US10408937B2 - Metal bridge detection systems and methods - Google Patents
Metal bridge detection systems and methods Download PDFInfo
- Publication number
- US10408937B2 US10408937B2 US15/271,068 US201615271068A US10408937B2 US 10408937 B2 US10408937 B2 US 10408937B2 US 201615271068 A US201615271068 A US 201615271068A US 10408937 B2 US10408937 B2 US 10408937B2
- Authority
- US
- United States
- Prior art keywords
- vehicle
- metal
- metal bridge
- bridge
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 239000002184 metal Substances 0.000 title claims abstract description 167
- 238000001514 detection method Methods 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 42
- 230000004044 response Effects 0.000 claims description 6
- 230000003213 activating effect Effects 0.000 claims 2
- 238000002310 reflectometry Methods 0.000 description 11
- 230000004927 fusion Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000010426 asphalt Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 229910052755 nonmetal Inorganic materials 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000013403 standard screening design Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/12—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18163—Lane change; Overtaking manoeuvres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
- G01C21/30—Map- or contour-matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/862—Combination of radar systems with sonar systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/865—Combination of radar systems with lidar systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/867—Combination of radar systems with cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/93—Sonar systems specially adapted for specific applications for anti-collision purposes
- G01S15/931—Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/86—Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G01S17/936—
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
- G01S19/485—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an optical system or imaging system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R1/00—Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/80—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
- B60R2300/8093—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for obstacle warning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2210/00—Detection or estimation of road or environment conditions; Detection or estimation of road shapes
- B60T2210/10—Detection or estimation of road conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
- B60W2050/143—Alarm means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
- B60W2050/146—Display means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/26—Wheel slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/05—Type of road, e.g. motorways, local streets, paved or unpaved roads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2720/00—Output or target parameters relating to overall vehicle dynamics
- B60W2720/10—Longitudinal speed
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9316—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles combined with communication equipment with other vehicles or with base stations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9318—Controlling the steering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/93185—Controlling the brakes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9319—Controlling the accelerator
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9322—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using additional data, e.g. driver condition, road state or weather data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9327—Sensor installation details
- G01S2013/93271—Sensor installation details in the front of the vehicles
-
- G01S2013/9342—
-
- G01S2013/9346—
-
- G01S2013/935—
-
- G01S2013/9357—
-
- G01S2013/936—
-
- G01S2013/9375—
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
- G05D1/024—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
Definitions
- the present disclosure relates to vehicular systems and, more particularly, to systems and methods that detect the presence of a metal bridge near a vehicle.
- Automobiles and other vehicles provide a significant portion of transportation for commercial, government, and private entities.
- Vehicles such as autonomous vehicles, drive on roadways that may have one or more bridges with different types of bridge surfaces.
- some bridges have a metal roadway surface, such as a metal grate, on at least a portion of the bridge.
- the presence of a metal surface on the bridge presents a potential risk to the vehicle due to a loss of traction with the metal surface and a resulting loss of vehicle control.
- the metal surface, especially a metal grate may cool faster than non-metal bridge surfaces and cause ice and snow to build-up on the metal grate sooner than surrounding roads and non-metal portions of the bridge.
- ice or snow on a metal surface presents a risk of injury to occupants of vehicles driving on the slippery metal surface. Detection of metal bridges can reduce the likelihood of accidents and potential injury to vehicle occupants.
- FIG. 1 is a block diagram illustrating an embodiment of a vehicle control system that includes a metal bridge detection system.
- FIG. 2 is a block diagram illustrating an embodiment of a metal bridge detection system.
- FIG. 3 illustrates an embodiment of vehicle approaching a metal surface on a bridge.
- FIG. 4 illustrates an embodiment of a method for detecting a metal bridge.
- FIG. 5 illustrates an embodiment of a method for adjusting vehicle operations in response to detecting a metal bridge.
- Implementations of the systems, devices, and methods disclosed herein may comprise or utilize a special purpose or general-purpose computer including computer hardware, such as, for example, one or more processors and system memory, as discussed herein. Implementations within the scope of the present disclosure may also include physical and other computer-readable media for carrying or storing computer-executable instructions and/or data structures. Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer system. Computer-readable media that store computer-executable instructions are computer storage media (devices). Computer-readable media that carry computer-executable instructions are transmission media. Thus, by way of example, and not limitation, implementations of the disclosure can comprise at least two distinctly different kinds of computer-readable media: computer storage media (devices) and transmission media.
- Computer storage media includes RAM, ROM, EEPROM, CD-ROM, solid state drives (“SSDs”) (e.g., based on RAM), Flash memory, phase-change memory (“PCM”), other types of memory, other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer.
- SSDs solid state drives
- PCM phase-change memory
- An implementation of the devices, systems, and methods disclosed herein may communicate over a computer network.
- a “network” is defined as one or more data links that enable the transport of electronic data between computer systems and/or modules and/or other electronic devices.
- Transmissions media can include a network and/or data links, which can be used to carry desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer. Combinations of the above should also be included within the scope of computer-readable media.
- Computer-executable instructions comprise, for example, instructions and data which, when executed at a processor, cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions.
- the computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, or even source code.
- the disclosure may be practiced in network computing environments with many types of computer system configurations, including, an in-dash vehicle computer, personal computers, desktop computers, laptop computers, message processors, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, mobile telephones, PDAs, tablets, pagers, routers, switches, various storage devices, and the like.
- the disclosure may also be practiced in distributed system environments where local and remote computer systems, which are linked (either by hardwired data links, wireless data links, or by a combination of hardwired and wireless data links) through a network, both perform tasks.
- program modules may be located in both local and remote memory storage devices.
- ASICs application specific integrated circuits
- a sensor may include computer code configured to be executed in one or more processors, and may include hardware logic/electrical circuitry controlled by the computer code.
- processors may include hardware logic/electrical circuitry controlled by the computer code.
- At least some embodiments of the disclosure are directed to computer program products comprising such logic (e.g., in the form of software) stored on any computer useable medium.
- Such software when executed in one or more data processing devices, causes a device to operate as described herein.
- FIG. 1 is a block diagram illustrating an embodiment of a vehicle control system 100 that includes a metal bridge detection system 104 .
- An automated driving/assistance system 102 may be used to automate or control operation of a vehicle or to provide assistance to a human driver.
- the automated driving/assistance system 102 may control one or more of braking, steering, seat belt tension, acceleration, lights, alerts, driver notifications, radio, vehicle locks, or any other auxiliary systems of the vehicle.
- the automated driving/assistance system 102 may not be able to provide any control of the driving (e.g., steering, acceleration, or braking), but may provide notifications and alerts to assist a human driver in driving safely.
- Vehicle control system 100 includes metal bridge detection system 104 that interacts with various components in the vehicle control system to detect and respond to a metal bridge near the vehicle.
- metal bridge detection system 104 detects a metal bridge surface in the path of the vehicle (e.g., ahead of the vehicle) and adjusts one or more vehicle operations to avoid the metal bridge surface or allow the vehicle to safely drive across the metal surface of the bridge.
- metal bridge detection system 104 is shown as a separate component in FIG. 1 , in alternate embodiments, metal bridge detection system 104 may be incorporated into automated driving/assistance system 102 or any other vehicle component.
- the vehicle control system 100 also includes one or more sensor systems/devices for detecting a presence of nearby objects or determining a location of a parent vehicle (e.g., a vehicle that includes the vehicle control system 100 ).
- the vehicle control system 100 may include radar systems 106 , one or more LIDAR systems 108 , one or more camera systems 110 , a global positioning system (GPS) 112 , and/or ultrasound systems 114 .
- the one or more camera systems 110 may include a rear-facing camera mounted to the vehicle (e.g., a rear portion of the vehicle), a front-facing camera, and a side-facing camera. Camera systems 110 may also include one or more interior cameras that capture images of passengers and other objects inside the vehicle.
- the vehicle control system 100 may include a data store 116 for storing relevant or useful data for navigation and safety, such as map data, driving history, or other data. Additionally, data store 116 may store information related to metal bridges previously detected by the current vehicle or reported by other vehicles.
- the vehicle control system 100 may also include a transceiver 118 for wireless communication with a mobile or wireless network, other vehicles, infrastructure, or any other communication system.
- the vehicle control system 100 may include vehicle control actuators 120 to control various aspects of the driving of the vehicle such as electric motors, switches or other actuators, to control braking, acceleration, steering, seat belt tension, door locks, or the like.
- the vehicle control system 100 may also include one or more displays 122 , speakers 124 , or other devices so that notifications to a human driver or passenger may be provided.
- a display 122 may include a heads-up display, dashboard display or indicator, a display screen, or any other visual indicator, which may be seen by a driver or passenger of a vehicle.
- the speakers 124 may include one or more speakers of a sound system of a vehicle or may include a speaker dedicated to driver or passenger notification.
- FIG. 1 is given by way of example only. Other embodiments may include fewer or additional components without departing from the scope of the disclosure. Additionally, illustrated components may be combined or included within other components without limitation.
- the automated driving/assistance system 102 is configured to control driving or navigation of a parent vehicle.
- the automated driving/assistance system 102 may control the vehicle control actuators 120 to drive a path on a road, bridge, parking lot, driveway or other location.
- the automated driving/assistance system 102 may determine a path based on information or perception data provided by any of the components 106 - 118 .
- a path may also be determined based on a route that maneuvers the vehicle around an approaching metal bridge surface in the roadway (e.g., by changing to a different roadway lane that does not have a metal surface).
- the sensor systems/devices 106 - 110 and 114 may be used to obtain real-time sensor data so that the automated driving/assistance system 102 can assist a driver or drive a vehicle in real-time.
- FIG. 2 is a block diagram illustrating an embodiment of metal bridge detection system 104 .
- metal bridge detection system 104 includes a communication manager 202 , a processor 204 , and a memory 206 .
- Communication manager 202 allows metal bridge detection system 104 to communicate with other systems, such as automated driving/assistance system 102 .
- Processor 204 executes various instructions to implement the functionality provided by metal bridge detection system 104 as discussed herein.
- Memory 206 stores these instructions as well as other data used by processor 204 and other modules and components contained in metal bridge detection system 104 .
- metal bridge detection system 104 includes an image processing module 208 that receives image data from one or more camera systems 110 and identifies, for example, metal bridge surfaces in a roadway near the vehicle.
- image processing module 208 includes a metal bridge detection algorithm that identifies a metal bridge surface in the images of the roadway ahead of the vehicle.
- a LIDAR processing module 210 receives LIDAR data from one or more LIDAR systems 108 and identifies, for example, a metal bridge surface in the roadway ahead of the vehicle.
- a radar processing module 212 receives radar data from one or more radar systems 106 to identify, for example, metal bridge surfaces in the planned path of the vehicle.
- Metal bridge detection system 104 also includes a GPS data manager 214 that receives, for example, map information from GPS 112 and other data sources, and vehicle drive history data from data store 116 .
- GPS data manager 214 uses the map information and vehicle drive history data to detect geographic locations where bridges are likely, such as near rivers, lakes, canyons, and the like.
- a data fusion and analysis module 216 performs various operations on data received from any number of sensors and/or data sources to detect the presence of a metal bridge near the vehicle, as discussed herein.
- metal bridge detection system 104 includes a weather monitor 218 that monitors weather conditions near the vehicle and receives weather-related data from any number of data sources.
- a vehicle operation manager 220 adjusts various vehicle operations based on the detection of a metal bridge surface, as discussed here.
- a vehicle traction manager 222 monitors a vehicle's traction between the vehicle's tires and the road surface (e.g., metal bridge surface) to detect any slippage or skidding of the tires. This slippage or skidding may indicate the presence of, for example, ice, snow, or frost on the surface of the roadway.
- vehicle traction manager 222 calculates the vehicle's longitudinal slip and adjusts the speed of the vehicle (e.g., slows the vehicle) to maintain a zero longitudinal slip (e.g., a non-skidding and non-spinning situation).
- FIG. 3 illustrates an embodiment 300 of vehicle approaching a metal surface in a bridge.
- a vehicle 302 is traveling along a bridge (or roadway) 306 and is approaching a metal surface 304 in the bridge/roadway.
- One or more vehicle sensors e.g., radar systems 106 , LIDAR systems 108 , and camera systems 110
- metal surface 304 has a grate configuration that is porous and allows air and water to pass through the metal surface.
- a particular bridge may have a metal surface with any type of metal grate configuration with apertures of any shape, orientation, size, and configuration.
- This grate configuration along with the high thermal conductivity of metal, causes these metal surfaces to freeze quickly (e.g., faster than a concrete or asphalt surface freezes). Therefore, ice or snow may build-up on a metal surface of a bridge sooner than ice or snow builds up on a non-metal surface of the same bridge. So, the metal surface presents a higher driving risk, especially when weather conditions are appropriate for the creation of ice or snow.
- a bridge has multiple lanes for vehicles traveling in the same direction. One of the multiple lanes has metal surface 304 , as discussed herein, while other lanes of the bridge have a concrete, asphalt, or any other type of surface. In these embodiments, if vehicle 302 senses metal surface 304 in the vehicle's current lane, vehicle 302 may change to another lane that has a concrete or asphalt surface, thereby avoiding the risk of diving over metal surface 304 .
- FIG. 4 illustrates an embodiment of a method 400 for detecting a metal bridge or a metal surface in the roadway.
- a metal bridge detection system receives 402 current weather data from a weather service provider or other weather data source.
- metal bridge detection system 104 is activated when weather conditions near the vehicle are likely to produce ice or snow on a road surface, including a bridge surface. For example, if the weather near the vehicle is sunny with temperatures significantly above freezing, it may not be necessary to operate metal bridge detection system 104 . However, if the temperature drops closer to freezing and precipitation is detected (or predicted by the weather data), metal bridge detection system 104 may be activated to monitor the roadway for a metal bridge or a metal surface in the road.
- Method 400 continues as metal bridge detection system 104 receives 404 road condition data and navigational information from one or more sources.
- the road condition data may be received from any number of data sources, such as travel data sources, weather data sources, other organizations, other vehicles, other individuals, and the like.
- Example road condition data may indicate a significant likelihood of road icing or reports of actual ice or snow in the roadway.
- the navigational information includes, for example, maps, road information and related data obtained from, for example, GPS 112 or obtained by the vehicle during previous driving activities.
- the navigational information may indicate the geographic location of bridges along a route being driven (or planned to be driven) by a vehicle.
- Metal bridge detection system 104 receives 406 LIDAR data from one or more LIDAR systems 108 . Additionally, metal bridge detection system 104 receives 408 camera data from one or more vehicle-mounted camera systems 110 . A fusion algorithm receives 410 the LIDAR data, camera data, and navigational information as input, then generates a confidence score associated with the existence of a metal bridge near the vehicle. For example, if the fusion algorithm identifies a metal bridge using one type of data (such as LIDAR data) and confirms the detection of a metal bridge with a second type of data (such as camera data or navigational information), the fusion algorithm generates a high confidence score that a metal bridge exists near the vehicle. However, if only one type of data indicates the possibility of a metal bridge, the fusion algorithm will generate a lower confidence score.
- one type of data such as LIDAR data
- a second type of data such as camera data or navigational information
- LIDAR data is particularly useful in identifying metal bridges and metal surfaces in the roadway because the depth information obtained by LIDAR systems can accurately detect metal grate bridges. Additionally, the intensity data obtained by LIDAR systems for metal bridges with ice is unique and can be distinguished from other types of road surfaces. The intensity data associated with the LIDAR data detecting metal grate bridges is high and helps determine the existence of a metal grate bridge with high confidence. For example, the LIDAR beam goes through the apertures in a metal grate bridge which creates a unique pattern in the returned signal.
- the camera data can also determine the existence of a metal grate bridge ahead of a vehicle. Additionally, the camera data may detect ice or snow on the approaching metal grate bridge. As discussed herein, the fusion algorithm generates a confidence score based on the received LIDAR data, camera data, and navigational information.
- the image data and LIDAR data is primarily associated with an area ahead of the vehicle (e.g., the area being approached by the vehicle). In other embodiments, the image data and LIDAR data is associated with areas to the side of the vehicle and/or areas behind the vehicle.
- method 400 returns to 402 and continues monitoring the approaching roadway for a metal bridge. If a metal bridge is identified 412 , vehicle operations are adjusted 414 based on the identified metal bridge. As discussed in greater detail with respect to FIG. 5 , vehicle operations are adjusted to avoid the metal surface in the roadway (if possible) or improve the control of the vehicle as it drives across the metal bridge. The existence of the metal bridge, as well as any ice or snow detected on the metal bridge, is reported 416 to a shared database (or other data storage mechanism) along with a geographic location associated with the metal bridge.
- This report represents road condition data that may be used by other vehicles traveling on the same road or traveling on other roads in the same area which may cross the metal bridge and experience similar ice or snow conditions.
- the existence of the metal bridge and the geographic location of the bridge is also recorded in the vehicle's drive history.
- ice or snow is detected on a metal bridge by determining a current reflectivity of the roadway ahead of the vehicle and comparing the current reflectivity of the roadway surface to a previously recorded reflectivity of the roadway surface.
- the described systems and methods determine that ice or snow is present on the metal bridge if the current reflectivity of the roadway surface is greater than the previously recorded reflectivity of the roadway surface.
- the increased roadway surface reflectivity is attributed to a build-up of ice or snow on the metal bridge, causing greater reflectivity than a non-icy roadway surface.
- the reflectivity includes one or more of: visual reflectivity, LIDAR reflectivity, and radar reflectivity.
- LIDAR data is used to determine regions of interest ahead of a vehicle. These regions of interest are likely to contain a metal bridge based on analysis of the LIDAR data.
- Metal bridge detection system 104 provides these regions of interest to a camera system and instructs the camera system to focus on the regions of interest to detect (e.g., confirm) the presence of a metal bridge. This confirmation by the camera system provides an increased confidence level associated with the detection of a metal bridge.
- FIG. 5 illustrates an embodiment of a method 500 for adjusting vehicle operations in response to detecting a metal bridge.
- metal bridge detection system 104 detects 502 a metal bridge in the path of a vehicle as discussed, for example, with respect to FIG. 4 .
- Method 500 determines 504 a level of danger associated with driving across the metal bridge.
- the level of danger may include any number of different factors, such as weather reports, temperature sensor data, LIDAR detection of a metal grate, map indication of a bridge, indication of ice by camera, LIDAR and/or radar sensors, snow on the bridge or roadway, and the like. Each of these factors may have an associated certainty and an associated weight.
- the certainties and/or weights of the multiple factors are combined to determine a particular level of danger. Based on the level of danger, the method determines 506 whether to drive across the metal bridge. For example, if the level of danger exceeds a threshold value (e.g., indicating a high level of danger), the method determines 506 not to drive across the metal bridge. In this situation, metal bridge detection system 104 , in combination with automated driving/assistance system 102 , stops 508 the vehicle to avoid the dangerous activity of driving across the metal bridge.
- the metal bridge may have at least one driving lane that is not metal (e.g., a concrete or asphalt driving lane). In these embodiments, the method may cause the vehicle to change to a different driving lane to avoid the metal portion of the roadway.
- method 500 determines 510 the vehicle's longitudinal slip.
- the longitudinal slip of a vehicle is a good representation of vehicle safety as the vehicle drives across a slippery surface, such as a wet or icy metal bridge.
- w is the lateral component of the rotational speed of the wheel
- r is the wheel radius at the point of contact with the roadway
- v is the vehicle speed.
- a positive longitudinal slip indicates that the vehicle wheels are spinning while a negative longitudinal slip indicates that the wheels are skidding.
- the described systems and methods may use information about an upcoming metal bridge to reduce the vehicle's speed before it drives across the metal bridge.
- method 500 determines 512 whether the longitudinal slip is zero. If the longitudinal slip is not zero (e.g., the longitudinal slip is negative or positive), the method reduces 514 the vehicle's speed and continues monitoring 516 the vehicle's longitudinal slip as it approaches and drives across the metal bridge. As long as the longitudinal slip of the vehicle remains zero, the system continues to monitor the longitudinal slip and makes speed adjustments if the longitudinal slip becomes positive or negative.
- the described systems and methods make other adjustments to the vehicle or perform other operations to maintain a zero longitudinal slip.
- the other adjustments may include adjustments to the vehicle throttle, braking systems, and/or steering systems, as needed, to maintain control of the vehicle.
- the adjustments discussed with respect to FIG. 5 are implemented by sending appropriate instructions to one or more vehicle control actuators 120 .
- instructions may be sent to vehicle control actuators 120 to control braking,
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electromagnetism (AREA)
- Mathematical Physics (AREA)
- Acoustics & Sound (AREA)
- Human Computer Interaction (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
Slip=(wr−v)/v
Claims (18)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/271,068 US10408937B2 (en) | 2016-09-20 | 2016-09-20 | Metal bridge detection systems and methods |
CN201710822479.0A CN107839692B (en) | 2016-09-20 | 2017-09-13 | Metal bridge detection system and method |
GB1714825.5A GB2555710A (en) | 2016-09-20 | 2017-09-14 | Metal bridge detection systems and methods |
DE102017121590.5A DE102017121590A1 (en) | 2016-09-20 | 2017-09-18 | SYSTEMS AND METHOD FOR DETECTING METAL BRIDGES |
RU2017132659A RU2017132659A (en) | 2016-09-20 | 2017-09-19 | METAL BRIDGE DETECTION METHODS AND DEVICE |
MX2017012143A MX2017012143A (en) | 2016-09-20 | 2017-09-25 | Metal bridge detection systems and methods. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/271,068 US10408937B2 (en) | 2016-09-20 | 2016-09-20 | Metal bridge detection systems and methods |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180081057A1 US20180081057A1 (en) | 2018-03-22 |
US10408937B2 true US10408937B2 (en) | 2019-09-10 |
Family
ID=60159264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/271,068 Expired - Fee Related US10408937B2 (en) | 2016-09-20 | 2016-09-20 | Metal bridge detection systems and methods |
Country Status (6)
Country | Link |
---|---|
US (1) | US10408937B2 (en) |
CN (1) | CN107839692B (en) |
DE (1) | DE102017121590A1 (en) |
GB (1) | GB2555710A (en) |
MX (1) | MX2017012143A (en) |
RU (1) | RU2017132659A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10229363B2 (en) * | 2015-10-19 | 2019-03-12 | Ford Global Technologies, Llc | Probabilistic inference using weighted-integrals-and-sums-by-hashing for object tracking |
US11392133B2 (en) | 2017-06-06 | 2022-07-19 | Plusai, Inc. | Method and system for object centric stereo in autonomous driving vehicles |
US11573573B2 (en) | 2017-06-06 | 2023-02-07 | Plusai, Inc. | Method and system for distributed learning and adaptation in autonomous driving vehicles |
US11042155B2 (en) * | 2017-06-06 | 2021-06-22 | Plusai Limited | Method and system for closed loop perception in autonomous driving vehicles |
JP7363707B2 (en) * | 2020-08-03 | 2023-10-18 | トヨタ自動車株式会社 | Information processing device, information processing system, information processing program, and information processing method |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6662106B2 (en) | 2001-04-13 | 2003-12-09 | Hewlett-Packard Development Company, L.P. | Navigation system that takes into account dynamic road conditions |
US6711493B1 (en) * | 2002-12-09 | 2004-03-23 | International Business Machines Corporation | Method and apparatus for collecting and propagating information relating to traffic conditions |
US20050134440A1 (en) * | 1997-10-22 | 2005-06-23 | Intelligent Technolgies Int'l, Inc. | Method and system for detecting objects external to a vehicle |
US20080129541A1 (en) * | 2006-12-01 | 2008-06-05 | Magna Electronics | Black ice detection and warning system |
US20100017128A1 (en) * | 2007-06-05 | 2010-01-21 | Gm Global Technology Operations, Inc. | Radar, Lidar and camera enhanced methods for vehicle dynamics estimation |
US20110043377A1 (en) * | 2009-08-24 | 2011-02-24 | Navteq North America, Llc | Providing Driving Condition Alerts Using Road Attribute Data |
US8332134B2 (en) | 2008-04-24 | 2012-12-11 | GM Global Technology Operations LLC | Three-dimensional LIDAR-based clear path detection |
US20130018575A1 (en) * | 2010-03-19 | 2013-01-17 | Ralf Birken | Roaming Mobile Sensor Platform For Collecting Geo-Referenced Data and Creating Thematic Maps |
JP2013020288A (en) | 2011-07-07 | 2013-01-31 | Mitsubishi Motors Corp | Estimation device of running-unstable road surface |
US20140350838A1 (en) * | 2011-11-28 | 2014-11-27 | Toyota Jidosha Kabushiki Kaisha | Vehicle control system, specific object determination device, specific object determination method, and non-transitory storage medium storing specific object determination program |
US9187099B2 (en) | 2013-10-17 | 2015-11-17 | Richard M. Powers | Systems and methods for predicting weather performance for a vehicle |
US20160055750A1 (en) | 2014-08-19 | 2016-02-25 | Here Global B.V. | Optimal Warning Distance |
US20160252611A1 (en) * | 2013-10-18 | 2016-09-01 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | Method for classifying obstacles |
US20160350907A1 (en) * | 2014-05-13 | 2016-12-01 | Gse Technologies, Llc | Remote scanning and detection apparatus and method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007264774A (en) * | 2006-03-27 | 2007-10-11 | Kenwood Corp | Road communication system and traveling object side device |
JP5109009B2 (en) * | 2007-03-27 | 2012-12-26 | 株式会社エクォス・リサーチ | Vehicle control device |
US8306672B2 (en) * | 2009-09-09 | 2012-11-06 | GM Global Technology Operations LLC | Vehicular terrain detection system and method |
DE102010041147A1 (en) * | 2010-09-21 | 2012-03-22 | Continental Teves Ag & Co. Ohg | Method and system for reducing a reaction dead time of a vehicle safety control device |
JP2013020293A (en) * | 2011-07-07 | 2013-01-31 | Mitsubishi Motors Corp | Vehicle control device |
JP5990947B2 (en) * | 2012-03-13 | 2016-09-14 | 日産自動車株式会社 | Vehicle control device |
GB2505021B (en) * | 2012-08-16 | 2015-09-09 | Jaguar Land Rover Ltd | Vehicle speed control system |
US20150203107A1 (en) * | 2014-01-17 | 2015-07-23 | Ford Global Technologies, Llc | Autonomous vehicle precipitation detection |
CN205334744U (en) * | 2015-12-29 | 2016-06-22 | 天津华方科技有限公司 | Networking sensor detects cloud platform vehicle safety of surface gathered water and shares device |
-
2016
- 2016-09-20 US US15/271,068 patent/US10408937B2/en not_active Expired - Fee Related
-
2017
- 2017-09-13 CN CN201710822479.0A patent/CN107839692B/en active Active
- 2017-09-14 GB GB1714825.5A patent/GB2555710A/en not_active Withdrawn
- 2017-09-18 DE DE102017121590.5A patent/DE102017121590A1/en not_active Withdrawn
- 2017-09-19 RU RU2017132659A patent/RU2017132659A/en not_active Application Discontinuation
- 2017-09-25 MX MX2017012143A patent/MX2017012143A/en unknown
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050134440A1 (en) * | 1997-10-22 | 2005-06-23 | Intelligent Technolgies Int'l, Inc. | Method and system for detecting objects external to a vehicle |
US6662106B2 (en) | 2001-04-13 | 2003-12-09 | Hewlett-Packard Development Company, L.P. | Navigation system that takes into account dynamic road conditions |
US6711493B1 (en) * | 2002-12-09 | 2004-03-23 | International Business Machines Corporation | Method and apparatus for collecting and propagating information relating to traffic conditions |
US20080129541A1 (en) * | 2006-12-01 | 2008-06-05 | Magna Electronics | Black ice detection and warning system |
US20100017128A1 (en) * | 2007-06-05 | 2010-01-21 | Gm Global Technology Operations, Inc. | Radar, Lidar and camera enhanced methods for vehicle dynamics estimation |
US8332134B2 (en) | 2008-04-24 | 2012-12-11 | GM Global Technology Operations LLC | Three-dimensional LIDAR-based clear path detection |
US20110043377A1 (en) * | 2009-08-24 | 2011-02-24 | Navteq North America, Llc | Providing Driving Condition Alerts Using Road Attribute Data |
US20130018575A1 (en) * | 2010-03-19 | 2013-01-17 | Ralf Birken | Roaming Mobile Sensor Platform For Collecting Geo-Referenced Data and Creating Thematic Maps |
JP2013020288A (en) | 2011-07-07 | 2013-01-31 | Mitsubishi Motors Corp | Estimation device of running-unstable road surface |
US20140350838A1 (en) * | 2011-11-28 | 2014-11-27 | Toyota Jidosha Kabushiki Kaisha | Vehicle control system, specific object determination device, specific object determination method, and non-transitory storage medium storing specific object determination program |
US9187099B2 (en) | 2013-10-17 | 2015-11-17 | Richard M. Powers | Systems and methods for predicting weather performance for a vehicle |
US20160252611A1 (en) * | 2013-10-18 | 2016-09-01 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | Method for classifying obstacles |
US20160350907A1 (en) * | 2014-05-13 | 2016-12-01 | Gse Technologies, Llc | Remote scanning and detection apparatus and method |
US20160055750A1 (en) | 2014-08-19 | 2016-02-25 | Here Global B.V. | Optimal Warning Distance |
Also Published As
Publication number | Publication date |
---|---|
GB201714825D0 (en) | 2017-11-01 |
CN107839692A (en) | 2018-03-27 |
MX2017012143A (en) | 2018-09-26 |
RU2017132659A (en) | 2019-03-19 |
US20180081057A1 (en) | 2018-03-22 |
GB2555710A (en) | 2018-05-09 |
DE102017121590A1 (en) | 2018-03-22 |
CN107839692B (en) | 2022-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10183677B2 (en) | Ice and snow detection systems and methods | |
RU2709363C2 (en) | Method and device for detection of dangerous wind conditions | |
US10408937B2 (en) | Metal bridge detection systems and methods | |
US9984573B2 (en) | Advanced warning system | |
US10086830B2 (en) | Accident attenuation systems and methods | |
EP3101639B1 (en) | Electronic device, control method for electronic device, and control program for electronic device | |
US10967972B2 (en) | Vehicular alert system | |
US20120303222A1 (en) | Driver assistance system | |
US20140257686A1 (en) | Vehicle lane determination | |
US20120296539A1 (en) | Driver assistance system | |
US10259455B2 (en) | Collision avoidance systems and methods | |
CN102963361A (en) | Method of operating a vehicle safety system | |
CN107688778B (en) | Method and system for automatically detecting and coping with dangerous road conditions | |
KR101442702B1 (en) | Method for vehicles change lanes and turn lanes at the crash protection system | |
KR101102818B1 (en) | System for providing safety gap and schematic display using real-time safety distance bar considering relative velocity algorithm | |
CN112185144A (en) | Traffic early warning method and system | |
CN116968729A (en) | ADAS timing adjustment and selective incident alert based on risk factor information | |
JP2011113150A (en) | Device, program and method for predicting accident occurrence | |
US10409286B2 (en) | Highway detection systems and methods | |
US11328592B2 (en) | Systems and methods for roadway obstruction detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FORD GLOBAL TECHNOLOGIES, LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MYERS, SCOTT VINCENT;MICKS, ASHLEY ELIZABETH;KADETOTAD, SNEHA;AND OTHERS;SIGNING DATES FROM 20160916 TO 20160919;REEL/FRAME:040091/0870 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230910 |