TWM627153U - Photonic crystal surface-emitting laser - Google Patents

Photonic crystal surface-emitting laser Download PDF

Info

Publication number
TWM627153U
TWM627153U TW110205046U TW110205046U TWM627153U TW M627153 U TWM627153 U TW M627153U TW 110205046 U TW110205046 U TW 110205046U TW 110205046 U TW110205046 U TW 110205046U TW M627153 U TWM627153 U TW M627153U
Authority
TW
Taiwan
Prior art keywords
layer
photonic crystal
emitting laser
distributed bragg
active layer
Prior art date
Application number
TW110205046U
Other languages
Chinese (zh)
Inventor
林建宏
林國瑞
周柏存
翁志源
陳俞諶
Original Assignee
富昱晶雷射科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/241,584 external-priority patent/US20210344165A1/en
Application filed by 富昱晶雷射科技股份有限公司 filed Critical 富昱晶雷射科技股份有限公司
Publication of TWM627153U publication Critical patent/TWM627153U/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • H01S5/04253Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2027Reflecting region or layer, parallel to the active layer, e.g. to modify propagation of the mode in the laser or to influence transverse modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • H01S5/2068Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by radiation treatment or annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • H01S5/3412Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A photonic crystal surface-emitting laser including a distributed Bragg reflector (DBR), an active layer, a photonic crystal layer, a first electrode, a second electrode, and a transparent conductive layer is provided. The active layer is disposed on the DBR. The photonic crystal layer is disposed on the DBR. The first electrode is electrically connected to one side of the active layer. The second electrode is electrically connected to another side of the active layer. The transparent conductive layer is disposed between the active layer and the second electrode. The second electrode is electrically connected to the active layer through the transparent conductive layer. Light emitted by the active layer is reflected by the DBR and outputted from a light output surface of the photonic crystal surface-emitting laser opposite to the DBR.

Description

光子晶體面射型雷射器 Photonic crystal surface emitting laser

本新型創作是有關於一種雷射,且特別是有關於一種光子晶體面射型雷射器(photonic crystal surface-emitting laser,PCSEL)。 This novel creation is about a laser, and especially about a photonic crystal surface-emitting laser (PCSEL).

電致發光光子晶體面射型雷射器可實現單模態輸出(single mode output)、窄光譜波長線寬(spectrum wavelength linewidth)及小的出光發散角,其主要結構包括一底披覆層(bottom cladding layer)、一主動層及一光子晶體層,其中主動層位於底披覆層與光子晶體層之間。在此架構及操作機制下,雷射光會從頂部與底部等兩個方向出射至外界。 The electroluminescent photonic crystal surface-emitting laser can achieve single mode output, narrow spectral wavelength linewidth and small light divergence angle, and its main structure includes a bottom cladding layer ( bottom cladding layer), an active layer and a photonic crystal layer, wherein the active layer is located between the bottom cladding layer and the photonic crystal layer. Under this structure and operation mechanism, the laser light will be emitted from two directions, such as the top and the bottom, to the outside world.

如此一來,在一個方向上使用習知的電致發光光子晶體面射型雷射器所發出的雷射光時,將只能利用到一半的雷射能量,使得利用的光功率相對於施加至電致發光光子晶體面射型雷射器的電流的斜率效率較低,如此會造成能量上的浪費。 In this way, when the laser light emitted by the conventional electroluminescent photonic crystal surface-emitting laser is used in one direction, only half of the laser energy will be utilized, so that the utilized optical power is relative to the applied light power. The current slope efficiency of the electroluminescent photonic crystal surface emitting laser is low, which will result in wasted energy.

本新型創作提供一種光子晶體面射型雷射器,具有較佳的能源利用率。 The novel creation provides a photonic crystal surface-emitting laser with better energy utilization.

本新型創作的一實施例提出一種光子晶體面射型雷射器,包括一分布式布拉格反射鏡(distributed Bragg reflector,DBR)、一主動層、一光子晶體層、一第一電極、一第二電極及一透明導電層。主動層配置於分布式布拉格反射鏡上,光子晶體層配置於分布式布拉格反射鏡上。第一電極電性連接至主動層的一側,且第二電極電性連接至主動層的另一側。透明導電層配置於主動層與第二電極之間,其中第二電極藉由透明導電層電性連接至主動層。主動層所發出的光受到分布式布拉格反射鏡的反射,並從光子晶體面射型雷射器的相對於分布式布拉格反射鏡的一出光面出射。 An embodiment of the present invention provides a photonic crystal surface-emitting laser, including a distributed Bragg reflector (DBR), an active layer, a photonic crystal layer, a first electrode, a second electrode and a transparent conductive layer. The active layer is arranged on the distributed Bragg mirror, and the photonic crystal layer is arranged on the distributed Bragg mirror. The first electrode is electrically connected to one side of the active layer, and the second electrode is electrically connected to the other side of the active layer. The transparent conductive layer is disposed between the active layer and the second electrode, wherein the second electrode is electrically connected to the active layer through the transparent conductive layer. The light emitted by the active layer is reflected by the distributed Bragg reflector, and is emitted from a light exit surface of the photonic crystal surface-emitting laser that is opposite to the distributed Bragg reflector.

在本新型創作的實施例的光子晶體面射型雷射器中,由於採用了第一電極與第二電極提供電流來使主動層發光,且採用分布式布拉格反射鏡來將主動層所發出的光往單側反射,因此本新型創作的實施例的光子晶體面射型雷射器具有較佳的能源利用率。 In the photonic crystal surface-emitting laser of the embodiment of the present invention, the first electrode and the second electrode are used to provide current to make the active layer emit light, and the distributed Bragg reflector is used to convert the light emitted by the active layer. Light is reflected to one side, so the photonic crystal surface-emitting laser of the embodiment of the present invention has better energy utilization.

100、100a、100b、100c:光子晶體面射型雷射器 100, 100a, 100b, 100c: Photonic crystal surface-emitting lasers

105:出光面 105: light-emitting surface

110:分布式布拉格反射鏡 110: Distributed Bragg Mirror

120:主動層 120: Active layer

122:光 122: Light

130、130c:光子晶體層 130, 130c: Photonic crystal layer

131:通孔 131: Through hole

132、132b:披覆層 132, 132b: Coating layer

134、134a、134b:歐姆接觸層 134, 134a, 134b: Ohmic contact layers

140:第一電極 140: First electrode

150:第二電極 150: Second electrode

152、182:開口 152, 182: Opening

160:基板 160: Substrate

170:透明導電層 170: Transparent conductive layer

180:電流限制層 180: Current limiting layer

190、190a’:光相位控制層 190, 190a': Optical phase control layer

190a:N型半導體層 190a: N-type semiconductor layer

A、B:樣本 A, B: sample

C:區 C: District

D:高原區 D: Plateau area

L:距離 L: distance

P1、P2、P3:點 P1, P2, P3: point

QW#1、QW#2、QW#3:發光光譜 QW#1, QW#2, QW#3: Luminescence spectrum

R:反射率光譜 R: reflectance spectrum

圖1為本新型創作的一實施例的光子晶體面射型雷射器的剖 面示意圖。 1 is a cross-section of a photonic crystal surface-emitting laser according to an embodiment of the novel creation face diagram.

圖2為圖1的光子晶體面射型雷射器的共振凹陷波長相對於光相位控制層的厚度的關係曲線圖。 FIG. 2 is a graph showing the relationship between the resonance notch wavelength of the photonic crystal surface-emitting laser of FIG. 1 and the thickness of the optical phase control layer.

圖3A為當圖1的光子晶體面射型雷射器的共振凹陷波長與光相位控制層的厚度是落在圖2的P1點時,主動層的三個量子井層受到共振腔調變後的光譜相對於分布式布拉格反射鏡的反射率光譜的比較圖。 FIG. 3A is a diagram showing the three quantum well layers of the active layer after the resonance cavity modulation is performed when the resonance notch wavelength and the thickness of the optical phase control layer of the photonic crystal surface-emitting laser of FIG. 1 are at point P1 in FIG. 2 . Comparison plot of the spectrum relative to the reflectance spectrum of a distributed Bragg mirror.

圖3B為當圖1的光子晶體面射型雷射器的共振凹陷波長與光相位控制層的厚度是落在圖2的P2點時,主動層的三個量子井層受到共振腔調變後的光譜相對於分布式布拉格反射鏡的反射率光譜的比較圖。 FIG. 3B is a diagram showing the three quantum well layers of the active layer after the resonance cavity modulation is performed when the resonance notch wavelength and the thickness of the optical phase control layer of the photonic crystal surface emitting laser of FIG. 1 are at point P2 in FIG. 2 . Comparison plot of the spectrum relative to the reflectance spectrum of a distributed Bragg mirror.

圖3C為當圖1的光子晶體面射型雷射器的共振凹陷波長與光相位控制層的厚度是落在圖2的P3點時,主動層的三個量子井層受到共振腔調變後的光譜相對於分布式布拉格反射鏡的反射率光譜的比較圖。 FIG. 3C is a diagram showing the resonant cavity modulation of the three quantum well layers of the active layer when the resonance notch wavelength and the thickness of the optical phase control layer of the photonic crystal surface emitting laser of FIG. 1 are at point P3 in FIG. 2 . Comparison plot of the spectrum relative to the reflectance spectrum of a distributed Bragg mirror.

圖4A為本新型創作的另一實施例的光子晶體面射型雷射器的剖面示意圖。 4A is a schematic cross-sectional view of a photonic crystal surface-emitting laser according to another embodiment of the novel creation.

圖4B為本新型創作的又一實施例的光子晶體面射型雷射器的剖面示意圖。 4B is a schematic cross-sectional view of a photonic crystal surface-emitting laser according to another embodiment of the novel creation.

圖4C為本新型創作的再一實施例的光子晶體面射型雷射器的剖面示意圖。 4C is a schematic cross-sectional view of a photonic crystal surface-emitting laser according to yet another embodiment of the novel creation.

圖5為樣本A與樣本B的輸出光強度相對於輸入功率的曲線 圖。 Fig. 5 is the curve of the output light intensity of sample A and sample B with respect to the input power picture.

圖1為本新型創作的一實施例的光子晶體面射型雷射器的剖面示意圖。請參照圖1,本實施例的光子晶體面射型雷射器100包括一分布式布拉格反射鏡110、一主動層120、一光子晶體層130、一第一電極140及一第二電極150。主動層120配置於分布式布拉格反射鏡110上。主動層120例如是量子井層、多重量子井層或量子點層,也就是發光層。光子晶體層130配置於分布式布拉格反射鏡110上。在本實施例中,光子晶體層130配置於主動層120上,也就是光子晶體層130藉由主動層120配置於分布式布拉格反射鏡110上,其中光子晶體層130位於光子晶體面射型雷射器100的一出光面105與主動層120之間。第一電極140電性連接至主動層120的一側,在本實施例中例如是電性連接至分布式布拉格反射鏡110,且第二電極150電性連接至主動層120的另一側,在本實施例中例如是電性連接至光子晶體層130。主動層120所發出的光122在光子晶體層130中產生在圖1中的水平方向的共振,且光子晶體層130可包括二階光柵(grating)的結構,其將光122往圖1中的鉛直方向導引,而往圖1中的上方與下方傳遞。此外,此二階光柵的結構可以是具有二維孔洞陣列的結構。在其他實施例中,光子晶體層130也可以是三階以上的光柵結構,此外,光子晶體層130也可以是一維光柵結構。往圖1 中的上方傳遞的光122從出光面105出射而離開光子晶體面射型雷射器100,而往圖1中的下方傳遞的光122受到分布式布拉格反射鏡110的反射而往上傳遞,並從光子晶體面射型雷射器100的相對於分布式布拉格反射鏡110的出光面105出射。從出光面105出射的光122即為雷射光束。 FIG. 1 is a schematic cross-sectional view of a photonic crystal surface-emitting laser according to an embodiment of the novel invention. Referring to FIG. 1 , the photonic crystal surface-emitting laser 100 of this embodiment includes a distributed Bragg mirror 110 , an active layer 120 , a photonic crystal layer 130 , a first electrode 140 and a second electrode 150 . The active layer 120 is disposed on the distributed Bragg mirror 110 . The active layer 120 is, for example, a quantum well layer, a multiple quantum well layer or a quantum dot layer, that is, a light emitting layer. The photonic crystal layer 130 is disposed on the distributed Bragg mirror 110 . In this embodiment, the photonic crystal layer 130 is disposed on the active layer 120 , that is, the photonic crystal layer 130 is disposed on the distributed Bragg mirror 110 by the active layer 120 , wherein the photonic crystal layer 130 is located on the photonic crystal surface-emitting laser between a light emitting surface 105 of the emitter 100 and the active layer 120 . The first electrode 140 is electrically connected to one side of the active layer 120, for example, to the distributed Bragg mirror 110 in this embodiment, and the second electrode 150 is electrically connected to the other side of the active layer 120, In this embodiment, for example, it is electrically connected to the photonic crystal layer 130 . The light 122 emitted by the active layer 120 generates resonance in the horizontal direction in FIG. 1 in the photonic crystal layer 130 , and the photonic crystal layer 130 may include a second-order grating structure, which directs the light 122 to the vertical direction in FIG. 1 . Direction guide, and transfer to the top and bottom in Figure 1. In addition, the structure of the second-order grating can be a structure with a two-dimensional hole array. In other embodiments, the photonic crystal layer 130 may also be a grating structure with a third or higher order, and in addition, the photonic crystal layer 130 may also be a one-dimensional grating structure. Go to Figure 1 The light 122 transmitted from the top in FIG. 1 exits from the light exit surface 105 and leaves the photonic crystal surface-emitting laser 100, while the light 122 transmitted to the bottom in FIG. 1 is reflected by the distributed Bragg mirror 110 and transmitted upward, and The light is emitted from the light exit surface 105 of the photonic crystal surface-emitting laser 100 relative to the distributed Bragg mirror 110 . The light 122 emitted from the light emitting surface 105 is the laser beam.

在本實施例中,分布式布拉格反射鏡110例如是N型半導體層,而光子晶體層130例如是P型半導體層,因此在第一電極140與第二電極150施加順向電壓時可在主動層120產生電子電洞對的復合,進而發出光122,因此光子晶體面射型雷射器100可以是電致發光雷射。然而,在其他實施例中,也可以是分布式布拉格反射鏡110為P型半導體層,而光子晶體層130為N型半導體層。 In this embodiment, the distributed Bragg mirror 110 is, for example, an N-type semiconductor layer, and the photonic crystal layer 130 is, for example, a P-type semiconductor layer. Therefore, when a forward voltage is applied to the first electrode 140 and the second electrode 150 , the active The layer 120 generates the recombination of electron-hole pairs, thereby emitting light 122, so the photonic crystal surface emitting laser 100 may be an electroluminescent laser. However, in other embodiments, the distributed Bragg mirror 110 may also be a P-type semiconductor layer, and the photonic crystal layer 130 may be an N-type semiconductor layer.

在本實施例的光子晶體面射型雷射器100中,由於採用了第一電極140與第二電極150提供電流來使主動層120發光,且採用分布式布拉格反射鏡110來將主動層120所發出的光122往單側反射(例如往圖1的上方反射),而與主動層120往圖1上方所發出的光122合併,因此本實施例的光子晶體面射型雷射器100具有較佳的能源利用率,其能源利用率是習知電致發光光子晶體面射型雷射器的約兩倍。具體而言,於理想膜層厚度的設計下,分布式布拉格反射鏡110的反射率幾乎達100%,若再加上下文將敘述的光相位控制層190的厚度優化,本實施例的光子晶體面射型雷射器100的能源利用率可趨近於習知電致發光光子晶體面射 型雷射器的兩倍。 In the photonic crystal surface-emitting laser 100 of the present embodiment, the active layer 120 emits light because the first electrode 140 and the second electrode 150 are used to provide current, and the distributed Bragg reflector 110 is used for the active layer 120 to emit light. The emitted light 122 is reflected toward one side (for example, toward the top of FIG. 1 ), and is combined with the light 122 emitted by the active layer 120 toward the top of FIG. 1 . Therefore, the photonic crystal surface-emitting laser 100 of this embodiment has The better energy utilization rate is about twice that of the conventional electroluminescent photonic crystal surface-emitting laser. Specifically, under the design of the ideal film thickness, the reflectivity of the distributed Bragg mirror 110 is almost 100%. If the thickness of the optical phase control layer 190 described in the context is optimized, the photonic crystal surface of this embodiment is The energy utilization rate of the radiation type laser 100 can be close to that of the conventional electroluminescent photonic crystal surface radiation. type lasers twice.

在本實施例中,光子晶體面射型雷射器100更包括一基板160,配置於分布式布拉格反射鏡110與第一電極140之間,其中基板160可電性連接第一電極140與分布式布拉格反射鏡110。 In this embodiment, the photonic crystal surface-emitting laser 100 further includes a substrate 160 disposed between the distributed Bragg mirror 110 and the first electrode 140, wherein the substrate 160 can be electrically connected to the first electrode 140 and the distribution Type Bragg reflector 110.

光子晶體面射型雷射器100可更包括一透明導電層170,配置於主動層120與第二電極150之間,其中第二電極150藉由透明導電層170電性連接至主動層120。透明導電層170可覆蓋光子晶體層130,且電性連接第二電極150與光子晶體層130,其中出光面105為透明導電層170的背對分布式布拉格反射鏡110的表面。在本實施例中,第二電極150具有一開口152,暴露出出光面105。在本實施例中,光子晶體面射型雷射器100更包括一電流限制層180,配置於光子晶體層130與透明導電層170之間,且具有一開口182,其中透明導電層170通過開口182而連接至光子晶體層130。 The photonic crystal surface emitting laser 100 may further include a transparent conductive layer 170 disposed between the active layer 120 and the second electrode 150 , wherein the second electrode 150 is electrically connected to the active layer 120 through the transparent conductive layer 170 . The transparent conductive layer 170 can cover the photonic crystal layer 130 and is electrically connected to the second electrode 150 and the photonic crystal layer 130 , wherein the light exit surface 105 is the surface of the transparent conductive layer 170 facing away from the distributed Bragg mirror 110 . In this embodiment, the second electrode 150 has an opening 152 exposing the light-emitting surface 105 . In this embodiment, the photonic crystal surface emitting laser 100 further includes a current confinement layer 180 disposed between the photonic crystal layer 130 and the transparent conductive layer 170 and having an opening 182, wherein the transparent conductive layer 170 passes through the opening 182 is connected to the photonic crystal layer 130 .

在本實施例中,光子晶體層130包括一披覆層(cladding layer)132及一歐姆接觸層134,披覆層132配置於主動層120上。歐姆接觸層134配置於披覆層132與透明導電層170之間,且與透明導電層170接觸以形成歐姆接觸,其中披覆層132與歐姆接觸層134具有光子晶體結構。舉例而言,光子晶體層130具有多個通孔131,位於披覆層132與歐姆接觸層134中,且從披覆層132往歐姆接觸層134延伸,以形成光子晶體結構。在本實施例中,通孔131貫穿歐姆接觸層134與披覆層132。此外,在一實施 例中,通孔131可在平行於基板160的方向上排列成二維陣列。 In this embodiment, the photonic crystal layer 130 includes a cladding layer 132 and an ohmic contact layer 134 , and the cladding layer 132 is disposed on the active layer 120 . The ohmic contact layer 134 is disposed between the cladding layer 132 and the transparent conductive layer 170, and is in contact with the transparent conductive layer 170 to form an ohmic contact, wherein the cladding layer 132 and the ohmic contact layer 134 have a photonic crystal structure. For example, the photonic crystal layer 130 has a plurality of through holes 131 located in the cladding layer 132 and the ohmic contact layer 134 and extending from the cladding layer 132 to the ohmic contact layer 134 to form a photonic crystal structure. In this embodiment, the through hole 131 penetrates through the ohmic contact layer 134 and the cladding layer 132 . Furthermore, in an implementation For example, the through holes 131 may be arranged in a two-dimensional array in a direction parallel to the substrate 160 .

在本實施例中,光子晶體面射型雷射器100更包括一光相位控制層190,配置於分布式布拉格反射鏡110與主動層120之間。光相位控制層190的厚度用以控制主動層120所發出的光122在分布式布拉格反射鏡110與出光面105之間的共振凹陷波長(resonance dip wavelength)落在分布式布拉格反射鏡110的反射光譜的高原區所對應的波長範圍內。 In this embodiment, the photonic crystal surface-emitting laser 100 further includes an optical phase control layer 190 disposed between the distributed Bragg mirror 110 and the active layer 120 . The thickness of the optical phase control layer 190 is used to control the reflection of the light 122 emitted by the active layer 120 between the distributed Bragg mirror 110 and the light exit surface 105 at the resonance dip wavelength falling on the distributed Bragg mirror 110 The wavelength range corresponding to the plateau region of the spectrum.

具體而言,圖2為圖1的光子晶體面射型雷射器的共振凹陷波長相對於光相位控制層的厚度的關係曲線圖。圖3A為當圖1的光子晶體面射型雷射器的共振凹陷波長與光相位控制層的厚度是落在圖2的P1點時,主動層的三個量子井層受到共振腔調變後的光譜QW#1、QW#2、QW#3相對於分布式布拉格反射鏡的反射率光譜R的比較圖。圖3B為當圖1的光子晶體面射型雷射器的共振凹陷波長與光相位控制層的厚度是落在圖2的P2點時,主動層的三個量子井層受到共振腔調變後的光譜QW#1、QW#2、QW#3相對於分布式布拉格反射鏡的反射率光譜R的比較圖。圖3C為當圖1的光子晶體面射型雷射器的共振凹陷波長與光相位控制層的厚度是落在圖2的P3點時,主動層的三個量子井層受到共振腔調變後的光譜QW#1、QW#2、QW#3相對於分布式布拉格反射鏡的反射率光譜R的比較圖。在圖3A至圖3C中,主動層120的三個量子井層受到共振腔調變後的光譜QW#1、QW#2、QW#3曲線在縱軸方向上的高度可以圖式右方的電場強度來度量,而分布式布 拉格反射鏡110的反射率光譜R曲線在縱軸方向上的高度可以圖式左方的反射率來度量。請先參照圖1及圖2,如圖2所繪示,不同的光相位控制層190的厚度可能會產生不同的共振凹陷波長,且隨著光相位控制層190的厚度的增加,共振凹陷波長也呈現高低振盪的情形。這種現象的發生是因為出光面105與分布式布拉格反射鏡110之間的距離L形成類似於法布立培若標準具(Fabry-Perot etalon)的共振腔長度,因此隨著光相位控制層190的厚度不同,距離L也隨之不同,因此可以調整共振凹陷波長。 Specifically, FIG. 2 is a graph showing the relationship between the resonance notch wavelength of the photonic crystal surface-emitting laser of FIG. 1 and the thickness of the optical phase control layer. FIG. 3A is a diagram showing the three quantum well layers of the active layer after the resonance cavity modulation is performed when the resonance notch wavelength and the thickness of the optical phase control layer of the photonic crystal surface-emitting laser of FIG. 1 are at point P1 in FIG. 2 . Comparison of the reflectance spectra R of the spectra QW#1, QW#2, QW#3 with respect to the distributed Bragg mirrors. FIG. 3B is a diagram showing the three quantum well layers of the active layer after the resonance cavity modulation is performed when the resonance notch wavelength and the thickness of the optical phase control layer of the photonic crystal surface emitting laser of FIG. 1 are at point P2 in FIG. 2 . Comparison of the reflectance spectra R of the spectra QW#1, QW#2, QW#3 with respect to the distributed Bragg mirrors. FIG. 3C is a diagram showing the resonant cavity modulation of the three quantum well layers of the active layer when the resonance notch wavelength and the thickness of the optical phase control layer of the photonic crystal surface emitting laser of FIG. 1 are at point P3 in FIG. 2 . Comparison of the reflectance spectra R of the spectra QW#1, QW#2, QW#3 with respect to the distributed Bragg mirrors. In FIGS. 3A to 3C , the heights of the spectra QW#1, QW#2, and QW#3 of the three quantum well layers of the active layer 120 after being modulated by the resonant cavity in the direction of the vertical axis can be represented by the electric field on the right side of the figure. strength is measured, while distributed distribution The height of the reflectance spectrum R curve of the Lager mirror 110 in the direction of the vertical axis can be measured by the reflectance on the left side of the drawing. Please refer to FIG. 1 and FIG. 2 first, as shown in FIG. 2 , different thicknesses of the optical phase control layer 190 may produce different resonance notch wavelengths, and with the increase of the thickness of the optical phase control layer 190 , the resonance notch wavelengths There are also high and low oscillations. This phenomenon occurs because the distance L between the light-emitting surface 105 and the distributed Bragg mirror 110 forms a resonant cavity length similar to that of a Fabry-Perot etalon. The thickness of 190 is different, and the distance L is also different, so the resonance notch wavelength can be adjusted.

當共振凹陷波長落在圖2中的C區時(如圖2中的P1點),主動層120的三個量子井層受到共振腔調變後的光譜QW#1、QW#2、QW#3的波峰會落在分布式布拉格反射鏡110的反射光譜的高原區D所對應的波長範圍內,且C區也是主動層120的三個量子井層在尚未受到共振腔調變時的原始發光波長的所在範圍,舉例而言,共振凹陷波長所對應的光子能量與主動層120的材料所發出的原始峰值波長所對應的光子能量的差異小於15meV,較佳為小於10meV。在一實施例中,共振凹陷波長落在主動層120的材料的發光光譜的半高寬所對應的波長範圍內。因此,當共振凹陷波長落在C區時,發光效率最好,再加上分布式布拉格反射鏡110對主動層120所發出的光122具有高反射效率,因此可以增加光122從出光面105出射的比例,進而提升光子晶體面射型雷射器100的光能量利用率。當共振凹陷波長落在圖2中的C區以外時(如可2中的P2點與P3點),主動層的三個量子井 層受到共振腔調變後的光譜QW#1、QW#2、QW#3的波峰會有至少一部分落在分布式布拉格反射鏡110的反射光譜的高原區D外或邊緣,導致分布式布拉格反射鏡110對主動層120所發出的光122的反射效率較差,而使得光122從出光面105出射的比例減少,且此時共振凹陷波長落在主動層120的三個量子井層在尚未受到共振腔調變時的原始發光波長的所在範圍之外,導致發光效率較差。因此,適當的距離L對光子晶體面射型雷射器100的光能量利用率的提升會有幫助,且與光122的波長有關。光的波長不同,適當的距離L也隨之不同。此外,藉由採用光相位控制層190並調整其成長厚度,有助於產生適當的距離L。然而,在另一實施例中,也可以不採用光相位控制層190,而讓主動層120與分布式布拉格反射鏡110接觸,並藉由適當地控制主動層120、光子晶體層130及透明導電層170的厚度來產生適當的距離L,而使主動層120所發出的光122在分布式布拉格反射鏡110與出光面105之間的共振凹陷波長落在分布式布拉格反射鏡110的反射光譜的高原區所對應的波長範圍內。 When the resonance notch wavelength falls in the C region in FIG. 2 (point P1 in FIG. 2 ), the spectra QW#1, QW#2, QW#3 of the three quantum well layers of the active layer 120 after being modulated by the resonant cavity The peak of the peak falls within the wavelength range corresponding to the plateau region D of the reflection spectrum of the distributed Bragg mirror 110, and the region C is also the original emission wavelength of the three quantum well layers of the active layer 120 when they have not been modulated by the resonant cavity. In the range, for example, the difference between the photon energy corresponding to the resonance notch wavelength and the photon energy corresponding to the original peak wavelength emitted by the material of the active layer 120 is less than 15meV, preferably less than 10meV. In one embodiment, the resonance notch wavelength falls within a wavelength range corresponding to the half-maximum width of the light emission spectrum of the material of the active layer 120 . Therefore, when the wavelength of the resonance notch falls in the C region, the luminous efficiency is the best, and the distributed Bragg reflector 110 has a high reflection efficiency for the light 122 emitted by the active layer 120, so the light 122 can be increased from the light emitting surface 105. ratio, thereby improving the light energy utilization rate of the photonic crystal surface-emitting laser 100 . When the resonance notch wavelength falls outside the C region in Figure 2 (such as the P2 and P3 points in Figure 2), the three quantum wells in the active layer At least a part of the peaks of the spectra QW#1, QW#2, QW#3 after the layers are modulated by the resonant cavity fall outside or at the edge of the plateau region D of the reflection spectrum of the distributed Bragg mirror 110, resulting in the distributed Bragg mirror The reflection efficiency of the light 122 emitted by the active layer 120 by 110 is poor, so that the proportion of the light 122 emitted from the light-emitting surface 105 is reduced, and at this time, the three quantum well layers whose resonance notch wavelength falls in the active layer 120 have not been subjected to resonance cavity tuning. The time-varying original luminescence wavelength is outside the range, resulting in poor luminous efficiency. Therefore, an appropriate distance L will help to improve the utilization rate of light energy of the photonic crystal surface-emitting laser 100 , and is related to the wavelength of the light 122 . The wavelength of light is different, and the appropriate distance L is also different. In addition, by using the optical phase control layer 190 and adjusting its growth thickness, it is helpful to generate an appropriate distance L. However, in another embodiment, the optical phase control layer 190 may not be used, but the active layer 120 can be in contact with the distributed Bragg mirror 110, and the active layer 120, the photonic crystal layer 130 and the transparent conductive layer are properly controlled by controlling the active layer 120. The thickness of the layer 170 is used to generate an appropriate distance L, so that the resonance notch wavelength of the light 122 emitted by the active layer 120 between the distributed Bragg mirror 110 and the light exit surface 105 falls within the reflection spectrum of the distributed Bragg mirror 110. within the wavelength range corresponding to the plateau region.

在本實施例中,光相位控制層190為N型半導體層,且光子晶體層130為P型半導體層。然而,在其他實施例中,光相位控制層190也可以是P型半導體層,且光子晶體層130為N型半導體層。在其他實施例中,光子晶體層130與光相位控制層190可位於主動層120的同一側,且同為N型半導體層或同為P型半導體層。此外,在其他實施例中,光子晶體層130、光相位控制層 190與分布式布拉格反射鏡110可位於主動層120的同一側,且亦可以同為N型半導體層或同為P型半導體層。 In this embodiment, the optical phase control layer 190 is an N-type semiconductor layer, and the photonic crystal layer 130 is a P-type semiconductor layer. However, in other embodiments, the optical phase control layer 190 may also be a P-type semiconductor layer, and the photonic crystal layer 130 may be an N-type semiconductor layer. In other embodiments, the photonic crystal layer 130 and the optical phase control layer 190 can be located on the same side of the active layer 120 and are both N-type semiconductor layers or P-type semiconductor layers. In addition, in other embodiments, the photonic crystal layer 130, the optical phase control layer 190 and the distributed Bragg mirror 110 may be located on the same side of the active layer 120, and may be both N-type semiconductor layers or P-type semiconductor layers.

本新型創作並不限定各膜層的材質,也不限定主動層120所發出的光122的波長。主動層120所發出的光122的波長可以是可見光、紅外光或紫外光,本新型創作不以此為限。在一些實施例中,基板160的材質可以是氮化鎵(gallium nitride,GaN)、砷化鎵(gallium arsenide,GaAs)、磷化銦(indium phosphide,InP)、銻化鎵(gallium antimonide,GaSb)或其他適當的材質。分布式布拉格反射鏡110例如是具有交替或週期性變化特徵(例如折射率或厚度)的多層膜。舉例而言,分布式布拉格反射鏡110為鋁莫耳分率較高的砷化鋁鎵(aluminum gallium arsenide,AlGaAs)層與鋁莫耳分率較低的砷化鋁鎵層交替堆疊的多層膜、氮化鋁層與氮化鎵層交替堆疊的多層膜、二氧化鈦(titanium dioxide,TiO2)層與二氧化矽(silicon dioxide,SiO2)層交替堆疊的多層膜、鋁莫耳分率較高的銻化鋁鎵砷(aluminum gallium arsenic antimonide,AlGaAsSb)層與鋁莫耳分率較低的銻化鋁鎵砷層交替堆疊的多層膜、氮化鋁鎵(aluminum gallium nitride,AlGaN)層與氮化鎵(gallium nitride,GaN)層交替堆疊的多層膜、砷磷化銦鎵(indium gallium arsenide phosphide,InGaAsP)層與磷化銦(indium phosphide,InP)層交替堆疊的多層膜或其他適當的材質堆疊的多層膜。在一實施例中,分布式布拉格反射鏡110可包括沿著圖1的下方往上方交替堆疊的多個第一砷化鋁鎵層與多個第二砷化鋁 鎵層,其中第一砷化鋁鎵層的化學式為Alx1Gay1As,而第二砷化鋁鎵層的化學式為Alx2Gay2As,其中x1+y1=1、x2+y2=1且x1<x2,而第一砷化鋁鎵層的折射率高於第二砷化鋁鎵層的折射率。舉例而言,在一實施例中,0<x1<0.5,且0.5≦x2<1。主動層120的材質可包括氮化鎵、氮化鋁鎵(aluminum gallium nitride,AlGaN)、砷化鎵、砷化銦鎵(indium gallium arsenide,InGaAs)、砷化鋁鎵(aluminum gallium arsenide,AlGaAs)、磷化鎵(gallium phosphide,GaP)、砷化銦(indium arsenide,InAs)、銻化銦砷(indium arsenic antimonide,InAsSb)、銻化銦鎵砷(indium gallium arsenic antimonide,InGaAsSb)、砷銻化鋁鎵(aluminum gallium arsenic antimonide,AlGaAsSb)、砷磷化銦鎵(indium gallium arsenide phosphide,InGaAsP)、砷化鋁銦鎵(aluminum indium gallium arsenide,AlInGaAs)、其他適當的半導體材質或其組合,且主動層120可以採用兩種以上的不同材質或兩種以上的相同化合物但元素比例不同的材質,來形成量子井層、多種量子井層或量子點結構。 The present invention does not limit the material of each film layer, nor does it limit the wavelength of the light 122 emitted by the active layer 120 . The wavelength of the light 122 emitted by the active layer 120 may be visible light, infrared light or ultraviolet light, and the invention is not limited to this. In some embodiments, the material of the substrate 160 may be gallium nitride (GaN), gallium arsenide (GaAs), indium phosphide (InP), gallium antimonide (GaSb) ) or other suitable material. The distributed Bragg mirror 110 is, for example, a multilayer film with alternating or periodically varying characteristics (eg, refractive index or thickness). For example, the distributed Bragg reflector 110 is a multi-layer film in which aluminum gallium arsenide (AlGaAs) layers with a high aluminum molar ratio and aluminum gallium arsenide layers with a low aluminum molar ratio are alternately stacked , A multilayer film in which aluminum nitride layers and gallium nitride layers are alternately stacked, a multi-layer film in which titanium dioxide (TiO 2 ) layers and silicon dioxide (SiO 2 ) layers are alternately stacked, and the aluminum molar ratio is high. A multilayer film, an aluminum gallium nitride (AlGaN) layer and a nitrogen oxide layer are alternately stacked with aluminum gallium arsenide (AlGaAsSb) layers and aluminum gallium antimonide (AlGaAsSb) layers with a lower Al molar fraction. A multilayer film in which gallium nitride (GaN) layers are alternately stacked, a multi-layer film in which indium gallium arsenide phosphide (InGaAsP) layers and indium phosphide (InP) layers are alternately stacked, or other suitable materials Stacked multilayer films. In one embodiment, the distributed Bragg mirror 110 may include a plurality of first aluminum gallium arsenide layers and a plurality of second aluminum gallium arsenide layers stacked alternately from the bottom to the top of FIG. 1 , wherein the first arsenide is The chemical formula of the aluminum gallium layer is Al x1 Ga y1 As, and the chemical formula of the second aluminum gallium arsenide layer is Al x2 Ga y2 As, where x1+y1=1, x2+y2=1 and x1<x2, and the first arsenic The refractive index of the aluminum gallium arsenide layer is higher than that of the second aluminum gallium arsenide layer. For example, in one embodiment, 0<x1<0.5, and 0.5≦x2<1. The material of the active layer 120 may include gallium nitride, aluminum gallium nitride (AlGaN), gallium arsenide, indium gallium arsenide (InGaAs), aluminum gallium arsenide (AlGaAs) , gallium phosphide (GaP), indium arsenide (InAs), indium arsenic antimonide (InAsSb), indium gallium arsenic antimonide (InGaAsSb), arsenic antimonide Aluminum gallium (aluminum gallium arsenic antimonide, AlGaAsSb), indium gallium arsenide phosphide (InGaAsP), aluminum indium gallium arsenide (aluminum indium gallium arsenide, AlInGaAs), other suitable semiconductor materials or combinations thereof, and active The layer 120 may adopt two or more different materials or two or more materials of the same compound but with different element ratios to form a quantum well layer, various quantum well layers or quantum dot structures.

光相位控制層190與披覆層132的材質例如是砷化鋁鎵(aluminum gallium arsenide,AlGaAs)、砷化鎵、氮化鋁鎵、砷化鋁鎵銦(aluminum gallium indium arsenide,AlGaInAs)、磷化鋁鎵銦(aluminum gallium indium phosphide,AlGaInP)、砷銻化鋁鎵、砷化銦鎵(indium gallium arsenide,InGaAs)或其他適當材質。 The material of the optical phase control layer 190 and the cladding layer 132 is, for example, aluminum gallium arsenide (AlGaAs), gallium arsenide, aluminum gallium nitride, aluminum gallium indium arsenide (AlGaInAs), phosphorus Aluminum gallium indium phosphide (AlGaInP), aluminum gallium arsenide antimonide, indium gallium arsenide (InGaAs) or other suitable materials.

歐姆接觸層134的材質可以是氮化鎵、砷化鎵、砷磷化 銦鎵(indium gallium arsenide phosphide,InGaAsP)、砷化銦鎵(indium gallium arsenide,InGaAs)或其他適當的材質。此外,歐姆接觸層134可以重摻雜鈹(beryllium)、碳(carbon)、鋅(zinc)或其組合而形成P型摻雜,以與透明導電層170有良好的歐姆接觸,其中鈹摻雜的濃度可以約為1019cm-3,而碳摻雜濃度可以約為1019cm-3至1020cm-3,且鋅摻雜的濃度可以約為1019cm-3至1020cm-3,但本新型創作不以此為限。電流限制層180的材質可以是氮化矽(silicon nitride)、氧化矽(silicon oxide)或其他適當的材質,電流限制層180可以阻擋電流,以使電流集中在開口182處並通過開口182。 The material of the ohmic contact layer 134 may be gallium nitride, gallium arsenide, indium gallium arsenide phosphide (InGaAsP), indium gallium arsenide (InGaAs) or other suitable materials. In addition, the ohmic contact layer 134 can be heavily doped with beryllium, carbon, zinc or a combination thereof to form P-type doping, so as to have a good ohmic contact with the transparent conductive layer 170, wherein beryllium is doped The concentration of zinc may be about 10 19 cm -3 , the carbon doping concentration may be about 10 19 cm -3 to 10 20 cm -3 , and the zinc doping concentration may be about 10 19 cm -3 to 10 20 cm - 3 , but the new creation is not limited to this. The material of the current confinement layer 180 can be silicon nitride, silicon oxide or other suitable materials. The current confinement layer 180 can block current, so that the current can be concentrated at the opening 182 and pass through the opening 182 .

透明導電層170的材料例如為氧化銦錫(indium tin oxide,ITO)、氧化銻錫(antimony tin oxide,ATO)、摻雜氟的氧化錫(fluorine doped tin oxide,FTO)、氧化鋁鋅(aluminum zinc oxide,AZO)、氧化鎵鋅(gallium zinc oxide,GZO)、氧化銦鋅(indium zinc oxide,IZO)、氧化鋅(zinc oxide,ZnO)、石墨烯(graphene)或其他適當的透明導電材料。第一電極140與第二電極150可以是金屬電極,其材質例如是金、鈦金合金、鈦鉑金合金、鎳鍺金合金或其他適當的金屬。透明導電層170可以傳導電流,使電流集中通過開口182,而同時透明導電層170也可以讓主動層120所發出的光122穿透,而不會遮住光122。 The material of the transparent conductive layer 170 is, for example, indium tin oxide (ITO), antimony tin oxide (ATO), fluorine doped tin oxide (FTO), aluminum zinc (aluminum oxide) zinc oxide (AZO), gallium zinc oxide (GZO), indium zinc oxide (IZO), zinc oxide (zinc oxide, ZnO), graphene (graphene) or other suitable transparent conductive materials. The first electrode 140 and the second electrode 150 can be metal electrodes, such as gold, titanium-gold alloy, titanium-platinum-gold alloy, nickel-germanium-gold alloy or other suitable metals. The transparent conductive layer 170 can conduct current to concentrate the current through the opening 182 , and at the same time, the transparent conductive layer 170 can also allow the light 122 emitted by the active layer 120 to penetrate without blocking the light 122 .

此外,在一實施例中,在上述各膜層中,P型摻雜可以是摻雜鈹、碳、鋅或其組合,而其摻雜濃度例如約為1017cm-3至1018 cm-3(除了歐姆接觸層134的摻雜濃度是約為1019cm-3至1020cm-3之外),而N型摻雜可以是摻雜矽,而其摻雜濃度例如約為1017cm-3至1018cm-3,但本新型創作不以此為限。在其他實施例中,也可以是摻雜其他適當元素來達成P型摻雜與N型摻雜。在一實施例中,基板160、分布式布拉格反射鏡110、光相位控制層190皆為N型摻雜半導體層,而光子晶體層130包括披覆層132與歐姆接觸層134均為P型摻雜半導體層。或者,在另一實施例中,光相位控制層190、布拉格反射鏡110可與光子晶體層130及歐姆接觸層134位於主動層120的同一側,例如可同為N型半導體層,或同為P型半導體層。此外,在另一實施例中,光子晶體面射型雷射器100也可以不包括光相位控制層190,而主動層120直接接觸分布式布拉格反射鏡110。 In addition, in an embodiment, in each of the above film layers, the P-type doping can be beryllium, carbon, zinc or a combination thereof, and the doping concentration thereof is, for example, about 10 17 cm -3 to 10 18 cm - 3 (except that the doping concentration of the ohmic contact layer 134 is about 10 19 cm -3 to 10 20 cm -3 ), and the N-type doping can be doped silicon, and its doping concentration is, for example, about 10 17 cm -3 to 10 18 cm -3 , but the new creation is not limited to this. In other embodiments, other appropriate elements can also be doped to achieve P-type doping and N-type doping. In one embodiment, the substrate 160 , the distributed Bragg mirror 110 , and the optical phase control layer 190 are all N-type doped semiconductor layers, and the photonic crystal layer 130 including the cladding layer 132 and the ohmic contact layer 134 are all P-type doped semiconductor layers. Miscellaneous semiconductor layer. Alternatively, in another embodiment, the optical phase control layer 190 and the Bragg mirror 110 may be located on the same side of the active layer 120 as the photonic crystal layer 130 and the ohmic contact layer 134, for example, they may be the same N-type semiconductor layer, or the same P-type semiconductor layer. In addition, in another embodiment, the photonic crystal surface emitting laser 100 may also not include the optical phase control layer 190 , and the active layer 120 directly contacts the distributed Bragg mirror 110 .

在一實施例中,分布式布拉格反射鏡110與基板160之間可設有折射率漸變層(graded index layer,GRIN layer),且披覆層132與歐姆接觸層134之間可設有折射率漸變層,以降低光子晶體面射型雷射器的電阻。折射率漸變層為所屬領域中具有通常知識者所熟知的膜層,因此在此不再詳細探討,只是在本實施例中折射率漸變層設於光子晶體層130中時,此折射率漸變層也具有多個通孔,以連通披覆層132與歐姆接觸層134的多個通孔。 In one embodiment, a graded index layer (GRIN layer) may be provided between the distributed Bragg mirror 110 and the substrate 160 , and a refractive index may be provided between the cladding layer 132 and the ohmic contact layer 134 graded layer to reduce the resistance of photonic crystal surface emitting lasers. The graded refractive index layer is a film layer well known to those skilled in the art, so it will not be discussed in detail here, except that when the graded refractive index layer is provided in the photonic crystal layer 130 in this embodiment, the graded refractive index layer There are also a plurality of through holes to communicate with the plurality of through holes of the cladding layer 132 and the ohmic contact layer 134 .

圖4A為本新型創作的另一實施例的光子晶體面射型雷射器的剖面示意圖。請參照圖4A,本實施例的光子晶體面射型雷射器100a類似於圖1的光子晶體面射型雷射器100,而兩者的主 要差異如下所述。在本實施例的光子晶體面射型雷射器100a中,光子晶體層130、光相位控制層190a’及分布式布拉格反射鏡110位於主動層120的同一側。此外,在本實施例中,主動層120位於分布式布拉格反射鏡110與基板160之間。在本實施例中,光相位控制層190a’可配置於透明導電層170上,且分布式布拉格反射鏡110配置於光相位控制層190a’上。此外,主動層120配置於N型半導體層190a上。N型半導體層190a配置於歐姆接觸層134a上,且歐姆接觸層134a配置於基板160上,而第一電極140配置於歐姆接觸層134a上。或者,歐姆接觸層134a也可以用另一N型半導體層來取代。在本實施例中,第一電極140與第二電極150位於光子晶體面射型雷射器100a的同一側。在另一實施例中,光子晶體面射型雷射器100a也可以不採用光相位控制層190a’,而是採用N型半導體層190a作光相位的調控,而分布式布拉格反射鏡110配置於透明導電層170上且直接接觸透明導電層170。在本實施例中,由於光相位控制層190a’與分布式布拉格反射鏡110是形成於透明導電層170上,因此分布式布拉格反射鏡110可採用上述分布式布拉格反射鏡110的材質中的介電材質,而光相位控制層190a’的材質可以是氧化鋅(Zinc oxide,ZnO)、氧化銦錫(indium tin oxide,ITO)或其他介電材質。此外,在本實施例中,光相位控制層190a’是配置於第二電極150的開口152處,而與透明導電層170接觸。 4A is a schematic cross-sectional view of a photonic crystal surface-emitting laser according to another embodiment of the novel creation. Referring to FIG. 4A , the photonic crystal surface-emitting laser 100a of the present embodiment is similar to the photonic crystal surface-emitting laser 100 of FIG. 1 , and the main The difference is described below. In the photonic crystal surface-emitting laser 100a of this embodiment, the photonic crystal layer 130, the optical phase control layer 190a' and the distributed Bragg mirror 110 are located on the same side of the active layer 120. In addition, in this embodiment, the active layer 120 is located between the distributed Bragg mirror 110 and the substrate 160 . In this embodiment, the optical phase control layer 190a' may be disposed on the transparent conductive layer 170, and the distributed Bragg mirror 110 may be disposed on the optical phase control layer 190a'. In addition, the active layer 120 is disposed on the N-type semiconductor layer 190a. The N-type semiconductor layer 190a is disposed on the ohmic contact layer 134a, the ohmic contact layer 134a is disposed on the substrate 160, and the first electrode 140 is disposed on the ohmic contact layer 134a. Alternatively, the ohmic contact layer 134a may also be replaced with another N-type semiconductor layer. In this embodiment, the first electrode 140 and the second electrode 150 are located on the same side of the photonic crystal surface-emitting laser 100a. In another embodiment, the photonic crystal surface-emitting laser 100a may not use the optical phase control layer 190a', but use the N-type semiconductor layer 190a for optical phase control, and the distributed Bragg mirror 110 is disposed on the On the transparent conductive layer 170 and in direct contact with the transparent conductive layer 170 . In this embodiment, since the optical phase control layer 190 a ′ and the distributed Bragg reflector 110 are formed on the transparent conductive layer 170 , the distributed Bragg reflector 110 can use an intermediate material among the above-mentioned materials of the distributed Bragg reflector 110 . The material of the optical phase control layer 190a' can be zinc oxide (ZnO), indium tin oxide (ITO) or other dielectric materials. In addition, in this embodiment, the optical phase control layer 190a' is disposed at the opening 152 of the second electrode 150, and is in contact with the transparent conductive layer 170.

在本實施例中,基板160可以是透明基板,例如為非導 電的且相對於主動層120所發出的光122而言為透明的基板或半絕緣基板(semi-insulation substrate),其具有出光面105,而主動層120所發出的部分的光122被圖4A位於上方的分布式布拉格反射鏡110反射後,從圖4A下方的出光面105出射。 In this embodiment, the substrate 160 may be a transparent substrate, such as a non-conductive substrate A substrate or semi-insulation substrate, which is electrically and transparent to the light 122 emitted by the active layer 120, has a light emitting surface 105, and a portion of the light 122 emitted by the active layer 120 is shown in FIG. 4A. After being reflected by the distributed Bragg mirror 110 located above, the light is emitted from the light emitting surface 105 at the bottom of FIG. 4A .

圖4B為本新型創作的又一實施例的光子晶體面射型雷射器的剖面示意圖。請參照圖4B,本實施例的光子晶體面射型雷射器100c類似於圖4A的光子晶體面射型雷射器100a,而兩者的差異在於在本實施例的光子晶體面射型雷射器100c中,N型半導體層190a配置於基板160上,基板160為導電基板,而第一電極140配置於基板160的下方邊緣,且透過基板160與N型半導體層190a電性連接。 4B is a schematic cross-sectional view of a photonic crystal surface-emitting laser according to another embodiment of the novel creation. Referring to FIG. 4B , the photonic crystal surface-emitting laser 100c of this embodiment is similar to the photonic crystal surface-emitting laser 100a of FIG. 4A , and the difference between the two lies in the photonic crystal surface-emitting laser of this embodiment. In the emitter 100c, the N-type semiconductor layer 190a is disposed on the substrate 160, which is a conductive substrate, and the first electrode 140 is disposed at the lower edge of the substrate 160, and is electrically connected to the N-type semiconductor layer 190a through the substrate 160.

圖4C為本新型創作的再一實施例的光子晶體面射型雷射器的剖面示意圖。請參照圖4C,本實施例的光子晶體面射型雷射器100b類似於圖1的光子晶體面射型雷射器100,而兩者的主要差異如下所述。在本實施例的光子晶體面射型雷射器100b中,光子晶體層130c、光相位控制層190及分布式布拉格反射鏡110位於主動層120的同一側,且同為N型半導體層或同為P型半導體層。此外,在主動層120的另一側則是依序設置有不具有光子晶體結構的披覆層132b與歐姆接觸層134b。也就是說,若光子晶體層130c、光相位控制層190及分布式布拉格反射鏡110同為N型半導體層,則披覆層132b為P型半導體層。若光子晶體層130c、光相位控制層190及分布式布拉格反射鏡110同為P型半導體層, 則披覆層132b為N型半導體層。其中,披覆層132b覆蓋光子晶體層130c及主動層120。再者,分布式布拉格反射鏡110是配置於一歐姆接觸層134a上,且歐姆接觸層134a配置於第一電極140上。 4C is a schematic cross-sectional view of a photonic crystal surface-emitting laser according to yet another embodiment of the novel creation. Referring to FIG. 4C , the photonic crystal surface-emitting laser 100b of this embodiment is similar to the photonic crystal surface-emitting laser 100 of FIG. 1 , and the main differences between the two are as follows. In the photonic crystal surface-emitting laser 100b of this embodiment, the photonic crystal layer 130c, the optical phase control layer 190 and the distributed Bragg mirror 110 are located on the same side of the active layer 120, and are all N-type semiconductor layers or the same is a P-type semiconductor layer. In addition, on the other side of the active layer 120, a cladding layer 132b without a photonic crystal structure and an ohmic contact layer 134b are sequentially disposed. That is, if the photonic crystal layer 130c, the optical phase control layer 190 and the distributed Bragg mirror 110 are all N-type semiconductor layers, the cladding layer 132b is a P-type semiconductor layer. If the photonic crystal layer 130c, the optical phase control layer 190 and the distributed Bragg mirror 110 are all P-type semiconductor layers, Then the cladding layer 132b is an N-type semiconductor layer. The cladding layer 132b covers the photonic crystal layer 130c and the active layer 120 . Furthermore, the distributed Bragg mirror 110 is disposed on an ohmic contact layer 134 a , and the ohmic contact layer 134 a is disposed on the first electrode 140 .

圖5為樣本A與樣本B的輸出光強度相對於輸入功率的曲線圖。請參照圖1與圖5,圖5中的樣本B為圖1的光子晶體面射型雷射器100,而樣本A類似樣本B,但樣本A不具有如圖1的分布式布拉格反射鏡110。從圖5可知,在同樣的輸入功率下,樣本B的輸出光強度約為樣本A的2倍,由此可佐證採用了分布式布拉格反射鏡110的本實施例的光子晶體面射型雷射器100的確可以有效提升光能量利用率。 FIG. 5 is a graph of output light intensity versus input power for sample A and sample B. FIG. Please refer to FIGS. 1 and 5 . Sample B in FIG. 5 is the photonic crystal surface-emitting laser 100 in FIG. 1 , and sample A is similar to sample B, but sample A does not have the distributed Bragg mirror 110 in FIG. 1 . . It can be seen from FIG. 5 that under the same input power, the output light intensity of sample B is about twice that of sample A, which proves that the photonic crystal surface-emitting laser of this embodiment adopts the distributed Bragg mirror 110 The device 100 can indeed effectively improve the utilization rate of light energy.

綜上所述,在本新型創作的實施例的光子晶體面射型雷射器中,由於採用了第一電極與第二電極提供電流來使主動層發光,且採用分布式布拉格反射鏡來將主動層所發出的光往單側反射,因此本新型創作的實施例的光子晶體面射型雷射器具有較佳的能源利用率。 To sum up, in the photonic crystal surface-emitting laser of the embodiment of the novel creation, the first electrode and the second electrode are used to provide current to make the active layer emit light, and the distributed Bragg reflector is used to The light emitted by the active layer is reflected to one side, so the photonic crystal surface-emitting laser of the embodiment of the present invention has better energy utilization.

100:光子晶體面射型雷射器 100: Photonic crystal surface emitting laser

105:出光面 105: light-emitting surface

110:分布式布拉格反射鏡 110: Distributed Bragg Mirror

120:主動層 120: Active layer

122:光 122: Light

130:光子晶體層 130: Photonic crystal layer

131:通孔 131: Through hole

132:披覆層 132: Coating

134:歐姆接觸層 134: Ohmic contact layer

140:第一電極 140: First electrode

150:第二電極 150: Second electrode

152、182:開口 152, 182: Opening

160:基板 160: Substrate

170:透明導電層 170: Transparent conductive layer

180:電流限制層 180: Current limiting layer

190:光相位控制層 190: Optical Phase Control Layer

L:距離 L: distance

Claims (16)

一種光子晶體面射型雷射器,包括:一分布式布拉格反射鏡;一主動層,配置於該分布式布拉格反射鏡上;一光子晶體層,配置於該分布式布拉格反射鏡上;一第一電極,電性連接至該主動層的一側;一第二電極,電性連接至該主動層的另一側;以及一透明導電層,配置於該主動層與該第二電極之間,其中該第二電極藉由該透明導電層電性連接至該主動層,其中,該主動層所發出的光受到分布式布拉格反射鏡的反射,並從該光子晶體面射型雷射器的相對於該分布式布拉格反射鏡的一出光面出射。 A photonic crystal surface-emitting laser, comprising: a distributed Bragg reflector; an active layer configured on the distributed Bragg reflector; a photonic crystal layer configured on the distributed Bragg reflector; a first an electrode electrically connected to one side of the active layer; a second electrode electrically connected to the other side of the active layer; and a transparent conductive layer disposed between the active layer and the second electrode, The second electrode is electrically connected to the active layer through the transparent conductive layer, wherein the light emitted by the active layer is reflected by the distributed Bragg reflector, and is transmitted from the opposite side of the photonic crystal surface emitting laser. emerges from a light emitting surface of the distributed Bragg reflector. 如請求項1所述的光子晶體面射型雷射器,其中該主動層所發出的該光在該分布式布拉格反射鏡與該出光面之間的共振凹陷波長落在該分布式布拉格反射鏡的反射光譜的高原區所對應的波長範圍內。 The photonic crystal surface-emitting laser as claimed in claim 1, wherein a resonance notch wavelength of the light emitted by the active layer between the distributed Bragg reflector and the light exit surface falls on the distributed Bragg reflector The wavelength range corresponding to the plateau region of the reflectance spectrum. 如請求項2所述的光子晶體面射型雷射器,其中該共振凹陷波長所對應的光子能量與該主動層的材料所發出的原始峰值波長所對應的光子能量的差異小於15meV。 The photonic crystal surface-emitting laser according to claim 2, wherein the difference between the photon energy corresponding to the resonance notch wavelength and the photon energy corresponding to the original peak wavelength emitted by the material of the active layer is less than 15meV. 如請求項2所述的光子晶體面射型雷射器,其中該共振凹陷波長落在該主動層的材料的發光光譜的半高寬所對應的波長範圍內。 The photonic crystal surface-emitting laser according to claim 2, wherein the resonance notch wavelength falls within a wavelength range corresponding to the half width of the luminescence spectrum of the material of the active layer. 如請求項1所述的光子晶體面射型雷射器,更包括:一光相位控制層,配置於該分布式布拉格反射鏡與該主動層之間,該光相位控制層的厚度用以控制該主動層所發出的該光在該分布式布拉格反射鏡與該出光面之間的共振凹陷波長落在該分布式布拉格反射鏡的反射光譜的高原區所對應的波長範圍內。 The photonic crystal surface-emitting laser according to claim 1, further comprising: an optical phase control layer disposed between the distributed Bragg mirror and the active layer, and the thickness of the optical phase control layer is used to control the thickness of the optical phase control layer. The resonance notch wavelength of the light emitted by the active layer between the distributed Bragg mirror and the light exit surface falls within a wavelength range corresponding to the plateau region of the reflection spectrum of the distributed Bragg mirror. 如請求項5所述的光子晶體面射型雷射器,其中該光相位控制層為N型半導體層,且該光子晶體層為P型半導體層;或者該光相位控制層為P型半導體層,且該光子晶體層為N型半導體層。 The photonic crystal surface-emitting laser according to claim 5, wherein the optical phase control layer is an N-type semiconductor layer, and the photonic crystal layer is a P-type semiconductor layer; or the optical phase control layer is a P-type semiconductor layer , and the photonic crystal layer is an N-type semiconductor layer. 如請求項5所述的光子晶體面射型雷射器,其中該光子晶體層、該光相位控制層及該分布式布拉格反射鏡位於該主動層的同一側。 The photonic crystal surface-emitting laser according to claim 5, wherein the photonic crystal layer, the optical phase control layer and the distributed Bragg mirror are located on the same side of the active layer. 如請求項7所述的光子晶體面射型雷射器,其中該光子晶體層、該光相位控制層及該分布式布拉格反射鏡同為N型半導體層,或同為P型半導體層。 The photonic crystal surface-emitting laser as claimed in claim 7, wherein the photonic crystal layer, the optical phase control layer and the distributed Bragg mirror are both N-type semiconductor layers or P-type semiconductor layers. 如請求項1所述的光子晶體面射型雷射器,更包括一披覆層,覆蓋該光子晶體層及該主動層,其中該披覆層為半導體層。 The photonic crystal surface-emitting laser as claimed in claim 1, further comprising a cladding layer covering the photonic crystal layer and the active layer, wherein the cladding layer is a semiconductor layer. 如請求項1所述的光子晶體面射型雷射器,其中該透明導電層覆蓋該光子晶體層,且電性連接該第二電極與該光子晶體層,其中該出光面為該透明導電層的背對該分布式布拉格反射鏡的表面。 The photonic crystal surface-emitting laser as claimed in claim 1, wherein the transparent conductive layer covers the photonic crystal layer, and is electrically connected to the second electrode and the photonic crystal layer, wherein the light emitting surface is the transparent conductive layer the surface facing away from the distributed Bragg mirror. 如請求項10所述的光子晶體面射型雷射器,其中該第二電極具有一開口,暴露出該出光面。 The photonic crystal surface-emitting laser of claim 10, wherein the second electrode has an opening exposing the light emitting surface. 如請求項10所述的光子晶體面射型雷射器,更包括一電流限制層,配置於該光子晶體層與該透明導電層之間,且具有一開口,其中該透明導電層通過該開口而連接至該光子晶體層。 The photonic crystal surface-emitting laser of claim 10, further comprising a current confinement layer disposed between the photonic crystal layer and the transparent conductive layer and having an opening, wherein the transparent conductive layer passes through the opening connected to the photonic crystal layer. 如請求項10所述的光子晶體面射型雷射器,其中該光子晶體層包括:一披覆層,配置於該主動層上;以及一歐姆接觸層,配置於該披覆層與該透明導電層之間,且與該透明導電層接觸以形成歐姆接觸,其中該披覆層與該歐姆接觸層具有光子晶體結構。 The photonic crystal surface-emitting laser of claim 10, wherein the photonic crystal layer comprises: a cladding layer disposed on the active layer; and an ohmic contact layer disposed on the cladding layer and the transparent layer Between the conductive layers and in contact with the transparent conductive layer to form an ohmic contact, wherein the cladding layer and the ohmic contact layer have a photonic crystal structure. 如請求項13所述的光子晶體面射型雷射器,其中該光子晶體層具有多個通孔,位於該披覆層與該歐姆接觸層中,且從該披覆層往該歐姆接觸層延伸,以形成該光子晶體結構。 The photonic crystal surface-emitting laser of claim 13, wherein the photonic crystal layer has a plurality of through holes located in the cladding layer and the ohmic contact layer, and from the cladding layer to the ohmic contact layer extension to form the photonic crystal structure. 如請求項1所述的光子晶體面射型雷射器,更包括一基板,配置於該分布式布拉格反射鏡與該第一電極之間。 The photonic crystal surface-emitting laser according to claim 1, further comprising a substrate disposed between the distributed Bragg mirror and the first electrode. 如請求項1的光子晶體面射型雷射器,更包括一基板,其中該主動層位於該分布式布拉格反射鏡與該基板之間。 The photonic crystal surface-emitting laser of claim 1, further comprising a substrate, wherein the active layer is located between the distributed Bragg mirror and the substrate.
TW110205046U 2020-11-08 2021-05-05 Photonic crystal surface-emitting laser TWM627153U (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063111065P 2020-11-08 2020-11-08
US63/111,065 2020-11-08
US17/241,584 US20210344165A1 (en) 2020-04-29 2021-04-27 Laser device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
TWM627153U true TWM627153U (en) 2022-05-21

Family

ID=81457482

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110205046U TWM627153U (en) 2020-11-08 2021-05-05 Photonic crystal surface-emitting laser
TW110116186A TWI830021B (en) 2020-11-08 2021-05-05 Photonic crystal surface-emitting laser

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110116186A TWI830021B (en) 2020-11-08 2021-05-05 Photonic crystal surface-emitting laser

Country Status (3)

Country Link
EP (1) EP4241350A1 (en)
TW (2) TWM627153U (en)
WO (1) WO2022095455A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI830021B (en) * 2020-11-08 2024-01-21 富昱晶雷射科技股份有限公司 Photonic crystal surface-emitting laser

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115579734A (en) * 2022-10-14 2023-01-06 江苏华兴激光科技有限公司 Manufacturing method of red light laser chip

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107482A (en) * 2013-01-29 2013-05-15 中国科学院半导体研究所 Single-mode photonic crystal vertical cavity surface emitting laser and preparation method thereof
US11637409B2 (en) * 2017-03-27 2023-04-25 Hamamatsu Photonics K.K. Semiconductor light-emitting module and control method therefor
JP6951890B2 (en) * 2017-07-10 2021-10-20 浜松ホトニクス株式会社 Semiconductor laser element
TWI698057B (en) * 2018-02-13 2020-07-01 國立交通大學 Two-dimensional photonic crystal laser with transparent oxide conducting cladding layers
TWM569067U (en) * 2018-05-21 2018-10-21 智林企業股份有限公司 Electric excitation photon crystal surface-emitting laser device
CN110535033B (en) * 2018-05-24 2021-05-25 智林企业股份有限公司 Surface emitting laser device of electro-excited photonic crystal
US10340659B1 (en) * 2018-06-14 2019-07-02 Conary Enterprise Co., Ltd. Electronically pumped surface-emitting photonic crystal laser
TWM588387U (en) * 2019-07-02 2019-12-21 智林企業股份有限公司 Electrically pumped photonic crystal surface-emitting laser element with light detection structure
TWM627153U (en) * 2020-11-08 2022-05-21 富昱晶雷射科技股份有限公司 Photonic crystal surface-emitting laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI830021B (en) * 2020-11-08 2024-01-21 富昱晶雷射科技股份有限公司 Photonic crystal surface-emitting laser

Also Published As

Publication number Publication date
WO2022095455A1 (en) 2022-05-12
TWI830021B (en) 2024-01-21
EP4241350A1 (en) 2023-09-13
TW202220316A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
USRE41738E1 (en) Red light laser
KR101608542B1 (en) Optoelectronic component
US7778304B2 (en) Measuring arrangement and measuring system
US7907654B2 (en) Laser diode with a grating layer
US9014225B2 (en) Vertical cavity surface emitting laser device
US4589115A (en) Wavelength tuning of quantum well heterostructure lasers using an external grating
EP2675024B1 (en) Electron beam pumped vertical cavity surface emitting laser
US9082909B2 (en) Optical device including three coupled quantum well structure
TWI830021B (en) Photonic crystal surface-emitting laser
KR102113256B1 (en) Optical device including three coupled quantum well structure having multi-energy level
JP5306355B2 (en) Manufacturing method of beam emitting device and beam emitting device
JP7473271B2 (en) VCSEL laser device, chip and light source for LIDAR system with small divergence angle
WO2003092132A1 (en) Gasb-clad mid-infrared semiconductor laser
WO2005017568A2 (en) Semiconductor light sources with doping gradients in optical confinement layers for improved device efficiency
US20210215994A1 (en) Radiation source for emitting terahertz radiation
US10283937B2 (en) Optoelectronic device with enhanced lateral leakage of high order transverse optical modes into alloy-intermixed regions and method of making same
US8536603B2 (en) Optoelectronic semiconductor chip and method of producing an optoelectronic semiconductor chip
KR20110093839A (en) Surface-emitting semiconductor laser component having a vertical emission direction
US20230208110A1 (en) Semiconductor laser and lidar system and also laser system with the semiconductor laser
JPH05211346A (en) Surface light emitting element
US20230231362A1 (en) Semiconductor laser with a horizontal laser element and a vertical laser element, lidar system and production method
US8208512B2 (en) Surface emitting semiconductor body with vertical emission direction and stabilized emission wavelength
US10277005B2 (en) Pumped edge emitters with metallic coatings
WO2010022526A2 (en) Superluminescent diode, or amplifier chip
CN112310810A (en) Semiconductor laser transmitter