US10026538B2 - Electronic component with multilayered body - Google Patents

Electronic component with multilayered body Download PDF

Info

Publication number
US10026538B2
US10026538B2 US14/837,525 US201514837525A US10026538B2 US 10026538 B2 US10026538 B2 US 10026538B2 US 201514837525 A US201514837525 A US 201514837525A US 10026538 B2 US10026538 B2 US 10026538B2
Authority
US
United States
Prior art keywords
axis direction
outer electrode
conductor
coil
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/837,525
Other versions
US20150371757A1 (en
Inventor
Kaori TAKEZAWA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Assigned to MURATA MANUFACTURING CO., LTD. reassignment MURATA MANUFACTURING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAKEZAWA, KAORI
Publication of US20150371757A1 publication Critical patent/US20150371757A1/en
Application granted granted Critical
Publication of US10026538B2 publication Critical patent/US10026538B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers

Definitions

  • the present disclosure relates to electronic components and, in particular, an electronic component including a multilayer body in which a plurality of insulating layers are laminated.
  • FIG. 18 is a perspective view of the multilayer chip inductor 500 described in Japanese Unexamined Patent Application Publication No. 2012-79870.
  • the multilayer chip inductor 500 includes a multilayer body 501 and outer electrodes 502 .
  • the multilayer body 501 is a lamination of insulating sheets.
  • the outer electrodes 502 are embedded in the multilayer body 501 and exposed at two surfaces of the multilayer body 501 .
  • the multilayer chip inductor 500 described in Japanese Unexamined Patent Application Publication No. 2012-79870 has a problem that chipping is likely to occur in the multilayer body 501 .
  • the insulating layers are laminated on the upper and lower sides of the outer electrodes 502 .
  • the outer electrodes 502 are not exposed at the upper and lower surfaces of the multilayer body 501 .
  • the distance between each of the outer electrodes 502 and each of the upper and lower surfaces may preferably be reduced by a reduction in the thickness of the insulating layers laminated on the upper and lower sides of the outer electrodes 502 .
  • chipping may occur in a portion above or below the outer electrode 502 in the multilayer body 501 in a barrel polishing process or the like for the multilayer body 501 .
  • An electronic component includes a multilayer body in which a plurality of substantially rectangular insulating layers are laminated, the multilayer body having a bottom surface being a series of outer edges of the plurality of insulating layers, a first end surface being adjacent to the bottom surface and being a series of the outer edges of the plurality of insulating layers, and a first side surface being located on a first side in a laminating direction, a first outer electrode embedded in the multilayer body such that the first outer electrode is exposed from the multilayer body while extending across a boundary between the bottom surface and the first end surface, and a circuit element disposed in the multilayer body and connected to the first outer electrode.
  • a distance between the first outer electrode and the first side surface in a corner between the bottom surface and the first end surface is longer than a distance between the first outer electrode and the first side surface in a portion where the first outer electrode and the circuit element are connected.
  • An electronic component includes a multilayer body in which a plurality of substantially rectangular insulating layers are laminated, the multilayer body having a bottom surface being a series of outer edges of the plurality of insulating layers, a first end surface being adjacent to the bottom surface and being a series of the outer edges of the plurality of insulating layers, and a first side surface being located on a first side in a laminating direction, a first outer electrode embedded in the multilayer body such that the first outer electrode is exposed from the multilayer body while extending across a boundary between the bottom surface and the first end surface, and a circuit element disposed in the multilayer body and connected to the first outer electrode.
  • the first outer electrode has a shape that protrudes in the laminating direction in a portion other than a corner between the bottom surface and the first end surface.
  • the circuit element is connected to the portion protruding in the laminating direction in the first outer electrode.
  • the occurrence of chipping in a multilayer body can be suppressed.
  • FIG. 1 is an external perspective view of an electronic component according to an embodiment.
  • FIG. 2 is an exploded perspective view of the electronic component illustrated in FIG. 1 .
  • FIG. 3 is a plan view in manufacturing the electronic component.
  • FIG. 4 is a plan view in manufacturing the electronic component.
  • FIG. 5 is a plan view in manufacturing the electronic component.
  • FIG. 6 is a plan view in manufacturing the electronic component.
  • FIG. 7 is a plan view in manufacturing the electronic component.
  • FIG. 8 is a plan view in manufacturing the electronic component.
  • FIG. 9 is a graph that represents experimental results.
  • FIG. 10 is an illustration of an outer electrode according to a first variation as seen from a negative side in an x-axis direction in plan view.
  • FIG. 11 is an illustration of an outer electrode according to a second variation as seen from the negative side in the x-axis direction in plan view.
  • FIG. 12 is an illustration of outer electrodes according to a third variation as seen from a negative side in a z-axis direction in plan view.
  • FIG. 13 is an illustration of outer electrodes according to a fourth variation as seen from the negative side in the z-axis direction in plan view.
  • FIG. 14 is an illustration of outer electrodes according to a fifth variation as seen from the negative side in the z-axis direction in plan view.
  • FIG. 15 illustrates a route according to the first variation.
  • FIG. 16 illustrates a route according to the second variation.
  • FIG. 17 is an exploded perspective view of an electronic component according to a variation.
  • FIG. 18 is a perspective view of a multilayer chip inductor described in Japanese Unexamined Patent Application Publication No. 2012-79870.
  • FIG. 1 is an external perspective view of an electronic component 10 according to the embodiment.
  • FIG. 2 is an exploded perspective view of the electronic component 10 illustrated in FIG. 1 .
  • the laminating direction of the electronic component 10 is defined as a y-axis direction.
  • the direction in which the long sides of the electronic component 10 extend is defined as an x-axis direction, and the direction in which the short sides of the electronic component 10 extend is defined as a z-axis direction, as seen from the y-axis direction in plan view.
  • the electronic component 10 includes a multilayer body 12 , outer electrodes 14 a and 14 b , extended conductors 40 a and 40 b , and a coil L (circuit element).
  • the multilayer body 12 includes a plurality of insulating layers 16 a to 16 p laminated and arranged in this order from the negative side toward the positive side in the y-axis direction and has a substantially rectangular parallelepiped shape.
  • the multilayer body 12 has an upper surface S 1 , a bottom surface S 2 , end surfaces S 3 and S 4 , and side surfaces S 5 and S 6 .
  • the upper surface S 1 is the positive-side surface of the multilayer body 12 in the z-axis direction.
  • the bottom surface S 2 is the negative-side surface of the multilayer body 12 in the z-axis direction and is a mounting surface that faces a circuit board when the electronic component 10 is mounted on the circuit board.
  • the upper surface S 1 is a series of the long sides of the insulating layers 16 a to 16 p on the positive side in the z-axis direction
  • the bottom surface S 2 is a series of the long sides of the insulating layers 16 a to 16 p on the negative side in the z-axis direction
  • the end surfaces S 3 and S 4 are the negative-side surface and the positive-side surface of the multilayer body 12 in the x-axis direction, respectively.
  • the end surface S 3 is a series of the short sides of the insulating layers 16 a to 16 p on the negative side in the x-axis direction
  • the end surface S 4 is a series of the short sides of the insulating layers 16 a to 16 p on the positive side in the x-axis direction.
  • the end surfaces S 3 and S 4 are adjacent to the bottom surface S 2 .
  • the side surfaces S 5 and S 6 are the positive-side surface and the negative-side surface of the multilayer body 12 in the y-axis direction, respectively.
  • each of the insulating layers 16 a to 16 p is substantially rectangular and may be made of an insulating material that has a borosilicate glass as a main ingredient.
  • the positive-side surface of each of the insulating layers 16 a to 16 p in the y-axis direction is referred to as a front surface
  • the negative-side surface of each of the insulating layers 16 a to 16 p in the y-axis direction is referred to as a back surface.
  • the coil L includes coil conductors 18 a to 18 j and via-hole conductors v 1 to v 10 .
  • the coil L is configured by connecting the coil conductors 18 a to 18 j by the via-hole conductors v 1 to v 10 .
  • the coil L has a winding axis extending along the y-axis direction and has a spiral shape that is wound clockwise while extending from the negative side to the positive side in the y-axis direction as seen from the positive side in the y-axis direction in plan view.
  • the coil conductors 18 a to 18 j are disposed on the front surfaces of the insulating layers 16 d to 16 m , respectively.
  • the coil conductors 18 a to 18 j overlap one another and form an annular route R as seen in the y-axis direction in plan view.
  • the route R has a substantially isosceles trapezoid shape in which the upper base is longer than the lower base. The two corners on the lower base and their surroundings in the route R are recessed inward in the route R so as not to be in contact with the outer electrodes 14 a and 14 b.
  • Each of the coil conductors 18 a to 18 j has a structure in which the route R is partly cut and is a linear conductor wound clockwise.
  • the end portion of each of the coil conductors 18 a to 18 j on the downstream side in the clockwise direction as seen from the positive side in the y-axis direction in plan view is referred to simply as the downstream end
  • the end portion of each of the coil conductors 18 a to 18 j on the upstream side in the clockwise direction as seen from the positive side in the y-axis direction in plan view is referred to simply as the upstream end.
  • the coil conductors 18 a to 18 j having the above-described configuration may be made of a conductive material whose main ingredient is silver.
  • the via-hole conductors v 1 to v 4 extend through the insulating layers 16 e to 16 h , respectively, along the y-axis direction.
  • the via-hole conductors v 5 and v 6 extend through the insulating layer 16 i along the y-axis direction.
  • the via-hole conductors v 7 to v 10 extend through the insulating layers 16 j to 16 m , respectively, along the y-axis direction.
  • the via-hole conductor v 1 connects the downstream end of the coil conductor 18 a and the upstream end of the coil conductor 18 b .
  • the via-hole conductor v 2 connects the downstream end of the coil conductor 18 b and the upstream end of the coil conductor 18 c .
  • the via-hole conductor v 3 connects the downstream end of the coil conductor 18 c and the upstream end of the coil conductor 18 d .
  • the via-hole conductor v 4 connects the downstream end of the coil conductor 18 d and the upstream end of the coil conductor 18 e.
  • the via-hole conductor v 5 connects the negative-side end portion of the upper base of the coil conductor 18 e in the x-axis direction and the upstream end of the coil conductor 18 f .
  • the via-hole conductor v 6 connects the downstream end of the coil conductor 18 e and the positive-side end portion of the upper base of the coil conductor 18 f in the x-axis direction.
  • the via-hole conductor v 7 connects the downstream end of the coil conductor 18 f and the upstream end of the coil conductor 18 g .
  • the via-hole conductor v 8 connects the downstream end of the coil conductor 18 g and the upstream end of the coil conductor 18 h .
  • the via-hole conductor v 9 connects the downstream end of the coil conductor 18 h and the upstream end of the coil conductor 18 i .
  • the via-hole conductor v 10 connects the downstream end of the coil conductor 18 i and the upstream end of the coil conductor 18 j.
  • the via-hole conductors v 1 to v 10 may be made of a conductive material whose main ingredient is silver.
  • the outer electrode 14 a is embedded in the multilayer body 12 such that it is exposed from the multilayer body 12 while extending across the boundary between the bottom surface S 2 and the end surface S 3 .
  • the outer electrode 14 a is L-shaped as seen in the y-axis direction in plan view.
  • the outer electrode 14 a is a lamination of outer conductors 25 a to 25 j.
  • the outer conductor 25 a is disposed on the front surface of the insulating layer 16 d .
  • the outer conductor 25 a is substantially rectangular and lies in the vicinity of the center of the short side of the insulating layer 16 d on the negative side in the x-axis direction.
  • the outer conductors 25 b to 25 i extend through the insulating layers 16 e to 16 l , respectively, along the y-axis direction.
  • the outer conductors 25 b to 25 i are L-shaped and are disposed in the respective corners at which the short sides of the insulating layers 16 e to 16 l on the negative side in the x-axis direction intersect with the long sides thereof on the negative side in the z-axis direction as seen in the y-axis direction in plan view.
  • the outer conductor 25 j extends through the insulating layer 16 m along the y-axis direction.
  • the outer conductor 25 j is substantially rectangular and lies in the vicinity of the center of the short side of the insulating layer 16 m on the negative side in the x-axis direction.
  • the outer conductors 25 a to 25 j are electrically connected together by being laminated.
  • the outer electrode 14 a is substantially rectangular at the end surface S 3 as seen from the negative side in the x-axis direction in plan view.
  • the outer conductors 25 b to 25 i have the same shape, whereas each of the outer conductors 25 a and 25 j is smaller than each of the outer conductors 25 b to 25 i . Accordingly, as illustrated in FIG. 1 , the outer conductor 25 a protrudes from the long side of the portion where the outer electrode 14 a is exposed at the end surface S 3 on the negative side in the y-axis direction, toward the negative side in the y-axis direction. Similarly, as illustrated in FIG.
  • the outer conductor 25 j protrudes from the long side of the portion where the outer electrode 14 a is exposed at the end surface S 3 on the positive side in the y-axis direction, toward the positive side in the y-axis direction. That is, the outer electrode 14 a protrudes toward both sides in the y-axis direction in portions other than the corners between the bottom surface S 2 and the end surface S 3 .
  • the outer electrode 14 b is embedded in the multilayer body 12 such that it is exposed from the multilayer body 12 while extending across the boundary between the bottom surface S 2 and the end surface S 4 .
  • the outer electrode 14 b is L-shaped as seen in the y-axis direction in plan view.
  • the outer electrode 14 b is a lamination of outer conductors 35 a to 35 j.
  • the outer conductor 35 a is disposed on the front surface of the insulating layer 16 d .
  • the outer conductor 35 a is substantially rectangular and lies in the vicinity of the center of the short side of the insulating layer 16 d on the positive side in the x-axis direction.
  • the outer conductors 35 b to 35 i extend through the insulating layers 16 e to 16 l , respectively, along the y-axis direction.
  • the outer conductors 35 b to 35 i are L-shaped and are disposed in the respective corners at which the short sides of the insulating layers 16 e to 16 l on the positive side in the x-axis direction intersect with the long sides thereof on the negative side in the z-axis direction as seen in the y-axis direction in plan view.
  • the outer conductor 35 j extends through the insulating layer 16 m along the y-axis direction.
  • the outer conductor 35 j is substantially rectangular and lies in the vicinity of the center of the short side of the insulating layer 16 m on the positive side in the x-axis direction.
  • the outer conductors 35 a to 35 j are electrically connected together by being laminated.
  • the outer electrode 14 b is substantially rectangular at the end surface S 4 as seen from the positive side in the x-axis direction in plan view.
  • the outer conductors 35 b to 35 i have the same shape, whereas each of the outer conductors 35 a and 35 j is smaller than each of the outer conductors 35 b to 35 i . Accordingly, as illustrated in FIG. 1 , the outer conductor 35 a protrudes from the long side of the portion where the outer electrode 14 b is exposed at the end surface S 4 on the negative side in the y-axis direction, toward the negative side in the y-axis direction. Similarly, as illustrated in FIG.
  • the outer conductor 35 j protrudes from the long side of the portion where the outer electrode 14 b is exposed at the end surface S 4 on the positive side in the y-axis direction, toward the positive side in the y-axis direction. That is, the outer electrode 14 a protrudes toward both sides in the y-axis direction in portions other than the corners between the bottom surface S 2 and the end surface S 4 .
  • the extended conductor 40 a is disposed on the front surface of the insulating layer 16 d and connects the end portion of the coil conductor 18 a on the upstream side in the clockwise direction and the outer conductor 25 a .
  • the extended conductor 40 a does not overlap the route R.
  • the coil conductor 18 a which is positioned on the most negative side in the y-axis direction, is connected to the outer electrode 14 a .
  • the outer conductor 25 a to which the extended conductor 40 a is connected, does not reach the corner between the bottom surface S 2 and the end surface S 3 . In this manner, the coil L is connected to a portion in the outer electrode 14 a that protrudes in the y-axis direction (that is, outer conductor 25 a ).
  • the extended conductor 40 b is disposed on the front surface of the insulating layer 16 m and connects the end portion of the coil conductor 18 j on the downstream side in the clockwise direction and the outer conductor 35 j .
  • the extended conductor 40 b does not overlap the route R.
  • the coil conductor 18 j which is positioned on the most positive side in the y-axis direction, is connected to the outer electrode 14 b .
  • the outer conductor 35 j to which the extended conductor 40 b is connected, does not reach the corner between the bottom surface S 2 and the end surface S 4 . In this manner, the coil L is connected to a portion in the outer electrode 14 b that protrudes in the y-axis direction (that is, outer conductor 35 j ).
  • a distance D 1 between the outer electrode 14 a and the side surface S 6 in the corner between the bottom surface S 2 and the end surface S 3 is longer than a distance D 2 between the outer conductor 25 a , which is the portion where the outer electrode 14 a and the coil L are connected, and the side surface S 6 .
  • a distance D 3 between the outer electrode 14 a and the side surface S 5 in the corner between the bottom surface S 2 and the end surface S 3 is longer than a distance D 4 between the outer conductor 25 j and the side surface S 5 .
  • Each of the distances D 1 and D 3 may preferably be equal to or longer than 10 ⁇ m.
  • the corners of the multilayer body 12 in the electronic component 10 are rounded by chamfering. Accordingly, the distance between the outer electrode 14 a and the side surface S 6 in the corner between the bottom surface S 2 and the end surface S 3 is the shortest distance from the outer electrode 14 a to the intersection of an extension line of the ridge line between the bottom surface S 2 and the end surface S 3 and a plane extended from the side surface S 6 . Similarly, the distance between the outer electrode 14 a and the side surface S 5 in the corner between the bottom surface S 2 and the end surface S 3 is the shortest distance from the outer electrode 14 a to the intersection of an extension line of the ridge line between the bottom surface S 2 and the end surface S 3 and a plane extended from the side surface S 5 .
  • a distance D 5 between the outer electrode 14 b and the side surface S 6 in the corner between the bottom surface S 2 and the end surface S 4 is longer than a distance D 6 between the outer conductor 35 a and the side surface S 6 .
  • a distance D 7 between the outer electrode 14 b and the side surface S 5 in the corner between the bottom surface S 2 and the end surface S 4 is longer than a distance D 8 between the outer conductor 35 j , which is the portion where the outer electrode 14 b and the coil L are connected, and the side surface S 5 .
  • Each of the distances D 5 and D 7 may preferably be equal to or longer than 10 ⁇ m.
  • the distance between the outer electrode 14 b and the side surface S 6 in the corner between the bottom surface S 2 and the end surface S 4 is the shortest distance from the outer electrode 14 b to the intersection of an extension line of the ridge line between the bottom surface S 2 and the end surface S 4 and a plane extended from the side surface S 6 .
  • the distance between the outer electrode 14 b and the side surface S 5 in the corner between the bottom surface S 2 and the end surface S 4 is the shortest distance from the outer electrode 14 b to the intersection of an extension line of the ridge line between the bottom surface S 2 and the end surface S 4 and a plane extended from the side surface S 5 .
  • FIGS. 3 to 8 are plan views in manufacturing the electronic component 10 .
  • insulating paste layers 116 a to 116 d are formed by repeatedly applying the insulating paste whose main ingredient is a borosilicate glass by screen-printing.
  • the insulating paste layers 116 a to 116 d are paste layers that are to be the insulating layers 16 a to 16 d , which are external insulating layers positioned outside the coil L.
  • the coil conductors 18 a and the outer conductors 25 a and 35 a are formed by a photolithographic process. Specifically, a conductive paste layer is formed on the insulating paste layer 116 d by applying photosensitive conductive paste having silver as a metal main ingredient by screen-printing. Then, the conductive paste layer is irradiated with ultraviolet rays or the like through a photomask and is developed by using an alkali solution or the like. In this manner, the outer conductors 25 a and 35 a and the coil conductors 18 a are formed on the insulating paste layer 116 d.
  • an insulating paste layer 116 e with apertures h 1 and via holes H 1 is formed by a photolithographic process. Specifically, an insulating paste layer is formed on the insulating paste layer 116 d by applying photosensitive insulating paste by screen-printing. Then, the insulating paste layer is irradiated with ultraviolet rays or the like through a photomask and is developed by using an alkali solution or the like.
  • the insulating paste layer 116 e is a paste layer that is to be the insulating layer 16 e .
  • Each of the apertures h 1 is a cruciform hole in which four outer conductors 25 b or four outer conductors 35 b are combined.
  • the coil conductors 18 b , outer conductors 25 b and 35 b , and via-hole conductors v 1 are formed by a photolithographic process. Specifically, a conductive paste layer is formed on the insulating paste layer 116 e and inside the apertures h 1 and via holes H 1 by applying photosensitive conductive paste having silver as a metal main ingredient by screen-printing. Then, the conductive paste layer is irradiated with ultraviolet rays or the like through a photomask and is developed by using an alkali solution or the like.
  • the outer conductors 25 b and 35 b are formed inside the apertures h 1
  • the via-hole conductors v 1 are formed inside the via holes H 1
  • the coil conductors 18 b are formed on the insulating paste layer 116 e.
  • insulating paste layers 116 f to 116 m , the coil conductors 18 c to 18 j , outer conductors 25 c to 25 j and 35 c to 35 j , and via-hole conductors v 2 to v 10 are formed by repeating the same processes as those illustrated in FIGS. 5 and 6 . In this manner, as illustrated in FIG. 7 , the coil conductors 18 j and outer conductors 25 j and 35 j are formed on the insulating paste layer 116 m.
  • insulating paste layers 116 n to 116 p are formed by repeating the application of the insulating paste by screen-printing.
  • the insulating paste layers 116 n to 116 p are paste layers that are to be the insulating layers 16 n to 16 p , which are external insulating layers positioned outside the coil L.
  • a mother multilayer body 112 is obtained through the above-described processes.
  • the mother multilayer body 112 is cut into a plurality of unfired multilayer bodies 12 by using a dicing machine or the like.
  • the outer electrodes 14 a and 14 b are exposed from each of the multilayer bodies 12 at surfaces formed by the cutting.
  • the unfired multilayer bodies 12 are fired under a predetermined condition, and the fired multilayer bodies 12 are obtained. Then, the multilayer bodies 12 are subjected to barrel polishing.
  • tin plating having a thickness of 2 ⁇ m to 7 ⁇ m and nickel plating having a thickness of 2 ⁇ m to 7 ⁇ m are applied to the portions where the outer electrodes 14 a and 14 b are exposed from each of the multilayer bodies 12 .
  • the electronic components 10 are completed through the above-described processes.
  • the occurrence of chipping in the multilayer body 12 can be suppressed. More specifically, the distance D 1 between the outer electrode 14 a and the side surface S 6 in the corner between the bottom surface S 2 and the end surface S 3 is longer than the distance D 2 between the outer conductor 25 a and the side surface S 6 .
  • the portion between the outer electrode 14 a and the side surface S 6 that portion being likely to have chipping in the multilayer body 12 , can have an increased thickness. Accordingly, the strength of the portion between the outer electrode 14 a and the side surface S 6 can be improved. This leads to suppressing the occurrence of chipping in the multilayer body 12 .
  • the occurrence of chipping in the multilayer body 12 can be suppressed in the portion between the outer electrode 14 a and the side surface S 5 , the portion between the outer electrode 14 b and the side surface S 5 , and the portion between the outer electrode 14 b and the side surface S 6 .
  • the coil L can have an increased inductance value. More specifically, the coil conductor 18 a , which is positioned in the most negative side in the y-axis direction, is connected to the outer conductor 25 a , which is positioned in the most negative side in the y-axis direction in the outer electrode 14 a . Thus the end portion of the coil L on the negative side in the y-axis direction can be close to the side surface S 6 . This can lead to an increased length of the coil L in the y-axis direction and can lead to an increased inductance value of the coil L.
  • the coil conductor 18 m which is positioned on the most positive side in the y-axis direction, is connected to the outer conductor 35 j , which is positioned on the most positive side in the y-axis direction in the outer electrode 14 b .
  • the end portion of the coil L on the positive side in the y-axis direction can be close to the side surface S 5 . This can lead to an increased length of the coil L in the y-axis direction and can lead to an increased inductance value of the coil L.
  • the electronic component 10 the occurrence of chipping in the multilayer body 12 can be suppressed, and the inductance value of the coil L can be increased.
  • the inventor conducted an experiment described below to find preferable values of the distances D 1 , D 3 , D 5 , and D 7 . More specifically, three kinds of the electronic components 10 in which each of the distances D 1 , D 3 , D 5 , and D 7 was 4 ⁇ m, 18 ⁇ m, and 33 ⁇ m were produced, and 125 units were produced for each of the three kinds of the electronic components 10 .
  • the electronic components 10 in which each of the distances D 1 , D 3 , D 5 , and D 7 is 4 ⁇ m are referred to as first samples
  • the electronic components 10 in which each of the distances D 1 , D 3 , D 5 , and D 7 is 18 ⁇ m are referred to as second samples
  • the electronic components 10 in which each of the distances D 1 , D 3 , D 5 , and D 7 is 33 ⁇ m are referred to as third samples.
  • each of the distances D 1 , D 3 , D 5 , and D 7 was 4 ⁇ m, 18 ⁇ m, and 33 ⁇ m means that the average value of each of the distances D 1 , D 3 , D 5 , and D 7 in the 125 units is 4 ⁇ m, 18 ⁇ m, and 33 ⁇ m.
  • the number of each of the first to third samples having chipping in the multilayer bodies 12 that occurred in barrel polishing in the manufacturing process was counted.
  • FIG. 9 is a graph that represents experimental results.
  • the vertical axis indicates the number of units in which chipping occurred (chipping occurrence number), and the horizontal axis indicates the distances D 1 , D 3 , D 5 , and D 7 (distance).
  • an error bar of 2 ⁇ for the area where each of the distances D 1 , D 3 , D 5 , and D 7 falls within a range of 2 ⁇ is illustrated.
  • FIG. 9 reveals that the chipping occurrence number reduces with an increase in the distance. Chipping occurred in some units in the first samples, in which the distance was 4 ⁇ m, whereas no chipping occurred in the second samples, in which the distance was 18 ⁇ m, and in the third samples, in which the distance was 33 ⁇ m. Accordingly, the distances D 1 , D 3 , D 5 , and D 7 may preferably be equal to or longer than 18 ⁇ m.
  • the error bar of the range 26 for the second samples is in the range of from 10 ⁇ m to 25 ⁇ m. That is, the distances D 1 , D 3 , D 5 , and D 7 in 95.5% of the second samples fall within the range of from 10 ⁇ m to 25 ⁇ m.
  • the number of units tested in the experiment is 125, from the probability, at least two units among the second samples are considered to have the distances D 1 , D 3 , D 5 , and D 7 being equal to or smaller than 10 ⁇ m. Because chipping did not occur in any of the 125 second samples, it is confirmed that no chipping occurs when each of the distances D 1 , D 3 , D 5 , and D 7 is equal to or longer than at least 10 ⁇ m.
  • FIG. 10 is an illustration of the outer electrode 14 a according to the first variation as seen from the negative side in the x-axis direction in plan view.
  • the outer conductor 25 a protrudes from the long side of the portion where the outer electrode 14 a is exposed at the end surface S 3 on the negative side in the y-axis direction, toward the negative side in the y-axis direction.
  • the outer conductor 25 j does not protrude from the long side of the portion where the outer electrode 14 a is exposed at the end surface S 3 on the positive side in the y-axis direction, toward the positive side in the y-axis direction.
  • the portion connected to the coil L in the outer electrode 14 a (that is, outer conductor 25 a ) protrude from the long side of the portion where the outer electrode 14 a is exposed at the end surface S 3 on the negative side in the y-axis direction, toward the negative side in the y-axis direction
  • the portion not connected to the coil L in the outer electrode 14 a (that is, outer conductor 25 j ) protrude from the long side of the portion where the outer electrode 14 a is exposed at the end surface S 3 on the negative side in the y-axis direction, toward the negative side in the y-axis direction.
  • the outer electrode 14 b may have the same structure as in the outer electrode 14 a illustrated in FIG. 10 .
  • FIG. 11 is an illustration of the outer electrode 14 a according to the second variation as seen from the negative side in the x-axis direction in plan view.
  • the outer conductor 25 a protrudes from the long side of the portion where the outer electrode 14 a is exposed at the end surface S 3 on the negative side in the y-axis direction, toward the negative side in the y-axis direction.
  • the outer conductor 25 a reaches the side surface S 6 .
  • the outer electrode 14 b may have the same structure as in the outer electrode 14 a illustrated in FIG. 11 .
  • FIG. 12 is an illustration of the outer electrodes 14 a and 14 b according to the third variation as seen from the negative side in the z-axis direction in plan view.
  • the short side of the outer electrode 14 a on the positive side in the x-axis direction may be gently curved such that it protrudes toward the positive side in the x-axis direction as seen from the negative side in the z-axis direction in plan view.
  • the short side of the outer electrode 14 b on the negative side in the x-axis direction may be gently curved such that it protrudes toward the negative side in the x-axis direction as seen from the negative side in the z-axis direction in plan view.
  • FIG. 13 is an illustration of the outer electrodes 14 a and 14 b according to the fourth variation as seen from the negative side in the z-axis direction in plan view.
  • the end portion in the outer electrode 14 a on the positive side in the x-axis direction may protrude toward both sides in the y-axis direction.
  • the end portion in the outer electrode 14 b on the negative side in the x-axis direction may protrude toward both sides in the y-axis direction.
  • the extended conductors 40 a and 40 b may preferably be connected to the portions protruding toward both sides in the y-axis direction in the outer electrodes 14 a and 14 b , respectively.
  • FIG. 14 is an illustration of the outer electrodes 14 a and 14 b according to the fifth variation as seen from the negative side in the z-axis direction in plan view.
  • Both ends of the short side of the outer electrode 14 a on the positive side in the x-axis direction may protrude toward the positive side in the x-axis direction.
  • both ends of the short side of the outer electrode 14 b on the negative side in the x-axis direction may protrude toward the negative side in the x-axis direction.
  • the extended conductor 40 a may preferably be connected to the portion in the outer electrode 14 a protruding toward the positive side in the x-axis direction.
  • the extended conductor 40 b may preferably be connected to the portion in the outer electrode 14 b protruding toward the negative side in the x-axis direction.
  • FIG. 15 illustrates the route Ra according to the first variation.
  • the route Ra may be substantially rectangular.
  • the two corners of the long side on the negative side in the z-axis direction and their surroundings are recessed inward in the route Ra so as not to be in contact with the outer electrodes 14 a and 14 b.
  • FIG. 16 illustrates the route Rb according to the second variation.
  • the route Rb may be substantially hexagonal.
  • FIG. 17 is an exploded perspective view of the electronic component 10 a according to the variation.
  • the electronic component 10 includes the coil L as the circuit element.
  • the electronic component 10 a includes a capacitor C as the circuit element. More specifically, the capacitor C includes capacitor conductors 50 a to 50 f.
  • the capacitor conductors 50 a to 50 f are disposed on the front surfaces of the insulating layers 16 d to 16 i , respectively, and are substantially rectangular. Of the capacitor conductors 50 a to 50 f , the neighboring ones in the y-axis direction are opposed to each other through the insulating layers 16 e to 16 i.
  • the outer conductors 25 a to 25 e in the electronic component 10 a have the same shapes as in the outer conductors 25 a to 25 e in the electronic component 10 , respectively.
  • the outer conductor 25 f in the electronic component 10 a has the same shape as in the outer conductor 25 j in the electronic component 10 .
  • the outer conductors 25 b , 25 d , and 25 f are connected to the capacitor conductors 50 b , 50 d , and 50 f , respectively.
  • the outer conductors 35 a to 35 e in the electronic component 10 a have the same shapes as in the outer conductors 35 a to 35 e in the electronic component 10 , respectively.
  • the outer conductor 35 f in the electronic component 10 a has the same shape as in the outer conductor 35 j in the electronic component 10 .
  • the outer conductors 35 a , 35 c , and 35 e are connected to the capacitor conductors 50 a , 50 c , and 50 e , respectively.
  • the occurrence of chipping in the multilayer body 12 can also be suppressed in the electronic component 10 a having the above-described configuration, as in the electronic component 10 .
  • the capacitor C in the electronic component 10 a can have an increased capacitance. More specifically, the capacitor conductor 50 a , which is positioned on the most negative side in the y-axis direction, is connected to the outer conductor 35 a , which is positioned on the most negative side in the y-axis direction in the outer electrode 14 b . Thus the end portion of the capacitor C on the negative side in the y-axis direction can be close to the side surface S 6 . This can lead to an increased number of laminated layers in the capacitor C and lead to an increased capacitance of the capacitor C.
  • the capacitor conductor 50 f which is positioned on the most positive side in the y-axis direction, is connected to the outer conductor 25 f , which is positioned on the most positive side in the y-axis direction in the outer electrode 14 a .
  • the end portion of the capacitor C on the positive side in the y-axis direction can be close to the side surface S 5 . This can lead to an increased number of laminated layers in the capacitor C and lead to an increased capacitance of the capacitor C.
  • An electronic component according to the present disclosure is not limited to the electronic components 10 and 10 a in the above-described embodiment and may be changed within the scope of the disclosure.
  • the circuit element which is the coil L in the electronic component 10 and is the capacitor C in the electronic component 10 a , may alternatively be a circuit element other than the coil L and the capacitor C, and it may be any combination thereof.
  • the coil L and the capacitor C which are connected to the outer electrodes 14 a and 14 b at the end surfaces S 3 and S 4 , may be connected at the bottom surface S 2 .
  • the present disclosure is useful in electronic components and, in particular, is advantageous in that the occurrence of chipping in a multilayer body can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

A multilayer body is a lamination of a plurality of substantially rectangular insulating layers and has a bottom surface being a series of the outer edges of the insulating layers, an end surface being adjacent to the bottom surface and being a series of the outer edges of the insulating layers, and a side surface located on a negative side in the y-axis direction. An outer electrode is embedded in the multilayer body such that it is exposed while extending across the boundary between the bottom surface and the end surface. A coil is disposed in the multilayer body and is connected to the outer electrode. The distance between the outer electrode and the side surface in the corner between the bottom surface and the end surface is longer than the distance between the outer electrode and the side surface where the outer electrode and the coil are connected.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims benefit of priority to Japanese Patent Application No. 2013-044978 filed Mar. 7, 2013, and the International Patent Application No. PCT/JP2014/055645 filed Mar. 5, 2014, the entire content of each of which is incorporated herein by reference.
TECHNICAL FIELD
The present disclosure relates to electronic components and, in particular, an electronic component including a multilayer body in which a plurality of insulating layers are laminated.
BACKGROUND
One known example of an electronic component in related art is a multilayer chip inductor 500 described in Japanese Unexamined Patent Application Publication No. 2012-79870. FIG. 18 is a perspective view of the multilayer chip inductor 500 described in Japanese Unexamined Patent Application Publication No. 2012-79870.
The multilayer chip inductor 500 includes a multilayer body 501 and outer electrodes 502. The multilayer body 501 is a lamination of insulating sheets. The outer electrodes 502 are embedded in the multilayer body 501 and exposed at two surfaces of the multilayer body 501.
The multilayer chip inductor 500 described in Japanese Unexamined Patent Application Publication No. 2012-79870 has a problem that chipping is likely to occur in the multilayer body 501. As illustrated in FIG. 18, the insulating layers are laminated on the upper and lower sides of the outer electrodes 502. Thus the outer electrodes 502 are not exposed at the upper and lower surfaces of the multilayer body 501.
In the viewpoint of miniaturization of the multilayer chip inductor 500, the distance between each of the outer electrodes 502 and each of the upper and lower surfaces may preferably be reduced by a reduction in the thickness of the insulating layers laminated on the upper and lower sides of the outer electrodes 502. When the distance between each of the outer electrodes 502 and the upper or lower surface is reduced, chipping may occur in a portion above or below the outer electrode 502 in the multilayer body 501 in a barrel polishing process or the like for the multilayer body 501.
SUMMARY Technical Problem
It is an object of the present disclosure to provide an electronic component capable of suppressing the occurrence of chipping in a multilayer body.
Solution to Problem
An electronic component according to a first embodiment of the present disclosure includes a multilayer body in which a plurality of substantially rectangular insulating layers are laminated, the multilayer body having a bottom surface being a series of outer edges of the plurality of insulating layers, a first end surface being adjacent to the bottom surface and being a series of the outer edges of the plurality of insulating layers, and a first side surface being located on a first side in a laminating direction, a first outer electrode embedded in the multilayer body such that the first outer electrode is exposed from the multilayer body while extending across a boundary between the bottom surface and the first end surface, and a circuit element disposed in the multilayer body and connected to the first outer electrode. A distance between the first outer electrode and the first side surface in a corner between the bottom surface and the first end surface is longer than a distance between the first outer electrode and the first side surface in a portion where the first outer electrode and the circuit element are connected.
An electronic component according to a second embodiment of the present disclosure includes a multilayer body in which a plurality of substantially rectangular insulating layers are laminated, the multilayer body having a bottom surface being a series of outer edges of the plurality of insulating layers, a first end surface being adjacent to the bottom surface and being a series of the outer edges of the plurality of insulating layers, and a first side surface being located on a first side in a laminating direction, a first outer electrode embedded in the multilayer body such that the first outer electrode is exposed from the multilayer body while extending across a boundary between the bottom surface and the first end surface, and a circuit element disposed in the multilayer body and connected to the first outer electrode. The first outer electrode has a shape that protrudes in the laminating direction in a portion other than a corner between the bottom surface and the first end surface. The circuit element is connected to the portion protruding in the laminating direction in the first outer electrode.
Advantageous Effects of Disclosure
According to the present disclosure, the occurrence of chipping in a multilayer body can be suppressed.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an external perspective view of an electronic component according to an embodiment.
FIG. 2 is an exploded perspective view of the electronic component illustrated in FIG. 1.
FIG. 3 is a plan view in manufacturing the electronic component.
FIG. 4 is a plan view in manufacturing the electronic component.
FIG. 5 is a plan view in manufacturing the electronic component.
FIG. 6 is a plan view in manufacturing the electronic component.
FIG. 7 is a plan view in manufacturing the electronic component.
FIG. 8 is a plan view in manufacturing the electronic component.
FIG. 9 is a graph that represents experimental results.
FIG. 10 is an illustration of an outer electrode according to a first variation as seen from a negative side in an x-axis direction in plan view.
FIG. 11 is an illustration of an outer electrode according to a second variation as seen from the negative side in the x-axis direction in plan view.
FIG. 12 is an illustration of outer electrodes according to a third variation as seen from a negative side in a z-axis direction in plan view.
FIG. 13 is an illustration of outer electrodes according to a fourth variation as seen from the negative side in the z-axis direction in plan view.
FIG. 14 is an illustration of outer electrodes according to a fifth variation as seen from the negative side in the z-axis direction in plan view.
FIG. 15 illustrates a route according to the first variation.
FIG. 16 illustrates a route according to the second variation.
FIG. 17 is an exploded perspective view of an electronic component according to a variation.
FIG. 18 is a perspective view of a multilayer chip inductor described in Japanese Unexamined Patent Application Publication No. 2012-79870.
DETAILED DESCRIPTION
An electronic component according to an embodiment of the present disclosure is described below.
Configuration of Electronic Component
A configuration of an electronic component according to an embodiment is described below with reference to the drawings. FIG. 1 is an external perspective view of an electronic component 10 according to the embodiment. FIG. 2 is an exploded perspective view of the electronic component 10 illustrated in FIG. 1. Hereinafter, the laminating direction of the electronic component 10 is defined as a y-axis direction. The direction in which the long sides of the electronic component 10 extend is defined as an x-axis direction, and the direction in which the short sides of the electronic component 10 extend is defined as a z-axis direction, as seen from the y-axis direction in plan view.
As illustrated in FIGS. 1 and 2, the electronic component 10 includes a multilayer body 12, outer electrodes 14 a and 14 b, extended conductors 40 a and 40 b, and a coil L (circuit element).
As illustrated in FIG. 2, the multilayer body 12 includes a plurality of insulating layers 16 a to 16 p laminated and arranged in this order from the negative side toward the positive side in the y-axis direction and has a substantially rectangular parallelepiped shape. The multilayer body 12 has an upper surface S1, a bottom surface S2, end surfaces S3 and S4, and side surfaces S5 and S6. The upper surface S1 is the positive-side surface of the multilayer body 12 in the z-axis direction. The bottom surface S2 is the negative-side surface of the multilayer body 12 in the z-axis direction and is a mounting surface that faces a circuit board when the electronic component 10 is mounted on the circuit board. The upper surface S1 is a series of the long sides of the insulating layers 16 a to 16 p on the positive side in the z-axis direction, and the bottom surface S2 is a series of the long sides of the insulating layers 16 a to 16 p on the negative side in the z-axis direction. The end surfaces S3 and S4 are the negative-side surface and the positive-side surface of the multilayer body 12 in the x-axis direction, respectively. The end surface S3 is a series of the short sides of the insulating layers 16 a to 16 p on the negative side in the x-axis direction, and the end surface S4 is a series of the short sides of the insulating layers 16 a to 16 p on the positive side in the x-axis direction. The end surfaces S3 and S4 are adjacent to the bottom surface S2. The side surfaces S5 and S6 are the positive-side surface and the negative-side surface of the multilayer body 12 in the y-axis direction, respectively.
As illustrated in FIG. 2, each of the insulating layers 16 a to 16 p is substantially rectangular and may be made of an insulating material that has a borosilicate glass as a main ingredient. Hereinafter, the positive-side surface of each of the insulating layers 16 a to 16 p in the y-axis direction is referred to as a front surface, and the negative-side surface of each of the insulating layers 16 a to 16 p in the y-axis direction is referred to as a back surface.
The coil L includes coil conductors 18 a to 18 j and via-hole conductors v1 to v10. The coil L is configured by connecting the coil conductors 18 a to 18 j by the via-hole conductors v1 to v10. The coil L has a winding axis extending along the y-axis direction and has a spiral shape that is wound clockwise while extending from the negative side to the positive side in the y-axis direction as seen from the positive side in the y-axis direction in plan view.
The coil conductors 18 a to 18 j are disposed on the front surfaces of the insulating layers 16 d to 16 m, respectively. The coil conductors 18 a to 18 j overlap one another and form an annular route R as seen in the y-axis direction in plan view. The route R has a substantially isosceles trapezoid shape in which the upper base is longer than the lower base. The two corners on the lower base and their surroundings in the route R are recessed inward in the route R so as not to be in contact with the outer electrodes 14 a and 14 b.
Each of the coil conductors 18 a to 18 j has a structure in which the route R is partly cut and is a linear conductor wound clockwise. Hereinafter, the end portion of each of the coil conductors 18 a to 18 j on the downstream side in the clockwise direction as seen from the positive side in the y-axis direction in plan view is referred to simply as the downstream end, and the end portion of each of the coil conductors 18 a to 18 j on the upstream side in the clockwise direction as seen from the positive side in the y-axis direction in plan view is referred to simply as the upstream end.
The coil conductors 18 a to 18 j having the above-described configuration may be made of a conductive material whose main ingredient is silver.
The via-hole conductors v1 to v4 extend through the insulating layers 16 e to 16 h, respectively, along the y-axis direction. The via-hole conductors v5 and v6 extend through the insulating layer 16 i along the y-axis direction. The via-hole conductors v7 to v10 extend through the insulating layers 16 j to 16 m, respectively, along the y-axis direction.
The via-hole conductor v1 connects the downstream end of the coil conductor 18 a and the upstream end of the coil conductor 18 b. The via-hole conductor v2 connects the downstream end of the coil conductor 18 b and the upstream end of the coil conductor 18 c. The via-hole conductor v3 connects the downstream end of the coil conductor 18 c and the upstream end of the coil conductor 18 d. The via-hole conductor v4 connects the downstream end of the coil conductor 18 d and the upstream end of the coil conductor 18 e.
The via-hole conductor v5 connects the negative-side end portion of the upper base of the coil conductor 18 e in the x-axis direction and the upstream end of the coil conductor 18 f. The via-hole conductor v6 connects the downstream end of the coil conductor 18 e and the positive-side end portion of the upper base of the coil conductor 18 f in the x-axis direction.
The via-hole conductor v7 connects the downstream end of the coil conductor 18 f and the upstream end of the coil conductor 18 g. The via-hole conductor v8 connects the downstream end of the coil conductor 18 g and the upstream end of the coil conductor 18 h. The via-hole conductor v9 connects the downstream end of the coil conductor 18 h and the upstream end of the coil conductor 18 i. The via-hole conductor v10 connects the downstream end of the coil conductor 18 i and the upstream end of the coil conductor 18 j.
The via-hole conductors v1 to v10 may be made of a conductive material whose main ingredient is silver.
As illustrated in FIG. 1, the outer electrode 14 a is embedded in the multilayer body 12 such that it is exposed from the multilayer body 12 while extending across the boundary between the bottom surface S2 and the end surface S3. The outer electrode 14 a is L-shaped as seen in the y-axis direction in plan view. As illustrated in FIG. 2, the outer electrode 14 a is a lamination of outer conductors 25 a to 25 j.
As illustrated in FIG. 2, the outer conductor 25 a is disposed on the front surface of the insulating layer 16 d. The outer conductor 25 a is substantially rectangular and lies in the vicinity of the center of the short side of the insulating layer 16 d on the negative side in the x-axis direction. As illustrated in FIG. 2, the outer conductors 25 b to 25 i extend through the insulating layers 16 e to 16 l, respectively, along the y-axis direction. The outer conductors 25 b to 25 i are L-shaped and are disposed in the respective corners at which the short sides of the insulating layers 16 e to 16 l on the negative side in the x-axis direction intersect with the long sides thereof on the negative side in the z-axis direction as seen in the y-axis direction in plan view. As illustrated in FIG. 2, the outer conductor 25 j extends through the insulating layer 16 m along the y-axis direction. The outer conductor 25 j is substantially rectangular and lies in the vicinity of the center of the short side of the insulating layer 16 m on the negative side in the x-axis direction. The outer conductors 25 a to 25 j are electrically connected together by being laminated.
The outer electrode 14 a is substantially rectangular at the end surface S3 as seen from the negative side in the x-axis direction in plan view. The outer conductors 25 b to 25 i have the same shape, whereas each of the outer conductors 25 a and 25 j is smaller than each of the outer conductors 25 b to 25 i. Accordingly, as illustrated in FIG. 1, the outer conductor 25 a protrudes from the long side of the portion where the outer electrode 14 a is exposed at the end surface S3 on the negative side in the y-axis direction, toward the negative side in the y-axis direction. Similarly, as illustrated in FIG. 1, the outer conductor 25 j protrudes from the long side of the portion where the outer electrode 14 a is exposed at the end surface S3 on the positive side in the y-axis direction, toward the positive side in the y-axis direction. That is, the outer electrode 14 a protrudes toward both sides in the y-axis direction in portions other than the corners between the bottom surface S2 and the end surface S3.
As illustrated in FIG. 1, the outer electrode 14 b is embedded in the multilayer body 12 such that it is exposed from the multilayer body 12 while extending across the boundary between the bottom surface S2 and the end surface S4. The outer electrode 14 b is L-shaped as seen in the y-axis direction in plan view. As illustrated in FIG. 2, the outer electrode 14 b is a lamination of outer conductors 35 a to 35 j.
As illustrated in FIG. 2, the outer conductor 35 a is disposed on the front surface of the insulating layer 16 d. The outer conductor 35 a is substantially rectangular and lies in the vicinity of the center of the short side of the insulating layer 16 d on the positive side in the x-axis direction. As illustrated in FIG. 2, the outer conductors 35 b to 35 i extend through the insulating layers 16 e to 16 l, respectively, along the y-axis direction. The outer conductors 35 b to 35 i are L-shaped and are disposed in the respective corners at which the short sides of the insulating layers 16 e to 16 l on the positive side in the x-axis direction intersect with the long sides thereof on the negative side in the z-axis direction as seen in the y-axis direction in plan view. As illustrated in FIG. 2, the outer conductor 35 j extends through the insulating layer 16 m along the y-axis direction. The outer conductor 35 j is substantially rectangular and lies in the vicinity of the center of the short side of the insulating layer 16 m on the positive side in the x-axis direction. The outer conductors 35 a to 35 j are electrically connected together by being laminated.
The outer electrode 14 b is substantially rectangular at the end surface S4 as seen from the positive side in the x-axis direction in plan view. The outer conductors 35 b to 35 i have the same shape, whereas each of the outer conductors 35 a and 35 j is smaller than each of the outer conductors 35 b to 35 i. Accordingly, as illustrated in FIG. 1, the outer conductor 35 a protrudes from the long side of the portion where the outer electrode 14 b is exposed at the end surface S4 on the negative side in the y-axis direction, toward the negative side in the y-axis direction. Similarly, as illustrated in FIG. 1, the outer conductor 35 j protrudes from the long side of the portion where the outer electrode 14 b is exposed at the end surface S4 on the positive side in the y-axis direction, toward the positive side in the y-axis direction. That is, the outer electrode 14 a protrudes toward both sides in the y-axis direction in portions other than the corners between the bottom surface S2 and the end surface S4.
The extended conductor 40 a is disposed on the front surface of the insulating layer 16 d and connects the end portion of the coil conductor 18 a on the upstream side in the clockwise direction and the outer conductor 25 a. The extended conductor 40 a does not overlap the route R. The coil conductor 18 a, which is positioned on the most negative side in the y-axis direction, is connected to the outer electrode 14 a. The outer conductor 25 a, to which the extended conductor 40 a is connected, does not reach the corner between the bottom surface S2 and the end surface S3. In this manner, the coil L is connected to a portion in the outer electrode 14 a that protrudes in the y-axis direction (that is, outer conductor 25 a).
The extended conductor 40 b is disposed on the front surface of the insulating layer 16 m and connects the end portion of the coil conductor 18 j on the downstream side in the clockwise direction and the outer conductor 35 j. The extended conductor 40 b does not overlap the route R. The coil conductor 18 j, which is positioned on the most positive side in the y-axis direction, is connected to the outer electrode 14 b. The outer conductor 35 j, to which the extended conductor 40 b is connected, does not reach the corner between the bottom surface S2 and the end surface S4. In this manner, the coil L is connected to a portion in the outer electrode 14 b that protrudes in the y-axis direction (that is, outer conductor 35 j).
In the electronic component 10 having the above-described configuration, a distance D1 between the outer electrode 14 a and the side surface S6 in the corner between the bottom surface S2 and the end surface S3 is longer than a distance D2 between the outer conductor 25 a, which is the portion where the outer electrode 14 a and the coil L are connected, and the side surface S6. A distance D3 between the outer electrode 14 a and the side surface S5 in the corner between the bottom surface S2 and the end surface S3 is longer than a distance D4 between the outer conductor 25 j and the side surface S5. Each of the distances D1 and D3 may preferably be equal to or longer than 10 μm.
The corners of the multilayer body 12 in the electronic component 10 are rounded by chamfering. Accordingly, the distance between the outer electrode 14 a and the side surface S6 in the corner between the bottom surface S2 and the end surface S3 is the shortest distance from the outer electrode 14 a to the intersection of an extension line of the ridge line between the bottom surface S2 and the end surface S3 and a plane extended from the side surface S6. Similarly, the distance between the outer electrode 14 a and the side surface S5 in the corner between the bottom surface S2 and the end surface S3 is the shortest distance from the outer electrode 14 a to the intersection of an extension line of the ridge line between the bottom surface S2 and the end surface S3 and a plane extended from the side surface S5.
A distance D5 between the outer electrode 14 b and the side surface S6 in the corner between the bottom surface S2 and the end surface S4 is longer than a distance D6 between the outer conductor 35 a and the side surface S6. A distance D7 between the outer electrode 14 b and the side surface S5 in the corner between the bottom surface S2 and the end surface S4 is longer than a distance D8 between the outer conductor 35 j, which is the portion where the outer electrode 14 b and the coil L are connected, and the side surface S5. Each of the distances D5 and D7 may preferably be equal to or longer than 10 μm.
The distance between the outer electrode 14 b and the side surface S6 in the corner between the bottom surface S2 and the end surface S4 is the shortest distance from the outer electrode 14 b to the intersection of an extension line of the ridge line between the bottom surface S2 and the end surface S4 and a plane extended from the side surface S6. Similarly, the distance between the outer electrode 14 b and the side surface S5 in the corner between the bottom surface S2 and the end surface S4 is the shortest distance from the outer electrode 14 b to the intersection of an extension line of the ridge line between the bottom surface S2 and the end surface S4 and a plane extended from the side surface S5.
Method for Manufacturing Electronic Component
A method for manufacturing the electronic component 10 according to the present embodiment is described below with reference to the drawings. FIGS. 3 to 8 are plan views in manufacturing the electronic component 10.
First, as illustrated in FIG. 3, insulating paste layers 116 a to 116 d are formed by repeatedly applying the insulating paste whose main ingredient is a borosilicate glass by screen-printing. The insulating paste layers 116 a to 116 d are paste layers that are to be the insulating layers 16 a to 16 d, which are external insulating layers positioned outside the coil L.
Next, as illustrated in FIG. 4, the coil conductors 18 a and the outer conductors 25 a and 35 a are formed by a photolithographic process. Specifically, a conductive paste layer is formed on the insulating paste layer 116 d by applying photosensitive conductive paste having silver as a metal main ingredient by screen-printing. Then, the conductive paste layer is irradiated with ultraviolet rays or the like through a photomask and is developed by using an alkali solution or the like. In this manner, the outer conductors 25 a and 35 a and the coil conductors 18 a are formed on the insulating paste layer 116 d.
Next, as illustrated in FIG. 5, an insulating paste layer 116 e with apertures h1 and via holes H1 is formed by a photolithographic process. Specifically, an insulating paste layer is formed on the insulating paste layer 116 d by applying photosensitive insulating paste by screen-printing. Then, the insulating paste layer is irradiated with ultraviolet rays or the like through a photomask and is developed by using an alkali solution or the like. The insulating paste layer 116 e is a paste layer that is to be the insulating layer 16 e. Each of the apertures h1 is a cruciform hole in which four outer conductors 25 b or four outer conductors 35 b are combined.
Next, as illustrated in FIG. 6, the coil conductors 18 b, outer conductors 25 b and 35 b, and via-hole conductors v1 are formed by a photolithographic process. Specifically, a conductive paste layer is formed on the insulating paste layer 116 e and inside the apertures h1 and via holes H1 by applying photosensitive conductive paste having silver as a metal main ingredient by screen-printing. Then, the conductive paste layer is irradiated with ultraviolet rays or the like through a photomask and is developed by using an alkali solution or the like. In this manner, the outer conductors 25 b and 35 b are formed inside the apertures h1, the via-hole conductors v1 are formed inside the via holes H1, and the coil conductors 18 b are formed on the insulating paste layer 116 e.
After that, insulating paste layers 116 f to 116 m, the coil conductors 18 c to 18 j, outer conductors 25 c to 25 j and 35 c to 35 j, and via-hole conductors v2 to v10 are formed by repeating the same processes as those illustrated in FIGS. 5 and 6. In this manner, as illustrated in FIG. 7, the coil conductors 18 j and outer conductors 25 j and 35 j are formed on the insulating paste layer 116 m.
Next, as illustrated in FIG. 8, insulating paste layers 116 n to 116 p are formed by repeating the application of the insulating paste by screen-printing. The insulating paste layers 116 n to 116 p are paste layers that are to be the insulating layers 16 n to 16 p, which are external insulating layers positioned outside the coil L. A mother multilayer body 112 is obtained through the above-described processes.
Next, the mother multilayer body 112 is cut into a plurality of unfired multilayer bodies 12 by using a dicing machine or the like. In the process for cutting the mother multilayer body 112, the outer electrodes 14 a and 14 b are exposed from each of the multilayer bodies 12 at surfaces formed by the cutting.
Next, the unfired multilayer bodies 12 are fired under a predetermined condition, and the fired multilayer bodies 12 are obtained. Then, the multilayer bodies 12 are subjected to barrel polishing.
Lastly, tin plating having a thickness of 2 μm to 7 μm and nickel plating having a thickness of 2 μm to 7 μm are applied to the portions where the outer electrodes 14 a and 14 b are exposed from each of the multilayer bodies 12. The electronic components 10 are completed through the above-described processes.
Advantages
According to the electronic component 10 having the above-described configuration, the occurrence of chipping in the multilayer body 12 can be suppressed. More specifically, the distance D1 between the outer electrode 14 a and the side surface S6 in the corner between the bottom surface S2 and the end surface S3 is longer than the distance D2 between the outer conductor 25 a and the side surface S6. Thus the portion between the outer electrode 14 a and the side surface S6, that portion being likely to have chipping in the multilayer body 12, can have an increased thickness. Accordingly, the strength of the portion between the outer electrode 14 a and the side surface S6 can be improved. This leads to suppressing the occurrence of chipping in the multilayer body 12. For the same reason as for the portion between the outer electrode 14 a and the side surface S6, the occurrence of chipping in the multilayer body 12 can be suppressed in the portion between the outer electrode 14 a and the side surface S5, the portion between the outer electrode 14 b and the side surface S5, and the portion between the outer electrode 14 b and the side surface S6.
According to the electronic component 10, the coil L can have an increased inductance value. More specifically, the coil conductor 18 a, which is positioned in the most negative side in the y-axis direction, is connected to the outer conductor 25 a, which is positioned in the most negative side in the y-axis direction in the outer electrode 14 a. Thus the end portion of the coil L on the negative side in the y-axis direction can be close to the side surface S6. This can lead to an increased length of the coil L in the y-axis direction and can lead to an increased inductance value of the coil L.
Similarly, the coil conductor 18 m, which is positioned on the most positive side in the y-axis direction, is connected to the outer conductor 35 j, which is positioned on the most positive side in the y-axis direction in the outer electrode 14 b. Thus the end portion of the coil L on the positive side in the y-axis direction can be close to the side surface S5. This can lead to an increased length of the coil L in the y-axis direction and can lead to an increased inductance value of the coil L. As described above, according to the electronic component 10, the occurrence of chipping in the multilayer body 12 can be suppressed, and the inductance value of the coil L can be increased.
The inventor conducted an experiment described below to find preferable values of the distances D1, D3, D5, and D7. More specifically, three kinds of the electronic components 10 in which each of the distances D1, D3, D5, and D7 was 4 μm, 18 μm, and 33 μm were produced, and 125 units were produced for each of the three kinds of the electronic components 10. Hereinafter, the electronic components 10 in which each of the distances D1, D3, D5, and D7 is 4 μm are referred to as first samples, the electronic components 10 in which each of the distances D1, D3, D5, and D7 is 18 μm are referred to as second samples, and the electronic components 10 in which each of the distances D1, D3, D5, and D7 is 33 μm are referred to as third samples. The description in which each of the distances D1, D3, D5, and D7 was 4 μm, 18 μm, and 33 μm means that the average value of each of the distances D1, D3, D5, and D7 in the 125 units is 4 μm, 18 μm, and 33 μm. The number of each of the first to third samples having chipping in the multilayer bodies 12 that occurred in barrel polishing in the manufacturing process was counted.
FIG. 9 is a graph that represents experimental results. The vertical axis indicates the number of units in which chipping occurred (chipping occurrence number), and the horizontal axis indicates the distances D1, D3, D5, and D7 (distance). In FIG. 9, an error bar of 2σ for the area where each of the distances D1, D3, D5, and D7 falls within a range of 2σ is illustrated.
FIG. 9 reveals that the chipping occurrence number reduces with an increase in the distance. Chipping occurred in some units in the first samples, in which the distance was 4 μm, whereas no chipping occurred in the second samples, in which the distance was 18 μm, and in the third samples, in which the distance was 33 μm. Accordingly, the distances D1, D3, D5, and D7 may preferably be equal to or longer than 18 μm. The error bar of the range 26 for the second samples is in the range of from 10 μm to 25 μm. That is, the distances D1, D3, D5, and D7 in 95.5% of the second samples fall within the range of from 10 μm to 25 μm. Because the number of units tested in the experiment is 125, from the probability, at least two units among the second samples are considered to have the distances D1, D3, D5, and D7 being equal to or smaller than 10 μm. Because chipping did not occur in any of the 125 second samples, it is confirmed that no chipping occurs when each of the distances D1, D3, D5, and D7 is equal to or longer than at least 10 μm.
Variations
The outer electrodes 14 a and 14 b according to a first variation are described below with reference to FIG. 10. FIG. 10 is an illustration of the outer electrode 14 a according to the first variation as seen from the negative side in the x-axis direction in plan view.
In the outer electrode 14 a according to the first variation, the outer conductor 25 a protrudes from the long side of the portion where the outer electrode 14 a is exposed at the end surface S3 on the negative side in the y-axis direction, toward the negative side in the y-axis direction. In contrast, the outer conductor 25 j does not protrude from the long side of the portion where the outer electrode 14 a is exposed at the end surface S3 on the positive side in the y-axis direction, toward the positive side in the y-axis direction. As in this example, it is merely required that the portion connected to the coil L in the outer electrode 14 a (that is, outer conductor 25 a) protrude from the long side of the portion where the outer electrode 14 a is exposed at the end surface S3 on the negative side in the y-axis direction, toward the negative side in the y-axis direction, and it is not required that the portion not connected to the coil L in the outer electrode 14 a (that is, outer conductor 25 j) protrude from the long side of the portion where the outer electrode 14 a is exposed at the end surface S3 on the negative side in the y-axis direction, toward the negative side in the y-axis direction. The outer electrode 14 b may have the same structure as in the outer electrode 14 a illustrated in FIG. 10.
Next, the outer electrodes 14 a and 14 b according to a second variation are described with reference to FIG. 11. FIG. 11 is an illustration of the outer electrode 14 a according to the second variation as seen from the negative side in the x-axis direction in plan view.
In the outer electrode 14 a according to the second variation, the outer conductor 25 a protrudes from the long side of the portion where the outer electrode 14 a is exposed at the end surface S3 on the negative side in the y-axis direction, toward the negative side in the y-axis direction. The outer conductor 25 a reaches the side surface S6. The outer electrode 14 b may have the same structure as in the outer electrode 14 a illustrated in FIG. 11.
Next, the outer electrodes 14 a and 14 b according to a third variation are described with reference to FIG. 12. FIG. 12 is an illustration of the outer electrodes 14 a and 14 b according to the third variation as seen from the negative side in the z-axis direction in plan view.
The short side of the outer electrode 14 a on the positive side in the x-axis direction may be gently curved such that it protrudes toward the positive side in the x-axis direction as seen from the negative side in the z-axis direction in plan view. Similarly, the short side of the outer electrode 14 b on the negative side in the x-axis direction may be gently curved such that it protrudes toward the negative side in the x-axis direction as seen from the negative side in the z-axis direction in plan view.
Next, the outer electrodes 14 a and 14 b according to a fourth variation are described with reference to FIG. 13. FIG. 13 is an illustration of the outer electrodes 14 a and 14 b according to the fourth variation as seen from the negative side in the z-axis direction in plan view.
The end portion in the outer electrode 14 a on the positive side in the x-axis direction may protrude toward both sides in the y-axis direction. Similarly, the end portion in the outer electrode 14 b on the negative side in the x-axis direction may protrude toward both sides in the y-axis direction. The extended conductors 40 a and 40 b may preferably be connected to the portions protruding toward both sides in the y-axis direction in the outer electrodes 14 a and 14 b, respectively.
Next, the outer electrodes 14 a and 14 b according to a fifth variation are described with reference to FIG. 14. FIG. 14 is an illustration of the outer electrodes 14 a and 14 b according to the fifth variation as seen from the negative side in the z-axis direction in plan view.
Both ends of the short side of the outer electrode 14 a on the positive side in the x-axis direction may protrude toward the positive side in the x-axis direction. Similarly, both ends of the short side of the outer electrode 14 b on the negative side in the x-axis direction may protrude toward the negative side in the x-axis direction. The extended conductor 40 a may preferably be connected to the portion in the outer electrode 14 a protruding toward the positive side in the x-axis direction. The extended conductor 40 b may preferably be connected to the portion in the outer electrode 14 b protruding toward the negative side in the x-axis direction.
Next, a route Ra according to the first variation is described with reference to FIG. 15. FIG. 15 illustrates the route Ra according to the first variation.
The route Ra may be substantially rectangular. In the route Ra, the two corners of the long side on the negative side in the z-axis direction and their surroundings are recessed inward in the route Ra so as not to be in contact with the outer electrodes 14 a and 14 b.
Next, a route Rb according to the second variation is described with reference to FIG. 16. FIG. 16 illustrates the route Rb according to the second variation.
The route Rb may be substantially hexagonal.
Next, an electronic component 10 a according to a variation is described. FIG. 17 is an exploded perspective view of the electronic component 10 a according to the variation.
The electronic component 10 includes the coil L as the circuit element. The electronic component 10 a includes a capacitor C as the circuit element. More specifically, the capacitor C includes capacitor conductors 50 a to 50 f.
The capacitor conductors 50 a to 50 f are disposed on the front surfaces of the insulating layers 16 d to 16 i, respectively, and are substantially rectangular. Of the capacitor conductors 50 a to 50 f, the neighboring ones in the y-axis direction are opposed to each other through the insulating layers 16 e to 16 i.
The outer conductors 25 a to 25 e in the electronic component 10 a have the same shapes as in the outer conductors 25 a to 25 e in the electronic component 10, respectively. The outer conductor 25 f in the electronic component 10 a has the same shape as in the outer conductor 25 j in the electronic component 10. The outer conductors 25 b, 25 d, and 25 f are connected to the capacitor conductors 50 b, 50 d, and 50 f, respectively.
The outer conductors 35 a to 35 e in the electronic component 10 a have the same shapes as in the outer conductors 35 a to 35 e in the electronic component 10, respectively. The outer conductor 35 f in the electronic component 10 a has the same shape as in the outer conductor 35 j in the electronic component 10. The outer conductors 35 a, 35 c, and 35 e are connected to the capacitor conductors 50 a, 50 c, and 50 e, respectively.
The occurrence of chipping in the multilayer body 12 can also be suppressed in the electronic component 10 a having the above-described configuration, as in the electronic component 10.
The capacitor C in the electronic component 10 a can have an increased capacitance. More specifically, the capacitor conductor 50 a, which is positioned on the most negative side in the y-axis direction, is connected to the outer conductor 35 a, which is positioned on the most negative side in the y-axis direction in the outer electrode 14 b. Thus the end portion of the capacitor C on the negative side in the y-axis direction can be close to the side surface S6. This can lead to an increased number of laminated layers in the capacitor C and lead to an increased capacitance of the capacitor C.
The capacitor conductor 50 f, which is positioned on the most positive side in the y-axis direction, is connected to the outer conductor 25 f, which is positioned on the most positive side in the y-axis direction in the outer electrode 14 a. Thus the end portion of the capacitor C on the positive side in the y-axis direction can be close to the side surface S5. This can lead to an increased number of laminated layers in the capacitor C and lead to an increased capacitance of the capacitor C.
Other Embodiment
An electronic component according to the present disclosure is not limited to the electronic components 10 and 10 a in the above-described embodiment and may be changed within the scope of the disclosure.
The circuit element, which is the coil L in the electronic component 10 and is the capacitor C in the electronic component 10 a, may alternatively be a circuit element other than the coil L and the capacitor C, and it may be any combination thereof.
The coil L and the capacitor C, which are connected to the outer electrodes 14 a and 14 b at the end surfaces S3 and S4, may be connected at the bottom surface S2.
INDUSTRIAL APPLICABILITY
As described above, the present disclosure is useful in electronic components and, in particular, is advantageous in that the occurrence of chipping in a multilayer body can be suppressed.

Claims (1)

The invention claimed is:
1. An electronic component comprising:
a multilayer body in which a plurality of substantially rectangular insulating layers are laminated, the multilayer body having a bottom surface being a series of outer edges of the plurality of insulating layers, a first end surface being adjacent to the bottom surface and being a series of the outer edges of the plurality of insulating layers, a first side surface being located on a first side in a laminating direction, and a second side surface located on a side opposite to the first side surface;
a first outer electrode embedded in the multilayer body such that the first outer electrode is exposed from the multilayer body while extending across a boundary between the bottom surface and the first end surface; and
a circuit element disposed in the multilayer body and connected to the first outer electrode,
wherein a distance between the first outer electrode and the first side surface in a corner between the bottom surface and the first end surface is longer than a distance between the first outer electrode and the first side surface in a portion where the first outer electrode and the circuit element are connected, and
a distance between the first outer electrode and the second side surface in a corner between the bottom surface and the first end surface is equal to a distance between the first outer electrode and the second side surface in a portion where the first outer electrode and the circuit element are connected.
US14/837,525 2013-03-07 2015-08-27 Electronic component with multilayered body Active 2034-04-04 US10026538B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013044978 2013-03-07
JP2013-044978 2013-03-07
PCT/JP2014/055645 WO2014136843A1 (en) 2013-03-07 2014-03-05 Electronic component

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055645 Continuation WO2014136843A1 (en) 2013-03-07 2014-03-05 Electronic component

Publications (2)

Publication Number Publication Date
US20150371757A1 US20150371757A1 (en) 2015-12-24
US10026538B2 true US10026538B2 (en) 2018-07-17

Family

ID=51491352

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/837,525 Active 2034-04-04 US10026538B2 (en) 2013-03-07 2015-08-27 Electronic component with multilayered body

Country Status (2)

Country Link
US (1) US10026538B2 (en)
WO (1) WO2014136843A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210074468A1 (en) * 2016-08-10 2021-03-11 Murata Manufacturing Co., Ltd. Electronic component

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436126B2 (en) * 2016-04-05 2018-12-12 株式会社村田製作所 Electronic component and method for manufacturing electronic component
JP6658415B2 (en) * 2016-09-08 2020-03-04 株式会社村田製作所 Electronic components
JP6996087B2 (en) * 2017-02-22 2022-01-17 Tdk株式会社 Electronic components
JP6911583B2 (en) * 2017-06-30 2021-07-28 Tdk株式会社 Laminated electronic components
JP7174509B2 (en) 2017-08-04 2022-11-17 Tdk株式会社 Laminated coil parts
JP6665838B2 (en) * 2017-08-10 2020-03-13 株式会社村田製作所 Inductor components
JP6677228B2 (en) * 2017-08-31 2020-04-08 株式会社村田製作所 Coil parts
KR101983193B1 (en) 2017-09-22 2019-05-28 삼성전기주식회사 Coil component
JP2019096818A (en) 2017-11-27 2019-06-20 株式会社村田製作所 Stacked coil component
JP6753423B2 (en) * 2018-01-11 2020-09-09 株式会社村田製作所 Multilayer coil parts
JP7200499B2 (en) * 2018-04-26 2023-01-10 Tdk株式会社 Laminated coil parts
JP7434974B2 (en) * 2020-02-07 2024-02-21 Tdk株式会社 coil parts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214235A (en) * 1998-01-27 1999-08-06 Murata Mfg Co Ltd Laminated ceramic electronic component and their manufacture
JP2008060214A (en) 2006-08-30 2008-03-13 Murata Mfg Co Ltd Mounting structure of laminated ceramic electronic component
US20080257488A1 (en) * 2006-01-16 2008-10-23 Murata Manufacturing Co., Ltd. Method of manufacturing inductor
WO2011155240A1 (en) * 2010-06-09 2011-12-15 株式会社村田製作所 Electronic component and method of manufacturing thereof
JP2012079870A (en) * 2010-09-30 2012-04-19 Tdk Corp Electronic component
US20130015937A1 (en) * 2011-07-11 2013-01-17 Murata Manufacturing Co., Ltd. Electronic component and method of producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214235A (en) * 1998-01-27 1999-08-06 Murata Mfg Co Ltd Laminated ceramic electronic component and their manufacture
US20080257488A1 (en) * 2006-01-16 2008-10-23 Murata Manufacturing Co., Ltd. Method of manufacturing inductor
JP2008060214A (en) 2006-08-30 2008-03-13 Murata Mfg Co Ltd Mounting structure of laminated ceramic electronic component
WO2011155240A1 (en) * 2010-06-09 2011-12-15 株式会社村田製作所 Electronic component and method of manufacturing thereof
JP2012079870A (en) * 2010-09-30 2012-04-19 Tdk Corp Electronic component
US20130015937A1 (en) * 2011-07-11 2013-01-17 Murata Manufacturing Co., Ltd. Electronic component and method of producing same
JP2013038392A (en) 2011-07-11 2013-02-21 Murata Mfg Co Ltd Electronic component and manufacturing method of the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
International Search Report and Written Opinion of the International Searching Authority, PCT/JP2014/055645, dated May 27, 2014.
JP2012079870A, Apr. 2012, Machine Translation. *
JPH11214235A, Aug. 1999, Machine Translation. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210074468A1 (en) * 2016-08-10 2021-03-11 Murata Manufacturing Co., Ltd. Electronic component
US11769620B2 (en) * 2016-08-10 2023-09-26 Murata Manufacturing Co., Ltd. Electronic component

Also Published As

Publication number Publication date
US20150371757A1 (en) 2015-12-24
WO2014136843A1 (en) 2014-09-12

Similar Documents

Publication Publication Date Title
US10026538B2 (en) Electronic component with multilayered body
US11942259B2 (en) Electronic component
US9424980B2 (en) Electronic component and method of producing same
KR101182694B1 (en) Electronic component and method for manufacturing the same
US9058927B2 (en) Electronic component
US10176916B2 (en) Electronic component
US9911529B2 (en) Electronic component
US8072306B2 (en) Electronic component
US11011292B2 (en) Electronic component
US8514049B2 (en) Electronic component
JP2017073536A (en) Multilayer inductor
CN113096917B (en) Coil component
KR20180037894A (en) Method of manufacturing laminated coil component
JP2020119979A (en) Lamination coil component
KR102085591B1 (en) Chip type coil component and board for mounting the same
US9058923B2 (en) Electronic component and manufacturing method thereof
JP2020047894A (en) Lamination coil component
KR20150089211A (en) Chip-type Coil Component
JP2021125651A (en) Coil component
JP2021136336A (en) Laminated coil component
US11735347B2 (en) Multilayer coil component
US11842844B2 (en) Coil component

Legal Events

Date Code Title Description
AS Assignment

Owner name: MURATA MANUFACTURING CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAKEZAWA, KAORI;REEL/FRAME:036439/0668

Effective date: 20150819

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4