TWM651656U - 壓縮機之電機冷卻系統 - Google Patents

壓縮機之電機冷卻系統 Download PDF

Info

Publication number
TWM651656U
TWM651656U TW112211379U TW112211379U TWM651656U TW M651656 U TWM651656 U TW M651656U TW 112211379 U TW112211379 U TW 112211379U TW 112211379 U TW112211379 U TW 112211379U TW M651656 U TWM651656 U TW M651656U
Authority
TW
Taiwan
Prior art keywords
pipeline
motor
cooler
compressor
liquid
Prior art date
Application number
TW112211379U
Other languages
English (en)
Inventor
黃博正
郭以理
林宏哲
Original Assignee
復盛股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 復盛股份有限公司 filed Critical 復盛股份有限公司
Priority to TW112211379U priority Critical patent/TWM651656U/zh
Publication of TWM651656U publication Critical patent/TWM651656U/zh

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一種壓縮機之電機冷卻系統包含一電機、一冷卻器與一連通管線。電機包含一殼體、一容置空間、一軸承座組、一電機定子及一電機轉子。容置空間形成於殼體內側且貫穿殼體的兩端部。軸承座組連接殼體的這些端部。電機定子位於殼體內。電機轉子穿設容置空間且鄰近電機定子,用以相對電機定子旋轉。冷卻器位於電機之外。連通管線包含第一管線及第二管線。第一管線及第二管線分別設置於電機及冷卻器之間,且分別連通冷卻器及容置空間。第一管線讓容置空間內之氣流流至冷卻器,及第二管線讓經過冷卻器之氣流流入容置空間內,以形成一循環封閉迴路。

Description

壓縮機之電機冷卻系統
本創作有關於一種冷卻系統,尤指一種壓縮機之電機冷卻系統。
一般來說,傳統空氣壓縮機之冷卻機制初步包含封閉內循環設計或者分體式流道設計者。具有封閉內循環設計之空氣壓縮機係在其電機內部直接形成交錯排列之氣體流道與液體流道,然而,氣體流道與液體流道時常產生一定之堵塞,從而提高電機過熱而燒毀的風險。
反觀,具有分體式流道設計之空氣壓縮機包含彼此結合之電機殼體及軸承座組。電機殼體上所凹設之冷卻流道與軸承座組上所凹設之冷卻流道相互閉合後才會組成完整的冷卻流道。然而,由於電機殼體及軸承座組彼此皆有結合面,存在冷卻流道內之工作液體從結合面洩漏之風險,從而造成空氣壓縮機之損毀。
由此可見,上述技術顯然仍存在不便與缺陷,而有待加以進一步改良。因此,如何能有效地解決上述不便與缺陷,實屬當前重要研發課題之一,亦成爲當前相關領域亟需改進的目標。
本創作提出一種壓縮機之電機冷卻系統,用以解決以上先前技術所提到的困難。
依據本創作之一實施例中,一種壓縮機之電機冷卻系統包含一電機、一冷卻器與一連通管線。電機包含一殼體、一容置空間、一軸承座組、一電機定子及一電機轉子。容置空間形成於殼體的內側,且貫穿殼體的兩端部,軸承座組分別連接殼體的此些端部,電機定子設置於殼體內,電機轉子穿設容置空間且鄰近電機定子,用以相對電機定子旋轉。冷卻器位於電機之外。連通管線包含一第一管線及至少一第二管線。第一管線及第二管線分別設置於電機及冷卻器之間,且分別連通容置空間及冷卻器,該第一管線供容置空間內之氣流流至冷卻器。第二管線供經過冷卻器之氣流流入容置空間內,以形成一循環封閉迴路。
依據本創作一或複數個實施例,上述之壓縮機之電機冷卻系統更包含一液冷流道。液冷流道設置於殼體內,且圍繞電機定子及容置空間,液冷流道之二相對端分別具有一入口與一出口。連通管線更包含一第三管線及一第四管線。第三管線連通液冷流道之入口,以供工作液體流入液冷流道內。第四管線連通液冷流道之出口,以供工作液體流出液冷流道。第三管線與第四管線至少其中之一直接連通冷卻器。
依據本創作一或複數個實施例,在上述之壓縮機之電機冷卻系統中,液冷流道為一體式液冷管。一體式液冷管固定地埋設於殼體內部且與軸承座組保持間隔。一體式液冷管圍繞電機轉子及電機定子。一體式液冷管之兩端分別連通第三管線與第四管線。
依據本創作一或複數個實施例,在上述之壓縮機之電機冷卻系統中,一體式液冷管為一體成形之多個U型續接管且依一軸向延伸圍繞電機定子。
依據本創作一或複數個實施例,上述之壓縮機之電機冷卻系統中,一體式液冷管為一體成形之螺旋管且依一軸向延伸圍繞電機定子。
依據本創作一或複數個實施例,在上述之壓縮機之電機冷卻系統中,冷卻器包含一分別連通第一管線、第二管線、第三管線與第四管線之前端熱交換裝置。
依據本創作一或複數個實施例,在上述之壓縮機之電機冷卻系統中,冷卻器固定於電機相對容置空間之一外表面。
依據本創作一或複數個實施例,在上述之壓縮機之電機冷卻系統中,冷卻器與電機之間相隔有一間距。
依據本創作一或複數個實施例,在上述之壓縮機之電機冷卻系統中,容置空間更包含一第一容置空間及一第二容置空間,第一容置空間形成於殼體的內側且貫穿殼體的兩端部,第二容置空間自第一容置空間延伸且位於軸承座組內,其中第二容置空間與第一管線的一端連通。
依據本創作一或複數個實施例,上述之壓縮機之電機冷卻系統更包含至少一風扇元件。風扇元件設置於軸承座組的第二容置空間內,同軸套設於電機轉子上,且與第一管線對應設置,用以將容置空間內之氣流經第一管線送入冷卻器。
依據本創作一或複數個實施例,在上述之壓縮機之電機冷卻系統中,第二管線的一端連通殼體內的容置空間,且第二管線的此端位於電機定子遠離第一管線的一端部之鄰近處。
依據本創作一或複數個實施例,在上述之壓縮機之電機冷卻系統中,至少一第二管線更包含多個第二管線。每個第二管線的一端連通殼體內的容置空間,且這些第二管線之這些端分別位於電機定子的兩端部之鄰近處。
依據本創作一或複數個實施例,電機冷卻系統更包含一後端熱交換裝置。後端熱交換裝置透過第四管線連通液冷流道之出口,以及透過一第五管線連通該冷卻器。
依據本創作一或複數個實施例,在上述之壓縮機之電機冷卻系統中,後端熱交換裝置用以透過第三管線將工作液體送入電機內之液冷流道、透過第四管線將液冷流道內之工作液體送入冷卻器內,以及透過第五管線將該冷卻器內之工作液體送回後端熱交換裝置。
依據本創作一或複數個實施例,在上述之壓縮機之電機冷卻系統中,後端熱交換裝置用以透過第五管線將工作液體送入冷卻器內、透過第三管線將冷卻器內之工作液體送入電機內之液冷流道,以及透過第四管線將液冷流道內之工作液體送回後端熱交換裝置。
如此,透過以上實施例之所述架構,本創作之壓縮機之電機冷卻系統是透過設置於電機之外的冷卻器,以立即冷卻容置空間內的氣流溫度,且氣流形成一循環封閉迴路以降低流道堵塞的發生,並有效帶走容置空間及電機轉子產生的熱能,進而延長電機軸承壽命;此外,本創作更透過設置於殼體內的液冷流道,利用工作液體帶走殼體和電機定子產生的熱能,並更進一步在冷卻器內與氣流進行熱交換並降低氣流溫度,最後再經由後端熱交換裝置降低工作液體的溫度,完整地帶走電機內的熱量,達到高效電機冷卻的效果。本創作之壓縮機之電機冷卻系統不僅能夠因應現場環境修改其換熱效率,更能快速且有效地帶走電機內的熱能,從而降低電機過熱而燒毀的風險。
以上所述僅係用以闡述本創作所欲解決的問題、解決問題的技術手段、及其產生的功效等等,本創作之具體細節將在下文的實施方式及相關圖式中詳細介紹。
以下將以圖式揭露本創作之複數個實施例,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本創作。也就是說,在本創作各實施例中,實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。
第1A圖為本創作一實施例之壓縮機之電機冷卻系統10的側面示意圖暨其使用操作示意圖。第1B圖為本創作一實施例之壓縮機之電機冷卻系統10的側面示意圖暨其使用操作示意圖。第2圖為第1A圖之壓縮機之電機冷卻系統10的橫剖圖。如第1A圖與第2圖所述,在本實施例中,壓縮機之電機冷卻系統10包含一電機100、一冷卻器300、至少一風扇元件160與一連通管線400。電機100包含一殼體110、一容置空間120、一軸承座組130、一電機定子140及一電機轉子150。所述容置空間120共同形成於殼體110及軸承座組130的內側,且容置空間120包含彼此接通之第一容置空間121及第二容置空間122。第一容置空間121形成於殼體110的內側,且貫穿殼體110的兩端部。軸承座組130分別連接殼體110的兩端部,且第二容置空間122自第一容置空間121延伸且位於軸承座組130內。更具體地,殼體110之長軸方式(參考軸向L)與第一容置空間121之長軸方式(參考軸向L)相互平行,然而,本創作不限於此。軸承座組130連接殼體110。電機定子140設置於殼體110上。電機轉子150穿設第一容置空間121且鄰近電機定子140,且可轉動地設於軸承座組130上,用以相對電機定子140旋轉。冷卻器300位於電機100之外。連通管線400包含一第一管線410及一第二管線420。第一管線410及第二管線420分別設置於電機100及冷卻器300之間。更具體地,第一管線410之二相對端分別接通容置空間120之第二容置空間122及冷卻器300。第二管線420之二相對端分別接通容置空間120之第一容置空間121及冷卻器300,其中第二管線420位於電機定子140遠離第一管線410的一端部之鄰近處。風扇元件160位於軸承座組130之第二容置空間122內,同軸套設於電機轉子150上,且面向第一管線410。故,上述電機100、冷卻器300、風扇元件160與連通管線400共同形成一循環封閉迴路。
如此,當電機轉子150於第一容置空間121內相對電機定子140繞著軸向L旋轉時,風扇元件160產生氣流(參考實線箭頭A1),並使氣流將第二容置空間122內及電機轉子150之熱能經第一管線410送入冷卻器300內。在氣流經過冷卻器300,並接受冷卻器300之熱交換之後,此氣流(參考實線箭頭A2)再次經第二管線420回到第一容置空間121內,從而移除電機100及電機轉子150上之大部分熱能。
更具體地,在本實施例中,軸承座組130包含前座體131、後座體132與後蓋133,電機100設置於前座體131與後座體132之間,且後蓋133覆蓋後座體132相對前座體131之一面,使得後座體132設置於前座體131與後蓋133之間,第一容置空間121分別連通前座體131與後座體132,且後座體132將風扇元件160容置於其中。第一管線410與第二管線420是分別利用管線連接件與電機100連接。其中,第一管線410之一端連通後座體132內的第二容置空間122,且面向風扇元件160,且第二管線420之一端連通殼體110內的第一容置空間121。然而,本創作不限於此,其他實施例中,第一管線410與第二管線420亦可沿電機100之徑向R穿過並伸入電機100內,並分別與第二容置空間122及第一容置空間121連通。
其中,風扇元件160的數量至少為一個,風扇元件數量越多,則送出第二容置空間122的氣流(參考實線箭頭A1)壓力越大。此外,風扇元件160的類型為離心扇或軸流扇,當風扇元件160為離心扇時,第一管線410沿著電機100之徑向R與風扇元件160對應設置;當風扇元件160為軸流扇時,第一管線410沿著電機100之軸向L與風扇元件160對應設置。除此之外,壓縮機的種類可為離心式壓縮機、渦卷式壓縮機或螺旋式壓縮機。
此外,在本實施例中,舉例來說,冷卻器300並非固定連接電機100,意即,冷卻器300與殼體110之間具有一相隔距離G;也就是說,冷卻器300是透過一外部安裝結構(例如:安裝架或安裝板)設置於電機100附近,然而,本創作不限於此。於其他實施例中,更可以利用直接或間接的安裝方式,將冷卻器300設置於電機100外周緣(如第4A圖及第4B圖所示),具體而言,冷卻器300固定於殼體110相對第一容置空間121之外表面111。此外,第二管線420不具只有單個,其他實施例中,如第1B圖及第4B圖所示,第二管線420之數量亦可能為多數個彼此對應設置之第二管線420(例如2個)。其中,每個第二管線420的一端連通第一容置空間121,且分別位於電機定子140的兩端部之鄰近處。
再者,第3A圖為本創作一實施例之壓縮機之電機冷卻系統10的一體式液冷管210的立體圖。如第1A圖至第3A圖所述,壓縮機之電機冷卻系統10更包含一液冷流道200。液冷流道200設置於殼體110上,且圍繞電機定子140及第一容置空間121。液冷流道200之二相對端分別具有一入口(參考符號220,第3A圖)與一出口(參考端230,第3A圖)。連通管線400更包含一第三管線430及一第四管線440。第三管線430設置於電機100及冷卻器300之間,且第三管線430之一端連通液冷流道200之入口(參考符號220,第3A圖),以供工作液體流入位於殼體110內之液冷流道200。第四管線440之一端連通液冷流道200之出口(參考符號230,第3A圖),以供工作液體流出液冷流道200。其中,上述工作液體為冷卻用的純水或具有抗凍功能的冷卻水溶液等等。
更具體地,在本實施例中,第三管線430遠離液冷流道200之一端直接連通冷卻器300,另一端連通液冷流道200。第四管線440遠離液冷流道200之一端直接連通壓縮機之電機冷卻系統10之外的一後端熱交換裝置500,另一端連通液冷流道200。後端熱交換裝置500透過第四管線440連通液冷流道200之出口(參考符號230,第3A圖),以及透過一第五管線450直接連通冷卻器300。具體而言,後端熱交換裝置500用以透過第五管線450將工作液體送入冷卻器300內、透過第三管線430將冷卻器300內之工作液體送入電機100內之液冷流道200,以及透過第四管線440將液冷流道200內之工作液體送回後端熱交換裝置500。
須了解到,通過冷卻器300之工作液體更能夠有助於冷卻經過冷卻器300之氣流(參考實線箭頭A1),從而提高壓縮機之電機冷卻系統10對於電機轉子150之換熱效率。
液冷流道200為一體式液冷管210。一體式液冷管210固定地埋設於殼體110內部,且與軸承座組130保持間隔。一體式液冷管210圍繞第一容置空間121、電機轉子150及電機定子140。一體式液冷管210之兩端220、230即液冷流道200之入口與出口,分別連接第三管線430與第四管線440。一體式液冷管210依據一蛇行方式延伸(第3A圖),從而圍繞電機轉子150及電機定子140。一體式液冷管210為一體成形之多個U型續接管(參考標號211,第3A圖),且依一軸向L延伸圍繞電機定子140(第1A圖)。換句話說,一體式液冷管210包含多個S部分211,這些S部分211依序連接,並且繞著第一容置空間121而彎曲為環狀。舉例來說,一體式液冷管210為金屬所製成,例如為不鏽鋼、鋁、銅或鋅等材料,且殼體110為金屬所製成,例如為含鋁、銅或鋅等材料。然而,本創作不限於一體式液冷管210之外型與材料,其他實施例中,不同於第3A圖之液冷流道200之外型,第3B圖為本創作另一實施例的一體式液冷管210’的立體圖,一體式液冷管210也可能為一體成形之螺旋管或其他類似形狀(如第3B圖所示)。如第3B圖所示,液冷流道200’之一體式液冷管210’為一體成形之螺旋管。故,工作液體能夠從一體式液冷管210’之一端220’(即入口)進入一體式液冷管210’內,並從其另端230’(即出口)離開一體式液冷管210’。
如此,由於電機定子140之部分熱能會傳至殼體110上,當第三管線430內之工作液體(參考虛線箭頭D1) 從一體式液冷管210之一端220 (即入口)被送入殼體110內部之一體式液冷管210時,工作液體能夠沿著一體式液冷管210之延伸方向環繞第一容置空間121,並將殼體110上之熱能從一體式液冷管210之另端230(即出口)送出殼體110,使得工作液體(參考虛線箭頭D2) 從第四管線440被送至後端熱交換裝置500,以接受後端熱交換裝置500之熱交換,從而移除電機100及電機定子140之熱能。後端熱交換裝置500接著將冷卻後之工作液體(參考虛線箭頭D3)從第五管線450送至冷卻器300,以便工作液體(參考虛線箭頭D1)陸續回到殼體110內部之一體式液冷管210內。
在其他實施例中,第1A圖至第3A圖中的工作液體帶走電機定子140熱能的方式,更可如第4A圖所示,其第三管線430遠離液冷流道200之一端直接連通後端熱交換裝置500,另一端連通液冷流道200之入口(參考符號220,第3A圖)。第四管線440遠離液冷流道200之一端直接連通冷卻器300,另一端連通液冷流道200之出口(參考符號230,第3A圖)。後端熱交換裝置500透過第五管線450直接連通冷卻器300。由於電機定子140之部分熱能會傳至殼體110上,當第三管線430內之工作液體(參考虛線箭頭D3) 從一體式液冷管210之一端220(即入口)被送入殼體110內部之一體式液冷管210時,工作液體能夠沿著一體式液冷管210之延伸方向環繞第一容置空間121,並將殼體110上之熱能從一體式液冷管210之另端230(即出口)送出殼體110,使得工作液體(參考虛線箭頭D1) 從第四管線440被送至冷卻器300,以接受冷卻器300之熱交換,從而移除電機100及電機定子140之熱能。冷卻器300接著將冷卻後之工作液體(參考虛線箭頭D2)從第五管線450送至後端熱交換裝置500,以便工作液體(參考虛線箭頭D3)沿著第三管線430陸續回到殼體110內部之一體式液冷管210內,完成工作液體的散熱循環。
更具體地,一體式液冷管210僅埋設且位於殼體110內,並非位於軸承座組130內,亦即一體式液冷管210與軸承座組130之前座體131及後座體132保持間隔。如此,由於一體式液冷管210不需流經前座體131或後座體132且無須結合兩者即能形成上述液冷流道200,故,於冷卻過程中,不存在工作液體在殼體110內或軸承座組130發生洩漏之風險,且於鑄造過程中,也不會受到模具耗損或沙心偏位而導致液冷流道200偏移進而產生洩漏的風險,可避免因工作流體洩漏而使空氣壓縮機造成損毀之發生。
在本實施例中,舉例來說,冷卻器300包含一前端熱交換裝置。前端熱交換裝置分別直接或間接連通第一管線410、第二管線420、第三管線430與第四管線440。前端熱交換裝置例如為冷媒熱交換器或氣冷式冷凝器等其他類似裝置,然而,本創作不限於此。
第4A圖為本創作一實施例之壓縮機之電機冷卻系統11的側面示意圖暨其使用操作示意圖。第4B圖為本創作一實施例之壓縮機之電機冷卻系統11的側面示意圖暨其使用操作示意圖。如第3A圖及第4A圖所述,本實施例之壓縮機之電機冷卻系統11與上述壓縮機之電機冷卻系統10大致相同,其特徵在於,冷卻器300直接固定於殼體110相對第一容置空間121之外表面111。此外,第三管線430遠離液冷流道200之一端直接連接後端熱交換裝置500,另一端連通液冷流道200之入口(參考符號220,第3A圖),第四管線440遠離液冷流道200之一端直接連接冷卻器300,另一端連通液冷流道200之出口(參考符號230,第3A圖),後端熱交換裝置500透過第五管線450直接連通冷卻器300。後端熱交換裝置500用以透過第三管線430將工作液體送入電機100內之液冷流道200,透過第四管線440將液冷流道200內之工作液體送入冷卻器300內,透過第五管線450將冷卻器300內之工作液體送回後端熱交換裝置500。
故,當工作液體(參考虛線箭頭D1)從第四管線440送出殼體110,並送至冷卻器300,以接受冷卻器300之熱交換,從而移除電機100及電機定子140之一部分熱能並與氣流(參考實線箭頭A1)進行熱交換;接著,冷卻器300將經過冷卻器300之工作液體(參考虛線箭頭D2)從第五管線450送至後端熱交換裝置500;待接受後端熱交換裝置500之熱交換,接著工作液體(參考虛線箭頭D3)從第三管線430回到殼體110內部之一體式液冷管210內,以進行上述之散熱工作。
除此之外,在其他實施例中,第4A圖中的工作液體帶走電機定子140熱能的方式,更可如第1A圖至第3A圖中所示,其第三管線430遠離液冷流道200之一端直接連通冷卻器300,另一端連通液冷流道200之入口(參考符號220,第3A圖)。其中,冷卻器300直接固定於殼體110相對第一容置空間121之外表面111。第四管線440遠離液冷流道200之一端直接連通後端熱交換裝置500,另一端連通液冷流道200之出口(參考符號230,第3A圖)。後端熱交換裝置500透過第五管線450直接連通冷卻器300。由於電機定子140之部分熱能會傳至殼體110上,當第三管線430內之工作液體(參考虛線箭頭D1) 從一體式液冷管210之一端220(即入口)被送入殼體110內部之一體式液冷管210時,工作液體能夠沿著一體式液冷管210之延伸方向環繞第一容置空間121,並將殼體110上之熱能從一體式液冷管210之另端230(即出口)送出殼體110,使得工作液體(參考虛線箭頭D2) 從第四管線440被送至後端熱交換裝置500,以接受後端熱交換裝置500之熱交換,從而移除電機100及電機定子140之熱能。後端熱交換裝置500接著將冷卻後之工作液體(參考虛線箭頭D3)從第五管線450送至冷卻器300進行再次熱交換,以便工作液體(參考虛線箭頭D1)再沿著第三管線430陸續回到殼體110內部之一體式液冷管210內,完成工作液體的散熱循環。
此外,第二管線420不只具有單個(第4A圖),其他實施例中,如第4B圖所示,第二管線420之數量亦可能為多數個彼此相對設置之第二管線420(例如2個)。此些第二管線420分別位於電機定子140的兩端部之鄰近處,且每個第二管線420的一端連通第一容置空間121,另端直接接通冷卻器300。
如此,透過以上實施例之所述架構,本創作之壓縮機之電機冷卻系統是透過設置於電機之外的冷卻器,以立即冷卻容置空間內的氣流溫度,且氣流形成一循環封閉迴路以降低流道堵塞的發生,並有效帶走容置空間及電機轉子產生的熱能,進而延長電機軸承壽命;此外,本創作更透過設置於殼體內的液冷流道,利用工作液體帶走殼體和電機定子產生的熱能,並更進一步在冷卻器內與氣流進行熱交換並降低氣流溫度,最後再經由後端熱交換裝置降低工作液體的溫度,完整地帶走電機內的熱量,達到高效電機冷卻的效果。本創作之壓縮機之電機冷卻系統不僅能夠因應現場環境修改其換熱效率,更能快速且有效地帶走電機內的熱能,從而降低電機過熱而燒毀的風險。
最後,上述所揭露之各實施例中,並非用以限定本創作,任何熟習此技藝者,在不脫離本創作之精神和範圍內,當可作各種之更動與潤飾,皆可被保護於本創作中。因此本創作之保護範圍當視後附之申請專利範圍所界定者為準。
10,11:壓縮機之電機冷卻系統 100:電機 110:殼體 111:外表面 120:容置空間 121:第一容置空間 122:第二容置空間 130:軸承座組 131:前座體 132:後座體 133:後蓋 140:電機定子 150:電機轉子 160:風扇元件 200,200’:液冷流道 210,210’:一體式液冷管 211:S部分 220,220’,230,230’:端 300:冷卻器 400:連通管線 410:第一管線 420:第二管線 430:第三管線 440:第四管線 450:第五管線 500:後端熱交換裝置 A1,A2:實線箭頭 D1,D2,D3:虛線箭頭 L:軸向 G:相隔距離 R:徑向
為讓本創作之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1A圖為本創作一實施例之壓縮機之電機冷卻系統的側面示意圖暨其使用操作示意圖。 第1B圖為本創作一實施例之壓縮機之電機冷卻系統的側面示意圖暨其使用操作示意圖。 第2圖為第1A圖之壓縮機之電機冷卻系統的橫剖圖。 第3A圖為本創作一實施例之壓縮機之電機冷卻系統的一體式液冷管的立體圖。 第3B圖為本創作另一實施例之壓縮機之電機冷卻系統的一體式液冷管的立體圖。 第4A圖為本創作一實施例之壓縮機之電機冷卻系統的側面示意圖暨其使用操作示意圖。 第4B圖為本創作一實施例之壓縮機之電機冷卻系統的側面示意圖暨其使用操作示意圖。
10:壓縮機之電機冷卻系統
100:電機
110:殼體
111:外表面
120:容置空間
121:第一容置空間
122:第二容置空間
130:軸承座組
131:前座體
132:後座體
133:後蓋
140:電機定子
150:電機轉子
160:風扇元件
200:液冷流道
300:冷卻器
400:連通管線
410:第一管線
420:第二管線
430:第三管線
440:第四管線
450:第五管線
500:後端熱交換裝置
A1,A2:實線箭頭
D1,D2,D3:虛線箭頭
L:軸向
G:相隔距離
R:徑向

Claims (15)

  1. 一種壓縮機之電機冷卻系統,包含: 一電機,包含一殼體、一容置空間、一軸承座組、一電機定子及一電機轉子,該容置空間形成於該殼體的內側,且貫穿該殼體的兩端部,該軸承座組分別連接該殼體的該些端部,該電機定子設置於該殼體內,該電機轉子穿設該容置空間且鄰近該電機定子,用以相對該電機定子旋轉; 一冷卻器,位於該電機之外;以及 一連通管線,包含一第一管線及至少一第二管線,該第一管線及該第二管線分別設置於該電機及該冷卻器之間,且分別連通該容置空間及該冷卻器,該第一管線供該容置空間內之氣流流至該冷卻器,該第二管線供經過該冷卻器之該氣流流入該容置空間內,以形成一循環封閉迴路。
  2. 如請求項1所述之壓縮機之電機冷卻系統,更包含: 一液冷流道,設置於該殼體內,且圍繞該電機定子及該容置空間,該液冷流道之二相對端分別具有一入口與一出口;以及 該連通管線更包含一第三管線及一第四管線,該第三管線連通該液冷流道之該入口,以供工作液體流入該液冷流道內,該第四管線連通該液冷流道之該出口,以供該工作液體流出該液冷流道, 其中該第三管線與該第四管線至少其中一者直接連通該冷卻器。
  3. 如請求項2所述之壓縮機之電機冷卻系統,其中該液冷流道為一體式液冷管,該一體式液冷管固定地埋設於該殼體內部且與該軸承座組保持間隔,該一體式液冷管圍繞該電機轉子及該電機定子,其中該一體式液冷管之兩端分別連通該第三管線與該第四管線。
  4. 如請求項3所述之壓縮機之電機冷卻系統,其中該一體式液冷管為一體成形之複數U型續接管且依一軸向延伸圍繞該電機定子。
  5. 如請求項3所述之壓縮機之電機冷卻系統,其中該一體式液冷管為一體成形之螺旋管且依一軸向延伸圍繞該電機定子。
  6. 如請求項2所述之壓縮機之電機冷卻系統,其中該冷卻器包含分別連通該第一管線、該第二管線、該第三管線與該第四管線之一前端熱交換裝置。
  7. 如請求項1所述之壓縮機之電機冷卻系統,其中該冷卻器固定於該電機相對該容置空間之一外表面。
  8. 如請求項1所述之壓縮機之電機冷卻系統,其中該冷卻器與該電機之間相隔有一間距。
  9. 如請求項1所述之壓縮機之電機冷卻系統,其中該容置空間更包含一第一容置空間及一第二容置空間,該第一容置空間形成於該殼體的內側且貫穿該殼體的該些端部,該第二容置空間自該第一容置空間延伸且位於該軸承座組內,其中該第二容置空間與該第一管線的一端連通。
  10. 如請求項9所述之壓縮機之電機冷卻系統,更包含: 至少一風扇元件,設置於該軸承座組的該第二容置空間內,同軸套設於該電機轉子上,且與該第一管線對應設置,用以將該容置空間內之該氣流經該第一管線送入該冷卻器。
  11. 如請求項1所述之壓縮機之電機冷卻系統,其中該第二管線的一端連通該殼體內的該容置空間,且該第二管線的該端位於該電機定子遠離該第一管線的一端部之鄰近處。
  12. 如請求項1所述之壓縮機之電機冷卻系統,其中該至少一第二管線包含複數個第二管線,該些第二管線中每一者的一端連通該殼體內的該容置空間,且該些第二管線之該些端分別位於該電機定子的兩端部之鄰近處。
  13. 如請求項2所述之壓縮機之電機冷卻系統,更包含: 一後端熱交換裝置,透過該第四管線連通該液冷流道之該出口,以及透過一第五管線連通該冷卻器。
  14. 如請求項13所述之壓縮機之電機冷卻系統,其中該後端熱交換裝置用以透過該第三管線將該工作液體送入該電機內之該液冷流道、透過該第四管線將該液冷流道內之該工作液體送入該冷卻器內,以及透過該第五管線將該冷卻器內之該工作液體送回該後端熱交換裝置。
  15. 如請求項13所述之壓縮機之電機冷卻系統,其中該後端熱交換裝置用以透過該第五管線將該工作液體送入該冷卻器內、透過該第三管線將該冷卻器內之該工作液體送入該電機內之該液冷流道,以及透過該第四管線將該液冷流道內之該工作液體送回該後端熱交換裝置。
TW112211379U 2023-10-20 2023-10-20 壓縮機之電機冷卻系統 TWM651656U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112211379U TWM651656U (zh) 2023-10-20 2023-10-20 壓縮機之電機冷卻系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112211379U TWM651656U (zh) 2023-10-20 2023-10-20 壓縮機之電機冷卻系統

Publications (1)

Publication Number Publication Date
TWM651656U true TWM651656U (zh) 2024-02-11

Family

ID=90823736

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112211379U TWM651656U (zh) 2023-10-20 2023-10-20 壓縮機之電機冷卻系統

Country Status (1)

Country Link
TW (1) TWM651656U (zh)

Similar Documents

Publication Publication Date Title
WO2018153001A1 (zh) 电机冷却结构、动力电机及电驱动系统
CN113241880A (zh) 内置油路结构的油冷电机
CA2817064C (en) Axial flux electrical machines
CN214464524U (zh) 柴油机冷却水泵及柴油机冷却水循环系统
JP2004301085A (ja) 圧縮機
CN207982925U (zh) 一种高速电主轴冷却装置
CN115986998A (zh) 一种散热电机
CN115163494A (zh) 一种具有复合冷却功能的干式真空泵
CN112803635B (zh) 一种永磁电机的冷却系统结构
CN111682661B (zh) 一种基于燕尾槽楔冷却系统的盘式电机
CN113315298A (zh) 一种风冷水冷结合冷却的电机
JP4238776B2 (ja) 冷却装置
TWM651656U (zh) 壓縮機之電機冷卻系統
TWM609012U (zh) 液冷散熱系統
CN218243262U (zh) 高效散热的永磁直驱电机
CN114665684B (zh) 一种直驱永磁电机
CN215378647U (zh) 一种永磁同步电机冷却结构
JPH10238347A (ja) 自動車用熱交換器
CN111245144B (zh) 一种高效的三相异步电机
CN110098695B (zh) 圆筒状的冷却器结构
WO2020018056A2 (en) Cooling of gas turbine engines with water recirculation
CN114069938A (zh) 一种水气复合冷却电机结构及应用其的新能源汽车
JP5699541B2 (ja) 電動アシストターボチャージャの冷却装置
JP2015137549A (ja) 電動過給機
TWI838174B (zh) 複合式兩相流冷卻馬達及其複合式兩相流冷卻裝置