TWM620524U - Shifting position compensation system using nonlinear model to predict circuit board deformation error - Google Patents

Shifting position compensation system using nonlinear model to predict circuit board deformation error Download PDF

Info

Publication number
TWM620524U
TWM620524U TW110208131U TW110208131U TWM620524U TW M620524 U TWM620524 U TW M620524U TW 110208131 U TW110208131 U TW 110208131U TW 110208131 U TW110208131 U TW 110208131U TW M620524 U TWM620524 U TW M620524U
Authority
TW
Taiwan
Prior art keywords
circuit board
error
nonlinear model
compensation system
predict
Prior art date
Application number
TW110208131U
Other languages
Chinese (zh)
Inventor
蔡佳宏
鄒宥呈
Original Assignee
國立陽明交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立陽明交通大學 filed Critical 國立陽明交通大學
Priority to TW110208131U priority Critical patent/TWM620524U/en
Publication of TWM620524U publication Critical patent/TWM620524U/en

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

本創作提供一種利用非線性模型預測電路板變形誤差之偏移位置補償系統,包括影像量測單元、運算處理單元及加工單元;係對電路板以影像量測單元量測局部區域之四個樣本點的原始位置並儲存,再以運算處理單元透過一非線性模型設定若干次方值,且分別計算出各樣本點對應該些次方值之複數預測位置,並計算各樣本點之該些預測位置分別和對應的原始位置間的絕對值平均誤差,以所述絕對值平均誤差最小者對應之所述次方值取為一最佳化次方值,供加工單元預測偏移位置而可對變形後之電路板在準確的位置進行加工。 This creation provides an offset position compensation system that uses a nonlinear model to predict the deformation error of the circuit board. It includes an image measurement unit, an arithmetic processing unit and a processing unit; the circuit board uses the image measurement unit to measure four samples of local areas The original position of the point is stored, and then a number of power values are set by a non-linear model by the arithmetic processing unit, and the complex prediction positions corresponding to the power values of each sample point are calculated respectively, and the predictions of each sample point are calculated The absolute value average error between the respective positions and the corresponding original positions, the power value corresponding to the smallest absolute value average error is taken as an optimized power value for the processing unit to predict the offset position for comparison The deformed circuit board is processed in an accurate position.

Description

利用非線性模型預測電路板變形誤差之偏移位置補償系 統 The offset position compensation system for predicting the deformation error of the circuit board using the nonlinear model Unify

本創作係關於一種電路板製程,尤指一種利用非線性模型預測電路板變形誤差之偏移位置補償系統。 This creation is about a circuit board manufacturing process, especially an offset position compensation system that uses a nonlinear model to predict the deformation error of the circuit board.

電子產品在市場輕、薄、短、小的需求下,使得電路板的電路線寬和線距也隨之變小,因此在電路板加工製程上的準確度要求也隨之提升,例如高密度線路互連板(High Density Interconnector,簡稱HDI)之印刷電路板,因其電路經微型化後,如加工準確度無法在容許誤差範圍內,將會增加電路板之不良率。所述電路板之加工準確度無法在容許誤差範圍內之主因,在於電路板經過習知熱壓合製程後會產生不均勻的應力分布,進而在冷卻過程中隨著應力逐漸釋放,導致電路板產生不均勻的漲縮變形,造成電路板及其內部電路之圖像產生非線性的變形,此時電路板的原始中心點已無法測量而導致電路板的基準位置偏移,致使靶標之位置確認無基準可用。 Under the market demand for light, thin, short and small electronic products, the circuit line width and line spacing of circuit boards have also become smaller. Therefore, the accuracy requirements in the circuit board processing process have also increased, such as high density High Density Interconnector (HDI) printed circuit boards, after the circuit is miniaturized, if the processing accuracy cannot be within the allowable error range, the defect rate of the circuit board will increase. The main reason that the processing accuracy of the circuit board cannot be within the allowable error range is that the circuit board will have uneven stress distribution after the conventional heat pressing process, and then the stress will be gradually released during the cooling process, resulting in the circuit board Produce uneven expansion and contraction deformation, causing non-linear deformation of the image of the circuit board and its internal circuits. At this time, the original center point of the circuit board can no longer be measured and the reference position of the circuit board is shifted, resulting in the confirmation of the target position No benchmarks are available.

為解決上述之問題,習知是透過「中心重合法」將變形前電路板之原中心和變形後之電路板的幾何中心平移至重合,並透過旋轉使靶標之間的誤差最小化,使電路板整體的漲縮變形平均化,藉此預測電路板內部電路之加工位置以進行偏移補償。然而,電路板經熱壓合後所產生之變形顯然為非線性,習知中心重合法僅將電路板整體的漲縮變形平均化,並無法提供電路板局部區域的變形誤差補償,導致電路板在漲縮變形嚴重不均勻的情況下,特別是在電路板 愈靠近邊角處之局部區域,在後續製程愈容易因變形產生之誤差而造成加工位置錯誤,進而使製程良率下降,此即本創作所欲解決之主要問題所在。 In order to solve the above-mentioned problems, the conventional method is to translate the original center of the circuit board before deformation and the geometric center of the circuit board after deformation to coincide with the "center repetition method", and to minimize the error between the targets through rotation to make the circuit The expansion and contraction deformation of the whole board is averaged, thereby predicting the processing position of the internal circuit of the circuit board for offset compensation. However, the deformation of the circuit board after thermal compression is obviously non-linear. The conventional center reconstruction method only averages the overall expansion and contraction deformation of the circuit board, and cannot provide compensation for the deformation error of the local area of the circuit board, resulting in the circuit board In the case of severely uneven expansion and contraction, especially on circuit boards The closer to the local area at the corners, the easier it is to process position errors due to errors caused by deformation in the subsequent manufacturing process, which in turn reduces the process yield. This is the main problem that this creation intends to solve.

新型創作人遂竭其心智悉心研究,進而研發出一種利用非線性模型預測電路板變形誤差之偏移位置補償系統,以期達到對電路板準確加工的目的。 The creator of the new type then exhausted his mind to study carefully, and then developed an offset position compensation system that uses a nonlinear model to predict the deformation error of the circuit board, in order to achieve the purpose of accurate processing of the circuit board.

本創作提供一種利用非線性模型預測電路板變形誤差之偏移位置補償系統,所述電路板具有一內部電路,且該電路板至少有位在四角隅之四個靶標,並於該電路板預設一局部區域,且至少於該局部區域內之四角隅有四個樣本點,所述系統包含一影像量測單元、一運算處理單元以及一加工單元,該影像量測單元和該加工單元分別與該運算處理單元電性連接,其中:該影像量測單元量測該些樣本點的原始位置並儲存,各該樣本點分別以X-Y座標值為位置表示;該運算處理單元透過一非線性模型設定若干次方值,且分別計算出各該樣本點對應該些次方值之複數預測位置,並計算各該樣本點之該些預測位置和對應的原始位置間的絕對值平均誤差,以所述絕對值平均誤差中最小者對應之所述次方值取為一最佳化次方值;該電路板變形前在該局部區域內對應該內部電路預定之一加工位置,透過該非線性模型依該最佳化次方值得出對應之誤差進行補償,以預測該電路板變形後之一偏移位置,供該加工單元以該偏移位置對變形後之該電路板進行加工。 This creation provides an offset position compensation system that uses a nonlinear model to predict the deformation error of a circuit board. The circuit board has an internal circuit, and the circuit board has at least four targets located in the four corners. Suppose a local area has four sample points in at least four corners of the local area. The system includes an image measurement unit, an arithmetic processing unit, and a processing unit. The image measurement unit and the processing unit are respectively It is electrically connected to the arithmetic processing unit, wherein: the image measuring unit measures and stores the original positions of the sample points, each of the sample points is represented by the position of the XY coordinate value; the arithmetic processing unit uses a non-linear model Set a number of power values, calculate the complex predicted positions of each sample point corresponding to these power values, and calculate the average absolute error between the predicted positions of each sample point and the corresponding original position, and calculate The power value corresponding to the smallest of the absolute value average error is taken as an optimized power value; before the circuit board is deformed, it corresponds to a predetermined processing position of the internal circuit in the local area, and is based on the nonlinear model. The optimized power value is calculated to compensate for the corresponding error, so as to predict an offset position of the circuit board after deformation, for the processing unit to process the deformed circuit board at the offset position.

於一較佳實施例中,該影像量測單元包括一X光產生器、一影像感測器以及一記憶體,以該X光產生器發出射線而穿透該電路板,並以該影像感 測器接收穿透該電路板之射線,以量測該電路板之該複數樣本點的原始位置並儲存於該記憶體。 In a preferred embodiment, the image measurement unit includes an X-ray generator, an image sensor, and a memory. The X-ray generator emits rays to penetrate the circuit board, and the image sensor The detector receives the rays penetrating the circuit board to measure the original positions of the plurality of sample points of the circuit board and stores them in the memory.

於一較佳實施例中,該影像感測器為CCD感測器。 In a preferred embodiment, the image sensor is a CCD sensor.

於一較佳實施例中,該加工單元為一鑽孔器。 In a preferred embodiment, the processing unit is a drill.

於一較佳實施例中,該電路板為經二次熱壓合成型之多層印刷電路板,該內部電路埋於該電路板中。 In a preferred embodiment, the circuit board is a multi-layer printed circuit board synthesized by two-step hot pressing, and the internal circuit is buried in the circuit board.

於一較佳實施例中,所述對應該些次方值中之絕對值平均誤差,係利用曲線擬合找出所述絕對值平均誤差最小者。 In a preferred embodiment, the average error of the absolute value in the corresponding power values is obtained by curve fitting to find the one with the smallest average error of the absolute value.

於一較佳實施例中,以鑽靶機透過一中心重合法將該電路板之中心平移至與所述鑽靶機預設之中心重合,且旋轉該四個靶標至與所述鑽靶機預設之靶標間的誤差最小化,所述鑽靶機轉換以此誤差最小化的四個所述靶標的所在位置轉換為後續量測該些樣本點之基準。 In a preferred embodiment, the target drilling machine is used to translate the center of the circuit board to coincide with the preset center of the target drilling machine through a centering method, and the four targets are rotated to coincide with the target drilling machine The error between the preset targets is minimized, and the target drilling machine converts the positions of the four targets with the minimized error into a reference for subsequent measurement of the sample points.

於一較佳實施例中,所述非線性模型係依一非線性位置權重方程式設定所述若干次方值,以計算出對應該四個樣本點之四個權重值,並以該四個權重值計算出一組位置預測函數,再依該組位置預測函數經一位置計算方程式求得所述預測位置或所述偏移位置。 In a preferred embodiment, the nonlinear model sets the power values according to a nonlinear position weight equation to calculate the four weight values corresponding to the four sample points, and use the four weights A set of position prediction functions is calculated based on the value, and then the predicted position or the offset position is obtained through a position calculation equation based on the set of position prediction functions.

於一較佳實施例中,所述非線性位置權重方程式為:

Figure 110208131-A0305-02-0004-1
Figure 110208131-A0305-02-0005-2
In a preferred embodiment, the nonlinear position weight equation is:
Figure 110208131-A0305-02-0004-1
Figure 110208131-A0305-02-0005-2

其中,N1至N4為對應該四個樣本點之權重值;a、b為電路板兩鄰邊之半邊長;x i y i 為該局部區域內包括所述樣本點之任意點的X-Y座標值;k為設定之次方值。 Among them, N 1 to N 4 are the weight values corresponding to the four sample points; a and b are the half lengths of the two adjacent sides of the circuit board; x i , y i are the values of any points in the local area including the sample points XY coordinate value; k is the set power value.

於一較佳實施例中,該組位置預測函數表示為:

Figure 110208131-A0305-02-0005-3
In a preferred embodiment, the set of position prediction functions is expressed as:
Figure 110208131-A0305-02-0005-3

其中,ΔX k (x i ,y i )、ΔY k (x i ,y i )為(x i ,y i )之任意點在k次方值時X-Y座標值之偏移量。 Among them, Δ X k ( x i , y i ) and Δ Y k ( x i , y i ) are the offset of the XY coordinate value when any point of (x i , y i ) is k-th power.

於一較佳實施例中,所述位置計算方程式表示為:

Figure 110208131-A0305-02-0005-4
In a preferred embodiment, the position calculation equation is expressed as:
Figure 110208131-A0305-02-0005-4

其中,x i 'y i '為對應所述任意點之預測位置之X-Y座標值。 Among them, x i ' and y i ' are the XY coordinate values corresponding to the predicted position of the arbitrary point.

於一較佳實施例中,該局部區域為矩形。 In a preferred embodiment, the local area is rectangular.

藉此,本創作係透過非線性模型及若干次方值之設定,以計算出各樣本點對應該些次方值之複數預測位置,再經計算和對應的原始位置間的絕對值平均誤差,而以絕對值平均誤差中最小者對應之次方值取為最佳化次方值。當加工單元對變形後的電路板於變形前在其局部區域內對應於內部電路預定之一加工位置進行加工時,可透過該非線性模型依該最佳化次方值預測偏移位置, 該加工單元能夠以該偏移位置對變形後之該電路板進行加工,以達到加工準確而達到降低電路板之不良率的功效。 In this way, this creation uses a non-linear model and the setting of several power values to calculate the complex predicted position of each sample point corresponding to these power values, and then calculate the average error of the absolute value between the corresponding original position and the corresponding original position. And the power value corresponding to the smallest of the absolute value average error is taken as the optimized power value. When the processing unit processes the deformed circuit board in a local area corresponding to a predetermined processing position of the internal circuit before deformation, the non-linear model can be used to predict the offset position according to the optimized power value. The processing unit can process the deformed circuit board at the offset position, so as to achieve accurate processing and reduce the defect rate of the circuit board.

100:補償系統 100: Compensation system

200:補償方法 200: compensation method

201:擷取樣本點的原始位置 201: Acquire the original position of the sample point

202:計算最佳化次方值 202: Calculate the optimal power value

203:依預測之偏移位置加工 203: Machining according to the predicted offset position

204:基準轉換 204: Benchmark Conversion

10:影像量測單元 10: Image measurement unit

11:X光產生器 11: X-ray generator

12:影像感測器 12: Image sensor

13:記憶體 13: Memory

20:運算處理單元 20: Operation processing unit

30:加工單元 30: Processing unit

b:電路板 b: circuit board

A~D:靶標 A~D: target

S1~S4:樣本點 S1~S4: sample points

T1~T16:測試點 T1~T16: test points

Z1~Z4:局部區域 Z1~Z4: local area

X、Y:座標 X, Y: coordinates

x、y:方向 x, y: direction

圖1係本創作實施例之補償系統之方塊示意圖。 Figure 1 is a block diagram of the compensation system of this creative embodiment.

圖2係本創作實施例之補償方法之步驟流程圖。 Figure 2 is a flow chart of the steps of the compensation method of this creative embodiment.

圖3係圖2之計算最佳化次方值步驟之細部流程圖。 Fig. 3 is a detailed flow chart of the steps of calculating the optimal power value of Fig. 2.

圖4係本創作實施例之四靶標和四局部區域於電路板之分布示意圖。 Fig. 4 is a schematic diagram of the distribution of four targets and four local areas on the circuit board of the creative embodiment.

圖5係本創作實施例之四靶標和四局部區域中四樣本點之分布示意圖。 Fig. 5 is a schematic diagram of the distribution of four targets and four sample points in four local areas of the creative embodiment.

圖6係圖5之左上之局部區域中之四個樣本點和十六個測試點的分布示意圖,圖中樣本點S1~S4位在局部區域四隅,而測試點分別標示數字T1~T16。 Fig. 6 is a schematic diagram of the distribution of four sample points and sixteen test points in the local area in the upper left of Fig. 5. In the figure, the sample points S1~S4 are located in the four corners of the local area, and the test points are marked with numbers T1~T16.

圖7係本創作實施例之左上之局部區域中之樣本點和測試點於變形前後之分布示意圖。 Fig. 7 is a schematic diagram of the distribution of sample points and test points in the upper left partial area of the creative embodiment before and after deformation.

圖8係圖7中標示為1處之放大示意圖。 Fig. 8 is an enlarged schematic diagram of the place marked as 1 in Fig. 7.

圖9係圖7中標示為2處之放大示意圖。 FIG. 9 is an enlarged schematic diagram of the locations marked as 2 in FIG. 7.

圖10係本創作實施例之左上之局部區域中所求得各次方之絕對值平均誤差之曲線擬合圖。 Fig. 10 is a curve fitting diagram of the average error of the absolute value of each power obtained in the partial area on the upper left of the creative embodiment.

圖11係本創作實施例之右上之局部區域中所求得各次方之絕對值平均誤差之曲線擬合圖。 Fig. 11 is a curve fitting diagram of the average error of the absolute value of each power obtained in the partial area on the upper right of the creative embodiment.

圖12係本創作實施例之左下之局部區域中所求得各次方之絕對值平均誤差之曲線擬合圖。 Fig. 12 is a curve fitting diagram of the average error of the absolute value of each power obtained in the partial area at the lower left of the creative embodiment.

圖13係本創作實施例之右下之局部區域中所求得各次方之絕對值平均誤差之曲線擬合圖。 Fig. 13 is a curve fitting diagram of the average error of the absolute value of each power obtained in the partial area at the lower right of the creative embodiment.

為充分瞭解本創作之目的、特徵及功效,茲藉由下述具體之實施例,並配合所附之圖式,對本創作做一詳細說明,說明如後:請參考圖1至圖13所示,本創作提供一種利用非線性模型預測電路板變形誤差之偏移位置補償系統100,其中:所述補償系統100,如圖1所示,包含一影像量測單元10、一運算處理單元20以及一加工單元30,影像量測單元10和加工單元30分別與運算處理單元20電性連接,所述系統100於本實施例中係包含在一鑽靶機(圖中未示)。 In order to fully understand the purpose, features and effects of this creation, we will use the following specific examples and accompanying drawings to give a detailed description of this creation. The description is as follows: please refer to Figures 1 to 13 , This creation provides an offset position compensation system 100 that uses a nonlinear model to predict the deformation error of a circuit board. The compensation system 100, as shown in FIG. 1, includes an image measurement unit 10, an arithmetic processing unit 20, and A processing unit 30, the image measuring unit 10 and the processing unit 30 are respectively electrically connected to the arithmetic processing unit 20. The system 100 is included in a target drilling machine (not shown in the figure) in this embodiment.

所述電路板b具有一內部電路(圖中未示),如圖4、5所示,本實施例之電路板b有位在四角隅之之四個靶標,分別為靶標A、靶標B、靶標C及靶標D;為便於說明,本實施例之電路板b預設有四個局部區域,分別為位在電路板b之左上的局部區域Z1、右上的局部區域Z2、左下的局部區域Z3以及右下的局部區域Z4,此等局部區域Z1~Z4於本實施例中皆為矩形(96mm×96mm)。 The circuit board b has an internal circuit (not shown in the figure). As shown in Figures 4 and 5, the circuit board b of this embodiment has four targets located in the four corners, namely target A, target B, Target C and target D; for ease of description, the circuit board b of this embodiment is preset with four local areas, which are the local area Z1 located on the upper left of the circuit board b, the upper right local area Z2, and the lower left local area Z3 And the partial area Z4 at the lower right, these partial areas Z1 to Z4 are all rectangular (96mm×96mm) in this embodiment.

承上,圖4中可見所選之局部區域Z1~Z4為在電路板b的四角隅而分別靠近靶標A~D,但基於業界之實務經驗上,電路板b經熱壓合後,在四角隅的漲縮最為嚴重,故本實施例中選擇局部區域Z1~Z4為之說明,而在電路板b的其餘部分則先忽略而不顯示,惟本創作所述局部區域的尺寸和位置並不以上述之內容為限。此外,如圖5所示,本實施例之電路板b於各局部區域Z1~Z4內之四角隅,分別有四個樣本點S1~S4,此電路板b於本實施例中為經二次熱壓合成型之多層印刷電路板,其內部電路(圖中未示)埋於電路板b中。 Continuing, it can be seen in Figure 4 that the selected local areas Z1~Z4 are located at the four corners of the circuit board b and are close to the targets A~D, respectively. However, based on the practical experience of the industry, the circuit board b is heated at the four corners. The expansion and contraction of the corner is the most serious, so in this embodiment, the local area Z1~Z4 is selected for illustration, and the rest of the circuit board b is ignored and not displayed. However, the size and position of the local area described in this creation are not Limited to the above content. In addition, as shown in Figure 5, the circuit board b of this embodiment has four sample points S1~S4 in the four corners of each local area Z1~Z4. The internal circuit (not shown in the figure) of the hot-pressed composite multi-layer printed circuit board is buried in the circuit board b.

所述影像量測單元10,如圖1所示,包括一X光產生器11、一影像感測器12以及一記憶體13。於一較佳實施例中,影像感測器12為CCD感測器,加工單元30為一鑽孔器,例如以鑽頭鑽孔或以雷射鑽孔。 The image measurement unit 10, as shown in FIG. 1, includes an X-ray generator 11, an image sensor 12, and a memory 13. In a preferred embodiment, the image sensor 12 is a CCD sensor, and the processing unit 30 is a drill, such as a drill or a laser.

本創作之補償系統100,以其執行一種利用非線性模型預測電路板變形誤差之偏移位置補償方法200,如圖2所示,主要包含擷取樣本點的原始位置201、計算最佳化次方值202以及依預測之偏移位置加工203等步驟,且本實施例於擷取樣本點的原始位置201之步驟前,更包括一基準轉換204之步驟,茲說明如下:所述基準轉換204之步驟,係所述鑽靶機透過一中心重合法將電路板b之中心進行平移,使電路板b之中心與所述鑽靶機預設之中心重合,再旋轉四個靶標A~D至與所述鑽靶機對應靶標A~D所預設之靶標間的誤差最小化,所述鑽靶機轉換以此誤差最小化的四個所述靶標A~D的所在位置轉換為後續量測局部區域Z1~Z4之樣本點S1~S4的基準。所述基準轉換204之步驟執行,主要是待加工之每塊電路板b在所述鑽靶機量測時,若擺放位置有少許的方向(x方向及/或y方向)與角度的偏差,會造成電路板b經所述鑽靶機量測後所提供的位置數據存在誤差,且電路板b於熱壓合而變形後的原中心點有無法透過量測而確定的情況時,以基準轉換204之步驟執行,提供電路板b有固定的基準,使電路板b內部電路的圖像位置可被定義。本實施例在基準轉換204之步驟執行後,接著執行擷取樣本點的原始位置201之步驟。 The compensation system 100 of the present creation implements an offset position compensation method 200 that uses a non-linear model to predict the deformation error of the circuit board. As shown in FIG. 2, it mainly includes the original position 201 of the sample point and the calculation optimization step. Steps such as square value 202 and processing 203 based on the predicted offset position, and this embodiment further includes a step of reference conversion 204 before the step of acquiring the original position 201 of the sample point, which is described as follows: the reference conversion 204 The step is that the target drilling machine translates the center of the circuit board b through a centering method, so that the center of the circuit board b coincides with the preset center of the target drilling machine, and then rotates the four targets A~D to The error between the preset targets of the target A~D corresponding to the target drilling machine is minimized, and the target drilling machine converts the positions of the four targets A~D with this minimum error into subsequent measurements The reference of sample points S1~S4 in the local area Z1~Z4. The step of reference conversion 204 is executed, mainly when each circuit board b to be processed is measured by the target drilling machine, if the placement position has a slight deviation of the direction (x direction and/or y direction) and the angle , It will cause errors in the position data provided by the circuit board b after being measured by the target drilling machine, and the original center point of the circuit board b after thermal compression bonding and deformation cannot be determined by measurement, use The step of reference conversion 204 is performed to provide a fixed reference for the circuit board b so that the image position of the internal circuit of the circuit board b can be defined. In this embodiment, after the step of reference conversion 204 is executed, the step of acquiring the original position 201 of the sample point is then executed.

所述擷取樣本點的原始位置201之步驟中,是以影像量測單元10擷取樣本點S1~S4的原始位置並儲存,樣本點S1~S4分別以X-Y座標值為位置表示,故原始位置此表示為(x i ,y i )。於本實施例中,影像量測單元10是以X光產生 器11發出射線而穿透電路板b,並以影像感測器12接收穿透電路板b之射線,以量測電路板b之樣本點S1~S4的原始位置,並儲存於記憶體13。本實施例在擷取樣本點的原始位置201之步驟執行後,接著執行計算最佳化次方值202之步驟。 In the step of capturing the original position 201 of the sample point, the image measuring unit 10 captures and stores the original position of the sample point S1~S4. The sample points S1~S4 are represented by the XY coordinate values respectively, so the original The position is represented as ( x i ,y i ). In this embodiment, the image measuring unit 10 uses the X-ray generator 11 to emit radiation to penetrate the circuit board b, and uses the image sensor 12 to receive the radiation that penetrates the circuit board b to measure the radiation of the circuit board b. The original positions of the sample points S1~S4 are stored in the memory 13. In this embodiment, after the step of acquiring the original position 201 of the sample point is executed, the step of calculating the optimal power value 202 is then executed.

所述計算最佳化次方值202之步驟中,再請參閱圖3所示,以運算處理單元20透過一非線性模型設定若干次方值,且分別計算出各樣本點S1~S4對應該些次方值之複數預測位置(

Figure 110208131-A0305-02-0009-56
,
Figure 110208131-A0305-02-0009-57
),並計算各樣本點S1~S4之該預測位置(
Figure 110208131-A0305-02-0009-58
,
Figure 110208131-A0305-02-0009-59
)和對應的原始位置(x i ,y i )間的絕對值平均誤差(誤差值取絕對值後再平均),以所述絕對值平均誤差中最小者對應之所述次方值取為一最佳化次方值。於一較佳實施例中,所述對應該些次方值中之絕對值平均誤差,係利用曲線擬合找出所述絕對值平均誤差最小者。 In the step of calculating the optimized power value 202, please refer to FIG. 3 again, the calculation processing unit 20 sets a number of power values through a nonlinear model, and respectively calculates the corresponding values of each sample point S1~S4 The predicted position of the complex number of these power values (
Figure 110208131-A0305-02-0009-56
,
Figure 110208131-A0305-02-0009-57
), and calculate the predicted position of each sample point S1~S4 (
Figure 110208131-A0305-02-0009-58
,
Figure 110208131-A0305-02-0009-59
) And the corresponding original position ( x i , y i ) of the absolute value average error (the error value is taken as the absolute value and then averaged), and the power value corresponding to the smallest of the absolute value average error is taken as one Optimized power value. In a preferred embodiment, the average error of the absolute value in the corresponding power values is obtained by curve fitting to find the one with the smallest average error of the absolute value.

所述依預測之偏移位置加工203之步驟中,電路板b在局部區域Z1~Z4內對應該內部電路預定之一加工位置,透過該非線性模型依該最佳化次方值得出對應之誤差進行補償,以預測該電路板變形後之一偏移位置,供加工單元30以該偏移位置對變形後之電路板b進行加工。 In the step of processing 203 according to the predicted offset position, the circuit board b corresponds to a predetermined processing position of the internal circuit in the local zone Z1~Z4, and the corresponding error is calculated according to the optimized power through the nonlinear model Compensation is performed to predict an offset position of the circuit board after deformation, and the processing unit 30 uses the offset position to process the deformed circuit board b.

於一較佳實施例中,所述非線性模型係依一非線性位置權重方程式設定所述若干次方值,以計算出對應該四個樣本點S1~S4之四個權重值,並以該四個權重值計算出一組位置預測函數,再依該組位置預測函數經一位置計算方程式求得所述預測位置或所述偏移位置。 In a preferred embodiment, the nonlinear model sets the power values according to a nonlinear position weight equation to calculate the four weight values corresponding to the four sample points S1~S4, and use the A set of position prediction functions is calculated from the four weight values, and the predicted position or the offset position is obtained through a position calculation equation based on the set of position prediction functions.

於一較佳實施例中,所述非線性位置權重方程式為:

Figure 110208131-A0305-02-0010-6
In a preferred embodiment, the nonlinear position weight equation is:
Figure 110208131-A0305-02-0010-6

所述非線性位置權重方程式中,N1至N4為對應四個樣本點S1~S4之權重值;a、b為電路板b兩鄰邊之半邊長;xiyi為該局部區域內包括所述樣本點S1~S4之任意點的X-Y座標值;k為設定之次方值。必須說明的是,所述非線性位置權重方程式中之

Figure 110208131-A0305-02-0010-8
Figure 110208131-A0305-02-0010-9
,為樣本點S1~S4的位置與半邊長的比例,利用不同的次方值k,針對所述位置與半邊長的比例部分更改為指數型,故而稱之為非線性位置權重方程式,嘗試在電路板b因壓熱合成型所造成的非線性變形下,來描述局部區域Z1~Z4之樣本點S1~S4的非線性變化,進一步進行電路板b上之任意點在漲縮變形後的位置預測。所述非線性位置權重方程式中,當(x i ,y i )=(-a,-b),且次方值k為偶數次方時,代入
Figure 110208131-A0305-02-0010-11
Figure 110208131-A0305-02-0010-12
兩者作為正負的判斷。 In the non-linear position weight equation, N1 to N4 are the weight values corresponding to the four sample points S1~S4; a and b are the half lengths of the two adjacent sides of the circuit board b; xi and yi are the local area including the The XY coordinate value of any point of the sample points S1~S4; k is the set power value. It must be noted that in the non-linear position weight equation
Figure 110208131-A0305-02-0010-8
and
Figure 110208131-A0305-02-0010-9
, Is the ratio of the position of the sample points S1 to S4 to the half length, using different power values k, the ratio of the position to the half length is changed to the exponential type, so it is called the nonlinear position weight equation. Try to Under the non-linear deformation of circuit board b caused by the autoclave synthesis type, describe the non-linear change of sample points S1~S4 in the local area Z1~Z4, and further proceed to the position of any point on the circuit board b after expansion and contraction deformation predict. In the non-linear position weight equation, when ( x i , y i )=(- a, -b ), and the power value k is an even power, substitute
Figure 110208131-A0305-02-0010-11
and
Figure 110208131-A0305-02-0010-12
Both are used as positive and negative judgments.

於一較佳實施例中,該組位置預測函數表示為:

Figure 110208131-A0305-02-0010-13
In a preferred embodiment, the set of position prediction functions is expressed as:
Figure 110208131-A0305-02-0010-13

該組位置預測函數中,ΔX k (x i ,y i )、ΔY k (x i ,y i )為(x i ,y i )之任意點在k次方值時X-Y座標值之偏移量。 In this group of position prediction functions, Δ X k ( x i , y i ) and Δ Y k ( x i , y i ) are the deviation of the XY coordinate value when any point of (x i , y i ) is k-th power Shift amount.

於一較佳實施例中,所述位置計算方程式表示為:

Figure 110208131-A0305-02-0011-14
In a preferred embodiment, the position calculation equation is expressed as:
Figure 110208131-A0305-02-0011-14

其中,x i 'y i '為對應所述任意點之預測位置之X-Y座標值。 Among them, x i ' and y i ' are the XY coordinate values corresponding to the predicted position of the arbitrary point.

以下就本創作實施例之利用非線性模型預測電路板變形誤差之偏移位置補償方法200,以較佳實施例說明如下:如前所述,本實施例是在電路板b的四個局部區域Z1~Z4分別取4個樣本點S1~S4,並於局部區域Z1~Z4內分別取十六個測試點T1~T16,藉此進行補償方法200的計算與驗證,而如圖5所示,以X軸和Y軸為基準,左上的局部區域Z1位在第二象限、右上的局部區域Z2位在第一象限、左下的局部區域Z3位在第三象限,而右下的局部區域Z4則位在第四象限;以局部區域Z1為例,如圖6所示,是以y方向為正,x方向為負,局部區域Z2~Z4以此類推,以下以位在電路板b左上之局部區域Z1為例說明,而其餘局部區域Z2~Z4則如同左下局部區域Z1之說明。 The following describes the offset position compensation method 200 for predicting the deformation error of the circuit board by using a nonlinear model in this creative embodiment, which is described in a preferred embodiment as follows: As mentioned above, this embodiment is implemented in four local areas of the circuit board b. Z1~Z4 take 4 sample points S1~S4 respectively, and take sixteen test points T1~T16 in the local area Z1~Z4 respectively to perform the calculation and verification of the compensation method 200, as shown in Figure 5. Based on the X and Y axes, the upper left local area Z1 is in the second quadrant, the upper right local area Z2 is in the first quadrant, the lower left local area Z3 is in the third quadrant, and the lower right local area Z4 is in the third quadrant. It is located in the fourth quadrant; take the local area Z1 as an example, as shown in Figure 6, the y direction is positive, the x direction is negative, the local areas Z2~Z4 and so on, the following is the local area located on the upper left of the circuit board b The area Z1 is taken as an example, and the other partial areas Z2 to Z4 are the same as the description of the lower left partial area Z1.

執行基準轉換204之步驟,所述鑽靶機如前所述透過一中心重合法將電路板b,使電路板b之中心與所述鑽靶機預設之中心重合,再旋轉四個靶標A~D至與所述鑽靶機對應靶標A~D所預設之靶標間的誤差最小化,進而轉換以此誤差最小化的四個所述靶標A~D的所在位置轉換為後續量測局部區域Z1~Z4之樣本點S1~S4的基準,所述靶標A~D之誤差變化量如表1所示。 Perform the step of reference conversion 204, the target drilling machine uses a center repositioning method to place the circuit board b so that the center of the circuit board b coincides with the preset center of the target drilling machine, and then rotates four targets A ~D to minimize the error between the preset targets of the target A~D corresponding to the target drilling machine, and then convert the positions of the four targets A~D with this minimum error into the subsequent measurement part The benchmarks of the sample points S1~S4 in the regions Z1~Z4, and the variation of the errors of the targets A~D are shown in Table 1.

Figure 110208131-A0305-02-0012-15
Figure 110208131-A0305-02-0012-15

補充一提,圖7中之樣本點S1以1標示處如圖8的放大區域,而圖7中之測試點T1以2標示處如圖9的放大區域,圖8與圖9中分別表示出樣本點S1與測試點T1於電路板b變形前與變形後的位置分布,此時的位置差異即執行基準轉換204之步驟時所用習知之中心重合法造成的誤差。由圖8中可見,樣本點S1於電路板b變形前與變形後在x方向的變化值為0.292mm,而在y方向變化值為0.120mm。另由圖9中可見,測試點T1於電路板b變形前與變形後在x方向變化值為0.284mm,y方向變化值為0.130mm。換言之,如以習知中心重合法進行電路板b加工位置的補償,實際上會超過工業可容許誤差範圍,而被歸類為報廢板。 In addition, the sample point S1 in Fig. 7 is marked by 1 in the enlarged area of Fig. 8, and the test point T1 in Fig. 7 is marked by 2 in the enlarged area of Fig. 9, respectively. The position distribution of the sample point S1 and the test point T1 before and after the deformation of the circuit board b. The position difference at this time is the error caused by the conventional centering method used when the step of the reference conversion 204 is performed. It can be seen from FIG. 8 that the change value of the sample point S1 in the x direction before and after the deformation of the circuit board b is 0.292 mm, and the change value in the y direction is 0.120 mm. It can also be seen from FIG. 9 that the change value of the test point T1 in the x direction before and after the deformation of the circuit board b is 0.284 mm, and the change value in the y direction is 0.130 mm. In other words, if the processing position of the circuit board b is compensated according to the conventional centering method, it will actually exceed the allowable error range of the industry and be classified as a scrap board.

計算最佳化次方值202之步驟中,以上述非線性模型為基礎,並設定一組次方值,其中有9個數值k,分別為{0.1,0.3,0.5,0.7,1.0,2.0,3.0,5.0,10.0},此處9個數值k的次防值假設,是為了觀察樣本點S1~S4的平均誤差在假設的數值k範圍內是否有最低值,若在此範圍內無最低值出現,可再做調整,故次方值之數量和數值k之設定,並不以上述之例為限。另外,局部區域Z1的四樣本點S1~S4在電路板b變形前的理論位置,如表2所示。 In the step of calculating the optimal power value 202, the above nonlinear model is used as the basis and a set of power values are set. There are 9 values k, which are {0.1,0.3,0.5,0.7,1.0,2.0, 3.0,5.0,10.0}, here the hypothesis of the secondary defense value of the 9 values k is to observe whether the average error of the sample points S1~S4 has the lowest value within the range of the assumed value k, if there is no lowest value within this range If it appears, it can be adjusted again, so the setting of the number of powers and the value k is not limited to the above example. In addition, the theoretical positions of the four sample points S1 to S4 of the local area Z1 before the circuit board b is deformed are shown in Table 2.

Figure 110208131-A0305-02-0013-16
Figure 110208131-A0305-02-0013-16

依照前述設定之該組次方值,將9個數值k代入前述非線性位置權重方程式中,以得到9組的N 1N 2N 3N 4等權重值,結果如表3至表11所示。 According to the aforementioned set of power values, 9 values k are substituted into the aforementioned nonlinear position weight equation to obtain 9 groups of weight values such as N 1 , N 2 , N 3 and N 4. The results are shown in Table 3 to Table 11 shown.

Figure 110208131-A0305-02-0013-17
Figure 110208131-A0305-02-0013-17

Figure 110208131-A0305-02-0013-18
Figure 110208131-A0305-02-0013-18

Figure 110208131-A0305-02-0014-19
Figure 110208131-A0305-02-0014-19

Figure 110208131-A0305-02-0014-20
Figure 110208131-A0305-02-0014-20

Figure 110208131-A0305-02-0014-21
Figure 110208131-A0305-02-0014-21

Figure 110208131-A0305-02-0015-22
Figure 110208131-A0305-02-0015-22

Figure 110208131-A0305-02-0015-24
Figure 110208131-A0305-02-0015-24

Figure 110208131-A0305-02-0015-25
Figure 110208131-A0305-02-0015-25

Figure 110208131-A0305-02-0016-26
Figure 110208131-A0305-02-0016-26

左上之局部區域Z1的樣本點S1~S4,依照前述設定之該組次方值的9個數值k代入前述非線性位置權重方程式中,經非線性模型之該組位置預測函數以及所述位置計算方程式計算後的預測位置(

Figure 110208131-A0305-02-0016-60
,
Figure 110208131-A0305-02-0016-61
),結果如表12所示。 The sample points S1~S4 of the local zone Z1 on the upper left are substituted into the aforementioned nonlinear position weight equation according to the 9 values k of the set of power values set above, and the set of position prediction functions of the nonlinear model and the position calculation The predicted position after the equation is calculated (
Figure 110208131-A0305-02-0016-60
,
Figure 110208131-A0305-02-0016-61
), the results are shown in Table 12.

Figure 110208131-A0305-02-0016-27
Figure 110208131-A0305-02-0016-27

接著,計算左上之局部區域Z1的四個樣本點S1~S4的預測位置(

Figure 110208131-A0305-02-0016-62
,
Figure 110208131-A0305-02-0016-63
)與對應的原始位置(x i ,y i )計算出絕對值平均誤差,四個樣本點S1~S4對應的原始位置(x i ,y i )如表13所示,各樣本點S1~S4與對應的原始位置的誤差如表14所示,局部區域Z1對應各次方值的絕對值平均誤差如表15所示。所述絕對值平 均誤差,係如表14中四個樣本點的預測位置(
Figure 110208131-A0305-02-0017-64
,
Figure 110208131-A0305-02-0017-65
)與對應的原始位置(x i ,y i )於不同次方值之誤差,先取絕對值,再將各次方值之誤差取平均值。 Next, calculate the predicted positions (
Figure 110208131-A0305-02-0016-62
,
Figure 110208131-A0305-02-0016-63
) And the corresponding original positions ( x i , y i ) to calculate the average absolute value error. The original positions ( x i , y i ) corresponding to the four sample points S1~S4 are shown in Table 13. Each sample point S1~S4 The error from the corresponding original position is shown in Table 14, and the average error of the absolute value corresponding to each power value of the local zone Z1 is shown in Table 15. The average error of the absolute value is the predicted position of the four sample points in Table 14 (
Figure 110208131-A0305-02-0017-64
,
Figure 110208131-A0305-02-0017-65
) And the corresponding original position ( x i , y i ) in different powers of error, first take the absolute value, and then take the average of the error of each power.

Figure 110208131-A0305-02-0017-28
Figure 110208131-A0305-02-0017-28

Figure 110208131-A0305-02-0017-29
Figure 110208131-A0305-02-0017-29

Figure 110208131-A0305-02-0017-30
Figure 110208131-A0305-02-0017-30

接著,針對各局部區域四個樣本點S1~S4之各次方數k值所對應的絕對值平均誤差分布進行曲線擬合,以尋找最佳化次方值,如圖10至圖13所示,為分別表示左上之局部區域Z1、右上之局部區域Z2、左下之局部區域Z3與右下之局部區域Z4。圖10至圖13中的縱軸為預測位置(

Figure 110208131-A0305-02-0018-66
,
Figure 110208131-A0305-02-0018-67
)與原始位置(x i ,y i )的誤差,橫軸為假設的次方值,其中之長條部分為分別表示各次方值下所計算的預測位置(
Figure 110208131-A0305-02-0018-68
,
Figure 110208131-A0305-02-0018-69
)在x方向之誤差,以及各次方值下所計算的預測位置(
Figure 110208131-A0305-02-0018-70
,
Figure 110208131-A0305-02-0018-71
)在y方向之誤差,圖10至圖13中以黑點所在之處表示為曲線擬合的最低點。將各局部區域Z1~Z4的曲線擬合結果進行一次微分後求得絕對值平均誤差的最小值,如表16所示。從圖10至圖13四個局部區域Z1~Z4在x方向與y方向所求得之數值k皆不相同,表示本創作之非線性模型可針對電路板b任意設定之局部區域的內部電路圖象進行x方向與y方向各自的位置預測,也進一步顯示電路板b確實呈現非線性的漲縮變形。 Then, curve fitting is performed on the average error distribution of the absolute value corresponding to the k value of each power number of the four sample points S1~S4 in each local area to find the optimal power value, as shown in Figure 10 to Figure 13 , Respectively represent the upper left local area Z1, the upper right local area Z2, the lower left local area Z3, and the lower right local area Z4. The vertical axis in Figure 10 to Figure 13 is the predicted position (
Figure 110208131-A0305-02-0018-66
,
Figure 110208131-A0305-02-0018-67
) And the original position ( x i , y i ), the horizontal axis is the hypothetical power value, and the long bars represent the predicted position calculated under each power value (
Figure 110208131-A0305-02-0018-68
,
Figure 110208131-A0305-02-0018-69
) The error in the x direction and the predicted position calculated under each power value (
Figure 110208131-A0305-02-0018-70
,
Figure 110208131-A0305-02-0018-71
) The error in the y direction is shown as the lowest point of the curve fitting in Figure 10 to Figure 13 where the black dot is located. The curve fitting results of each local area Z1~Z4 are differentiated once to obtain the minimum value of the absolute value average error, as shown in Table 16. From Fig. 10 to Fig. 13 the four local areas Z1~Z4 have different values k obtained in the x direction and y direction, indicating that the non-linear model of this creation can be arbitrarily set for the internal circuit image of the local area of the circuit board b Predicting the respective positions in the x-direction and the y-direction also further shows that the circuit board b does exhibit nonlinear expansion and contraction deformation.

Figure 110208131-A0305-02-0018-31
Figure 110208131-A0305-02-0018-31

求得上述各局部區域Z1~Z4之四個樣本點S1~S4經曲線擬合後所得之最佳化次方值(x、y方向),進一步再對各局部區域Z1~Z4內定義之十六個測試點T1~T16以所求得之最佳化次方值驗證,以證實本創作透過非線性模型之補償方法200的有效性,茲說明如下: 將上述各局部區域Z1~Z4之四個樣本點S1~S4經曲線擬合後所得之最佳化次方值(x、y方向),與各測試點T1~T16形變前所對應的原始位置(x i ,y i ),分別代入所述非線性位置權重方程式中的數值k與xiyi之參數中,既可經所述非線性位置權重方程式而求得各測試點T1~T16對應的權重值N 1N 2N 3N 4。以左上之局部區域Z1為例,各測試點T1~T16形變前所對應的原始位置(x i ,y i )如表17所示,各測試點T1~T16所求得x、y方向之權重值N 1N 2N 3N 4如表18、表19所示,其餘局部區域Z2~Z4結果之計算則比照左下局部區域Z1。 Calculate the optimal power values (x, y direction) of the four sample points S1~S4 of the above-mentioned local regions Z1~Z4 after curve fitting, and then further define the tenth value in each local region Z1~Z4. The six test points T1~T16 are verified with the obtained optimal power values to verify the effectiveness of the compensation method 200 of this creation through the nonlinear model. Here is an explanation: The optimized power value (x, y direction) of the sample points S1~S4 after curve fitting, and the original position ( x i ,y i ) corresponding to each test point T1~T16 before the deformation, respectively Among the parameters of the numerical values k and xi and yi in the nonlinear position weight equation, the weight values N 1 , N 2 , N 3 corresponding to each test point T1 to T16 can be obtained through the nonlinear position weight equation. With N 4 . Taking the local area Z1 on the upper left as an example, the original position ( x i ,y i ) corresponding to each test point T1~T16 before deformation is shown in Table 17. The weight of each test point T1~T16 in the x and y directions The values N 1 , N 2 , N 3 and N 4 are shown in Table 18 and Table 19, and the calculation of the results of the remaining local areas Z2~Z4 is based on the lower left local area Z1.

Figure 110208131-A0305-02-0019-32
Figure 110208131-A0305-02-0019-32

Figure 110208131-A0305-02-0019-33
Figure 110208131-A0305-02-0019-33

Figure 110208131-A0305-02-0020-34
Figure 110208131-A0305-02-0020-34

接著,將所求得之各測試點T1~T16對應的權重值N 1N 2N 3N 4,以及如表1所示四個靶標經基準轉換後的誤差在x、y方向的變化值,代入該組位置預測函數中以求得ΔX k (x i ,y i )、ΔY k (x i ,y i ),再將求得之ΔX k (x i ,y i )、ΔY k (x i ,y i )代入所述位置計算方程式中,以求得各測試點T1~T16依原始位置經非線性模型計算後的預測位置(

Figure 110208131-A0305-02-0020-72
,
Figure 110208131-A0305-02-0020-73
),如表20所示。 Next, calculate the weight values N 1 , N 2 , N 3 and N 4 corresponding to each test point T1~T16, and the errors of the four targets in the x and y directions after the reference conversion as shown in Table 1. The change value is substituted into the set of position prediction functions to obtain Δ X k ( x i , y i ), Δ Y k ( x i , y i ), and then the obtained Δ X k ( x i , y i ) , Δ Y k ( x i , y i ) is substituted into the position calculation equation to obtain the predicted position (
Figure 110208131-A0305-02-0020-72
,
Figure 110208131-A0305-02-0020-73
), as shown in Table 20.

Figure 110208131-A0305-02-0020-35
Figure 110208131-A0305-02-0020-35
Figure 110208131-A0305-02-0021-37
Figure 110208131-A0305-02-0021-37

接著,計算左上之局部區域Z1的十六個測試點T1~T16的預測位置(

Figure 110208131-A0305-02-0021-74
,
Figure 110208131-A0305-02-0021-75
)與對應的原始位置(x i ,y i )計算出絕對值平均誤差,局部區域Z1中十六個測試點T1~T16與對應的原始位置的誤差如表21所示,本創作利用非線性模型之補償方法與中心重合法之誤差補償結果比較如表22所示。 Next, calculate the predicted positions of the sixteen test points T1~T16 in the upper left local area Z1 (
Figure 110208131-A0305-02-0021-74
,
Figure 110208131-A0305-02-0021-75
) And the corresponding original position ( x i , y i ) to calculate the average absolute value error. The error between the sixteen test points T1~T16 in the local zone Z1 and the corresponding original position is shown in Table 21. This creation uses nonlinearity The comparison between the compensation method of the model and the error compensation result of the center weighting method is shown in Table 22.

Figure 110208131-A0305-02-0021-38
Figure 110208131-A0305-02-0021-38

如表22所示,為電路板b之各局部區域S1~S4的測試點T1~T16,經過本創作利用非線性模型之補償方法200相較於習知中心重合法之誤差補償結果,各局部區域S1~S4的測試點T1~T16在預測位置(

Figure 110208131-A0305-02-0021-76
,
Figure 110208131-A0305-02-0021-77
)之絕對值平均誤差皆相對降低,且表22中也可見左上之局部區域Z1之x方向的誤差有最大改善,其誤差從中心重合法的0.2519mm降低至0.0084mm,改善程度高達96.67%。 As shown in Table 22, the test points T1~T16 of each local area S1~S4 of the circuit board b. After this creation, the compensation method 200 using the nonlinear model is compared with the error compensation result of the conventional center reconstruction method. The test points T1~T16 in areas S1~S4 are in the predicted position (
Figure 110208131-A0305-02-0021-76
,
Figure 110208131-A0305-02-0021-77
The average error of the absolute value of) is relatively reduced, and it can be seen in Table 22 that the error in the x-direction of the upper left local zone Z1 has the greatest improvement. The error is reduced from 0.2519mm in the center offset to 0.0084mm, which is an improvement of 96.67%.

Figure 110208131-A0305-02-0022-39
Figure 110208131-A0305-02-0022-39

由上述之說明不難發現本創作之特點在於,本創作係透過非線性模型及若干次方值之設定,以計算出各樣本點S1~S4對應該些次方值之複數預測位置(

Figure 110208131-A0305-02-0022-78
,
Figure 110208131-A0305-02-0022-79
),再經計算和對應的原始位置(x i ,y i )間的絕對值平均誤差,而以絕對值平均誤差中最小者對應之次方值取為最佳化次方值,而由上述測試點之驗證,本創作透過非線性模型及若干次方值之設定的補償,確實能大幅改善習知中心重點法之誤差補償不準確的問題,亦可證明當加工單元30對變形後的電路板b於局部區域Z1~Z4內對應於內部電路預定之一加工位置進行加工時,可透過該非線性模型依該最佳化次方值預測偏移位置,加工單元30能夠以該偏移位置對變形後之該電路板b進行加工,以達到加工準確而降低電路板之不良率的功效。 From the above description, it is not difficult to find that the characteristic of this creation is that this creation is based on the nonlinear model and the setting of certain power values to calculate the complex prediction positions of each sample point S1~S4 corresponding to these power values (
Figure 110208131-A0305-02-0022-78
,
Figure 110208131-A0305-02-0022-79
), and then calculate the absolute average error between the corresponding original position (x i , y i ), and take the power value corresponding to the smallest of the absolute average error as the optimized power value, and from the above The verification of the test points, this creation through the compensation of the nonlinear model and the setting of several power values, can indeed greatly improve the inaccuracy of the error compensation of the conventional center-point method, and it can also prove that the processing unit 30 affects the deformed circuit When the board b is processed in the local zone Z1~Z4 corresponding to a predetermined processing position of the internal circuit, the offset position can be predicted according to the optimized power value through the nonlinear model, and the processing unit 30 can use the offset position to The deformed circuit board b is processed to achieve accurate processing and reduce the defect rate of the circuit board.

本創作在上文中已以較佳實施例揭露,然熟習本項技術者應理解的是,該實施例僅用於描繪本創作,而不應解讀為限制本創作之範圍。應注意的是,舉凡與該實施例等效之變化與置換,均應設為涵蓋於本創作之範疇內。因此,本創作之保護範圍當以申請專利範圍所界定者為準。 This creation has been disclosed in a preferred embodiment above, but those familiar with this technology should understand that this embodiment is only used to describe the creation, and should not be construed as limiting the scope of this creation. It should be noted that all changes and replacements equivalent to this embodiment should be included in the scope of this creation. Therefore, the scope of protection of this creation shall be subject to the scope of the patent application.

100:補償系統 100: Compensation system

10:影像量測單元 10: Image measurement unit

11:X光產生器 11: X-ray generator

12:影像感測器 12: Image sensor

13:記憶體 13: Memory

20:運算處理單元 20: Operation processing unit

30:加工單元 30: Processing unit

Claims (12)

一種利用非線性模型預測電路板變形誤差之偏移位置補償系統,所述電路板具有一內部電路,且該電路板至少有位在四角隅之四個靶標,並於該電路板預設一局部區域,且至少於該局部區域內之四角隅有四個樣本點,所述系統包含一影像量測單元、一運算處理單元以及一加工單元,該影像量測單元和該加工單元分別與該運算處理單元電性連接,其中:該影像量測單元量測該些樣本點的原始位置並儲存,各該樣本點分別以X-Y座標值為位置表示;該運算處理單元透過一非線性模型設定若干次方值,且分別計算出各該樣本點對應該些次方值之複數預測位置,並計算各該樣本點之該些預測位置和對應的原始位置間的絕對值平均誤差,以所述絕對值平均誤差中最小者對應之所述次方值取為一最佳化次方值;該電路板變形前在該局部區域內對應該內部電路預定之一加工位置,透過該非線性模型依該最佳化次方值得出對應之誤差進行補償,以預測該電路板變形後之一偏移位置,供該加工單元以該偏移位置對變形後之該電路板進行加工。 An offset position compensation system that uses a nonlinear model to predict the deformation error of a circuit board. The circuit board has an internal circuit, and the circuit board has at least four targets located in four corners, and a part of the circuit board is preset Area, and at least four sample points in the four corners of the local area. The system includes an image measurement unit, an arithmetic processing unit, and a processing unit. The image measurement unit and the processing unit are respectively associated with the arithmetic The processing unit is electrically connected, wherein: the image measuring unit measures and stores the original positions of the sample points, each of the sample points is represented by the position of the XY coordinate value; the calculation processing unit is set several times through a nonlinear model Calculate the complex predicted position of each sample point corresponding to the power value, and calculate the average error of the absolute value between the predicted position of each sample point and the corresponding original position, and use the absolute value The power value corresponding to the smallest of the average error is taken as an optimized power value; before the circuit board is deformed, it corresponds to a predetermined processing position of the internal circuit in the local area, and the nonlinear model is used according to the optimum The squared value is calculated to compensate for the corresponding error, so as to predict an offset position of the circuit board after deformation, and the processing unit can process the deformed circuit board at the offset position. 如請求項1所述之利用非線性模型預測電路板變形誤差之偏移位置補償系統,其中,該影像量測單元包括一X光產生器、一影像感測器以及一記憶體,以該X光產生器發出射線而穿透該電 路板,並以該影像感測器接收穿透該電路板之射線,以量測該電路板之該複數樣本點的原始位置並儲存於該記憶體。 The offset position compensation system using a nonlinear model to predict the deformation error of a circuit board as described in claim 1, wherein the image measurement unit includes an X-ray generator, an image sensor, and a memory, and the X The light generator emits rays and penetrates the electricity The circuit board receives the rays penetrating the circuit board with the image sensor to measure the original positions of the plurality of sample points of the circuit board and store them in the memory. 如請求項2所述之利用非線性模型預測電路板變形誤差之偏移位置補償系統,其中,該影像感測器為CCD感測器。 The offset position compensation system using a nonlinear model to predict the deformation error of the circuit board as described in claim 2, wherein the image sensor is a CCD sensor. 如請求項1所述之利用非線性模型預測電路板變形誤差之偏移位置補償系統,其中,該加工單元為一鑽孔器。 The offset position compensation system for predicting the deformation error of the circuit board by using a nonlinear model as described in claim 1, wherein the processing unit is a drill. 如請求項1所述之利用非線性模型預測電路板變形誤差之偏移位置補償系統,其中,該電路板為經二次熱壓合成型之多層印刷電路板,該內部電路埋於該電路板中。 The offset position compensation system for predicting the deformation error of the circuit board using a nonlinear model as described in claim 1, wherein the circuit board is a multilayer printed circuit board synthesized by secondary heat pressing, and the internal circuit is buried in the circuit board middle. 如請求項1所述之利用非線性模型預測電路板變形誤差之偏移位置補償系統,其中,所述對應該些次方值中之絕對值平均誤差,係利用曲線擬合找出所述絕對值平均誤差最小者。 The offset position compensation system that uses a nonlinear model to predict the deformation error of a circuit board as described in claim 1, wherein the average error of the absolute value in the corresponding power values is found by curve fitting The value with the smallest average error. 如請求項1所述之利用非線性模型預測電路板變形誤差之偏移位置補償系統,其中,以鑽靶機透過一中心重合法將該電路板之中心平移至與所述鑽靶機預設之中心重合,且旋轉該四個靶標至與所述鑽靶機預設之靶標間的誤差最小化,所述鑽靶機轉換以此誤差最小化的四個所述靶標的所在位置轉換為後續量測該些樣本點之基準。 The offset position compensation system for predicting the deformation error of the circuit board using a nonlinear model as described in claim 1, wherein the target drilling machine is used to translate the center of the circuit board to the preset value of the target drilling machine through a center repositioning method. The centers of the four targets coincide, and the four targets are rotated to minimize the error with the target preset by the target drilling machine. The target drilling machine converts the positions of the four targets with the minimum error to the subsequent The benchmark for measuring these sample points. 如請求項1至7任一項所述之利用非線性模型預測電路板變形誤差之偏移位置補償系統,其中,所述非線性模型係依一非線性位置權重方程式設定所述若干次方值,以計算出對應該四個樣本點之四個權重值,並以該四個權重值計算出一組位置預測函 數,再依該組位置預測函數經一位置計算方程式求得所述預測位置或所述偏移位置。 The offset position compensation system using a nonlinear model to predict a circuit board deformation error according to any one of claims 1 to 7, wherein the nonlinear model is set to the power value according to a nonlinear position weight equation , To calculate the four weight values corresponding to the four sample points, and use the four weight values to calculate a set of position prediction functions According to the set of position prediction functions, the predicted position or the offset position is obtained through a position calculation equation. 如請求項8所述之利用非線性模型預測電路板變形誤差之偏移位置補償系統,其中,所述非線性位置權重方程式為:
Figure 110208131-A0305-02-0026-40
其中,N1至N4為對應該四個樣本點之權重值;a、b為電路板兩鄰邊之半邊長;x i y i 為該局部區域內包括所述樣本點之任意點的X-Y座標值;k為設定之次方值。
The offset position compensation system using a nonlinear model to predict the deformation error of a circuit board as described in claim 8, wherein the nonlinear position weight equation is:
Figure 110208131-A0305-02-0026-40
Among them, N 1 to N 4 are the weight values corresponding to the four sample points; a and b are the half lengths of the two adjacent sides of the circuit board; x i , y i are the values of any points in the local area including the sample points XY coordinate value; k is the set power value.
如請求項9所述之利用非線性模型預測電路板變形誤差之偏移位置補償系統,其中,該組位置預測函數表示為:
Figure 110208131-A0305-02-0026-41
其中,ΔX k (x i ,y i )、ΔY k (x i ,y i )為(x i ,y i )之任意點在k次方值時X-Y座標值之偏移量。
The offset position compensation system using a nonlinear model to predict the deformation error of a circuit board as described in claim 9, wherein the set of position prediction functions are expressed as:
Figure 110208131-A0305-02-0026-41
Among them, Δ X k ( x i , y i ) and Δ Y k ( x i , y i ) are the offset of the XY coordinate value when any point of (x i , y i ) is k-th power.
如請求項10所述之利用非線性模型預測電路板變形誤差之偏移位置補償系統,其中,所述位置計算方程式表示為:
Figure 110208131-A0305-02-0027-42
其中,x i 'y i '為對應所述任意點之預測位置之X-Y座標值。
The offset position compensation system using a nonlinear model to predict the deformation error of a circuit board as described in claim 10, wherein the position calculation equation is expressed as:
Figure 110208131-A0305-02-0027-42
Among them, x i ' and y i ' are the XY coordinate values corresponding to the predicted position of the arbitrary point.
如請求項1所述之利用非線性模型預測電路板變形誤差之偏移位置補償系統,其中,該局部區域為矩形。 The offset position compensation system using a non-linear model to predict the deformation error of the circuit board as described in claim 1, wherein the local area is rectangular.
TW110208131U 2021-07-12 2021-07-12 Shifting position compensation system using nonlinear model to predict circuit board deformation error TWM620524U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110208131U TWM620524U (en) 2021-07-12 2021-07-12 Shifting position compensation system using nonlinear model to predict circuit board deformation error

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110208131U TWM620524U (en) 2021-07-12 2021-07-12 Shifting position compensation system using nonlinear model to predict circuit board deformation error

Publications (1)

Publication Number Publication Date
TWM620524U true TWM620524U (en) 2021-12-01

Family

ID=80679589

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110208131U TWM620524U (en) 2021-07-12 2021-07-12 Shifting position compensation system using nonlinear model to predict circuit board deformation error

Country Status (1)

Country Link
TW (1) TWM620524U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674240A (en) * 2022-03-25 2022-06-28 中国科学院微电子研究所 Deformation measurement method and device, electronic equipment and storage medium
TWI773431B (en) * 2021-07-12 2022-08-01 國立陽明交通大學 Offset Position Compensation System and Compensation Method for Predicting Deformation Error of Circuit Board Using Nonlinear Model

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773431B (en) * 2021-07-12 2022-08-01 國立陽明交通大學 Offset Position Compensation System and Compensation Method for Predicting Deformation Error of Circuit Board Using Nonlinear Model
CN114674240A (en) * 2022-03-25 2022-06-28 中国科学院微电子研究所 Deformation measurement method and device, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
TWM620524U (en) Shifting position compensation system using nonlinear model to predict circuit board deformation error
TWI684390B (en) Apparatus and method for calibrating machining position
US7310406B2 (en) Inspection method and system for and method of producing component mounting substrate
EP2050322B1 (en) Control system for controlling the manufacture of printed circuit boards and method of operating
CN107110637A (en) Calibration to three-dimension measuring system is updated
CN1481535A (en) System and method for monitoring and improving dimensional stability and registration accuracy of multi-layer PCB manufacture
KR20020002481A (en) Compensation model and registration simulator apparatus and method for manufacturing of printed circuit boards
CN106127789A (en) Stereoscopic vision scaling method in conjunction with neutral net Yu virtual target
CN107727011A (en) Selective laser melting manufacturing process midplane degree and profile tolerance On-line Measuring Method
US9157874B2 (en) System and method for automated x-ray inspection
CN114199160B (en) Circuit board component geometry detection method based on binary code grating defocusing projection
CN113778513A (en) Automatic generation method, device and equipment of PCB drilling program and storage medium
CN110766759B (en) Multi-camera calibration method and device without overlapped view fields
US20220312585A1 (en) Welding quality processing method and device, and circuit board
CN114445486A (en) Chip warpage deformation measuring method and device
TWI773431B (en) Offset Position Compensation System and Compensation Method for Predicting Deformation Error of Circuit Board Using Nonlinear Model
JP2008186104A (en) Product attribute information predicting device, product attribute information predicting method and product attribute information prediction program
CN116187113B (en) Integrated circuit chip thermal simulation junction temperature correction method based on Gao Beigong external thermal imaging
JP2006317408A (en) Warpage checker
Kalukin et al. Three-dimensional visualization of multilayered assemblies using X-ray laminography
Hassell Advanced warpage characterization: location and type of displacement can be equally as important as magnitude
KR20150121024A (en) X-ray nondestructive testing device
Zhang et al. An iterative algorithm to improve infrared thermographic systems’ accuracy in temperature field measurement of aluminum alloys
Hertl et al. Innovative assessment of thermomechanical stress effects in electronics components and assemblies
JP2004108871A (en) X-ray inspection device, x-ray inspection method and x-ray inspection control program