TWM600908U - 學習狀態改善管理系統 - Google Patents

學習狀態改善管理系統 Download PDF

Info

Publication number
TWM600908U
TWM600908U TW109201409U TW109201409U TWM600908U TW M600908 U TWM600908 U TW M600908U TW 109201409 U TW109201409 U TW 109201409U TW 109201409 U TW109201409 U TW 109201409U TW M600908 U TWM600908 U TW M600908U
Authority
TW
Taiwan
Prior art keywords
learning
data
status
analysis
student
Prior art date
Application number
TW109201409U
Other languages
English (en)
Inventor
劉孝煦
國州 包
Original Assignee
顧得科技教育股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顧得科技教育股份有限公司 filed Critical 顧得科技教育股份有限公司
Priority to TW109201409U priority Critical patent/TWM600908U/zh
Publication of TWM600908U publication Critical patent/TWM600908U/zh

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Electrically Operated Instructional Devices (AREA)

Abstract

本新型係有關一種學習狀態改善管理系統,主要係透過攝影單元拍攝教學場地學生的學習狀況以得到一學習攝影資料,接著根據各學生的身份比對資料分析出,學習攝影資料內各學生之身份,之後再針對各學生收集其學習狀況之影音,以得到學習狀況影音資料,接下來可針對該學習狀況影音資料分析出學習狀況分析資料及學習狀況改善建議資料。如此一來,教師、家長、學生便可根據上述分析之結果了解其學習狀況,同時也可以根據該學習狀況改善建議改善自身不足之處,以期使用本系統之學生均可大幅提升其學習能力、學習狀況、學習成效。

Description

學習狀態改善管理系統
本新型係關於一種分析管理系統,尤指一種學習狀態改善管理系統。
按,一般學生在學校機構、補習班或者幼兒園學習時,判斷學習是否進步的方式通常是透過考試,而且是透過前後二次考試的成績相比較、又或者透過與班上其他學生的成績相比較,藉此做為判斷是否進步之依據。
但,上述衡量學習程度的方法將產生許多弊端,例如學生為追求帳面上成績而採取不正方法,又或者學生因失誤而造成成績不理想等,難以真正衡量學生的學習成果。此外,對於年紀幼小的學生而言,從小培養正確的求學習慣、態度、跟專注力遠比學習成績重要,那將是影響一輩子的事情,無論在讀書、工作或其他方面等等。為此,本案創作人認為,若有一種方式可以判斷、分析學生的學習態度、學習狀態,以供進行調整或加強時,對於學生的未來將有莫大的助益。爰此,本案創作人開始思考其解決之道。
有鑑於先前技術所述不足之處,本案創作人提出一種解決之手段,該手段係關於一種學習狀態改善管理系統,包括:一雲端伺服器與一智能學習設備資訊連接;該雲端伺服器具有學習攝影資料
一學習資料庫:具有一學習檔案,該學習檔案包括一學生之身份比對資料及對應該學生之一學習歷程子資料庫;該智能學習設備包括:一攝影單元,設置於該智能學習設備,用以拍攝該學生的學習狀況,得到一學習攝影資料;一學習狀況紀錄單元:資訊連接該攝影單元及該學習資料庫,該學習狀況紀錄單元會先根據一身份比對資料比對該學習攝影資料內學生的身份,當該學習攝影資料內學生的身份與該身份比對資料相匹配時,擷取該學習攝影資料內該學生的學習狀況而得到一學習狀況影音資料,並儲存於該學習歷程子資料庫內;一學習狀況分析改善單元:資訊連接該學習資料庫,該學習狀況分析改善單元可供分析一預設期間內的各學習狀況影音資料,以供判斷出該學生之學習狀況,而得到一學習狀況分析資料,再根據該學習狀況分析資料而得到一學習狀況改善建議資料,並將該學習狀況分析資料及該學習狀況改善建議資料儲存於該學習歷程子資料庫內。
其中該學習狀況記錄單元包括一第一錄音資料;該學習狀況分析改善單元可供擷取該第一錄音資料中外語發音之部分而得到一發音資料,再根據該發音資料判斷發音準確度,而得到一發音準確度分析結果,再將該發音準確度分析結果儲存於該學習歷程子資料庫內。
其中該學習狀況分析改善單元可供擷取該學習攝影資料中關於問題回答及問題提問之部分,再判斷答題正確與否之結果而得到一答題準確度分析結果,再將該答題準確度分析結果儲存於該學習歷程子資料 庫內。
其中,包含一影像分析處理單元分析該學習攝影資料。
其中,學習狀況分析改善單元可供分析該學習攝影資料,根據該學習攝影資料中學生的眼部、嘴部、肢體狀況判斷學生的學習專注程度、學習興趣程度,並將分析結果儲存於該學習歷程子資料庫內。
其中更包含一電子書,與該智能學習設備及該雲端伺服器資訊連接。
其中該電子書可供遠端資訊連結該學習狀況紀錄單元,該電子書可供操作完成該測驗資料,而得到一測驗回答資料後,該電子書再顯示對應該測驗資料之答案資料,並將該測驗回答資料回傳至該學習狀況紀錄單元。
其中,包含一點讀筆,與該智能學習設備及該雲端伺服器資訊連接。
其中,該點讀筆遠端資訊連接該學習狀況紀錄單元;該點讀筆包括一錄音單元,該錄音單元可供錄製學生的外語發音而得到一第二錄音資料,並將該第二讀音資料傳送至該學習狀況紀錄單元,以供該學習狀況紀錄單元將該第二錄音資料儲存於該學習歷程子資料庫內。
其中,更設一遠端資訊連接該電子書之提醒單元,該提醒單元可供當超過一預設日期且該學習狀況紀錄單元尚未接收到該第二錄音資料、該測驗回答資料時,發送一提醒訊息至該電子書。
據此,透過本創作所提出的學習狀態改善管理系統,使用者可以不受到地點的侷限,透過智能學習設備即可進行學習,而智能學習設備資訊連接雲端伺服器,進行身份比對後,得到對應此學生的一學習歷程子資料庫,即可將目前的學習狀況即時記錄、分析,從而獲得學習的改善效果。
其中,該學習狀況分析資料包括:專注力之分析、興趣分析 、學習反應之分析、學習成果之分析等等,接著再根據該學習狀況分析資料提出改善之建議,而得到該學習狀況改善建議資料儲存至該學習歷程子資料庫內。如此一來,學生本身、班級教師、家長、甚是教學管理相關人員都可以透過該學習狀況分析資料及該學習狀況改善建議資料了解學生狀況,以及協助學生改善的方法,進而使得利用本新型之學生均可在學習方面獲得大幅的改善及助益。
9:雲端伺服器
91:學習資料庫
92:學習檔案
93:身份對比資料
94:學習歷程子資料庫
95:學習狀況影音資料
8:智能學習設備
81:攝影單元
82:學習狀況紀錄單元
83:學習狀況分析改善單元
84:學習攝影資料
85:問題庫
86:答題庫
5:電子書
6:點讀筆
61:錄音單元
7:提醒單元
圖1係本新型各元件連結示意圖
圖2係本新型各元件連結示意圖
以下配合圖1所示,介紹本新型之各種實施例,首先介紹本新型主要實施例係有關一種學習狀態改善管理系統,包括:一雲端伺服器9與一智能學習設備8資訊連接;該雲端伺服器9具有一學習資料庫91、一學習檔案92、一身份對比資料93、以及一學習歷程子資料庫94:在此所說的智能學習設備8並不侷限其載體的形式,例如,可以以AI智能學習機器人作為載體,或一AI學習電腦為載體皆可。
該學習資料庫91主要係儲存複數個學生的資料,該學習檔案92即是儲存每一位學生的學習資訊,該學習檔案92包括一學生之身份比對資料及一學習歷程子資料庫。該身份比對資料例如該學生的生理參數資訊,例如臉部特徵資料、身體輪廓特徵資料等,舉凡目前臉部辨識技術所能實現者,可依其辨識過程及結果做為身份識別之依據者,均為本說明書所指之身份比對資料。此外,可以利用區塊鏈技術儲存前述的身份對比資料93,在確認身份後,即可調出儲存在雲端伺服器9中的此學生個人的學習歷 程子資料庫94,以進行此學生後續的即時的學習狀況紀錄、分析及改善。
該智能學習設備8包括:一攝影單元81、一學習狀況記錄單元82、以及一學習狀況分析改善單元83:該攝影單元81設置於該智能學習設備8,用以拍攝該學生的學習狀況,得到一學習攝影資料84;而在此所說的智能學習設備8,可以是以AI學習機器人作為載體,以AI學習機器人的方式呈現,或伴讀機器人、也可以是以便攜式的電子裝置執行皆可,而,若是以家庭自用屬於一對一為需求者,則可以是AI學習機器人或伴讀機器人,若是像學校機構、補習班或幼兒園等,有一對多的需求者,則可以使用便攜式的電子裝置作為載體,例如一台PDA或一筆電或一電腦主機等,將其設置於一教學場地以供拍攝學生的學習狀況,據此,可得到複數個學生的學習攝影資料84,其中該學習攝影資料84包含了影像資料及聲音資料,亦即,包含一個或複數個學生透過此智能學習設備8在進行學習時的影像資料以及聲音資料。
因此,本創作可以提供給自學的學生、家庭自用、或學校機構、補習班、幼兒園等,進行學習狀態的分析、改善與管理。以下本說明書係以幼兒園的學生為例來說明本創作之優點、特色,但是,並不僅限於幼兒園的學生,而學習的形式可以是在一個教室內,有多名學生一起學習,或者,僅一位學生單獨學習亦可,據此,使用本創作所提出的學習狀態改善管理系統,不僅可以改善學習狀態,也可以在任何的地點使用,不會受限於教學場所,特別是,如果遇到流感、或高度傳染性疾病的特殊管控期間,使用本創作所提出的學習狀態改善管理系統更是最佳的選擇。而在此所述的學習狀況,包括學生上課的反應、肢體動作、眼神嘴型、回答教師問題的內容、回答音量大小、專注力等等,舉凡跟教學狀態分析有關者,均為本說明書所指之學習狀況。
請參考圖2,該智能學習設備8進一步包括一學習狀況紀錄單元82及一學習狀況分析改善單元83,該學習狀況紀錄單元82資訊連接該攝 影單元81及該學習資料庫91,該學習狀況紀錄單元82是先根據該身份比對資料93來比對該學習攝影資料84內各學生的身份後,分別追蹤各學生的學習狀況而得到一學習狀況影音資料,並儲存於該學習歷程子資料庫內。為了防止學習歷程被竄改,可以利用區塊鏈技術儲存前述的身份對比資料93後,雖然由學習攝影資料84中擷取各學生的身份後進行比對,但是可以再多一個給予區塊鏈確認碼的程序,以防止學習資料被竄改。
若以一對一的需求來說,僅需透過智能學習設備8上所安裝的攝影單元81拍攝得到該學習攝影資料84後經由身份對比資料93來獲取以個人為主的該學習狀況影音資料95,但若為一對多的需求例如學校機構、補習班或幼兒園,則可以另外連結輔助攝影單元3分布於該教學場地內,以無線或有線的方式資訊連結該雲端伺服器9,以供從各種不同方向拍攝學習狀況時,該學習狀況紀錄單元82更可以透過複數個攝影單元81與輔助攝影單元3的不同角度之學習攝影資料84,再經由身份對比資料93進行身份比對,便可得到個別學生且複數個區段的學習狀況影音資料95,加以分析,且,每位學生均有專屬於個人的學習狀況影音資料95,亦即每位學生的學習過程中,各個角度、各個時間點,都會透過攝影單元81或輔助攝影單元3擷取其影音資料後,分別存至學習資料庫91中。要特別說明的是,分析該學習攝影資料84的技術可以使用影像分析處理單元,可以包含臉部微表情的辨識或肢體辨識等,並不特別侷限,據此,分析學習攝影資料84中個別學生的眼部狀況、嘴部開合、肢體狀況判斷學生的學習專注程度、學習興趣程度,將分析結果儲存於該學習歷程子資料庫內。
該學習狀況分析改善單元83資訊連接該學習資料庫91,該學習狀況分析改善單元83可供分析該學習狀況影音資料95,以供判斷出該學生之學習狀況,而得到一學習狀況分析資料,其中該學習狀況分析資料包括:包含使用影像分析技術與語音分析技術對該學習狀況影音資料進行分析,影像分析技術是利用目前臉部辨識、肢體輪廓辨識等互相搭配結合, 語音分析技術則是利用目前比較收音品質比較好的設備,例如指向型麥克風、或個人配戴型收音麥克風,並搭配一標準資料庫的比對所進行的分析,其分析的內容有:眼睛開合程度分析、眼神專注程度分析、嘴型與發音匹配的程度分析、與嘴部開口的次數分析、臉部表情分析、眼動頻率、頭轉動頻率、聲波頻率、腦波資訊、肢體活躍程度等數值及指標,判斷其學習專注程度與興趣,其後再根據該學習狀況分析資料進行分析,得出一初步之分析成果,再根據其初步之分析結果產生出一學習狀況改善建議資料後,透過該學習狀況分析改善單元83呈現,並將該學習狀況分析資料及該學習狀況改善建議資料儲存於該學習歷程子資料庫內。
而前面所述的搭配一標準資料庫進行比對,亦即,若是既定的教學內容,則,預先將教學內容與標準資料庫輸入至雲端伺服器9,例如,當課程內容為練習「APPLE」的發音,則,標準資料庫之中,會有如何判斷「APLLE」的發音是否正確的評估標準,例如,嘴型的變化、語音音頻的比對等,據此,得出一初步的分析結果,例如:某學生的嘴型變化與標準資料庫中的嘴型變化進行比對後,只有50%匹配,表示其嘴型可能還需要改進才能將「APPLE」的發音念的更標準,因此,根據此分析結果產出一學習狀況改善建議資料,透過學習狀況分析改善單元83呈現,在此,以一應用場景舉例說明:若是以一對一的需求者,其使用AI學習機器人作為智能學習設備8的載體,其透過攝影單元81得到該學生的一學習攝影資料84,而此學習攝影資料84及包含該學生的學習狀況影音資料95,透過學習狀況分析改善單元83可供分析該學習狀況影音資料95,而而到一分析結果,並根據此分析結果所產生的學習狀況改善建議資料,透過AI學習機器人的使用介面呈現,亦即,此時,AI學習機器人會告訴該學生「你的發音嘴型只有50%的匹配程度,請再練習一次」,而此時即是該學系狀況分析改善單元83在運作。
更詳細來說,所有的學習狀況改善建議資料亦存放於學習狀 況分析改善單元83中,當經分析該學習狀況影音資料95後,得出該初步之分析成果後,會再將其初步之分析成果予以與所有的學習狀況改善建議資料作比對,最後給出一個最佳建議並做輸出;除此之外,該學習狀況分析改善單元83也可以根據上述之分析指標分析出學生的長處、特質等等,例如當學生總是躁動不安、無法靜下心學習,其有關於肢體運動相關之指標數值便會偏高,此時便可判斷該學生或許有過動的傾向;又如該學生腦波訊號資訊總是無法符合課程的氣氛做相應波動,便可推測該學生心不在焉。舉凡可供令學方或家長更能了解學生的學習狀況之參考依據者,均為該學習狀況分析改善單元83所分析之目標,並且針對該問題提出改善建議。而該學習狀況改善建議資料主要是建議學生可以用哪些方法或者教學輔具來輔助加強自身不足之處,該學習狀況改善建議資料之主要實施方式可參考後述各實施例。又,該學習狀況紀錄單元82及該學習狀況分析改善單元83可以透過雲端伺服器9與二台電腦主機相連結,可以應用在一對多的應用場景,此時用於紀錄學習狀況之電腦主機可供設置一教學場地內,以供教師得以隨時查閱學生學習狀況影音資料95,另一台電腦主機則是設在學校機構、幼稚園、補習班的中控中心,透過有線或無線的方式與雲端伺服器9相連接,得以分析其學習狀態,並進行更深入的教學管理,只要是在有互聯網的環境下,皆可以在任何地方使用,因此,只要是透過雲端伺服器9與智能學習設備8而可供達成紀錄學習狀況及分析學習狀況者,均為本說明書所欲保障範圍。
對幼兒園來說,一個幼兒園教師要照顧多個孩童的狀況、同時要注意到每個孩童的學習狀況,這使得幼兒園的工作不僅勞心也勞力,以下將上述之學生以孩童為例,來說明本案之優點、特色。為有效降低幼兒園教師的負擔,同時讓家長可以清楚了解自家孩童的學習狀況,以令家長更放心將孩童託付給幼兒園,本系統將智能學習設備設置在幼兒園的教室場地內,利用該攝影單元81以及輔助攝影單元3在教師上課時對該教學場 地進行攝影而得到該學習攝影資料84,接著利用該學習狀況紀錄單元82分析該學習攝影資料84中每位孩童的身份,然後追蹤每位孩童的學習狀況,這部分值得一提的是,該攝影單元81與輔助攝影單元3可以包括複數設置於該教學場地各角落之攝影機,如此一來,可透過每個攝影機之視角,從不同角度、方向來紀錄、分析及觀察各孩童的學習狀況,最後每個孩童都會有專屬於自己的學習狀況影音資料95,並分別儲存於各學習歷程子資料庫內。該學習狀況影音資料95也可根據園方同意或家長需求,選擇性(定期、不定期、或根據申請)傳送給各孩童之家長。接著,該學習狀況分析改善單元83便會在每預設期間對該學習歷程子資料庫內的各學習狀況影音資料進行分析,以供判斷出各孩童之學習狀況分析資料、及該學習狀況改善建議資料,並儲存於該學習歷程子資料庫內,以供幼兒園方、教學機構方了解每位學生、家長瞭解自己的孩子、或學生瞭解自己的學習狀況,而分析後的結果也可以根據申請或定期發送訊息。此外,當分析出學習狀況有落差或狀況的孩童,例如學習進度明顯落後、上課難以專心聽講等,也可透過在該學習檔案92註記之方式,讓園方或教師得對該學生多留心、注意。
又,值得一提的是,本創作不限於一對一教學,或是一對多的班級教學,也可以應用在互動式一對一直播系統,又或者是一位教師對多個班級的互動式教學系統,又或者一位教師遠距離對不同地點之班級的互動式教學系統等,舉凡有需分析學生的學習狀態者,均可利用本創作。而該學習攝影資料,除了可作為上述用途外,還可以日後將各教學影片資料進行匯集後擷取各片段,以製作出學習紀錄影片或是學習紀錄相片集等,作為學生成長學習的回憶及學習過程依據。且,亦可將各學習狀況分析資料製作成學習狀況軌跡,以供了解長期下來各學生的成長狀況。又,該學習狀況紀錄單元82及該學習狀況分析改善單元83可以實施為:透過一台電腦內分別以二種或兩種以上程式來達成;也可以是分成二種或兩種以上不同元件來分別達成上述之功能。
接著開始介紹本新型之各實施例,首先實施例1:本新型除了提供學習狀況分析外,當應用在外語教學時,本實施例進一步還提供發音準確度之分析,用以確認外語的發音是否準確,例如,幼兒園使用本創作所提出之學習狀態改善管理系統來對孩童進行英文教學,或輔助孩童的英文學習時,透過從小訓練標準的英文發音,令孩童得以提早與世界接軌,提升未來競爭力,本實施例具體實施方式為:該學習狀況記錄單元82內的影音資料包括一第一錄音資料;該學習狀況分析改善單元83可供擷取該第一錄音資料中外語發音之部分而得到一發音資料,再根據該發音資料判斷其發音準確度,而得到一發音準確度分析結果,再將該發音準確度分析結果透過雲端伺服器9儲存於該學習歷程子資料庫94內。其中,該發音準確度之分析方式可以是根據外籍教師的發音,與學生的發音進行比對分析,也可根據內部字彙發音資料庫做為比對基礎。
透過本實施例之輔助,在上課的同時又或者上完課以後,該學習狀況分析改善單元83便開始分析各學生的發音準確度,例如上課時當外籍教師講完「APPLE」後,該學習狀況分析改善單元83會開始判斷學生是否有跟著講「APPLE」,如果有,接下來會再分析英文教師說的「APPLE」跟學生說的「APPLE」二者發音是否接近,最後將分析結果儲存於該學習歷程子資料庫94內,以供外籍教師得以根據該發音準確度分析結果,清楚掌握各學生的發音是否標準。若是上課的過程中同步進行發音準確度分析時,其分析之結果可即時透過螢幕或是其他方式即時呈現,以供外籍教師即時進行矯正。此外,本實施例應用於英文教學僅是其中一項實施方式,亦可應用於其他外語語言之學習,如日文、韓文、西班牙文等。
實施例2:學習狀態分析除了實施例1所述之發音準確度外,還可以透過答題準確度來了解學生在學習過程中吸收的程度。同樣的,該學習狀況分析改善單元83可以在上課的同時又或者上完課以後分析各學生的答題準 確度,由於學習狀況分析改善單元83包含有許多語音辨識模組,如隱藏式馬可夫模型(Hidden Markov Model;HMM)、高斯混合模型(Gaussian Mixed Model;GMM)等,故可進行其語音辨識及分析,更進一步,其分析方式是擷取該學習攝影資料中關於問題回答及問題提問之部分,再判斷答題正確與否而得到一答題準確度分析結果,再將該答題準確度分析結果儲存於該學習歷程子資料庫94內。例如當外籍教師拿起蘋果說:「What is this?」時,該學習狀況分析改善單元83會判斷學生是否有回答:「apple」,又或者當外籍教師問:「How do you go to school?」,該學習狀況分析改善單元83會判斷學生是否回答交通工具相關單字及語句,當問題的回答可以有各種不同答案時該學習狀況分析改善單元83會判斷學生的回答是否符合問句。此外,值得注意的是,該攝影單元81可擷取影像資料及聲音資料,較佳更包含有指向型麥克風,利用指向型麥克風來收集各學生的聲音,又或者讓每位學生配戴麥克風來單獨收集聲音,以供實施例1及實施例2使用。
此外,除了分析學生的答題準確度外,更進一步可以利用該答題準確度分析結果來判斷學生擅長的部份跟不擅長的部份,因此,該學習狀況分析改善單元83會分析該學習歷程子資料庫94內各答題資料,以分析出擅長課程段落資料、及不擅長課程段落資料,例如分析結果會明顯指出第三課的發音需加強,或是第一課的單字要熟記等,當用於其他學科時也依此類推,例如當課程為數學課時,該學習狀況分析改善單元83也可以指出計算過程太過粗心等分析結果。最後將本實施例的分析結果儲存於該學習歷程子資料庫94內,也可以根據需求傳送給教師、家長、或學生,除了讓教師跟家長更能掌握學生學習狀況外,也可以讓學生更了解自己,以做出相對應加強措施。
實施例3:請繼續參考圖2,在另一實施例中,於該學習狀況分析改善單 元83更包含一問題庫85與一答題庫85,該問題庫85可供該智能學習設備8對該學生進行問題提問,而該學生在答題的時候,會透過攝影單元81而得到該學生的學習攝影資料84,接著,擷取該學生於該學習攝影資料84中關於前述問題回答及問題提問之回答後部分,再比對該答題庫86判斷該學生答題正確與否之結果而得到一答題準確度分析結果,再將該答題準確度分析結果儲存於該學習歷程子資料庫94內。要特別說明的是,智能學習設備8可以透過輔助教具來進行問題提問以及提供學生答題,例如,可以使用電子書提供問題提問,而學生於電子書上的答題按鈕進行選擇;或者,於一螢幕上顯示問題提問,而學生使用答題器來進行回答亦可。
實施例4:接著介紹另一種學習狀態之分析結果,該學習狀況分析改善單元83主要分析該學習狀況影音資料,接著分析該學習狀況影音資料中學生的眼部狀況(如眼球或瞳孔的角度判斷是否專注看著教師或是螢幕,又或者是眼睛開合的程度判斷否有上課打瞌睡狀況)、嘴部狀況(如嘴巴開合的次數統計、或者是牙齒、嘴唇、舌頭的咬合狀況藉此分析發音的標準程度等等),肢體狀況(如是否會分心做其他事情,或是上課會不會捉弄同學,又或者上課是否會對於問題踴躍回答等),來判斷學生的學習專注程度、學習興趣程度,並將結果儲存於該學習歷程子資料庫94內。同樣的,本實施例之分析結果也可以根據需求選擇性(定期、不定期、或依申請)發送給學生家長,以供了解學生平時上課狀況。
實施例5:介紹完學習狀態分析後,接著本系統還可以配合其他教學輔具(如電子書、點讀筆、學習影音光碟等),來針對學習狀態不足的部分進行補強,也可以根據該學習狀況改善建議資料所指出的建議來選擇教學輔具。首先,介紹電子書的實施方式,該智能學習設備8遠端資訊連接一電子書5,每一學生或者有此輔具需求之學生會配有該電子書5,接著該學習狀況 分析改善單元83會根據前述不擅長課程段落資料,選取相對應之課程資料、及對應該課程資料之測驗資料,並將該課程資料及該測驗資料傳送至該電子書5。如此一來,當學生回家之後就可以利用該電子書進行補強,更搭配測驗資料來了解補強後之結果。而當該測驗資料完成後,該電子書5可以直接顯示對應該測驗資料之答案資料,讓學生自我評鑑、修正。也可以在該測驗資料完成後,將測驗回答資料回傳至該學習狀況紀錄單元82及該學習狀況分析改善單元83,以供該學習狀況紀錄單元82進行紀錄,該學習狀況分析改善單元83進行分析,再儲存於該學習歷程子資料庫94內。此外,電子書5也可以作為一額外補充的教材使用,透過學生使用電子書5學習的進度與記錄,傳送至雲端伺服器9進行儲存。
實施例6:此系統進一步包含一點讀筆6,與該智能學習設備8及該雲端伺服器9資訊連接。倘若該發音準確度低於預設值時,表示該學生需要針對發音準確度進行加強改善,又或者該學習狀況改善建議資料提出發音改善建議時,此時可透過一點讀筆6來加強,該學習狀況分析改善單元83會發送一發音補充練習圖文資料至該電子書5,該發音補充練習圖文資料可以是該學習狀況分析改善單元83根據該發音準確度不足之部分進行製作,也可以是系統已經先製作完成各式各樣的發音補充練習圖文資料,再根據發音準確度低的部分或是根據該學習狀況改善建議資料選取相對應的發音補充練習圖文資料再傳送至該電子書5,並發送對應該發音補充練習圖文資料之正確發音資料傳送至該點讀筆6。如此一來,學生便可在課後之餘,利用該電子書5及該點讀筆6之輔助,來改善自身的發音狀況。
此外,該點讀筆6的功能也不侷限於上述,更可具有錄音單元61以供錄製學生的外語發音,錄製完成後除了可以再透過播放的方式,讓學生自己聽發音是否準確外,該點讀筆6也可以具有發音準確度評鑑之功能,依其語音辨識模組(存在於該點讀筆6內,例如由隱藏式馬可夫模型( Hidden Markov Model;HMM)、高斯混合模型(Gaussian Mixed Model;GMM)等語音辨識模組所編成之程式),可直接判斷學生的發音是否正確。另外,該點讀筆6也可以將錄音的內容以第二錄音資料的方式傳送至該學習狀況紀錄單元82,又或者將該發音準確度之評鑑結果傳送至該學習狀況紀錄單元82,以供儲存在該學習資料庫91內。
實施例7:承接實施例5或6,為避免學生回家之後忘記或是不會利用教學輔具來改善自身不足之處,本新型更提供提醒功能,當超過一預設日期且該學習狀況紀錄單元82尚未接收到該第二錄音資料、該測驗回答資料時,一提醒單元7會發送一提醒訊息至該電子書5,以供提醒學生需使用教學輔具。
如此一來,本新型透過分析學生的學習狀態,可有效了解學生的學習狀態外,同時也可針對不足處做出因應方式,再搭配各種教學輔具,更可有效改善不足之處。且,透過該學習歷程子資料庫94,可了解學生進步的狀況,更可將該學習歷程子資料庫94內的各種資料進行分析、彙整,以製作出學生的學習成長軌跡,藉以讓學生更了解自身學習曲線,以增強其學習興趣。
綜上所述,本案符合專利法所定之要件,爰依法提出專利申請,而上述說明僅列舉本新型之較佳實施例,本案之權利範圍仍以請求項所列為主。
9:雲端伺服器
91:學習資料庫
92:學習檔案
93:身份對比資料
94:學習歷程子資料庫
81:攝影單元
82:學習狀況紀錄單元
83:學習狀況分析改善單元
5:電子書
6:點讀筆
61:錄音單元
7:提醒單元
8:智能學習設備

Claims (10)

  1. 一種學習狀態改善管理系統,包括:一雲端伺服器與一智能學習設備資訊連接,該雲端伺服器具有學習攝影資料;一學習資料庫:具有一學習檔案,該學習檔案包括一學生之身份比對資料及對應該學生之一學習歷程子資料庫;該智能學習設備包括:一攝影單元,設置於該智能學習設備,用以拍攝該學生的學習狀況,得到一學習攝影資料;一學習狀況紀錄單元:資訊連接該攝影單元及該學習資料庫,該學習狀況紀錄單元會先根據一身份比對資料比對該學習攝影資料內學生的身份,當該學習攝影資料內學生的身份與該身份比對資料相匹配時,擷取該學習攝影資料內該學生的學習狀況而得到一學習狀況影音資料,並儲存於該學習歷程子資料庫內;一學習狀況分析改善單元:資訊連接該學習資料庫,該學習狀況分析改善單元可供分析一預設期間內的各學習狀況影音資料,以供判斷出該學生之學習狀況,而得到一學習狀況分析資料,再根據該學習狀況分析資料而得到一學習狀況改善建議資料,並將該學習狀況分析資料及該學習狀況改善建議資料儲存於該學習歷程子資料庫內。
  2. 如請求項1所述之學習狀態改善管理系統,其中該學習狀況記錄單元包括一第一錄音資料;該學習狀況分析改善單元可供擷取該第一錄音資料中外語發音之部分而得到一發音資料,再根據該發音資料判斷發音準確度,而得到一發音準確度分析結果,再將該發音準確度分析結果儲存於該學習歷程子資料庫內。
  3. 如請求項1所述之學習狀態改善管理系統,其中該學習狀況分析改善單元包含一問題庫與一答題庫,該問題庫可供該智能學習設備 進行問題提問,擷取該學生於該學習攝影資料中關於前述問題提問之回答後,再比對該答題庫判斷答題正確與否之結果而得到一答題準確度分析結果,再將該答題準確度分析結果儲存於該學習歷程子資料庫內。
  4. 如請求項1所述之學習狀態改善管理系統,其中,包含一影像分析處理單元分析該學習攝影資料。
  5. 如請求項4所述之學習狀態改善管理系統,其中,學習狀況分析改善單元可供分析該學習攝影資料,根據該學習攝影資料中學生的眼部、嘴部、肢體狀況判斷學生的學習專注程度、學習興趣程度,並將分析結果儲存於該學習歷程子資料庫內。
  6. 如請求項1所述之學習狀態改善管理系統,其中更包含一電子書,與該智能學習設備及該雲端伺服器資訊連接。
  7. 如請求項6所述之學習狀態改善管理系統,其中該電子書可供遠端資訊連結該學習狀況紀錄單元,該電子書可供操作完成該測驗資料,而得到一測驗回答資料後,該電子書再顯示對應該測驗資料之答案資料,並將該測驗回答資料回傳至該學習狀況紀錄單元。
  8. 如請求項1所述之學習狀態改善管理系統,其中,包含一點讀筆,與該智能學習設備及該雲端伺服器資訊連接。
  9. 如請求項8所述之學習狀態改善管理系統,其中該點讀筆遠端資訊連接該學習狀況紀錄單元;該點讀筆包括一錄音單元,該錄音單元可供錄製學生的外語發音而得到一第二錄音資料,並將該第二讀音資料傳送至該學習狀況紀錄單元,以供該學習狀況紀錄單元將該第二錄音資料儲存於該學習歷程子資料庫內。
  10. 如請求項1所述之學習狀態改善管理系統,其中,該智能學習設備係以一AI智能學習機器人或一AI學習電腦作為載體。
TW109201409U 2020-02-07 2020-02-07 學習狀態改善管理系統 TWM600908U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109201409U TWM600908U (zh) 2020-02-07 2020-02-07 學習狀態改善管理系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109201409U TWM600908U (zh) 2020-02-07 2020-02-07 學習狀態改善管理系統

Publications (1)

Publication Number Publication Date
TWM600908U true TWM600908U (zh) 2020-09-01

Family

ID=73644839

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109201409U TWM600908U (zh) 2020-02-07 2020-02-07 學習狀態改善管理系統

Country Status (1)

Country Link
TW (1) TWM600908U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731577B (zh) * 2020-02-07 2021-06-21 顧得科技教育股份有限公司 學習狀態改善管理系統

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731577B (zh) * 2020-02-07 2021-06-21 顧得科技教育股份有限公司 學習狀態改善管理系統

Similar Documents

Publication Publication Date Title
CN110991381B (zh) 一种基于行为和语音智能识别的实时课堂学生状态分析与指示提醒系统和方法
CN105551328A (zh) 基于移动交互和大数据分析的语言教学辅研同步集成系统
Chapelle et al. Utilizing technology in language assessment
WO2019024247A1 (zh) 一种基于数据交换网络的在线教学考评系统及方法
KR20160077200A (ko) 언어-관련 장애들의 진단 및 치료를 위한 컴퓨팅 기술들
Hieu et al. Identifying learners’ behavior from videos affects teaching methods of lecturers in Universities
CN111428686A (zh) 一种学生兴趣偏好评估方法、装置及系统
CN110930781B (zh) 录播系统
Baecher Video in teacher learning: Through their own eyes
CN117037552A (zh) 智慧课堂交互系统及方法
Ilmi et al. The Integration of multimodality in efl classes: Students’ perception
Du et al. The effects of an auditory matching iPad app on three preschoolers’ echoic and listener responses
CN113256453A (zh) 学习状态改善管理系统
TWM600908U (zh) 學習狀態改善管理系統
TWM600909U (zh) 班級課程管理系統
Ismayatim et al. Enhancing 21st century students’ listening skills via augmented reality and mobile applications
TWI731577B (zh) 學習狀態改善管理系統
CN111460245A (zh) 多维度人群特征测定方法
JP7427906B2 (ja) 情報処理装置、制御方法及びプログラム
TWM600921U (zh) 學習軌跡分析系統
Lin Investigating role-play implementation: A multiple case study on Chinese EFL teachers using role-play in their secondary classrooms
TWI780405B (zh) 學習軌跡分析系統
CN111461153A (zh) 人群特征深度学习方法
Kang et al. Predicting classroom activity index through multi-scale head posture classification network
Wati et al. HIGHER EDUCATION STUDENTS’FOREIGN LANGUAGE ANXIETY: A CASE STUDY AT ENGLISH EDUCATION DEPARTMENT OF IAIN LANGSA