TWM611131U - Transparent powder atomic layer deposition device - Google Patents
Transparent powder atomic layer deposition device Download PDFInfo
- Publication number
- TWM611131U TWM611131U TW109213985U TW109213985U TWM611131U TW M611131 U TWM611131 U TW M611131U TW 109213985 U TW109213985 U TW 109213985U TW 109213985 U TW109213985 U TW 109213985U TW M611131 U TWM611131 U TW M611131U
- Authority
- TW
- Taiwan
- Prior art keywords
- cavity
- reaction space
- vacuum chamber
- atomic layer
- layer deposition
- Prior art date
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
本新型提供一種可透視的粉末原子層沉積裝置,主要包括一真空腔體、一軸封裝置及一驅動單元,其中驅動單元透過軸封裝置連接並帶動真空腔體轉動。真空腔體包括一蓋板及一腔體,其中腔體由透光材質所製成,並於蓋板及腔體之間形成一反應空間用以容置粉末。軸封裝置內設置至少一抽氣管線及至少一進氣管線,流體連接真空腔體的反應空間。本新型的腔體是由透光材質所製成,在進行粉末的原子層沉積時,使用者可經由透光的腔體清楚地觀看到反應空間內的粉末,並調整粉末原子層沉積裝置的操作變因。 The invention provides a see-through powder atomic layer deposition device, which mainly includes a vacuum chamber, a shaft sealing device and a driving unit, wherein the driving unit is connected through the shaft sealing device and drives the vacuum chamber to rotate. The vacuum chamber includes a cover plate and a cavity, wherein the cavity is made of light-transmitting material, and a reaction space is formed between the cover plate and the cavity for accommodating powder. At least one air extraction line and at least one air intake line are arranged in the shaft sealing device, and are fluidly connected to the reaction space of the vacuum chamber. The cavity of the present invention is made of light-transmitting material. During the atomic layer deposition of powder, the user can clearly see the powder in the reaction space through the light-transmitting cavity and adjust the powder atomic layer deposition device. Operational variables.
Description
本新型有關於一種可透視的粉末原子層沉積裝置,方便使用者在進行粉末的原子層沉積製程時,觀看反應腔體內粉末的狀態,並調整粉末原子層沉積裝置。 The invention relates to a see-through powder atomic layer deposition device, which is convenient for users to observe the state of the powder in the reaction chamber and adjust the powder atomic layer deposition device during the powder atomic layer deposition process.
奈米顆粒(nanoparticle)一般被定義為在至少一個維度上小於100奈米的顆粒,奈米顆粒與宏觀物質在物理及化學上的特性截然不同。一般而言,宏觀物質的物理特性與本身的尺寸無關,但奈米顆粒則非如此,奈米顆粒在生物醫學、光學和電子等領域都具有潛在的應用。 Nanoparticles are generally defined as particles smaller than 100 nanometers in at least one dimension. Nanoparticles and macroscopic substances have completely different physical and chemical properties. Generally speaking, the physical properties of macroscopic substances have nothing to do with their size, but nano particles are not the case. Nano particles have potential applications in biomedicine, optics, and electronics.
量子點(Quantum Dot)是半導體的奈米顆粒,目前研究的半導體材料為II-VI材料,如ZnS、CdS、CdSe等,其中又以CdSe最受到矚目。量子點的尺寸通常在2至50奈米之間,量子點被紫外線照射後,量子點中的電子會吸收能量,並從價帶躍遷到傳導帶。被激發的電子從傳導帶回到價帶時,會通過發光釋放出能量。 Quantum dots (Quantum Dot) are semiconductor nano-particles. The currently studied semiconductor materials are II-VI materials, such as ZnS, CdS, CdSe, etc., of which CdSe has attracted the most attention. The size of quantum dots is usually between 2 and 50 nanometers. After the quantum dots are irradiated with ultraviolet light, the electrons in the quantum dots will absorb energy and transition from the valence band to the conduction band. When the excited electron returns from the conduction band to the valence band, it releases energy through light emission.
量子點的能隙與尺寸大小相關,量子點的尺寸越大能隙越小,經照射後會發出波長較長的光,量子點的尺寸越小則能隙越大,經照射後會發出波長較短的光。例如5到6奈米的量子點會發出橘光或紅光,而2到3奈米的量子點則會發出藍光或綠光,當然光色取決於量子點的材料組成。 The energy gap of a quantum dot is related to the size. The larger the size of the quantum dot, the smaller the energy gap, and will emit light with a longer wavelength after irradiation. The smaller the size of the quantum dot, the larger the energy gap, and the wavelength will be emitted after irradiation. Shorter light. For example, quantum dots of 5 to 6 nanometers emit orange or red light, while quantum dots of 2 to 3 nanometers emit blue or green light. Of course, the light color depends on the material composition of the quantum dots.
應用量子點的發光二極體(LED)產生的光可接近連續光譜,同時具有高演色性,並有利於提高發光二極體的發光品質。此外亦可透過改變量子點的尺寸調整發射光的波長,使得量子點成為新一代發光裝置及顯示器的發展重點。 Light-emitting diodes (LEDs) using quantum dots produce light that can be close to a continuous spectrum, have high color rendering properties, and help improve the luminous quality of the light-emitting diodes. In addition, the wavelength of the emitted light can be adjusted by changing the size of the quantum dots, making the quantum dots the development focus of a new generation of light-emitting devices and displays.
量子點雖然具有上述的優點及特性,但在應用或製造的過程中容易產生團聚現象。此外量子點具有較高的表面活性,並容易與空氣及水氣發生反應,進而縮短量子點的壽命。 Although quantum dots have the above-mentioned advantages and characteristics, they are prone to agglomeration during the application or manufacturing process. In addition, quantum dots have high surface activity, and easily react with air and water vapor, thereby shortening the lifespan of quantum dots.
具體來說,將量子點製作成為發光二極體的密封膠時,可能會產生團聚效應,而降低了量子點的光學性能。此外,量子點在製作成發光二極體的密封膠後,外界的氧或水氣仍可能會穿過密封膠而接觸量子點的表面,導致量子點氧化,並影響量子點及發光二極體的效能或使用壽命。量子點的表面缺陷及懸空鍵(dangling bonds)亦可能造成非輻射復合(nonradiative recombination),同樣會影響量子點的發光效率。 Specifically, when the quantum dots are made into a sealant for light-emitting diodes, agglomeration effect may occur, which reduces the optical performance of the quantum dots. In addition, after quantum dots are made into the sealant of light-emitting diodes, external oxygen or moisture may still pass through the sealant and contact the surface of the quantum dots, causing the quantum dots to oxidize and affect the quantum dots and light-emitting diodes. The effectiveness or service life of the product. Surface defects and dangling bonds of quantum dots may also cause nonradiative recombination, which also affects the luminous efficiency of quantum dots.
目前業界主要透過原子層沉積(atomic layer deposition,ALD)在量子點的表面形成一層奈米厚度的薄膜,或者是在量子點的表面形成多層薄膜,以形成量子井結構。 At present, the industry mainly uses atomic layer deposition (ALD) to form a nanometer-thick film on the surface of quantum dots, or form a multilayer film on the surface of quantum dots to form a quantum well structure.
原子層沉積可以在基板上形成厚度均勻的薄膜,並可有效控制薄膜的厚度,理論上亦適用於三維的量子點。量子點靜置在承載盤時,相鄰的量子點之間會存在接觸點,使得原子層沉積的前驅物氣體無法接觸這些接觸點,並導致無法在所有的奈米顆粒的表面皆形成厚度均勻的薄膜。 Atomic layer deposition can form a thin film with uniform thickness on the substrate, and can effectively control the thickness of the thin film. In theory, it is also suitable for three-dimensional quantum dots. When the quantum dots are placed on the carrier plate, there will be contact points between adjacent quantum dots, so that the precursor gas deposited by the atomic layer cannot contact these contact points, and it is impossible to form a uniform thickness on the surface of all nano particles.的膜。 The film.
在進行粉末的原子層沉積製程時,使用者通常無法清楚的觀看到反應空間內粉末的狀態。為了解決上述及先前技術面臨的問題,本新型提出一種可透視的粉末原子層沉積裝置,可於原子層沉積製程中充份攪拌粉末,使得粉末充滿整個真空腔體的反應空間。此外使用者可經由可透視的粉末原子層沉積裝置觀看到粉末的狀態及翻攪情形,並調整粉末原子層沉積裝置的操作變因,以利於在粉末的表面上形成厚度均勻的薄膜。 During the powder atomic layer deposition process, users usually cannot clearly see the state of the powder in the reaction space. In order to solve the above-mentioned and the problems faced by the prior art, the present invention proposes a see-through powder atomic layer deposition device, which can fully agitate the powder during the atomic layer deposition process, so that the powder fills the entire reaction space of the vacuum chamber. In addition, the user can observe the state of the powder and the state of stirring through the see-through powder atomic layer deposition device, and adjust the operating variables of the powder atomic layer deposition device to facilitate the formation of a thin film of uniform thickness on the surface of the powder.
本新型的一目的,在於提供一種可透視的粉末原子層沉積裝置,主要包括一驅動單元、一軸封裝置及一真空腔體,其中驅動單元透過軸封裝置連接並驅動真空腔體轉動。真空腔體包括一蓋板及一腔體,其中蓋板用以覆蓋腔體,並在兩者之間形成一反應空間用以容置粉末。本新型的腔體由透光材質所製成,使用者可經由透光的腔體觀看到反應空間內粉末的翻攪情形及狀態。 An object of the present invention is to provide a see-through powder atomic layer deposition device, which mainly includes a driving unit, a shaft sealing device and a vacuum chamber, wherein the driving unit is connected through the shaft sealing device and drives the vacuum chamber to rotate. The vacuum chamber includes a cover plate and a cavity, wherein the cover plate is used to cover the cavity, and a reaction space is formed between the two to contain the powder. The cavity of the present invention is made of light-transmitting material, and the user can observe the stirring situation and state of the powder in the reaction space through the light-transmitting cavity.
本新型的一目的,在於提供一種可透視的粉末原子層沉積裝置,主要包括一驅動單元、一軸封裝置及一真空腔體,其中真空腔體包括一蓋板及一腔體,且腔體由透光材質所製成。至少一連接單元穿過蓋板並固定在軸封裝置上,使得腔體被固定在蓋板及軸封裝置之間,並於蓋板、腔體及/或軸封裝置之間形成反應空間。 An object of the present invention is to provide a see-through powder atomic layer deposition device, which mainly includes a driving unit, a shaft sealing device and a vacuum chamber, wherein the vacuum chamber includes a cover and a cavity, and the cavity is composed of Made of translucent material. At least one connecting unit passes through the cover plate and is fixed on the shaft sealing device, so that the cavity is fixed between the cover plate and the shaft sealing device, and a reaction space is formed between the cover plate, the cavity and/or the shaft sealing device.
本新型的一目的,在於提供一種可透視的粉末原子層沉積裝置,其中腔體的一側固定在軸封裝置上,而蓋板固定部則固定在腔體的另一側。蓋板經由至少一連接單元固定在蓋板固定部上,並於蓋板、腔體及/或軸封裝置之間形成密閉的反應空間。透過蓋板固定部的設置,連接單元不會與腔體直接接觸,可避免對腔體造成損害。 An object of the present invention is to provide a see-through powder atomic layer deposition device, wherein one side of the cavity is fixed on the shaft sealing device, and the cover fixing part is fixed on the other side of the cavity. The cover plate is fixed on the cover plate fixing part via at least one connecting unit, and a closed reaction space is formed between the cover plate, the cavity and/or the shaft sealing device. Through the arrangement of the cover plate fixing part, the connecting unit will not directly contact the cavity, and damage to the cavity can be avoided.
為了達到上述的目的,本新型提出一種可透視的粉末原子層沉積裝置,包括:一真空腔體,包括一蓋板及一腔體,蓋板覆蓋腔體,並在蓋板及腔體間形成一反應空間,其中腔體由一透光材質所製成;一軸封裝置,連接真空腔體;一驅動單元,連接軸封裝置,其中驅動單元透過軸封裝置帶動真空腔體轉動;至少一抽氣管線,流體連接真空腔體的反應空間,並用以抽出反應空間內的一氣體;及至少一進氣管線,流體連接真空腔體的反應空間,並用以將一前驅物或一非反應氣體輸送至反應空間,其中非反應氣體用以吹動反應空間內的粉末。 In order to achieve the above purpose, the present invention proposes a see-through powder atomic layer deposition device, including: a vacuum chamber, including a cover plate and a cavity, the cover plate covers the cavity, and is formed between the cover plate and the cavity A reaction space, in which the cavity is made of a light-transmitting material; a shaft sealing device connected to the vacuum chamber; a driving unit connected to the shaft sealing device, wherein the driving unit drives the vacuum chamber to rotate through the shaft sealing device; at least one pump The gas pipeline is fluidly connected to the reaction space of the vacuum chamber and used to extract a gas in the reaction space; and at least one gas inlet pipeline is fluidly connected to the reaction space of the vacuum chamber and used to transport a precursor or a non-reactive gas To the reaction space, the non-reactive gas is used to blow the powder in the reaction space.
所述的可透視的粉末原子層沉積裝置,其中進氣管線包括至少一非反應氣體輸送管線,流體連接真空腔體的反應空間,並用以將非反應氣體輸送至真空腔體的反應空間,以吹動反應空間內的粉末。 In the see-through powder atomic layer deposition apparatus, the gas inlet pipeline includes at least one non-reactive gas delivery pipeline, which is fluidly connected to the reaction space of the vacuum chamber and is used to deliver the non-reactive gas to the reaction space of the vacuum chamber. Blow the powder in the reaction space.
所述的可透視的粉末原子層沉積裝置,包括一加熱裝置位於腔體的周圍,用以加熱腔體及反應空間。 The see-through powder atomic layer deposition device includes a heating device located around the cavity for heating the cavity and the reaction space.
所述的可透視的粉末原子層沉積裝置,其中加熱裝置為一加熱燈管。 In the see-through powder atomic layer deposition device, the heating device is a heating lamp tube.
所述的可透視的粉末原子層沉積裝置,包括一蓋板固定部連接腔體,蓋板透過至少一連接單元固定在蓋板固定部上。 The see-through powder atomic layer deposition device includes a cover plate fixing part connected to the cavity, and the cover plate is fixed on the cover plate fixing part through at least one connecting unit.
所述的可透視的粉末原子層沉積裝置,其中腔體為一石英材質。 In the see-through powder atomic layer deposition device, the cavity is made of quartz.
所述的可透視的粉末原子層沉積裝置,包括至少一連接單元穿過蓋板上的至少一穿孔,並連接軸封裝置的至少一固定孔,以將腔體固定在蓋板與軸封裝置之間。 The see-through powder atomic layer deposition device includes at least one connecting unit that passes through at least one perforation on the cover plate and is connected to at least one fixing hole of the shaft sealing device to fix the cavity on the cover plate and the shaft sealing device between.
所述的可透視的粉末原子層沉積裝置,其中真空腔體包括一固定板,腔體位於蓋板及固定板之間,至少一連接單元穿過蓋板上的至少一穿孔,並連接固定板上的至少一固定孔,以將腔體固定在蓋板與固定板之間。 In the see-through powder atomic layer deposition device, the vacuum chamber includes a fixing plate, the cavity is located between the cover plate and the fixing plate, and at least one connecting unit passes through at least one perforation on the cover plate and is connected to the fixing plate At least one fixing hole on the upper part to fix the cavity between the cover plate and the fixing plate.
所述的可透視的粉末原子層沉積裝置,其中真空腔體的固定板透過至少一固定單元連接軸封裝置,固定單元卸下或解除鎖定時,真空腔體會與軸封裝置分離。 In the see-through powder atomic layer deposition device, the fixing plate of the vacuum chamber is connected to the shaft sealing device through at least one fixing unit. When the fixing unit is removed or unlocked, the vacuum chamber is separated from the shaft sealing device.
所述的可透視的粉末原子層沉積裝置,其中軸封裝置包括一外管體及一內管體,外管體具有一容置空間用以容置內管體,抽氣管線及進氣管線位於內管體內,而內管體由外管體的容置空間延伸至真空腔體的反應空間,並形成一凸出管部。 In the see-through powder atomic layer deposition device, the shaft sealing device includes an outer tube body and an inner tube body, and the outer tube body has an accommodating space for accommodating the inner tube body, the air extraction line and the air inlet line It is located in the inner tube body, and the inner tube body extends from the accommodating space of the outer tube body to the reaction space of the vacuum chamber and forms a protruding tube part.
10:可透視的粉末原子層沉積裝置 10: see-through powder atomic layer deposition device
11:真空腔體 11: Vacuum chamber
111:蓋板 111: cover
1111:內表面 1111: inner surface
1113:穿孔 1113: Piercing
112:監控晶圓 112: Monitoring wafer
113:腔體 113: Cavity
115:蓋板固定部 115: cover fixing part
117:連接單元 117: connection unit
119:固定板 119: fixed plate
1191:固定孔 1191: fixed hole
1193:連接孔 1193: connecting hole
12:反應空間 12: reaction space
121:粉末 121: powder
13:軸封裝置 13: Shaft seal device
130:凸出管部 130: protruding tube
131:外管體 131: Outer tube body
132:容置空間 132: accommodating space
133:內管體 133: inner tube body
134:連接空間 134: Connecting Space
137:固定單元 137: fixed unit
139:過濾單元 139: filter unit
14:齒輪 14: Gear
15:驅動單元 15: drive unit
16:加熱裝置 16: heating device
171:抽氣管線 171: Extraction line
173:進氣管線 173: intake line
175:非反應氣體輸送管線 175: Non-reactive gas pipeline
177:加熱器 177: heater
179:溫度感測單元 179: temperature sensing unit
191:承載板 191: Carrier Board
193:固定架 193: fixed frame
195:連接軸 195: connecting shaft
20:可透視的粉末原子層沉積裝置 20: see-through powder atomic layer deposition device
21:連接單元 21: Connection unit
[圖1]為本新型可透視的粉末原子層沉積裝置一實施例的立體示意圖。 [Fig. 1] is a three-dimensional schematic diagram of an embodiment of a new type of see-through powder atomic layer deposition apparatus.
[圖2]為本新型可透視的粉末原子層沉積裝置一實施例的剖面示意圖。 [Fig. 2] is a schematic cross-sectional view of an embodiment of the novel transparent powder atomic layer deposition apparatus.
[圖3]為本新型可透視的粉末原子層沉積裝置的軸封裝置一實施例的剖面示意圖。 [Figure 3] is a schematic cross-sectional view of an embodiment of the shaft sealing device of the novel transparent powder atomic layer deposition device.
[圖4]為本新型可透視的粉末原子層沉積裝置又一實施例的剖面示意圖。 [Figure 4] is a schematic cross-sectional view of another embodiment of the novel transparent powder atomic layer deposition device.
[圖5]為本新型可透視的粉末原子層沉積裝置又一實施例的剖面分解示意圖。 [Fig. 5] is a schematic exploded cross-sectional view of another embodiment of the novel transparent powder atomic layer deposition apparatus.
[圖6]為本新型可透視的粉末原子層沉積裝置又一實施例的剖面示意圖。 [Figure 6] is a schematic cross-sectional view of another embodiment of the novel transparent powder atomic layer deposition apparatus.
[圖7]為本新型可透視的粉末原子層沉積裝置的真空腔體一實施例的立體示意圖。 [Figure 7] is a three-dimensional schematic diagram of an embodiment of the vacuum chamber of the novel see-through powder atomic layer deposition device.
[圖8]為本新型可透視的粉末原子層沉積裝置的真空腔體一實施例的立體分解示意圖。 [Fig. 8] is a three-dimensional exploded schematic diagram of an embodiment of the vacuum chamber of the novel see-through powder atomic layer deposition device.
請參閱圖1、圖2、圖3及圖4,分別為本新型可透視的粉末原子層沉積裝置一實施例的立體示意圖、部分構造的剖面示意圖、剖面示意圖及剖面分解示意圖。如圖所示,可透視的粉末原子層沉積裝置10主要包括一真空腔體11、一軸封裝置13及一驅動單元15,其中驅動單元15透過軸封裝置13連接真空腔體11,並帶動真空腔體11轉動。
Please refer to FIG. 1, FIG. 2, FIG. 3, and FIG. 4, which are respectively a three-dimensional schematic diagram, a cross-sectional schematic diagram of a partial structure, a cross-sectional schematic diagram, and a cross-sectional exploded schematic diagram of an embodiment of the novel transparent powder atomic layer deposition apparatus. As shown in the figure, the transparent powder atomic
真空腔體11內具有一反應空間12,用以容置複數個粉末121,其中粉末121可以是量子點(Quantum Dot),例如ZnS、CdS、CdSe等II-VI半導體材料,而形成在量子點上的薄膜可以是三氧化二鋁(Al2O3)。真空腔體11可包括一蓋板111及一腔體113,其中蓋板111的一內表面1111用以覆蓋腔體113,並在兩者之間形成反應空間12。此外可於蓋板111的內表面1111上設置一監控晶圓112。
The
本新型的腔體113由透光材質所製成,例如石英材質。在進行粉末121的原子層沉積時,使用者可經由透光的腔體113觀看到反應空間12內粉末121的狀態及攪拌情形。具體而言,如圖2所示,腔體113的一側直接固
定在軸封裝置13上,例如腔體113的底部透過一固定膠或紫外光固化膠直接固定在軸封裝置13上,而蓋板111則直接連接腔體113的另一側,並在蓋板111及腔體113及/或軸封裝置13之間形成反應空間12。本新型的腔體113是由透光材質所製成,可利用紫外光固化膠連接腔體113及軸封裝置13。
The
軸封裝置13包括一外管體131及一內管體133,其中外管體131具有一容置空間132,而內管體133則具有一連接空間134,例如外管體131及內管體133可為空心柱狀體。外管體131的容置空間132用以容置內管體133,其中外管體131及內管體133同軸設置。軸封裝置13可以是一般常見的軸封或磁流體軸封,主要用以隔離真空腔體11的反應空間12與外部的空間,以維持反應空間12的真空。
The
驅動單元15連接軸封裝置13,並透過軸封裝置13帶動真空腔體11轉動,例如透過外管體131連接真空腔體11,並透過外管體131帶動真空腔體11轉動。此外驅動單元15並未連接內管體133,因此驅動單元15帶動外管體131及真空腔體11轉動時,內管體133不會隨著轉動。
The driving
驅動單元15可帶動外管體131及真空腔體11以同一方向持續轉動,例如順時針或逆時針方向持續轉動。在不同實施例中,驅動單元15可帶動外管體131及真空腔體11以順時針的方向旋轉一特定角度後,再以逆時針的方向旋轉特定角度,例如特定角度可為360度。真空腔體11轉動時,會攪拌反應空間12內的粉末121,以利於粉末121均勻受熱並與前驅物氣體或非反應氣體接觸。
The driving
在本新型一實施例中,驅動單元15可為馬達,透過至少一齒輪14連接外管體131,並經由齒輪14帶動外管體131及真空腔體11相對於內管體133轉動。
In an embodiment of the present invention, the driving
內管體133的連接空間134內可設置至少一抽氣管線171、至少一進氣管線173、至少一非反應氣體輸送管線175、一加熱器177及/或一溫度感測單元179,如圖2及圖3所示。
The connecting
抽氣管線171流體連接真空腔體11的反應空間12,並用以抽出反應空間12內的氣體,使得反應空間12為真空狀態,以進行原子層沉積製程。具體而言抽氣管線171可連接一幫浦,並透過幫浦抽出反應空間12內的氣體。
The
進氣管線173流體連接真空腔體11的反應空間12,並用以將一前驅物氣體或一非反應氣體輸送至反應空間12,其中非反應氣體可以是氮氣或氬氣等惰性氣體。例如進氣管線173可透過閥件組連接一前驅物氣體儲存槽及一非反應氣體儲存槽,並透過閥件組將前驅物氣體輸送至反應空間12內,使得前驅物氣體沉積粉末121表面。在實際應用時,進氣管線173可能會將一載送氣體(carrier gas)及前驅物氣體一起輸送到反應空間12內。而後透過閥件組將非反應氣體輸送至反應空間12內,並透過抽氣管線171抽氣,以去除反應空間12內的前驅物氣體。在本新型一實施例中,進氣管線173可連接複數個分枝管線,並分別透過各個分枝管線將不同的前驅物氣體依序輸送至反應空間12內。
The
此外進氣管線173可增大輸送至反應空間12的非反應氣體的流量,並透過非反應氣體吹動反應空間12內的粉末121,使得粉末121受到非反應氣體的帶動,而擴散到反應空間12的各個區域。
In addition, the
在本新型一實施例中,進氣管線173可包括至少一非反應氣體輸送管線175流體連接真空腔體11的反應空間12,並用以將一非反應氣體輸送至反應空間12,例如非反應氣體輸送管線175可透過閥件組連接一氮氣儲存槽,並透過閥件組將氮氣輸送至反應空間12。非反應氣體用以吹動反應空間12內的粉末121,配合驅動單元15驅動真空腔體11轉動,可有效且均勻的翻攪反應空間12內的粉末121,並在各個粉末121的表面沉積厚度均勻的薄膜。
In an embodiment of the present invention, the
可透視的粉末原子層沉積裝置10的進氣管線173及非反應氣體輸送管線175都用以將非反應氣體輸送至反應空間12,其中進氣管線173輸送的非反應氣體的流量較小,主要用以去除反應空間12內的前驅物氣體,而非反應氣體輸送管線175輸送的非反應氣體的流量較大,主要用以吹動反應空間12內的粉末121。
The
具體而言,進氣管線173及非反應氣體輸送管線175將非反應氣體輸送至反應空間12的時間點不同,因此在實際應用時可不設置非反應氣體輸送管線175,並調整進氣管線173在不同時間點輸送的非反應氣體的流量。當要去除反應空間12內的前驅物氣體時,可降低進氣管線173輸送至反應空間12的非反應氣體的流量,而要吹動反應空間12內的粉末121時,則增加進氣管線173輸送至反應空間12的非反應氣體的流量。
Specifically, the time points at which the
本新型的驅動單元15帶動外管體131及真空腔體11轉動時,內管體133及其內部的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175不會隨著轉動,有利於提高進氣管線173及/或非反應氣體輸送管線175輸送至反應空間12的非反應氣體及/或前驅物氣體的穩定度。
When the driving
加熱器177用以加熱連接空間134及內管體133,並透過加熱器177加熱內管體133內的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175,以提高抽氣管線171、進氣管線173及/或非反應氣體輸送管線175內的氣體的溫度。例如可提高進氣管線173輸送至反應空間12的非反應氣體及/或前驅物氣體的溫度,並可提高非反應氣體輸送管線175輸送至反應空間12的非反應氣體的溫度。使得非反應氣體及/或前驅物氣體進入反應空間12時,不會造成反應空間12的溫度大幅下降或改變。此外可透過溫度感測單元179量測加熱器177或連接空間134的溫度,以得知加熱器177的工作狀態。當然在真空腔體11的內部、外部或周圍通常會設置另一個加熱裝置16,其中加熱裝置16鄰近或接觸真空腔體11,並用以加熱真空腔體11及反應空間12。
The
在本新型上述實施例中,腔體113直接連接及接觸蓋板111及軸封裝置13,但將蓋板111固定在腔體113上,或者是將腔體113固定在軸封裝置13時,容易因為不當的碰撞造成腔體113破損。
In the above-mentioned embodiment of the present invention, the
為了避免上述的問題,腔體113可不直接連接蓋板111及/或軸封裝置13,並於腔體113及蓋板111之間增設一蓋板固定部115,如圖4及圖5所示,其中蓋板固定部115可為金屬,透過固定膠或紫外光固化膠固定在腔體113的一側。
In order to avoid the above-mentioned problems, the
蓋板111及/或蓋板固定部115上可設置至少一連接單元117,其中蓋板111可透過連接單元117固定在蓋板固定部115上,例如連接單元117可以是蓋板111及蓋板固定部115上對應的螺紋、氣缸接頭、卡扣機構、卡榫、快拆裝置等。透過蓋板固定部115的設置,蓋板111在連接腔體113的過程中,蓋板111及連接單元117不會碰撞或接觸腔體113,可避免不當的接觸或碰撞造成腔體113的損傷。
At least one connecting
腔體113的另一側亦可不直接接觸軸封裝置13,並於腔體113與軸封裝置13之間增設一固定板119。腔體113可透過固定膠連接固定板119上,並在蓋板111、腔體113及固定板119之間形成反應空間12,而固定板119可透過至少一螺絲固定在軸封裝置13上。
The other side of the
在本新型一實施例中,腔體113可為空心柱狀體,並於腔體113的兩個底部分別設置一開口,其中一個開口連接蓋板固定部115,而另一個開口則連接固定板119。蓋板固定部115及固定板119的外觀可為環狀體。
In an embodiment of the present invention, the
真空腔體11及/或腔體113的周圍可設置至少一加熱裝置16,並透過加熱裝置16加熱真空腔體11、反應空間12及粉末121。由於本新型的腔體113具有透光的特性,因此加熱裝置16可為加熱燈管,例如鹵素燈管等,並經由透光的腔體113加熱反應空間12內的粉末121。
At least one
在本新型一實施例中,內管體133由外管體131的容置空間132延伸到真空腔體11的反應空間12,並形成一凸出管部130,而反應空間12可為多邊形柱狀體或圓形波浪柱狀體,以利於翻攪反應空間12內的粉末121。透過凸出管部130的設置可縮短或調整進氣管線173及/或非反應氣體輸送管線175與蓋板111之間的距離,進氣管線173及/或非反應氣體輸送管線175輸送
至反應空間12的非反應氣體可傳遞至蓋板111的內表面1111,並經由蓋板111的內表面1111擴散到反應空間12的各個區域,以吹動反應空間12內的粉末121。
In an embodiment of the present invention, the
請參閱圖6、圖7及圖8,分別為本新型可透視的粉末原子層沉積裝置又一實施例的剖面示意圖、可透視的粉末原子層沉積裝置的真空腔體一實施例的立體示意圖及立體分解示意圖。如圖所示,可透視的粉末原子層沉積裝置20主要包括一真空腔體11、一軸封裝置13及一驅動單元15,其中驅動單元15透過軸封裝置13連接真空腔體11,並帶動真空腔體11轉動。
Please refer to FIG. 6, FIG. 7 and FIG. 8, which are respectively a schematic cross-sectional view of another embodiment of the novel see-through powder atomic layer deposition apparatus, a three-dimensional schematic view of an embodiment of the vacuum chamber of the see-through powder atomic layer deposition apparatus, and Three-dimensional exploded schematic diagram. As shown in the figure, the see-through powder atomic
真空腔體11包括一蓋板111及一腔體113,其中蓋板111用以覆蓋腔體113,並在兩者之間形成反應空間12。本新型的腔體113由透光材質所製成,例如石英。
The
本新型實施例中,透光的腔體113可為空心柱狀體,其中腔體113的一端直接連接軸封裝置13,而腔體113的另一端則連接蓋板111。如圖7及圖8所示,蓋板111上可設置至少一穿孔1113,而軸封裝置13連接腔體113的一端亦設置對應的固定孔1191。至少一連接單元21穿過蓋板111上的穿孔1113,例如連接單元21可為長條狀的螺絲,固定在軸封裝置13的固定孔1191上,藉此將腔體113固定在蓋板111及軸封裝置13之間,並在蓋板111、腔體113及軸封裝置13之間形成反應空間12。
In the embodiment of the present invention, the light-
在本新型一實施例中,透光的腔體113的一端連接蓋板111,而腔體113的另一端則連接固定板119。蓋板111上可設置至少一穿孔1113,而固定板119上則設置固定孔1191及一連接孔1193,例如固定孔1191位於固定板
119的周圍,而連接孔1193則位於固定板119的中心,其中軸封裝置13的內管體133及/或過濾單元139可設置在固定板119的連接孔1193。
In an embodiment of the present invention, one end of the
連接單元21穿過蓋板111的穿孔1113,並固定在固定板119的固定孔1191上,以將腔體113固定在蓋板111及固定板119之間。當螺絲的一端鎖固在固定板119的固定孔1191時,螺絲另一端的螺絲帽會壓迫蓋板111,使得蓋板111及固定板119緊迫之間的腔體113,並在蓋板111、腔體113及固定板119之間形成密閉的反應空間12。
The connecting
為了提高反應空間12的密封度,可進一步在蓋板111及腔體113設置一O形環(O-ring),並在腔體113與軸封裝置13及/或固定板119之間設置另一O形環。
In order to improve the sealing degree of the
在本新型一實施例中,可透過連接單元21連接蓋板111及固定板119,使得蓋板111、腔體113及固定板119形成真空腔體11。真空腔體11的固定板119可透過至少一固定單元137固定在軸封裝置13上,並可由軸封裝置13卸下,例如固定單元137可以螺絲,或是設置在固定板119及軸封裝置13上對應的氣缸接頭及連接孔、榫頭及卯眼、外螺紋及內螺紋等。在實際應用時可將固定單元137卸下或解除鎖定,使得蓋板111、腔體113及固定板119形成的真空腔體11與軸封裝置13分離。此時連接單元21仍固定在蓋板111及固定板119上,使得粉末121被限制在反應空間12內。直到將蓋板111、腔體113及固定板119移動到特定位置後再將連接單元21拆除,以方便使用者取出真空腔體11內的粉末121。
In an embodiment of the present invention, the
此外將真空腔體11設計為可相對於軸封裝置13拆卸,亦有利於提高原子層沉積的製程效率。具體而言,可準備多個真空腔體11,並分別在
各個真空腔體11內放置粉末121。將其中一個真空腔體11鎖固在軸封裝置13上,對真空腔體11內的粉末121進行原子層沉積。在完成粉末121的原子層沉積後,將真空腔體11及粉末121由軸封裝置13卸下,並將另一個真空腔體11固定在軸封裝置13上,對該真空腔體11內的粉末121進行原子層沉積製程。被卸下的真空腔體11可放置在冷卻區,待真空腔體11及粉末121的溫度下降後,再將粉末121由真空腔體11內取出。
In addition, the design of the
在本新型一實施例中,過濾單元139可固定在固定板119上,當真空腔體11連接軸封裝置13時,真空腔體11上的過濾單元139會對準或覆蓋軸封裝置13的內管體133,使得內管體133內的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175經由過濾單元139流體連接真空腔體11的反應空間12。另外將過濾單元139設置在真空腔體11上,而非設置在軸封裝置13上,亦可避免真空腔體11由軸封裝置13上卸下時,粉末121由真空腔體11的反應空間12散落到外部。
In an embodiment of the present invention, the
在本新型一實施例中,可透視的粉末原子層沉積裝置10亦可包括一承載板191及至少一固定架193,其中承載板191可為一板體,用以承載驅動單元15、真空腔體11及軸封裝置13。例如承載板191連接驅動單元15,並透過驅動單元15連接軸封裝置13及真空腔體11。此外軸封裝置13及/或真空腔體11亦可透過至少一支撐架連接承載板191,以提高連接的穩定度。
In an embodiment of the present invention, the see-through powder atomic
承載板191可透過至少一連接軸195連接固定架193,其中固定架193的數量可為兩個,並分別設置在承載板191的兩側。承載板191可以連接軸195為軸心相對於固定架193轉動,以改變驅動單元15、軸封裝置13及真空腔體11的仰角,以利於在各個粉末121的表面形成厚度均勻的薄膜。
The carrying
以上所述者,僅為本新型之一較佳實施例而已,並非用來限定本新型實施之範圍,即凡依本新型申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本新型之申請專利範圍內。 The above is only one of the preferred embodiments of the present invention, and is not intended to limit the scope of implementation of the present invention, that is, all the equivalent changes and changes in the shape, structure, characteristics and spirit described in the scope of the patent application of the present invention Modifications should be included in the scope of the patent application for this new model.
10:可透視的粉末原子層沉積裝置 10: see-through powder atomic layer deposition device
11:真空腔體 11: Vacuum chamber
111:蓋板 111: cover
1111:內表面 1111: inner surface
112:監控晶圓 112: Monitoring wafer
113:腔體 113: Cavity
12:反應空間 12: reaction space
121:粉末 121: powder
13:軸封裝置 13: Shaft seal device
131:外管體 131: Outer tube body
132:容置空間 132: accommodating space
133:內管體 133: inner tube body
134:連接空間 134: Connecting Space
139:過濾單元 139: filter unit
14:齒輪 14: Gear
15:驅動單元 15: drive unit
171:抽氣管線 171: Extraction line
175:非反應氣體輸送管線 175: Non-reactive gas pipeline
177:加熱器 177: heater
191:承載板 191: Carrier Board
193:固定架 193: fixed frame
195:連接軸 195: connecting shaft
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109213985U TWM611131U (en) | 2020-10-23 | 2020-10-23 | Transparent powder atomic layer deposition device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109213985U TWM611131U (en) | 2020-10-23 | 2020-10-23 | Transparent powder atomic layer deposition device |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM611131U true TWM611131U (en) | 2021-05-01 |
Family
ID=77037075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109213985U TWM611131U (en) | 2020-10-23 | 2020-10-23 | Transparent powder atomic layer deposition device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM611131U (en) |
-
2020
- 2020-10-23 TW TW109213985U patent/TWM611131U/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI740732B (en) | Powder atomic layer deposition apparatus with special cover plate | |
TWI729944B (en) | Powder atomic layer deposition apparatus | |
TWI772913B (en) | Atomic layer deposition apparatus for coating particles | |
TWI729945B (en) | Atomic layer deposition apparatus for coating on fine powders | |
TWI750836B (en) | Detachable powder atomic layer deposition apparatus | |
TWI759935B (en) | Powder atomic layer deposition device for blowing powders | |
CN112626495B (en) | Atomic layer deposition device capable of blowing powder | |
CN112609169A (en) | Detachable powder atomic layer deposition device | |
TWM610395U (en) | Powder atomic layer deposition device for preventing powder sticking | |
TWM614453U (en) | Detachable powder atomic layer deposition device | |
TWM609525U (en) | Detachable powder atomic layer deposition device | |
TWM610491U (en) | Atomic layer deposition device capable of blowing powder | |
CN112663025B (en) | Atomic layer deposition device for powder | |
TWM611131U (en) | Transparent powder atomic layer deposition device | |
CN214088660U (en) | Detachable powder atomic layer deposition device | |
TWI771124B (en) | Atomic layer deposition equipment with down-blowing pipeline | |
CN214400706U (en) | Perspective powder atomic layer deposition device | |
TWI775543B (en) | Powder atomic layer deposition equipment with quick release function | |
TWM611314U (en) | Atomic layer deposition device of powder | |
TWI773543B (en) | Powder atomic layer deposition machine for reducing powder adhesion | |
TWI750962B (en) | Powder atomic layer deposition apparatus for preventing powders from sticking to filter unit | |
TWM619359U (en) | Powder atom deposition device with special cover plate design | |
TWM609526U (en) | Atomic layer deposition device for forming thin film on powder | |
TWM609508U (en) | Atomic layer deposition device for particles | |
TWM619828U (en) | Atomic layer deposition device for blowing powder |