TWM569067U - Electric excitation photon crystal surface-emitting laser device - Google Patents

Electric excitation photon crystal surface-emitting laser device Download PDF

Info

Publication number
TWM569067U
TWM569067U TW107206643U TW107206643U TWM569067U TW M569067 U TWM569067 U TW M569067U TW 107206643 U TW107206643 U TW 107206643U TW 107206643 U TW107206643 U TW 107206643U TW M569067 U TWM569067 U TW M569067U
Authority
TW
Taiwan
Prior art keywords
photonic crystal
layer
emitting laser
indium
laser element
Prior art date
Application number
TW107206643U
Other languages
Chinese (zh)
Inventor
林國瑞
徐銘揚
陳俞諶
Original Assignee
智林企業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 智林企業股份有限公司 filed Critical 智林企業股份有限公司
Priority to TW107206643U priority Critical patent/TWM569067U/en
Publication of TWM569067U publication Critical patent/TWM569067U/en

Links

Abstract

一種電激發光子晶體面射型雷射元件,包含:一電流侷限結構,係位在光子晶體結構及主動層上,並具有一孔徑;一透明導電層,位在電流侷限結構上,並覆蓋光子晶體結構;一正電極金屬,位在透明導電層上,並具有一金屬孔;本創作係直接從磊晶結構最上方往內部蝕刻來製作光子晶體,無需晶圓熔合或磊晶再成長的複雜技術,不僅可以使雷射光穿透,還同時具有導電性,進而得以電激發量子結構,再藉由光子晶體結構,使光能從磊晶結構的正面出光,且具有遠場發散角小等優異特性。 An electroluminescence photonic crystal surface-emitting laser element comprising: a current confinement structure, which is located on the photonic crystal structure and the active layer, and has an aperture; a transparent conductive layer located on the current confinement structure and covering the photon Crystal structure; a positive electrode metal, located on the transparent conductive layer, and has a metal hole; the original system directly etches from the top of the epitaxial structure to the inside to make a photonic crystal, without the need for wafer fusion or epitaxial growth The technology not only can penetrate the laser light, but also has electrical conductivity, and then electrically excites the quantum structure, and then the light energy is emitted from the front surface of the epitaxial structure by the photonic crystal structure, and has a small far field divergence angle and the like. characteristic.

Description

電激發光子晶體面射型雷射元件 Electrically excited photonic crystal surface-emitting laser element

本創作係有關一種電激發光子晶體面射型雷射元件,其正電極金屬、透明導電層、電流侷限結構的相互配合,進而電激發量子結構,再藉由光子晶體結構,使光能從磊晶結構的正面出光。 The present invention relates to an electro-excited photonic crystal surface-emitting laser element, in which a positive electrode metal, a transparent conductive layer, and a current confinement structure cooperate with each other to electrically excite a quantum structure, and then a photonic crystal structure is used to make the light energy from the Lei The front side of the crystal structure emits light.

按,光子晶體(Photonic crystal,PC)為一種人造晶體,或稱作超穎材料(Metamaterials),這種晶體的折射率在空間上具有週期性分布,其特性與固態晶體相似。將週期性位勢及邊界條件引入薛丁格方程式,藉由解特徵問題可以得到固態晶體的色散關係(Dispersion relation),或稱作能帶結構(Band Structure)。同樣道理,將週期性折射率分布及邊界條件引入馬克士威(Maxwell)方程式,解特徵問題可以得到光子晶體的能帶結構。電磁波在光子晶體中的傳播行為類似於固態晶體中的電子,特定頻率的電磁波無法在光子晶體中存在時,即類似於固態晶體中的能隙(Band gap),稱為光子晶體的禁制帶(Forbidden band)。光子晶體可以控制光的傳播行為,其應用範圍十分廣泛,例如光子晶體雷射、光子晶體光纖等相關應用。 Photonic crystal (PC) is an artificial crystal, or Metamaterials. The refractive index of this crystal has a periodic distribution in space, and its characteristics are similar to those of solid crystals. The periodic potential and boundary conditions are introduced into the Schrödinger equation. The dispersion relation of the solid crystal can be obtained by solving the characteristic problem, or called Band Structure. By the same token, the periodic refractive index distribution and boundary conditions are introduced into the Maxwell equation, and the energy band structure of the photonic crystal can be obtained by solving the characteristic problem. The propagation behavior of electromagnetic waves in a photonic crystal is similar to that in a solid crystal. When a specific frequency of electromagnetic waves cannot exist in a photonic crystal, that is, similar to a band gap in a solid crystal, it is called a photonic crystal forbidden band ( Forbidden band). Photonic crystals can control the propagation behavior of light, and its application range is very wide, such as photonic crystal laser, photonic crystal fiber and other related applications.

承上,光子晶體雷射主要分為兩種,缺陷型雷射(Defect lasers)與能帶邊緣型雷射(Band-edge lasers)。缺陷型雷射的操作頻率在光子晶體的禁制帶中,在光子晶體結構中移除一個或數個晶格點作為缺陷,使電磁波侷限在缺陷中進而形成雷射共振腔,這種雷射的優點為有極高的品質因子(Quality factor)、較低的閾值條件等。而能帶邊緣型雷射利用能帶邊緣能態的群速度趨近於零來實現慢光(Slow light)效 應,使光子在光子晶體中的生命周期(Life time)變長,得以增強光子與增益介質之間的交互作用。由於這種雷射將操作頻率設計在能帶邊緣的平坦能態上,而不是禁制帶中的能態,故共振區域不再侷限在極小的體積內,得以拓展到整個光子晶體區域,實現大面積同調共振。另一方面,由於光子晶體特殊的繞射現象,光不只在光子晶體平面上耦合,亦會繞射出光子晶體平面,所以可以達到面射出光(Surface emission)的效果。這種雷射的優點有面射出光、大面積出光、較小的發散角、高功率輸出與容易製作二維雷射陣列等優異特性。 According to the above, photonic crystal lasers are mainly divided into two types, Defect lasers and Band-edge lasers. The operating frequency of the defective laser is in the forbidden band of the photonic crystal, and one or several lattice points are removed as defects in the photonic crystal structure, so that the electromagnetic wave is confined in the defect to form a laser cavity, and the laser is formed. The advantages are extremely high quality factor, low threshold conditions, and the like. The edge-type laser can use the edge energy state of the energy band to approach the zero to achieve slow light effect. It should be such that the life time of the photon in the photonic crystal is lengthened to enhance the interaction between the photon and the gain medium. Since the laser is designed to operate at a flat energy state at the edge of the band, rather than forbidding the energy state in the band, the resonance region is no longer confined to a very small volume, and can be extended to the entire photonic crystal region to achieve a large Area coherent resonance. On the other hand, due to the special diffraction phenomenon of photonic crystals, light is not only coupled on the plane of the photonic crystal, but also diffracts the plane of the photonic crystal, so that the effect of surface emission can be achieved. The advantages of this type of laser are excellent characteristics such as surface-emitting light, large-area light output, small divergence angle, high power output, and easy fabrication of a two-dimensional laser array.

次按,光子晶體雷射依激發來源可以分為光激發與電激發雷射,光激發雷射將高功率雷射源導入元件產生大量電子-電洞對(Electron-hole pair)來達到雷射現象;電激發雷射則利用外加電源供給電子與電洞,實際應用上以電激發式為主,然而光子晶體的孔洞結構使得電流注入變得困難,需要考慮載子的傳輸路徑與分佈問題,所以比光激發雷射難實現。由文獻回顧可得知電激發雷射的製程方式可大致分為兩種:晶圓熔合(Wafer fusion)與磊晶再成長(Regrowth)。前者首次由京都大學Noda等人於1999年利用晶圓熔合技術,在高溫高壓下將兩片晶圓接合,成功展示InGaP/InP多重量子井雷射在室溫下的操作,該雷射在電流脈衝波操作下的最大輸出功率超過20mW,遠場發散角小於1.8度;後者是由Noda等人於2014年發表,利用磊晶再成長的技術成功製作出瓦級(Watt-class)的InGaAs/AlGaAs多重量子井雷射,在室溫下的電流連續波操作,最大輸出功率可以高達1.5W,發散角小於3度。 According to the secondary press, the photonic crystal laser can be divided into photoexcited and electrically excited laser according to the excitation source. The photoexcited laser introduces a high-power laser source into the component to generate a large number of electron-hole pair to achieve the laser. Phenomenon; electric excitation laser uses external power supply to supply electrons and holes. In practical applications, electric excitation is the main method. However, the hole structure of photonic crystal makes current injection difficult, and it is necessary to consider the transmission path and distribution of carriers. Therefore, it is difficult to achieve laser excitation than light. It can be seen from the literature review that the process of electrically exciting laser can be roughly divided into two types: wafer fusion (Wafer fusion) and epitaxial growth (Regrowth). For the first time, the former was used by Kyoto University Noda et al. in 1999 to use wafer fusing technology to bond two wafers under high temperature and high pressure, successfully demonstrating the operation of InGaP/InP multiple quantum well laser at room temperature. The maximum output power under pulse wave operation exceeds 20mW, and the far-field divergence angle is less than 1.8 degrees. The latter was published by Noda et al. in 2014. It successfully produced Watt-class InGaAs/ using epitaxial growth technology. AlGaAs multiple quantum well laser, continuous current operation at room temperature, maximum output power up to 1.5W, divergence angle less than 3 degrees.

惟查,由於目前有關製作電激發光子晶體雷射的相關研究以晶圓熔合與磊晶再成長為主,然而這兩種製造方法需要較複雜的技 術。是以,本創作人有鑑於上揭問題點,乃構思一種電激發光子晶體面射型雷射元件,而希望以更簡單的方式完成,為本創作所欲解決的課題。 However, since the current research on the fabrication of electro-excited photonic crystal lasers is mainly based on wafer fusion and epitaxial growth, these two manufacturing methods require more complicated techniques. Surgery. Therefore, the present creator has conceived an electro-excited photonic crystal surface-emitting laser element in view of the above problems, and hopes to complete it in a simpler manner, which is a problem to be solved by the creation.

本創作之主要目的,提供一種電激發光子晶體面射型雷射元件,其直接從磊晶結構最上方往內部蝕刻來製作光子晶體,並以氧化銦錫作為電極結構,成功避免先前技術晶圓熔合與磊晶再成長之製程方法,不僅可以使雷射光穿透,還同時具有導電性,所以非常適合於面射型雷射。 The main purpose of the present invention is to provide an electro-excited photonic crystal surface-emitting laser element which is directly etched from the uppermost portion of the epitaxial structure to form a photonic crystal, and uses indium tin oxide as an electrode structure to successfully avoid the prior art wafer. The process of fusion and epitaxial growth can not only penetrate the laser light but also have electrical conductivity, so it is very suitable for surface-emitting lasers.

為達上述目的,本創作所採用之技術手段,其包含:一基板,其具備一第一表面及相反側之第二表面;一下披覆層,係位在該基板之第一表面上;一主動層,係位在該下披覆層上,並具有一量子結構;一上披覆層,係位在該主動層上;一接觸層,係位在該上披覆層上,並以該上披覆層及該接觸層呈高台型且設有複數空氣孔洞,形成一光子晶體結構,且該光子晶體結構之上表面係設定一第一預定區域;一電流侷限結構,係位在該光子晶體結構及該主動層上,並具有一孔徑,且該孔徑係對應該光子晶體結構之第一預定區域,使電流流向侷限在該光子晶體結構之第一預定區域;一透明導電層,係位在該電流侷限結構上,並覆蓋該光子晶體結構之第一預定區域上,且該透明導電層之上表面係設定一第二預定區域,該第二預定區域之位置與該光子晶體結構之第一預定區域之位置呈現上下對應關係;一正電極金屬,係位在該透明導電層上,並具有一金屬孔,且該金屬孔係對應該透明導電層之第二預定區域,使該金屬孔不遮蔽該光子晶體結構之 第一預定區域;以及一背電極金屬,係位在該基板之第二表面上;藉此,該正電極金屬、該透明導電層、該電流侷限結構及該背電極金屬相互配合,進而電激發該量子結構,再藉由該光子晶體結構可面射出雷射於該光子晶體結構之第一預定區域、該電流侷限結構之孔徑、該透明導電層之第二預定區域至該正電極金屬之金屬孔外。 In order to achieve the above object, the technical means adopted by the present invention comprises: a substrate having a first surface and a second surface on the opposite side; and a lower cladding layer on the first surface of the substrate; The active layer is located on the lower cladding layer and has a quantum structure; an upper cladding layer is located on the active layer; a contact layer is located on the upper cladding layer, and The upper cladding layer and the contact layer are of a high-profile type and are provided with a plurality of air holes to form a photonic crystal structure, and a surface of the photonic crystal structure is set to a first predetermined area; a current confinement structure is located at the photon a crystal structure and the active layer, and having an aperture, and the aperture corresponds to a first predetermined region of the photonic crystal structure, causing current flow to be confined to a first predetermined region of the photonic crystal structure; a transparent conductive layer, a system And covering the first predetermined area of the photonic crystal structure, and setting a second predetermined area on the upper surface of the transparent conductive layer, the position of the second predetermined area and the photonic crystal structure a predetermined area is in an upper and lower correspondence relationship; a positive electrode metal is located on the transparent conductive layer and has a metal hole, and the metal hole corresponds to a second predetermined area of the transparent conductive layer, so that the metal hole Does not obscure the photonic crystal structure a first predetermined region; and a back electrode metal on the second surface of the substrate; thereby, the positive electrode metal, the transparent conductive layer, the current confinement structure and the back electrode metal cooperate with each other to electrically excite The quantum structure is further exposed by the photonic crystal structure to a first predetermined region of the photonic crystal structure, an aperture of the current confinement structure, a second predetermined region of the transparent conductive layer, and a metal of the positive electrode metal Outside the hole.

在一較佳實施例中,該上披覆層之厚度範圍為10~500nm。 In a preferred embodiment, the upper cladding layer has a thickness ranging from 10 to 500 nm.

在一較佳實施例中,該空氣孔洞係可排列成二維陣列。 In a preferred embodiment, the air holes can be arranged in a two dimensional array.

在一較佳實施例中,該電流侷限結構之材料係可包括選自氮化矽、氧化矽、聚醯亞胺其中任一所構成。 In a preferred embodiment, the material of the current confinement structure may comprise any one selected from the group consisting of tantalum nitride, hafnium oxide, and polyimide.

在一較佳實施例中,該透明導電層之材料係可包括選自氧化銦錫、氧化銻錫、氟摻雜氧化錫、氧化鋁鋅、氧化鎵鋅、氧化銦鋅、氧化鋅其中任一所構成。 In a preferred embodiment, the material of the transparent conductive layer may include any one selected from the group consisting of indium tin oxide, antimony tin oxide, fluorine-doped tin oxide, aluminum zinc oxide, gallium zinc oxide, indium zinc oxide, and zinc oxide. Composition.

在一較佳實施例中,該量子結構係可包括至少一量子點層。 In a preferred embodiment, the quantum structure can include at least one quantum dot layer.

在一較佳實施例中,該量子點層之材料係可包括選自砷化銦、氮化鎵、砷化銦鎵、氮化銦鎵、磷化銦鎵、砷化鋁鎵銦、磷化鋁鎵銦、砷磷化鎵銦其中任一所構成。 In a preferred embodiment, the material of the quantum dot layer may be selected from the group consisting of indium arsenide, gallium nitride, indium gallium arsenide, indium gallium nitride, indium gallium phosphide, indium gallium arsenide, and phosphating. Any of aluminum gallium indium and gallium arsenide gallium indium.

在一較佳實施例中,該量子結構係可包括至少一量子井層。 In a preferred embodiment, the quantum structure can include at least one quantum well layer.

在一較佳實施例中,該量子井層之材料係可包括選自砷化銦、氮化鎵、砷化銦鎵、氮化銦鎵、磷化銦鎵、砷化鋁鎵銦、磷化鋁鎵銦、砷磷化鎵銦其中任一所構成。 In a preferred embodiment, the material of the quantum well layer may include a material selected from the group consisting of indium arsenide, gallium nitride, indium gallium arsenide, indium gallium nitride, indium gallium phosphide, indium gallium arsenide, and phosphating. Any of aluminum gallium indium and gallium arsenide gallium indium.

在一較佳實施例中,該基板與該下披覆層之間係可包括設有一緩衝層。 In a preferred embodiment, the substrate and the lower cladding layer may include a buffer layer.

在一較佳實施例中,該緩衝層與該下披覆層之間係可包括設有一第一漸變層。 In a preferred embodiment, the buffer layer and the lower cladding layer may include a first gradation layer.

在一較佳實施例中,該下披覆層與該主動層之間係可包括設有一第一分開侷限層異質;該主動層與該上披覆層之間係可包括設有一第二分開侷限層異質。 In a preferred embodiment, the lower cladding layer and the active layer may include a first separate confinement layer heterogeneity; the active layer and the upper cladding layer may include a second separation The local layer is heterogeneous.

在一較佳實施例中,該上披覆層與該接觸層之間係可包括設有一第二漸變層。 In a preferred embodiment, the upper cladding layer and the contact layer may include a second gradation layer.

藉助上揭技術手段,其以氧化銦錫作為該透明導電層,並搭配該電流侷限結構控制電流分布與減緩該光子晶體結構的邊界損耗,成功展示室溫操作的電激發光。 By means of the above-mentioned technical means, indium tin oxide is used as the transparent conductive layer, and the current confinement structure is used to control the current distribution and slow down the boundary loss of the photonic crystal structure, and the electro-excitation light which is operated at room temperature is successfully displayed.

10A、10B‧‧‧電激發光子晶體面射型雷射元件 10A, 10B‧‧‧Electrically excited photonic crystal surface-emitting laser elements

11‧‧‧基板 11‧‧‧Substrate

111‧‧‧第一表面 111‧‧‧ first surface

112‧‧‧第二表面 112‧‧‧ second surface

12‧‧‧下披覆層 12‧‧‧ under cladding

13‧‧‧主動層 13‧‧‧Active layer

131‧‧‧量子結構 131‧‧‧Quantum structure

131A‧‧‧量子點層 131A‧‧·Quantum layer

131B‧‧‧量子井層 131B‧‧‧Quantum well

1311‧‧‧量子點 1311‧‧‧ Quantum dots

1312‧‧‧覆蓋層 1312‧‧‧ Coverage

1313‧‧‧間隔層 1313‧‧‧ spacer

14‧‧‧上披覆層 14‧‧‧Upper coating

141‧‧‧空氣孔洞 141‧‧‧Air holes

15‧‧‧光子晶體結構 15‧‧‧Photonic crystal structure

151‧‧‧光子晶體結構之上表面 151‧‧‧Photonic crystal structure upper surface

16‧‧‧電流侷限結構 16‧‧‧ Current Limiting Structure

161‧‧‧孔徑 161‧‧‧ aperture

17‧‧‧透明導電層 17‧‧‧Transparent conductive layer

171‧‧‧透明導電層之上表面 171‧‧‧Top surface of transparent conductive layer

18‧‧‧正電極金屬 18‧‧‧ positive electrode metal

181‧‧‧金屬孔 181‧‧‧Metal hole

19‧‧‧負電極金屬 19‧‧‧Negative electrode metal

A1‧‧‧第一預定區域 A 1 ‧‧‧First scheduled area

A2‧‧‧第二預定區域 A 2 ‧‧‧Second scheduled area

B‧‧‧緩衝層 B‧‧‧buffer layer

C‧‧‧接觸層 C‧‧‧Contact layer

F‧‧‧光子晶體圖形 F‧‧‧Photonic Crystal Graphics

G1‧‧‧第一漸變層 G 1 ‧‧‧First Gradient Layer

G2‧‧‧第二漸變層 G 2 ‧‧‧Second gradient

L1‧‧‧外側長度 L 1 ‧‧‧ outside length

L2‧‧‧內側長度 L 2 ‧‧‧inside length

M‧‧‧硬式罩幕 M‧‧‧hard mask

R‧‧‧正光阻 R‧‧‧positive photoresist

S1‧‧‧第一分開侷限層異質結構 S 1 ‧‧‧ first separate localized heterostructure

S2‧‧‧第二分開侷限層異質結構 S 2 ‧‧‧Second separate confined heterostructure

T‧‧‧溝槽 T‧‧‧ trench

W‧‧‧磊晶結構 W‧‧‧ epitaxial structure

a‧‧‧週期 A‧‧ cycle

圖1A係本創作磊晶結構之示意圖。 Figure 1A is a schematic diagram of the epitaxial structure of the present invention.

圖1B係本創作製作硬式罩幕之示意圖。 Figure 1B is a schematic diagram of the creation of a hard mask.

圖1C係本創作定義光子晶體圖形之示意圖。 Figure 1C is a schematic diagram of the definition of a photonic crystal pattern.

圖1D係本創作轉移光子晶體圖形之示意圖。 Figure 1D is a schematic diagram of the transfer photonic crystal pattern of the present invention.

圖1E係本創作去除硬式罩幕之示意圖。 Figure 1E is a schematic view of the present invention to remove the hard mask.

圖1F係本創作蝕刻出高台之示意圖。 Figure 1F is a schematic diagram of the etching of the high stage.

圖1G係本創作製作電流侷限結構之示意圖。 Figure 1G is a schematic diagram of the current limited structure of the present creation.

圖1H係本創作製作透明導電層之示意圖。 Figure 1H is a schematic diagram of the creation of a transparent conductive layer.

圖1I係本創作溝槽作為隔離邊界之示意圖。 Figure 1I is a schematic diagram of the inventive trench as an isolation boundary.

圖1J係本創作基板磨薄之示意圖。 Fig. 1J is a schematic view showing the thinning of the substrate of the present invention.

圖1K係本創作正電極金屬沉積之示意圖。 Figure 1K is a schematic diagram of the metal deposition of the positive electrode of the present invention.

圖1L係本創作背電極金屬沉積之示意圖。 Figure 1L is a schematic diagram of the metal deposition of the back electrode of the present invention.

圖2A係本創作光子晶體結構俯視之電子顯微鏡圖。 Figure 2A is an electron micrograph of a top view of the photonic crystal structure of the present invention.

圖2B係本創作光子晶體結構側視之電子顯微鏡圖。 Figure 2B is an electron micrograph of a side view of the photonic crystal structure of the present invention.

圖3係本創作另一較佳實施例之示意圖。 Figure 3 is a schematic illustration of another preferred embodiment of the present invention.

圖4A係本創作量子結構之示意圖。 Figure 4A is a schematic diagram of the inventive quantum structure.

圖4B係本創作量子結構另一較佳實施例之示意圖。 Figure 4B is a schematic illustration of another preferred embodiment of the inventive quantum structure.

圖5係本創作之俯視圖。 Figure 5 is a top view of the creation.

圖6係本創作側視之電子顯微鏡圖。 Figure 6 is an electron micrograph of the side view of the present creation.

首先,請參閱圖1A~圖1L所示,本創作之一種電激發光子晶體面射型雷射(Electrically Pumped Photonic-Crystal Surface-Emitting Lasers)元件10A較佳實施例,包含:一基板(substrate)11,其具備一第一表面111及相反側之第二表面112,本實施例中,該基板11之材料係可包括選自氮化鎵(GaN)、砷化鎵(GaAs)、磷化銦(InP)其中任一所構成,但不限定於此。 First, referring to FIG. 1A to FIG. 1L, a preferred embodiment of an electrically-excited Photonic-Crystal Surface-Emitting Lasers component 10A includes: a substrate. 11. The first surface 111 and the second surface 112 of the opposite side are provided. In this embodiment, the material of the substrate 11 may include a material selected from the group consisting of gallium nitride (GaN), gallium arsenide (GaAs), and indium phosphide. (InP) is constituted by any of them, but is not limited thereto.

一下披覆層(Cladding layer)12,係位在該基板11之第一表面111上,本實施例中,該下披覆層12之材料係可包括選自砷化鋁鎵(AlGaAs)、砷化鎵(GaAs)、氮化鋁鎵(AlGaN)、砷化鋁鎵銦(AlGaInAs)、磷化鋁鎵銦(AlGaInP)其中任一所構成,但不限定於此。 A Cladding layer 12 is fastened on the first surface 111 of the substrate 11. In this embodiment, the material of the lower cladding layer 12 may be selected from the group consisting of aluminum gallium arsenide (AlGaAs) and arsenic. Gallium (GaAs), aluminum gallium nitride (AlGaN), aluminum gallium indium arsenide (AlGaInAs), or aluminum gallium indium arsenide (AlGaInP) is used, but is not limited thereto.

一主動層13,係位在該下披覆層12上,並具有一量子結構(Quantum Structure)131。 An active layer 13 is ligated on the lower cladding layer 12 and has a Quantum Structure 131.

一上披覆層(Cladding layer)14,係位在該主動層(active region)13上,本實施例中,該上披覆層14之厚度範圍為10~500nm,配合該上披覆層14之材料係可包括選自砷化鋁鎵(AlGaAs)、砷化鎵(GaAs)、氮化鋁鎵(AlGaN)、砷化鋁鎵銦(AlGaInAs)、磷化鋁鎵銦(AlGaInP)其中任一所構成,但不限定於此。 A Cladding layer 14 is ligated on the active region 13. In this embodiment, the thickness of the upper cladding layer 14 ranges from 10 to 500 nm, and the upper cladding layer 14 is matched. The material system may include any one selected from the group consisting of aluminum gallium arsenide (AlGaAs), gallium arsenide (GaAs), aluminum gallium nitride (AlGaN), aluminum gallium arsenide (AlGaInAs), and aluminum gallium phosphide (AlGaInP). It is constituted, but is not limited thereto.

一接觸層(Contact layer)(C),係位在該上披覆層14上,本實施例中,該接觸層(C)之材料係可包括選自氮化鎵(GaN)、砷化鎵(GaAs)、磷砷化銦鎵(InGaAsP)其中任一所構成,但不限定於此。 A contact layer (C) is located on the upper cladding layer 14. In this embodiment, the material of the contact layer (C) may include a layer selected from gallium nitride (GaN) and gallium arsenide. (GaAs) or indium gallium arsenide (InGaAsP) is used, but is not limited thereto.

圖1A所示,其該基板11、該下披覆層12、該主動層13、該上披覆層14及該接觸層(C)形成一磊晶結構(W),並不限定磊晶成長之層數。 As shown in FIG. 1A, the substrate 11, the lower cladding layer 12, the active layer 13, the upper cladding layer 14, and the contact layer (C) form an epitaxial structure (W), which does not limit epitaxial growth. The number of layers.

圖1B所示,其製作一硬式罩幕(Hard mask)(M),在該磊晶結構(W)上沉積氮化矽(Silicon Nitride,SiNx),但不限定於此。 As shown in FIG. 1B, a hard mask (M) is formed, and tantalum nitride (SiNx) is deposited on the epitaxial structure (W), but is not limited thereto.

圖1C所示,其定義一光子晶體圖形(F),在該磊晶結構(W)上旋塗一正光阻(R),之後將該光子晶體圖形(F)定義於該正光阻(R)上,其光子晶體區域為290μm的正方形,但不限定於此。 As shown in FIG. 1C, a photonic crystal pattern (F) is defined, and a positive photoresist (R) is spin-coated on the epitaxial structure (W), and then the photonic crystal pattern (F) is defined in the positive photoresist (R). In the above, the photonic crystal region is a square of 290 μm, but is not limited thereto.

圖1D所示,其轉移該光子晶體圖形(F),先將該光子晶體圖形(F)轉移進該硬式罩幕(M)中,並移除該正光阻(R)後,再將該光子晶體圖形(F)轉移進該磊晶結構(W)中,由於該量子結構131將波導模態的大部分光場侷限於該主動層13的區域,故蝕刻深度需要更深才能獲得更強的耦合強度,當蝕刻深度大於500nm時,則光子晶體才會有較好的耦合效率,但不限定於此。 As shown in FIG. 1D, the photonic crystal pattern (F) is transferred, the photonic crystal pattern (F) is first transferred into the hard mask (M), and the positive photoresist (R) is removed, and then the photon is removed. The crystal pattern (F) is transferred into the epitaxial structure (W). Since the quantum structure 131 limits most of the light field of the waveguide mode to the region of the active layer 13, the etching depth needs to be deeper to obtain stronger coupling. The intensity, when the etching depth is greater than 500 nm, the photonic crystal will have better coupling efficiency, but is not limited thereto.

圖1E所示,其去除該硬式罩幕(M),但不限定於此。 As shown in FIG. 1E, the hard mask (M) is removed, but is not limited thereto.

圖1F所示,其利用黃光製程定義出310μm的正方形高台,並蝕刻深度約為450nm,令該上披覆層14及該接觸層(C)呈高台(Mesa)型且設有複數空氣孔洞(air hole)141,形成一光子晶體結構15,且該光子晶體結構15之上表面151係設定一第一預定區域(A1),而蝕刻出高台的目的為幫助光侷限在光子晶體中與減少漏電流,本實施例中,該光子晶體結構15之週期(a)為385nm、388nm、390nm、393nm、395nm其中 任一所構成,但不限定於此。此外,圖2A及圖2B所示,其各該空氣孔洞141之形狀為圓柱形、各該空氣孔洞141之深度為520nm~540nm及其直徑為130~140nm、各該空氣孔洞141係可排列成二維陣列,但不限定於此。 As shown in FIG. 1F, a 310 μm square platform is defined by a yellow light process, and the etching depth is about 450 nm, so that the upper cladding layer 14 and the contact layer (C) are in a Mesa type and are provided with a plurality of air holes. (air hole) 141, forming a photonic crystal structure 15, and the upper surface 151 of the photonic crystal structure 15 is set to a first predetermined area (A 1 ), and the purpose of etching the high stage is to help the light confinement in the photonic crystal. In the present embodiment, the period (a) of the photonic crystal structure 15 is 385 nm, 388 nm, 390 nm, 393 nm, and 395 nm, but is not limited thereto. In addition, as shown in FIG. 2A and FIG. 2B, each of the air holes 141 has a cylindrical shape, and each of the air holes 141 has a depth of 520 nm to 540 nm and a diameter of 130 to 140 nm, and the air holes 141 can be arranged. Two-dimensional array, but is not limited to this.

圖1G所示,其製作一電流侷限結構16,乃因具有無限週期的光子晶體理論上不會有邊界(Boundary)效應,然而實際應用上的光子晶體是有限週期的,所以在晶體的邊界會有能量損耗,但若光子晶體的面積比元件具有增益的面積大,則能減緩邊界效應所造成的損耗,且光子晶體面積為增益面積的二到三倍是可以成功產生雷射現象,故利用黃光製程在該光子晶體結構15之第一預定區域(A1)的正中間定義出圓形的孔徑(Aperture)圖案,其直徑為150μm,再沉積氮化矽120nm,並利用舉離(Lift off)將多餘的氮化矽去除,令該電流侷限結構16,係位在該光子晶體結構15及該主動層13上,並具有一孔徑161,且該孔徑161係對應該光子晶體結構15之第一預定區域(A1),使電流流向侷限在該光子晶體結構15之第一預定區域(A1),讓雷射模態存在於類似無限大的光子晶體中,本實施例中,該電流侷限結構16之材料係可包括選自氮化矽(SiNx)、氧化矽(SiOx)、聚醯亞胺(polyimide)其中任一所構成,但不限定於此。 As shown in FIG. 1G, a current confinement structure 16 is fabricated because a photonic crystal having an infinite period does not theoretically have a Boundary effect. However, photonic crystals in practical applications are finite-period, so the boundary at the crystal will There is energy loss, but if the area of the photonic crystal is larger than the area where the component has gain, the loss caused by the boundary effect can be slowed down, and the photonic crystal area is two to three times the gain area, which can successfully generate laser phenomenon, so the use The yellow light process defines a circular aperture pattern in the middle of the first predetermined region (A 1 ) of the photonic crystal structure 15 having a diameter of 150 μm, redepositing tantalum nitride 120 nm, and utilizing lift (Lift) Off) removing excess tantalum nitride such that the current confinement structure 16 is tied to the photonic crystal structure 15 and the active layer 13 and has an aperture 161 corresponding to the photonic crystal structure 15 a first predetermined area (a 1), so that current flows in a first predetermined limited area (a 1) of the photonic crystal structure 15, so that the laser mode is similar to exist in an infinite photonic crystal in the present embodiment, Current limitations of the material system of structure 16 may include one selected from silicon nitride (an SiNx), silicon oxide (the SiOx), polyimide (Polyimide) either a configuration, but is not limited thereto.

圖1H所示,其製作一透明導電層17,乃由於能帶邊緣型雷射具有面射出光性質,若在出光區域覆蓋大面積金屬會影響雷射出光,故利用氧化銦錫(Indium Tin Oxide,ITO)作為該透明導電層17,同時具有傳輸載子與透光的特性。利用電子槍蒸鍍(E-gun evaporator)方式成長225nm的氧化銦錫薄膜,令該透明導電層17,係位在該電流侷限結 構16上,並覆蓋該光子晶體結構15之第一預定區域(A1)上,且該透明導電層17之上表面171係設定一第二預定區域(A2),該第二預定區域(A2)之位置與該光子晶體結構15之第一預定區域(A1)之位置呈現上下對應關係,本實施例中,該透明導電層17之材料係可包括選自氧化銦錫(ITO)、氧化銻錫(ATO)、氟摻雜氧化錫(FTO)、氧化鋁鋅(AZO)、氧化鎵鋅(GZO)、氧化銦鋅(IZO)、氧化鋅(ZnO)其中任一所構成,但不限定於此。 As shown in FIG. 1H, a transparent conductive layer 17 is formed because the edge-type laser has a surface-emitting property. If a large-area metal is applied to the light-emitting region to affect the laser light, indium tin oxide (Indium Tin Oxide) is used. As the transparent conductive layer 17, ITO has both the characteristics of transporting carriers and light transmission. An 225 nm indium tin oxide film is grown by an E-gun evaporator, and the transparent conductive layer 17 is tied to the current confinement structure 16 and covers the first predetermined area of the photonic crystal structure 15 (A). 1 ), and the upper surface 171 of the transparent conductive layer 17 is set to a second predetermined area (A 2 ), the position of the second predetermined area (A 2 ) and the first predetermined area of the photonic crystal structure 15 (A) 1 ) The position of the upper and lower correspondences is present. In this embodiment, the material of the transparent conductive layer 17 may be selected from the group consisting of indium tin oxide (ITO), antimony tin oxide (ATO), fluorine-doped tin oxide (FTO), and oxidation. Aluminum zinc (AZO), gallium zinc oxide (GZO), indium zinc oxide (IZO), or zinc oxide (ZnO) is used, but is not limited thereto.

圖1I所示,其在鍍完該透明導電層17之後,乃利用黃光製程定義一溝槽(Trench)(T)作為隔離(Isolation)邊界,並利用氧化銦錫蝕刻液將該溝槽(T)內的氧化銦錫去除,但不限定於此。 As shown in FIG. 1I, after the transparent conductive layer 17 is plated, a trench (T) is defined as an isolation boundary by a yellow light process, and the trench is etched by using an indium tin oxide etching solution ( The indium tin oxide in T) is removed, but is not limited thereto.

圖1J所示,其一正電極金屬18沉積,乃使用黃光製程定義完電極圖形後,並沉積鈦(Ti)、金(Au)兩種金屬,再用舉離將多餘金屬去除,令該正電極金屬18,係位在該透明導電層17上,並具有一金屬孔181,且該金屬孔181係對應該透明導電層17之第二預定區域(A2),使該金屬孔181不遮蔽該光子晶體結構15之第一預定區域(A1),但不限定於此。 As shown in FIG. 1J, a positive electrode metal 18 is deposited by using a yellow light process to define an electrode pattern, and depositing two metals, titanium (Ti) and gold (Au), and then removing excess metal by lift-off, so that The positive electrode metal 18 is located on the transparent conductive layer 17 and has a metal hole 181, and the metal hole 181 corresponds to the second predetermined area (A 2 ) of the transparent conductive layer 17, so that the metal hole 181 is not The first predetermined region (A 1 ) of the photonic crystal structure 15 is shielded, but is not limited thereto.

圖1K所示,其將該基板11厚度磨薄,使該基板11之第二表面112形成類鏡面(Mirror-like)的表面,但不限定於此。 As shown in FIG. 1K, the thickness of the substrate 11 is thinned so that the second surface 112 of the substrate 11 forms a mirror-like surface, but is not limited thereto.

圖1L所示,其一背電極金屬19沉積,並沉積鎳(Ni)、鍺(Ge)、金(Au)三種金屬,令該背電極金屬19,係位在該基板11之第二表面112上。最後,快速熱退火(Rapid thermal annealing,RTA),即完成該電激發光子晶體面射型雷射元件10A,但不限定於此。 As shown in FIG. 1L, a back electrode metal 19 is deposited and three metals of nickel (Ni), germanium (Ge), and gold (Au) are deposited, and the back electrode metal 19 is tied to the second surface 112 of the substrate 11. on. Finally, Rapid Thermal Annealing (RTA), that is, the electro-excited photonic crystal surface-emitting laser element 10A is completed, but is not limited thereto.

另一較佳實施例中,圖3所示,一種電激發光子晶體面射型雷 射元件10B,包含:該基板11與該下披覆層12之間係可包括設有一緩衝層(Buffer layer)(B),本實施例中,該緩衝層(B)之材料係可包括選自氮化鎵(GaN)、砷化鎵(GaAs)、磷化銦(InP)其中任一所構成;該緩衝區(B)之厚度為200nm,但不限定於此。 In another preferred embodiment, as shown in FIG. 3, an electrically excited photonic crystal surface-emitting type lightning The element 10B includes a buffer layer (B) between the substrate 11 and the lower cladding layer 12. In this embodiment, the material of the buffer layer (B) may include It is composed of any one of gallium nitride (GaN), gallium arsenide (GaAs), and indium phosphide (InP); the thickness of the buffer (B) is 200 nm, but is not limited thereto.

該緩衝層(B)與該下披覆層12之間係可包括設有一第一漸變層(Graded-index,GRIN)(G1),本實施例中,該下披覆層12之砷化鋁鎵的組成式為Al0.4Ga0.6As,鋁的比例由0.4漸變到0.1,其目的是緩和在砷化鎵與砷化鋁鎵介面的陡峭能障;該下披覆層12之厚度為1.3μm;該第一漸變層(G1)之材料係可包括選自砷化鋁鎵(AlGaAs)、砷化鎵(GaAs)、氮化鋁鎵(AlGaN)、砷化鋁鎵銦(AlGaInAs)、磷化鋁鎵銦(AlGaInP)其中任一所構成;該第一漸變層(G1)之厚度為150nm,但不限定於此。 The buffer layer (B) and the lower cladding layer 12 may include a first graded layer (GRIN) (G 1 ). In this embodiment, the underlying layer 12 is arsenicized. The composition of aluminum gallium is Al 0.4 Ga 0.6 As, and the ratio of aluminum is changed from 0.4 to 0.1, the purpose of which is to alleviate the steep barrier between the gallium arsenide and the aluminum gallium arsenide interface; the thickness of the lower cladding layer 12 is 1.3. Μm; the material of the first graded layer (G 1 ) may include aluminum gallium arsenide (AlGaAs), gallium arsenide (GaAs), aluminum gallium nitride (AlGaN), aluminum gallium indium arsenide (AlGaInAs), The aluminum phosphide indium arsenide (AlGaInP) is composed of any one of the layers; the thickness of the first gradation layer (G 1 ) is 150 nm, but is not limited thereto.

該下披覆層12與該主動層13之間係可包括設有一第一分開侷限層異質(Separate Confinement Heterostructure,SCH)(S1);該主動層13與該上披覆層14之間係可包括設有一第二分開侷限層異質(Separate Confinement Heterostructure,SCH)(S2),本實施例中,該第一分開侷限層異質結構(S1)與該第二分開侷限層異質(S2)之材料係可包括選自砷化鋁鎵(AlGaAs)、砷化鎵(GaAs)、氮化鋁鎵(AlGaN)、砷化鋁鎵銦(AlGaInAs)、磷化鋁鎵銦(AlGaInP)其中任一所構成,其功用可以分別達成載子與光場的侷限;該第一分開侷限層異質結構(S1)之厚度為130nm;該第二分開侷限層異質結構(S2)之厚度為105nm,但不限定於此。 The lower cladding layer 12 and the active layer 13 may include a first Separate Confinement Heterostructure (SCH) (S 1 ); the active layer 13 and the upper cladding layer 14 are The method may include: providing a second Separate Confinement Heterostructure (SCH) (S 2 ). In this embodiment, the first separately confined layer heterostructure (S 1 ) is heterogeneous with the second separately confined layer (S 2 ) The material may include any one selected from the group consisting of aluminum gallium arsenide (AlGaAs), gallium arsenide (GaAs), aluminum gallium nitride (AlGaN), aluminum gallium indium arsenide (AlGaInAs), and aluminum gallium phosphide (AlGaInP). a composition whose function can respectively achieve the limitation of the carrier and the light field; the thickness of the first divided localized heterostructure (S 1 ) is 130 nm; the thickness of the second separately localized heterostructure (S 2 ) is 105 nm However, it is not limited to this.

該上披覆層14與該接觸層(C)之間係可包括設有一第二漸變 層(Graded-index,GRIN)(G2),而該上披覆層14、該第二漸變層(G2)及該接觸層(C)呈高台型且設有複數空氣孔洞141,形成該光子晶體結構15,本實施例中,該上披覆層14之砷化鋁鎵的組成式為Al0.4Ga0.6As,鋁的比例由0.4漸變到0.1,其目的是緩和在砷化鎵與砷化鋁鎵介面的陡峭能障;該上披覆14之厚度為200nm;該接觸層(C)之厚度為100nm;該第二漸變層(G2)之材料係可包括選自砷化鋁鎵(AlGaAs)、砷化鎵(GaAs)、氮化鋁鎵(AlGaN)、砷化鋁鎵銦(AlGaInAs)、磷化鋁鎵銦(AlGaInP)其中任一所構成;該第二漸變層(G2)之厚度為150nm,但不限定於此。 The upper cladding layer 14 and the contact layer (C) may include a second graded layer (GRIN) (G 2 ), and the upper cladding layer 14 and the second graded layer ( G 2 ) and the contact layer (C) are of a high-profile type and provided with a plurality of air holes 141 to form the photonic crystal structure 15. In this embodiment, the composition of the aluminum gallium arsenide of the upper cladding layer 14 is Al 0.4. Ga 0.6 As, the ratio of aluminum is changed from 0.4 to 0.1, the purpose of which is to alleviate the steep barrier between the gallium arsenide and the aluminum gallium arsenide interface; the thickness of the upper cladding 14 is 200 nm; the thickness of the contact layer (C) 100 nm; the material of the second graded layer (G 2 ) may include aluminum gallium arsenide (AlGaAs), gallium arsenide (GaAs), aluminum gallium nitride (AlGaN), aluminum gallium indium arsenide (AlGaInAs) The aluminum phosphide indium arsenide (AlGaInP) is composed of any one of the layers; the thickness of the second gradation layer (G 2 ) is 150 nm, but is not limited thereto.

承上,該基板11、該緩衝層(B)、該第一漸變層(G1)、該下披覆層12、該第一分開侷限層異質結構(S1)、該主動層13、該第二分開侷限層異質結構(S2)、該上披覆層14、該第二漸變層(G2)及該接觸層(C)形成該磊晶結構(W),並不限定磊晶成長之層數。此外,該主動層13上方的結構為P型半導體,摻雜物(dopant)為鈹原子(Be),其中最上方的該接觸層(C)為重摻雜(Heavily doped),目的是要和氧化銦錫形成良好的歐姆接觸,而主動層下方的結構為N型半導體,摻雜物為矽原子(Si),兩種摻雜物的濃度為1018cm-3,重摻雜的區域為1019cm-3。上述所揭露該基板11、該緩衝層(B)、該第一漸變層(G1)、該下披覆層12、該第一分開侷限層(S1)、該第二分開侷限層(S2)、該上披覆層14、該第二漸變層(G2)及該接觸層(C)之材料範圍,亦使波長範圍能包含藍光至紅外光。 The substrate 11, the buffer layer (B), the first gradation layer (G 1 ), the lower cladding layer 12, the first separately confined layer heterostructure (S 1 ), the active layer 13, the The second separate localized heterostructure (S 2 ), the upper cladding layer 14, the second gradation layer (G 2 ), and the contact layer (C) form the epitaxial structure (W), and does not limit epitaxial growth The number of layers. In addition, the structure above the active layer 13 is a P-type semiconductor, and the dopant is a germanium atom (Be), wherein the uppermost contact layer (C) is heavily doped (Havily doped) for the purpose of oxidation. Indium tin forms a good ohmic contact, while the structure under the active layer is an N-type semiconductor, the dopant is a germanium atom (Si), the concentration of the two dopants is 10 18 cm -3 , and the heavily doped region is 10 19 cm -3 . The substrate 11, the buffer layer (B), the first gradation layer (G 1 ), the lower cladding layer 12, the first separately confined layer (S 1 ), and the second separately confined layer (S) are disclosed. 2 ) The material range of the upper cladding layer 14, the second gradation layer (G 2 ) and the contact layer (C) also enables the wavelength range to include blue to infrared light.

圖4A所示,其該量子結構131係可包括至少一量子點層131A, 本實施例中,該量子點層131A之材料係可包括選自砷化銦(InAs)、氮化鎵(GaN)、砷化銦鎵(InGaAs)、氮化銦鎵(InGaN)、磷化銦鎵(InGaP)、砷化鋁鎵銦(AlGaInAs)、磷化鋁鎵銦(AlGaInP)、砷磷化鎵銦(GaInAsP)其中任一所構成,但不限定於此。此外,該量子結構131具有7層該量子點層131A,該量子點層131A更包括一量子點1311、一覆蓋層1312及一間隔層1313,該量子點1311上係覆蓋該覆蓋層1312,該覆蓋層1312上係設有該間隔層1313,且該量子點1311之材料為砷化銦及其厚度為2.2ML(Mono layer),配合該覆蓋層1312之材料為砷化銦鎵、其組成式為In0.15Ga0.85As及其厚度為5nm與該間隔層1313之材料為砷化鎵及其厚度為45nm,但不限定於此。 As shown in FIG. 4A, the quantum structure 131 may include at least one quantum dot layer 131A. In this embodiment, the material of the quantum dot layer 131A may include an indium arsenide (InAs) or gallium nitride (GaN). InGaAs, InGaN, InGaP, InGaP, AlGaInAs, AlGaInP, GaAs Indium Gallium Phosphide (GaInAsP) Any one of them is constituted, but is not limited thereto. In addition, the quantum structure 131 has seven layers of the quantum dot layer 131A. The quantum dot layer 131A further includes a quantum dot 1311, a cap layer 1312 and a spacer layer 1313. The quantum dot 1311 covers the cap layer 1312. The spacer layer 1313 is provided on the cover layer 1312, and the material of the quantum dot 1311 is indium arsenide and its thickness is 2.2 ML (Mono layer), and the material of the cover layer 1312 is indium gallium arsenide, and its composition formula The material of In 0.15 Ga 0.85 As and its thickness of 5 nm and the spacer layer 1313 is gallium arsenide and its thickness is 45 nm, but is not limited thereto.

圖4B所示,其該量子結構131係可包括至少一量子井層131B,本實施例中,該量子井層131B之材料係可包括選自砷化銦(InAs)、氮化鎵(GaN)、砷化銦鎵(InGaAs)、氮化銦鎵(InGaN)、磷化銦鎵(InGaP)、砷化鋁鎵銦(AlGaInAs)、磷化鋁鎵銦(AlGaInP)、砷磷化鎵銦(GaInAsP)其中任一所構成,但不限定於此。 As shown in FIG. 4B, the quantum structure 131 may include at least one quantum well layer 131B. In this embodiment, the material of the quantum well layer 131B may include an indium arsenide (InAs) or gallium nitride (GaN). InGaAs, InGaN, InGaP, InGaP, AlGaInAs, AlGaInP, GaAs Indium Gallium Phosphide (GaInAsP) Any one of them is constituted, but is not limited thereto.

承上,其利用該量子結構131作為增益介質,成功製作出室溫操作的電激發光子晶體能帶邊緣型雷射,配合該光子晶體結構15之週期(a)為385nm、388nm、390nm、393nm或395nm,使雷射發光波長在1.3μm附近,該雷射波長會隨著該光子晶體結構15之週期變大而變長,並不侷限於該光子晶體結構15之週期(a)為385nm、388nm、390nm、393nm或395nm,故雷射發光波長不限於1.3μm,而在製程上無需晶圓熔合或磊晶再成長的複雜技術,選擇直接從該磊晶結構(W)最上方往內部蝕刻來製作該光子晶體結構15,並在該光子晶體結構15上方覆蓋氧化銦錫作為該透明導電層17,使光 能從該磊晶結構(W)的正面出光,且光子晶體能帶邊緣型雷射具有面射出光、遠場發散角小等優異特性,故光纖的耦合效率優於邊射型雷射(Edge-emitting laser),操作於此波段的雷射在光纖通訊領域有很高的應用潛力,但不限定於此。 According to the above, the quantum structure 131 is used as a gain medium, and an electro-excited photonic crystal energy band edge type laser which is operated at room temperature is successfully fabricated, and the period (a) of the photonic crystal structure 15 is 385 nm, 388 nm, 390 nm, and 393 nm. Or 395 nm, the laser emission wavelength is around 1.3 μm, the laser wavelength becomes longer as the period of the photonic crystal structure 15 becomes larger, and is not limited to the period of the photonic crystal structure 15 (a) is 385 nm, 388nm, 390nm, 393nm or 395nm, so the laser emission wavelength is not limited to 1.3μm, and the process does not require wafer fusion or epitaxial re-growth complex technology, choose to directly etch from the top of the epitaxial structure (W) to the inside The photonic crystal structure 15 is fabricated, and indium tin oxide is coated over the photonic crystal structure 15 as the transparent conductive layer 17 to make light The light can be emitted from the front surface of the epitaxial structure (W), and the photonic crystal energy band edge type laser has excellent characteristics such as surface emitting light and small far field divergence angle, so the coupling efficiency of the optical fiber is superior to that of the edge type laser (Edge). -emitting laser), the laser operating in this band has high application potential in the field of optical fiber communication, but is not limited to this.

基於如此之構成,上述較佳實施例之態樣,其差異僅在於磊晶成長之材料不同,並皆可達到由該正電極金屬18、該透明導電層17、該電流侷限結構16及該背電極金屬19相互配合,進而電激發該量子結構131,再藉由該光子晶體結構15可面射出雷射於該光子晶體結構15之第一預定區域(A1)、該電流侷限結構16之孔徑161、該透明導電層17之第二預定區域(A2)至該正電極金屬18之金屬孔181外,並配合圖5所示,其該金屬孔181之外側長度(L1)為650μm與內側長度(L2)為300μm,且該金屬孔181內呈現該透明導電層17之第二預定區域(A2),及圖6所示,其在該光子晶體結構15上係依序製作該電流侷限結構16及該透明導電層17,與圖2A、圖2B所示,其該光子晶體結構15上尚未製作該電流侷限結構16及該透明導電層17之比較後,即可得知該電流侷限結構16及該透明導電層17製作於該電激發光子晶體面射型雷射元件10A、10B之何處。 Based on such a configuration, the aspect of the preferred embodiment described above differs only in the material of the epitaxial growth, and can be achieved by the positive electrode metal 18, the transparent conductive layer 17, the current confinement structure 16, and the back. The electrode metal 19 cooperates with each other to electrically excite the quantum structure 131, and the photonic crystal structure 15 can face the first predetermined region (A 1 ) of the photonic crystal structure 15 and the aperture of the current confinement structure 16 161, the second predetermined region (A 2 ) of the transparent conductive layer 17 is outside the metal hole 181 of the positive electrode metal 18, and as shown in FIG. 5, the length (L 1 ) of the outer side of the metal hole 181 is 650 μm and The inner length (L 2 ) is 300 μm, and the second predetermined region (A 2 ) of the transparent conductive layer 17 is present in the metal hole 181, and as shown in FIG. 6, the photonic crystal structure 15 is sequentially formed on the photonic crystal structure 15. The current confinement structure 16 and the transparent conductive layer 17 are compared with those of the current confinement structure 16 and the transparent conductive layer 17 on the photonic crystal structure 15 as shown in FIG. 2A and FIG. 2B. The confinement structure 16 and the transparent conductive layer 17 are fabricated on the electrical excitation Photonic crystal surface-emitting laser elements 10A, 10B where the.

綜上所述,本創作所揭示之構造,為昔所無,且確能達到功效之增進,並具可供產業利用性,完全符合新型專利要件,祈請 鈞局核賜專利,以勵創新,無任德感。 In summary, the structure revealed by this creation is unprecedented, and it can achieve the improvement of efficacy, and it can be used for industrial utilization. It fully complies with the new patent requirements, and invites the bureau to grant patents to encourage innovation. There is no sense of morality.

惟,上述所揭露之圖式、說明,僅為本創作之較佳實施例,大凡熟悉此項技藝人士,依本案精神範疇所作之修飾或等效變化,仍應包括在本案申請專利範圍內。 However, the drawings and descriptions disclosed above are only preferred embodiments of the present invention, and modifications or equivalent changes made by those skilled in the art in accordance with the spirit of the present invention should still be included in the scope of the patent application.

Claims (13)

一種電激發光子晶體面射型雷射元件,其包含:一基板,其具備一第一表面及相反側之第二表面;一下披覆層,係位在該基板之第一表面上;一主動層,係位在該下披覆層上,並具有一量子結構;一上披覆層,係位在該主動層上;一接觸層,係位在該上披覆層上,並以該上披覆層及該接觸層呈高台型且設有複數空氣孔洞,形成一光子晶體結構,且該光子晶體結構之上表面係設定一第一預定區域;一電流侷限結構,係位在該光子晶體結構及該主動層上,並具有一孔徑,且該孔徑係對應該光子晶體結構之第一預定區域,使電流流向侷限在該光子晶體結構之第一預定區域;一透明導電層,係位在該電流侷限結構上,並覆蓋該光子晶體結構之第一預定區域上,且該透明導電層之上表面係設定一第二預定區域,該第二預定區域之位置與該光子晶體結構之第一預定區域之位置呈現上下對應關係;一正電極金屬,係位在該透明導電層上,並具有一金屬孔,且該金屬孔係對應該透明導電層之第二預定區域,使該金屬孔不遮蔽該光子晶體結構之第一預定區域;以及一背電極金屬,係位在該基板之第二表面上;藉此,該正電極金屬、該透明導電層、該電流侷限結構及該背電極金屬相互配合,進而電激發該量子結構,再藉由該光子晶體結構可面射出雷射於該光子晶體結構之第一預定區域、該電流侷限結構之孔徑、該透明導電層之第二預定區域至該正電極金屬之金屬孔外。 An electroluminescent photonic crystal surface-emitting laser element comprising: a substrate having a first surface and a second surface opposite to each other; and a lower cladding layer positioned on the first surface of the substrate; a layer on the lower cladding layer and having a quantum structure; an upper cladding layer on the active layer; a contact layer on the upper cladding layer and on the upper layer The coating layer and the contact layer are of a high-profile type and are provided with a plurality of air holes to form a photonic crystal structure, and a surface of the photonic crystal structure is set to a first predetermined area; a current confinement structure is tied to the photonic crystal The structure and the active layer have an aperture, and the aperture corresponds to a first predetermined area of the photonic crystal structure, so that current flow is confined to a first predetermined area of the photonic crystal structure; a transparent conductive layer is tied to The current confinement structure covers the first predetermined area of the photonic crystal structure, and the upper surface of the transparent conductive layer defines a second predetermined area, the position of the second predetermined area and the first of the photonic crystal structure The position of the fixed region presents an upper and lower correspondence relationship; a positive electrode metal is located on the transparent conductive layer and has a metal hole, and the metal hole corresponds to a second predetermined region of the transparent conductive layer, so that the metal hole is not Masking a first predetermined region of the photonic crystal structure; and a back electrode metal on the second surface of the substrate; thereby, the positive electrode metal, the transparent conductive layer, the current confinement structure, and the back electrode metal Interacting with each other to electrically excite the quantum structure, and the photonic crystal structure can be surface-exposed to a first predetermined region of the photonic crystal structure, an aperture of the current confinement structure, and a second predetermined region of the transparent conductive layer to The metal electrode of the positive electrode metal is outside. 如請求項1所述之電激發光子晶體面射型雷射元件,其中,該上披覆層之厚度範圍為10~500nm。 The electro-excited photonic crystal surface-emitting laser element according to claim 1, wherein the upper cladding layer has a thickness ranging from 10 to 500 nm. 如請求項1所述之電激發光子晶體面射型雷射元件,其中,該空氣孔洞係可排列成二維陣列。 The electrically activated photonic crystal surface-emitting laser element of claim 1, wherein the air hole system is arranged in a two-dimensional array. 如請求項1所述之電激發光子晶體面射型雷射元件,其中,該電流侷限結構之材料係可包括選自氮化矽、氧化矽、聚醯亞胺其中任一所構成。 The electroluminescent photonic crystal surface-emitting laser element according to claim 1, wherein the material of the current confinement structure may comprise any one selected from the group consisting of tantalum nitride, hafnium oxide, and polyimide. 如請求項1所述之電激發光子晶體面射型雷射元件,其中,該透明導電層之材料係可包括選自氧化銦錫、氧化銻錫、氟摻雜氧化錫、氧化鋁鋅、氧化鎵鋅、氧化銦鋅、氧化鋅其中任一所構成。 The electroluminescent photonic crystal surface-emitting laser element according to claim 1, wherein the material of the transparent conductive layer may be selected from the group consisting of indium tin oxide, antimony tin oxide, fluorine-doped tin oxide, aluminum zinc oxide, and oxidation. Any of gallium zinc, indium zinc oxide, and zinc oxide. 如請求項1所述之電激發光子晶體面射型雷射元件,其中,該量子結構係可包括至少一量子點層。 The electroluminescent photonic crystal face-emitting laser element of claim 1, wherein the quantum structure system comprises at least one quantum dot layer. 如請求項6所述之電激發光子晶體面射型雷射元件,其中,該量子點層之材料係可包括選自砷化銦、氮化鎵、砷化銦鎵、氮化銦鎵、磷化銦鎵、砷化鋁鎵銦、磷化鋁鎵銦、砷磷化鎵銦其中任一所構成。 The electro-excited photonic crystal surface-emitting laser element according to claim 6, wherein the material of the quantum dot layer may be selected from the group consisting of indium arsenide, gallium nitride, indium gallium arsenide, indium gallium nitride, and phosphorus. Indium gallium arsenide, aluminum gallium arsenide arsenide, aluminum gallium phosphide indium phosphide, or gallium arsenide arsenide phosphide. 如請求項1所述之電激發光子晶體面射型雷射元件,其中,該量子結構係可包括至少一量子井層。 The electrically excited photonic crystal surface-emitting laser element of claim 1, wherein the quantum structure system comprises at least one quantum well layer. 如請求項8所述之電激發光子晶體面射型雷射元件,其中,該量子井層之材料係可包括選自砷化銦、氮化鎵、砷化銦鎵、氮化銦鎵、磷化銦鎵、砷化鋁鎵銦、磷化鋁鎵銦、砷磷化鎵銦其中任一所構成。 The electro-excited photonic crystal surface-emitting laser element according to claim 8, wherein the material of the quantum well layer may be selected from the group consisting of indium arsenide, gallium nitride, indium gallium arsenide, indium gallium nitride, and phosphorus. Indium gallium arsenide, aluminum gallium arsenide arsenide, aluminum gallium phosphide indium phosphide, or gallium arsenide arsenide phosphide. 如請求項1所述之電激發光子晶體面射型雷射元件,其中,該基板與該下披覆層之間係可包括設有一緩衝層。 The electroluminescent photonic crystal face-emitting laser element of claim 1, wherein the substrate and the lower cladding layer comprise a buffer layer. 如請求項10所述之電激發光子晶體面射型雷射元件,其中,該緩衝層與該下披覆層之間係可包括設有一第一漸變層。 The electroluminescent photonic crystal face-emitting laser element of claim 10, wherein the buffer layer and the lower cladding layer comprise a first gradation layer. 如請求項1所述之電激發光子晶體面射型雷射元件,其中,該下披覆層與該主動層之間係可包括設有一第一分開侷限層異質;該主動層與該上披覆層之間係可包括設有一第二分開侷限層異質。 The electro-excited photonic crystal surface-emitting laser element according to claim 1, wherein the lower cladding layer and the active layer may include a first separate localized layer heterogeneity; the active layer and the upper layer Between the cladding layers can include a second separate localized layer of heterogeneity. 如請求項1所述之電激發光子晶體面射型雷射元件,其中,該上披覆層與該接觸層之間係可包括設有一第二漸變層。 The electroluminescent photonic crystal face-emitting laser element of claim 1, wherein the upper cladding layer and the contact layer comprise a second gradation layer.
TW107206643U 2018-05-21 2018-05-21 Electric excitation photon crystal surface-emitting laser device TWM569067U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107206643U TWM569067U (en) 2018-05-21 2018-05-21 Electric excitation photon crystal surface-emitting laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107206643U TWM569067U (en) 2018-05-21 2018-05-21 Electric excitation photon crystal surface-emitting laser device

Publications (1)

Publication Number Publication Date
TWM569067U true TWM569067U (en) 2018-10-21

Family

ID=64872001

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107206643U TWM569067U (en) 2018-05-21 2018-05-21 Electric excitation photon crystal surface-emitting laser device

Country Status (1)

Country Link
TW (1) TWM569067U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117637A (en) * 2019-06-21 2020-12-22 智林企业股份有限公司 Inverted-crystal surface-emitting laser element of electrically excited photonic crystal
CN112260061A (en) * 2019-07-02 2021-01-22 智林企业股份有限公司 Surface emitting laser element of electro-excited photonic crystal with light detection structure
WO2022095455A1 (en) * 2020-11-08 2022-05-12 Phosertek Corporation Laser device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117637A (en) * 2019-06-21 2020-12-22 智林企业股份有限公司 Inverted-crystal surface-emitting laser element of electrically excited photonic crystal
CN112117637B (en) * 2019-06-21 2024-03-08 富昱晶雷射科技股份有限公司 Inverted crystal type surface-emitting laser element of electric excitation photon crystal
CN112260061A (en) * 2019-07-02 2021-01-22 智林企业股份有限公司 Surface emitting laser element of electro-excited photonic crystal with light detection structure
WO2022095455A1 (en) * 2020-11-08 2022-05-12 Phosertek Corporation Laser device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US10340659B1 (en) Electronically pumped surface-emitting photonic crystal laser
CN110535033B (en) Surface emitting laser device of electro-excited photonic crystal
WO2021102722A1 (en) Single-longitudinal-mode edge-emitting laser with side grating oxidation-confinement structure, and preparation method therefor
CN103107482A (en) Single-mode photonic crystal vertical cavity surface emitting laser and preparation method thereof
JP2013149665A (en) Quantum cascade semiconductor laser
CN102570307A (en) Single-mode large-power THz quantum cascade laser (QCL) and manufacturing technology thereof
TWM569067U (en) Electric excitation photon crystal surface-emitting laser device
CN109716601A (en) The vertical cavity surface emitting laser of etched planarization
JPWO2018083896A1 (en) Semiconductor device, semiconductor laser, and manufacturing method of semiconductor device
CN114503380A (en) Nanocrystal surface emitting laser
Iida et al. GaN-based vertical cavity surface emitting lasers with lateral optical confinements and conducting distributed Bragg reflectors
JP6966843B2 (en) Vertical resonator type light emitting element
WO2020151290A1 (en) On-chip integrated semiconductor laser structure and manufacturing method thereof
CN101588018B (en) Inner cavity type multiple-active region photon crystal vertical cavity surface transmission semiconductor laser device
TWM603189U (en) Inverted-crystal type electrically excited photonic crystal surface-emitting laser element
JP2011192913A (en) Semiconductor laser structure
CN115868090A (en) Photonic crystal surface emitting laser element
CN212011600U (en) Single longitudinal mode edge-emitting laser with lateral photogate oxidation limiting structure
Sarzała et al. Thermal properties of GaN-based semiconductor-metal subwavelength grating VCSELs and novel current injection scheme
CN201435526Y (en) Outer-cavity high-power photonic-crystal vertical-cavity surface-emitting semiconductor laser with three active areas
CN112117637B (en) Inverted crystal type surface-emitting laser element of electric excitation photon crystal
CN113745968B (en) Semiconductor laser and preparation method thereof
CN201435527Y (en) Low-threshold inner-cavity photonic-crystal vertical-cavity surface-emitting semiconductor laser with three active areas
US20070127533A1 (en) Long-wavelength vertical cavity surface emitting lasers having oxide aperture and method for manufacturing the same
CN111384666B (en) Method for manufacturing vertical cavity surface emitting laser and vertical cavity surface emitting laser