选择通信路径的方法和装置 |
US9521621B2 (en) * | 2010-06-02 | 2016-12-13 | Qualcomm Incorporated | Application-proxy support over a wireless link |
CN102291815B (zh) * | 2010-06-21 | 2015-07-22 | 中兴通讯股份有限公司 | 一种中继网络的定时配置方法及系统 |
US9693253B2 (en) * | 2012-08-24 | 2017-06-27 | Futurewei Technologies, Inc. | Systems and methods for nearby channel measurement |
GB2509749A (en) * | 2013-01-11 | 2014-07-16 | Nec Corp | Communication system with configuration of measuring reporting via mobile relays |
WO2016155953A1 (fr) * | 2015-03-27 | 2016-10-06 | Sony Corporation | Réseau de communications mobile, procédés et station de base |
-
2016
- 2016-02-25 WO PCT/EP2016/053942 patent/WO2016155953A1/fr active Application Filing
- 2016-02-25 CN CN201680015502.9A patent/CN107409345B/zh active Active
- 2016-02-25 US US15/552,595 patent/US10425146B2/en active Active
- 2016-02-25 EP EP16706593.7A patent/EP3262885B1/fr active Active
-
2019
- 2019-08-08 US US16/535,099 patent/US11159227B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090219853A1 (en) | 2004-03-02 | 2009-09-03 | Michael John Beems Hart | Wireless Communication Systems |
US20100167743A1 (en) | 2008-12-30 | 2010-07-01 | Qualcomm Incorporated | Centralized control of relay operation |
US20100309837A1 (en) | 2009-06-07 | 2010-12-09 | Seung June Yi | Apparatus and method for Setting Up Radio Bearer in Wireless Communication System |
US20120244796A1 (en) * | 2009-10-07 | 2012-09-27 | Fujitsu Limited | Base station, relay station, and method |
US20120236782A1 (en) * | 2009-12-22 | 2012-09-20 | Fujitsu Limited | Quality of service control in a relay |
US20130273838A1 (en) * | 2010-12-10 | 2013-10-17 | Ntt Docomo, Inc. | Radio relay station apparatus, radio base station apparatus and radio communication method |
US20140087736A1 (en) * | 2011-03-10 | 2014-03-27 | Elta Systems Ltd. | Cellular communication system utilizing upgraded moving relays and methods useful in conjunction therewith |
US20170325243A1 (en) * | 2014-11-14 | 2017-11-09 | Ntt Docomo, Inc. | User equipment apparatus and d2d communication method |
WO2016102441A1 (fr) | 2014-12-23 | 2016-06-30 | Sony Corporation | Procédés, unité d'infrastructure, station de base et unité de réseau |
WO2016116289A1 (fr) | 2015-01-21 | 2016-07-28 | Sony Corporation | Procédés, station de base, nœud mobile et nœud relais |
WO2016135082A1 (fr) | 2015-02-23 | 2016-09-01 | Sony Corporation | Système, procédés et station de base de communications mobiles |
Non-Patent Citations (5)
Title |
---|
3GPP TR36.872 V12.1.0, "Technical Report 3rd, Generation Partnership Project; Technical Specification Group Radio Access Network; Small cell enhancements for E-UTRA and E-UTRAN-Physical Layer aspects (Release 12)," Dec. 2013, (100 pages). |
3GPP TR36.872 V12.1.0, "Technical Report 3rd, Generation Partnership Project; Technical Specification Group Radio Access Network; Small cell enhancements for E-UTRA and E-UTRAN—Physical Layer aspects (Release 12)," Dec. 2013, (100 pages). |
3GPP TS 23.203 V12.7.0, "Technical Specification Digital cellular telecommunications system (Phase 2+′); Universal Mobile Telecommunications System (UMTS); LTE; Policy and charging control architecture," ETSI TS 123 203 V12.7.0, Jan. 2015, (224 pages). |
Harri Holma, et al., "LTE for UMTS OFDMA and SC-FDMA Based Radio Access," John Wiley & Sons Limited, Jan. 2010, (4 pages). |
International Search Report dated Jul. 20, 2016 in PCT/EP2016/053942 filed Feb. 25, 2016. |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11159227B2 (en) * | 2015-03-27 | 2021-10-26 | Sony Corporation | Mobile communications network, methods and base station for coordinating relay node access |
US20210385794A1 (en) * | 2019-01-04 | 2021-12-09 | Ntt Docomo, Inc. | Method and device for wireless communication |
US20210168687A1 (en) * | 2019-03-29 | 2021-06-03 | Honda Motor Co., Ltd. | Controller, terminal device, control method, and program for handover connections |
US11785519B2 (en) * | 2019-03-29 | 2023-10-10 | Honda Motor Co., Ltd. | Controller, terminal device, control method, and program for handover connections |
US10904778B1 (en) * | 2020-03-04 | 2021-01-26 | Cisco Technology, Inc. | Detection and deduction of urgent messages in low power and lossy networks |
Also Published As
Publication number | Publication date |
---|---|
EP3262885B1 (fr) | 2019-08-21 |
US20180054248A1 (en) | 2018-02-22 |
US11159227B2 (en) | 2021-10-26 |
EP3262885A1 (fr) | 2018-01-03 |
CN107409345B (zh) | 2021-06-29 |
WO2016155953A1 (fr) | 2016-10-06 |
US20190363780A1 (en) | 2019-11-28 |
CN107409345A (zh) | 2017-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11159227B2 (en) | Mobile communications network, methods and base station for coordinating relay node access | |
US11139888B2 (en) | Mobile communications system, methods, controller, relay node and communications terminal | |
US11382001B2 (en) | Wireless broadband communication method, device, and system, for establishing a user plane connection between a small cell and a user equipment | |
US20200244342A1 (en) | Mobile communications system, communications terminals and methods for coordinating relay communications | |
US11647473B2 (en) | Sidelink synchronization signal transmission method performed by terminal in wireless communication system and terminal using same | |
JP6348517B2 (ja) | ロングタームエボリューション無線アクセスネットワーク | |
JP2020109984A (ja) | 無線通信システムにおける端末のv2x動作のためのリソース選択方法及び前記方法を利用する端末 | |
KR101960529B1 (ko) | 버퍼 상태를 보고하기 위한 방법 및 이를 위한 통신 장치 | |
US10091707B2 (en) | Method and apparatus for indicating D2D related information in wireless communication system | |
WO2016123945A1 (fr) | Procédé et appareil pour le traitement de données, équipement d'utilisateur et station de base | |
US20120250601A1 (en) | Communication terminal, method for exchanging data, communication device and method for establishing a communication connection | |
KR20140016325A (ko) | 업그레이드된 이동 중계기를 이용하는 셀룰러 통신 시스템 및 그와 공동으로 유용한 방법 | |
US11153835B2 (en) | Method for terminal transmitting sidelink in wireless communication system, and terminal using same | |
WO2022113875A1 (fr) | Système et terminal de communication | |
CN114731737A (zh) | 通信系统、通信终端及基站 | |
WO2022210184A1 (fr) | Système de communication et station de base | |
CN107278353B (zh) | 移动通信系统、方法及基站 | |
CN102752821A (zh) | 小区切换方法、设备及系统 | |
US10608925B2 (en) | Packet transmission method performed by node in wireless communication system and terminal using said method | |
CN115245039B (zh) | 对侧链路中继服务的服务质量支持 | |
KR20240014466A (ko) | 통신 시스템 및 기지국 | |
Hossain et al. | PAPER B | |
Hossain et al. | Reducing Signaling Overload |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SONY CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAHTAVA, JUSSI TAPANI;WAKABAYASHI, HIDEJI;SIGNING DATES FROM 20150712 TO 20170721;REEL/FRAME:043354/0511 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |