TWM519316U - Guide element for thin-film deposition and thin-film deposition apparatus comprising the same - Google Patents

Guide element for thin-film deposition and thin-film deposition apparatus comprising the same Download PDF

Info

Publication number
TWM519316U
TWM519316U TW104210577U TW104210577U TWM519316U TW M519316 U TWM519316 U TW M519316U TW 104210577 U TW104210577 U TW 104210577U TW 104210577 U TW104210577 U TW 104210577U TW M519316 U TWM519316 U TW M519316U
Authority
TW
Taiwan
Prior art keywords
film deposition
thin film
cavity
plasma
process gas
Prior art date
Application number
TW104210577U
Other languages
Chinese (zh)
Inventor
范乃文
陳効義
劉埃森
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW104210577U priority Critical patent/TWM519316U/en
Publication of TWM519316U publication Critical patent/TWM519316U/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

薄膜沉積用的引流元件以及含有此引流元件的薄膜沉積裝置Drainage element for film deposition and thin film deposition device containing the same

本新型是有關於一種薄膜沉積用的引流元件以及含有此引流元件的薄膜沉積裝置。 The present invention relates to a drainage element for film deposition and a thin film deposition apparatus including the same.

傳統製作薄膜發光二極體時,可利用分子束磊晶製程(Molecular Beam Epitaxy;MBE)、化學氣相沉積法製程(Chemical Vapor Deposition;CVD)、電漿輔助化學氣相沉積製程(Plasma Enhanced Chemical Vapor Deposition;PECVD)、原子層磊晶製程(Atomic Layer Epitaxy;ALE)或原子層沉積製程(Atomic Layer Deposition;ALD)來生長構成發光二極體所需要的各種薄膜。其中,利用原子層沉積製程以及電漿輔助化學氣相沉積製程來生長構成發光二極體所需要的各種薄膜已經逐漸成為趨勢。 In the conventional production of thin film light-emitting diodes, Molecular Beam Epitaxy (MBE), Chemical Vapor Deposition (CVD), and Plasma Enhanced Chemical Vapor Deposition (Plasma Enhanced Chemical) can be used. Vapor Deposition; PECVD), Atomic Layer Epitaxy (ALE) or Atomic Layer Deposition (ALD) to grow various films required to form a light-emitting diode. Among them, the use of an atomic layer deposition process and a plasma-assisted chemical vapor deposition process to grow various films required to form a light-emitting diode has gradually become a trend.

對於現今製程技術而言,原子層沉積製程與電漿輔助化學氣相沉積製程分屬兩個不同製程腔體,不僅設備成 本高,在元件轉移(transfer)的過程中,未完成封裝的發光二極體元件會暴露於環境中,造成薄膜品質的降低。薄膜沉積裝置 For today's process technology, the atomic layer deposition process and the plasma-assisted chemical vapor deposition process belong to two different process chambers, not only equipment In the process of component transfer, the unfinished LED components are exposed to the environment, resulting in a decrease in film quality. Thin film deposition device

本新型提供一種薄膜沉積用的引流元件,以及包含此引流元件之薄膜沉積裝置。此種薄膜沉積用的引流元件,包括:一環狀體包含一上表面及與此上表面相對的一下表面;及複數個抽引流道位於此上表面或此下表面,並內凹於此環狀體,可供一第一製程氣體經由此些抽引流道向此環狀體之外部流出;其中一抽引流道具有一抽引流道方向與此環狀體之圓心向圓周之徑向具有一夾角。 The present invention provides a drainage element for film deposition, and a thin film deposition apparatus including the same. The drainage element for film deposition comprises: an annular body comprising an upper surface and a lower surface opposite to the upper surface; and a plurality of extraction channels located on the upper surface or the lower surface, and recessed in the ring a body through which the first process gas flows out to the outside of the annular body; wherein a pumping prop with an extracting flow direction has an angle with a radial direction of the center of the annular body .

10‧‧‧半導體基底 10‧‧‧Semiconductor substrate

20‧‧‧晶核層 20‧‧ nucleation layer

30‧‧‧緩衝層 30‧‧‧buffer layer

40‧‧‧n型氮化鎵層(n-GaN) 40‧‧‧n-type gallium nitride layer (n-GaN)

50‧‧‧主動層 50‧‧‧ active layer

100‧‧‧薄膜沉積裝置 100‧‧‧film deposition apparatus

110‧‧‧上腔體 110‧‧‧Upper cavity

110A‧‧‧上腔體上部件 110A‧‧‧Upper upper body parts

110B‧‧‧上腔體下部件 110B‧‧‧Upper upper part

115‧‧‧第二製程氣體導管 115‧‧‧Second process gas conduit

120‧‧‧下腔體 120‧‧‧ lower cavity

125‧‧‧第一製程氣體導管 125‧‧‧First Process Gas Pipeline

130‧‧‧固定裝置 130‧‧‧Fixed devices

135‧‧‧偏壓電極 135‧‧‧ bias electrode

140‧‧‧承載座 140‧‧‧Hosting

145‧‧‧阻氣環 145‧‧‧ gas barrier

148‧‧‧抽引流道 148‧‧‧Drawing runner

150‧‧‧氣相沉積用的噴灑頭 150‧‧‧spray head for vapor deposition

150A‧‧‧第一階氣盤 150A‧‧‧first air disc

150B‧‧‧第二階氣盤 150B‧‧‧second order air disc

150A1‧‧‧第一上表面 150A1‧‧‧ first upper surface

150A2‧‧‧第一下表面 150A2‧‧‧ first lower surface

150B1‧‧‧第二上表面 150B1‧‧‧Second upper surface

150B2‧‧‧第二下表面 150B2‧‧‧Second lower surface

151‧‧‧第一凹穴 151‧‧‧ first recess

152‧‧‧第二凹穴 152‧‧‧Second pocket

153‧‧‧第一排氣孔 153‧‧‧First vent

154‧‧‧第二排氣孔 154‧‧‧Second vent

160‧‧‧主氣體供應管 160‧‧‧Main gas supply pipe

161‧‧‧第一傾斜管壁 161‧‧‧First inclined wall

162‧‧‧分支氣體供應管 162‧‧‧Branch gas supply pipe

163‧‧‧氣孔 163‧‧‧ vent

164‧‧‧歧管 164‧‧‧Management

164’‧‧‧彎曲歧管 164’‧‧‧Bend Manifold

164A‧‧‧彎曲部 164A‧‧‧Bend

164B‧‧‧垂直部 164B‧‧‧Vertical

165‧‧‧第一製程氣體進氣口 165‧‧‧First process gas inlet

166‧‧‧第一開口 166‧‧‧ first opening

167‧‧‧阻流塊 167‧‧‧ blocking block

170‧‧‧電漿氣體分散盤 170‧‧‧ Plasma gas dispersion plate

170A‧‧‧第一電漿氣體分散盤 170A‧‧‧First plasma gas dispersion plate

170B‧‧‧第二電漿氣體分散盤 170B‧‧‧Second plasma gas dispersion plate

170C‧‧‧第三電漿氣體分散盤 170C‧‧‧The third plasma gas dispersion plate

172‧‧‧第三排氣孔 172‧‧‧ third vent

174‧‧‧第四排氣孔 174‧‧‧fourth vent

176‧‧‧第五排氣孔 176‧‧‧ fifth vent

177‧‧‧偏壓電極 177‧‧‧ bias electrode

177A‧‧‧介電層 177A‧‧‧ dielectric layer

177B‧‧‧金屬電極 177B‧‧‧Metal electrode

177C‧‧‧介電層 177C‧‧‧ dielectric layer

178‧‧‧石英固定環 178‧‧‧Quartz retaining ring

180‧‧‧進氣室 180‧‧‧Intake room

190‧‧‧第二製程氣體 190‧‧‧Second process gas

200‧‧‧基板 200‧‧‧Substrate

300‧‧‧第一供氣系統 300‧‧‧First gas supply system

310‧‧‧第一前驅物氣體供應源 310‧‧‧ First source of precursor gas

315‧‧‧第一高壓管 315‧‧‧First high pressure pipe

320‧‧‧第二前驅物氣體供應源 320‧‧‧Second precursor gas supply

325‧‧‧第二高壓管 325‧‧‧Second high pressure tube

330‧‧‧潔淨氣體供應源 330‧‧‧Clean gas supply

335‧‧‧第三高壓管 335‧‧‧ third high pressure pipe

350‧‧‧高壓控制閥 350‧‧‧High pressure control valve

400‧‧‧第二供氣系統 400‧‧‧Second gas supply system

410‧‧‧第二製程氣體供應源 410‧‧‧Second process gas supply

415‧‧‧第四高壓管 415‧‧‧ fourth high pressure pipe

450‧‧‧高壓控制閥 450‧‧‧High pressure control valve

500‧‧‧抽氣泵 500‧‧‧Air pump

550‧‧‧抽氣管 550‧‧‧Exhaust pipe

600‧‧‧第二半導體層 600‧‧‧Second semiconductor layer

61‧‧‧第一電極 61‧‧‧First electrode

62‧‧‧第二電極 62‧‧‧second electrode

620‧‧‧金屬層 620‧‧‧metal layer

640‧‧‧石墨烯層 640‧‧‧graphene layer

650‧‧‧石墨烯層 650‧‧‧graphene layer

N1‧‧‧第一法線 N1‧‧‧ first normal

N2‧‧‧第二法線 N2‧‧‧ second normal

900‧‧‧腔體 900‧‧‧ cavity

第1圖顯示的是根據本新型的薄膜沉積裝置的剖面示意圖。 Figure 1 is a schematic cross-sectional view showing a thin film deposition apparatus according to the present invention.

第2A圖顯示的是第1圖所示的薄膜沉積裝置用的噴灑頭150的第一階氣盤150A和第二階氣盤150B的俯視圖。 Fig. 2A is a plan view showing the first-stage air disk 150A and the second-stage air disk 150B of the shower head 150 for the thin film deposition apparatus shown in Fig. 1.

第2B圖顯示的是第2A圖所示的第一階氣盤150A和位在B-B’剖面線上的第一排氣孔153及第二排氣孔154的排氣方向示意圖。 Fig. 2B is a view showing the exhaust direction of the first air passage 150A and the first exhaust hole 153 and the second exhaust hole 154 which are located on the B-B' section line shown in Fig. 2A.

第2C圖顯示的是第2A圖所示的第一階氣盤150A和第二階氣盤150B組合成氣相沉基用的噴灑頭150且沿B-B’剖面線所呈現的剖面示意圖。 Fig. 2C is a schematic cross-sectional view showing the first-stage air disc 150A and the second-stage air disc 150B shown in Fig. 2A combined into a sprinkler head 150 for vapor phase sinking and taken along the line B-B'.

第2D圖顯示的是第1圖所示的電漿氣體分散盤170剖面放大圖。 Fig. 2D is an enlarged cross-sectional view showing the plasma gas dispersion disk 170 shown in Fig. 1.

第2E圖及第2E’圖顯示的是第2D圖之偏壓電極177及電漿產生部的詳細剖面圖示意圖。 2E and 2E' are schematic cross-sectional views showing the bias electrode 177 and the plasma generating portion in Fig. 2D.

第2F圖顯示的是沿第2A圖所示的第二階氣盤150B的A-A’剖面線所呈現的剖面示意圖。 Fig. 2F is a schematic cross-sectional view showing the A-A' hatching of the second-order air disk 150B shown in Fig. 2A.

第3圖顯示的是第1圖所示的承載座140的俯視圖。 Fig. 3 is a plan view showing the carrier 140 shown in Fig. 1.

第4圖顯示的是根據本新型以進行第一薄膜沉積模式時,薄膜沉積裝置內的製程氣體流動示意圖。 Figure 4 is a schematic view showing the flow of process gas in the thin film deposition apparatus in accordance with the present invention for performing the first thin film deposition mode.

第5圖顯示的是根據本新型以進行第二薄膜沉積模式時,薄膜沉積裝置內的製程氣體流動示意圖。 Figure 5 is a schematic view showing the flow of process gas in the thin film deposition apparatus in accordance with the present invention for performing the second thin film deposition mode.

第6A~6B圖是利用根據本新型的薄膜沉積裝置在p-GaN上形成含石墨烯及金屬圖案層的複合層電極的剖面製程。 6A to 6B are cross-sectional processes for forming a composite layer electrode containing graphene and a metal pattern layer on p-GaN by using the thin film deposition apparatus according to the present invention.

第7A~7C圖是利用根據本新型的薄膜沉積裝置在p-GaN上形成石墨烯電極的剖面製程。 7A to 7C are cross-sectional processes for forming a graphene electrode on p-GaN using the thin film deposition apparatus according to the present invention.

以下將詳細說明本新型實施例之製作與使用方式。然應注意的是,本新型提供許多可供應用的新型概念,其可以多種特定形式實施。文中所舉例討論之特定實施例僅為製造與使用本新型之特定方式,非用以限制本新型之範圍。 The manner in which the novel embodiments are made and used will be described in detail below. It should be noted, however, that the present invention provides many new concepts that can be applied, which can be implemented in a variety of specific forms. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the present invention and are not intended to limit the scope of the invention.

實施例:Example:

首先,請參照第1圖,其顯示的是根據本新型的薄膜沉積裝置的剖面示意圖。如第1圖所示,根據本新型的薄膜沉積裝置包括一腔體100,其係由一上腔體110、一下腔體120及一固定裝置130所構成,上腔體110包括一上腔體上部件110A及一上腔體下部件110B所組成。腔體100內包括一表面環繞有一阻氣環145的承載座140,設置於下腔體120內,用以承載一基板200、一設置於承載座140上方且位在上腔體上部件110A的電漿產生系統,其包括一進氣室180及一電漿氣體分散盤170。此外,根據本新型的薄膜沉積裝置更包括一第一進氣系統300適於提供一第一薄膜沉積模式時所需的第一製程氣體,及一第二進氣系統400連接於電漿產生系統,適於提供一第二薄膜沉積模式時所需的第二製程氣體。腔體100內更包括一氣相沉積用的噴灑頭150,其包括一第一階氣盤150A以及一第二階氣盤150B,設置於承載座140上方與電漿產生系統之間的上腔體下部件110B內。 First, referring to Fig. 1, there is shown a schematic cross-sectional view of a thin film deposition apparatus according to the present invention. As shown in FIG. 1, the thin film deposition apparatus according to the present invention comprises a cavity 100 which is composed of an upper cavity 110, a lower cavity 120 and a fixing device 130. The upper cavity 110 includes an upper cavity. The upper member 110A and the upper cavity lower member 110B are composed of. The cavity 100 includes a carrier 140 surrounding the gas barrier ring 145, and is disposed in the lower cavity 120 for carrying a substrate 200, and disposed above the carrier 140 and located on the upper cavity upper component 110A. A plasma generating system includes an inlet chamber 180 and a plasma gas dispersion tray 170. In addition, the thin film deposition apparatus according to the present invention further includes a first intake system 300 adapted to provide a first process gas required for a first thin film deposition mode, and a second intake system 400 coupled to the plasma generation system. Suitable for providing a second process gas required for a second thin film deposition mode. The cavity 100 further includes a vapor deposition shower head 150 including a first-order air disk 150A and a second-order air disk 150B disposed on the upper cavity between the carrier 140 and the plasma generating system. Inside the lower part 110B.

接著,請參照第2A圖,其所顯示的是如第1圖所示的噴灑頭150的第一階氣盤150A和第二接氣盤150B的俯視 圖。如第2A圖所示,第一階氣盤150A具有相對的一第一上表面150A1及一第一下表面150A2,且包括複數個具第一孔徑r1(介於3mm以及9mm之間)的第一凹穴151,以第一距離d1彼此互相間隔排列形成於第一上表面150A1,且每一第一凹穴151包括一第一排氣孔153貫穿第一階氣盤150A至第一下表面150A2且具第二孔徑r2(介於0.5mm以及2.5mm之間);以及複數個具第三孔徑r3(介於5mm以及15mm之間)的第二凹穴152,以第二距離d2彼此互相間隔排列形成於第一上表面150A1,且每一第二凹穴152包括一貫穿第一下表面150A2且具第四孔徑r4(介於0.5mm以及2.5mm之間)的第二排氣孔154。其中,第一凹穴151與第二凹穴152彼此交錯排列。 Next, please refer to FIG. 2A, which shows the top view of the first order air disc 150A and the second air receiving disc 150B of the sprinkler head 150 as shown in FIG. Figure. As shown in FIG. 2A, the first-order air disk 150A has a first upper surface 150A1 and a first lower surface 150A2, and includes a plurality of first apertures r1 (between 3 mm and 9 mm). A recess 151 is formed on the first upper surface 150A1 at a distance from each other at a first distance d1, and each of the first recesses 151 includes a first exhaust hole 153 extending through the first air plate 150A to the first lower surface. 150A2 and having a second aperture r2 (between 0.5 mm and 2.5 mm); and a plurality of second pockets 152 having a third aperture r3 (between 5 mm and 15 mm), mutually mutually at a second distance d2 The spacers are formed on the first upper surface 150A1, and each of the second recesses 152 includes a second exhaust hole 154 extending through the first lower surface 150A2 and having a fourth aperture r4 (between 0.5 mm and 2.5 mm). . Wherein, the first recess 151 and the second recess 152 are staggered with each other.

同樣地,如第2A圖所示,第二階氣盤150B具有相對的一第二上表面150B1及一第二下表面150B2,且第二階氣盤150B包括一第一製程氣體進氣口165,連接於一第一進氣系統300(如第1圖所示),以在第一薄膜沉積模式啟動時導入第一製程氣體。第二階氣盤150B更包括一主氣體供應管160連接第一製程氣體進氣口165且設置於第二階氣盤150B內、複數個彼此相間隔的分支氣體供應管162分別與主氣體供應管160連接且設置於第二階氣盤150B內、複數個歧管164形成於主氣體供應管160及此些分支氣體供應管162上,此些歧管164以第一距離d1彼此互相間隔排列且貫穿第二階氣盤150B第二下表面150B2,且每一歧管164分別對應於第一階氣盤150A上的每一 第一凹穴151。在第一薄模沉積模式啟動時,在本實施例為原子層沉積模式,第一製程氣體經第一製程氣體進氣口165進入主氣體供應管160以及分支氣體供應管162,然後再經由連接於主氣體供應管160以及分支氣體供應管162的歧管164被導入第一凹穴151內,然後再經由每一第一凹穴151內的第一排氣孔153均勻噴灑於基板200表面。 Similarly, as shown in FIG. 2A, the second-order air disk 150B has a second upper surface 150B1 and a second lower surface 150B2, and the second-stage air disk 150B includes a first process gas inlet 165. Connected to a first air intake system 300 (as shown in FIG. 1) to introduce a first process gas when the first thin film deposition mode is activated. The second-stage air disk 150B further includes a main gas supply pipe 160 connected to the first process gas inlet 165 and disposed in the second-order gas disk 150B, and a plurality of branch gas supply pipes 162 spaced apart from each other and the main gas supply The tubes 160 are connected and disposed in the second-order gas disk 150B. The plurality of manifolds 164 are formed on the main gas supply pipe 160 and the branch gas supply pipes 162. The manifolds 164 are spaced apart from each other by a first distance d1. And penetrating the second lower surface 150B2 of the second-order air disk 150B, and each of the manifolds 164 corresponds to each of the first-order air plates 150A. The first pocket 151. When the first thin mode deposition mode is activated, in the atomic layer deposition mode in this embodiment, the first process gas enters the main gas supply pipe 160 and the branch gas supply pipe 162 through the first process gas inlet 165, and then is connected. The manifold 164 of the main gas supply pipe 160 and the branch gas supply pipe 162 is introduced into the first pocket 151, and then uniformly sprayed onto the surface of the substrate 200 through the first exhaust hole 153 in each of the first pockets 151.

此外,第二階氣盤150B更包括複數個第一開口166,形成於主氣體供應管160及些分支氣體供應管162以外的區域,第一開口166以第二距離d2彼此互相間隔排列方式貫穿第二上表面150B1及第二下表面150B2,且每一第一開口166分別對應於第一階氣盤150A上的每一第二凹穴152,使得第二薄膜沉積模式啟動時所產生的電漿可經第一開口166進入第二凹穴152,以形成複數個矩陣排列的電漿源,並經由每一第二凹穴152內的第二排氣孔154將電漿均勻噴灑於基板200表面。 In addition, the second-order air disk 150B further includes a plurality of first openings 166 formed in a region other than the main gas supply pipe 160 and the branch gas supply pipes 162. The first openings 166 are arranged at a distance from each other by a second distance d2. The second upper surface 150B1 and the second lower surface 150B2, and each of the first openings 166 respectively corresponds to each of the second recesses 152 on the first-order air disk 150A, such that the electricity generated when the second thin film deposition mode is activated The slurry may enter the second cavity 152 through the first opening 166 to form a plurality of matrix-arranged plasma sources, and uniformly spray the plasma onto the substrate 200 via the second exhaust hole 154 in each of the second recesses 152. surface.

接著,請參照第2B圖,其顯示的是第2A圖所示的第一階氣盤150A和位在B-B’剖面線上的第一排氣孔153及第二排氣孔154的排氣方向示意圖。其中,位在B-B’剖面線上的第一排氣孔153及第二排氣孔154,其排氣方向相對於垂直第一階氣盤150A的第二法線N2均傾斜一銳角β,且其水平方向分量垂直於第一排氣孔153及第二排氣孔154與通過第一階氣盤150A中心軸法線Nc所形成的連線,位在其他位置的第一排氣孔153及第二排氣孔154也是以相同方式設置於第一階氣 盤150A上。在一實施例中,30°≦β≦60°。在本實施例中,各第一排氣孔153及各第二排氣孔154由於是以相對於垂直第一階氣盤150A的法線N2傾斜一銳角β方式排氣,故除了垂直噴灑於基板200表面外,其水平排氣方向分量形成一順時針渦旋,使得反應氣體可更均勻地分佈於腔體100內。雖然本實施例的渦旋是順時針方向旋轉,但本領域熟悉此技藝者,當可視需要調整第一排氣孔153及第二排氣孔154的排氣方向,使各第一排氣孔153及各第二排氣孔154的水平排氣方向分量形成一逆時針旋轉的渦旋。 Next, please refer to FIG. 2B, which shows the first-stage air disc 150A shown in FIG. 2A and the exhaust air of the first exhaust hole 153 and the second exhaust hole 154 located on the BB' section line. Schematic diagram of the direction. The first exhaust hole 153 and the second exhaust hole 154 located on the B-B' section line are inclined at an acute angle β with respect to the second normal line N2 of the vertical first-order air disk 150A. And the horizontal direction component is perpendicular to the first exhaust hole 153 and the second exhaust hole 154 and the line formed by the central axis normal Nc of the first order air plate 150A, and the first exhaust hole 153 located at other positions. And the second exhaust hole 154 is also disposed in the first step in the same manner On disk 150A. In one embodiment, 30° ≦ β ≦ 60°. In this embodiment, each of the first exhaust holes 153 and each of the second exhaust holes 154 is exhausted by an acute angle β with respect to the normal line N2 of the vertical first-order air disk 150A. Outside the surface of the substrate 200, its horizontal exhaust direction component forms a clockwise vortex so that the reactive gas can be more evenly distributed within the cavity 100. Although the vortex of the present embodiment is rotated in the clockwise direction, those skilled in the art will be able to adjust the exhaust directions of the first exhaust hole 153 and the second exhaust hole 154 as needed to make the first exhaust holes. The horizontal exhaust direction component of 153 and each of the second exhaust holes 154 forms a vortex that rotates counterclockwise.

接著,請參照第2C圖,其顯示的是如第2A圖所示的第一階氣盤150A和第二階氣盤150B組合成一氣相沉積用的噴灑頭150,且沿剖面線B-B’所呈現的剖面示意圖。如第2C圖所示,連接於位在第二階氣盤150B上的主氣體供應管160或分支氣體供應管162的各個歧管164,乃對準伸入位在第一階氣盤150A上的各個第一凹穴151內,在第一薄膜沉積模式啟動時,使第一製程氣體經由第一排氣孔153均勻噴灑於基板表面;位在第二階氣盤150B上的第一開口166乃對準於位在第一階氣盤150A上的第二凹穴152,且在第二薄膜沉積模式啟動時,使容納於進氣室180(如第1圖所示)內的第二製程氣體190(如第5圖所示),通過如第1圖所示的電漿氣體分散盤170,產生第二薄膜沉積模式所需的電漿,然後先經第二階氣盤150B上的第一開口166進入第二凹穴152,形成複數個矩陣排 列的電漿源,然後再經由每一第二凹穴152內的第二排氣孔154將電漿均勻噴灑於基板200表面。 Next, please refer to FIG. 2C, which shows that the first-order air disc 150A and the second-order air disc 150B as shown in FIG. 2A are combined into a vapor deposition head 150, and along the section line B-B. 'The schematic diagram of the profile presented. As shown in FIG. 2C, the respective manifolds 164 connected to the main gas supply pipe 160 or the branch gas supply pipe 162 located on the second-stage air disk 150B are aligned to extend into the first-order air disk 150A. In each of the first recesses 151, when the first thin film deposition mode is activated, the first process gas is uniformly sprayed on the substrate surface via the first exhaust hole 153; the first opening 166 is located on the second-order gas disk 150B. Aligned with the second pocket 152 located on the first-order disc 150A, and when the second thin film deposition mode is activated, the second process housed in the inlet chamber 180 (shown in FIG. 1) The gas 190 (as shown in FIG. 5) is passed through the plasma gas dispersing disc 170 as shown in FIG. 1, to generate the plasma required for the second thin film deposition mode, and then to pass through the second order gas disk 150B. An opening 166 enters the second pocket 152 to form a plurality of matrix rows The plasma source of the column is then evenly sprayed onto the surface of the substrate 200 via the second vent 154 in each of the second pockets 152.

如上所述,第一排氣孔153及第二排氣孔154之排氣方向,均相對於垂直第一階氣盤150A的法線N1傾斜一銳角β。此外,為了使第一排氣孔153在噴灑第一製程氣體時的效率更好,第一排氣孔153可以設計成如第2C圖所示般,使其截面積隨接近第一下表面150A2之距離逐漸增加,使得第一排氣孔153具有較大的噴灑覆蓋面積,且相鄰的第一排氣孔所噴出的第一製程氣體彼此互相重疊。同樣地,第二排氣孔153也可以相同的原理設計。 As described above, the exhaust directions of the first exhaust hole 153 and the second exhaust hole 154 are both inclined by an acute angle β with respect to the normal N1 of the vertical first-order air disk 150A. In addition, in order to make the first exhaust hole 153 more efficient in spraying the first process gas, the first exhaust hole 153 may be designed to have a sectional area as close to the first lower surface 150A2 as shown in FIG. 2C. The distance is gradually increased such that the first exhaust hole 153 has a large spray coverage area, and the first process gases ejected from the adjacent first exhaust holes overlap each other. Likewise, the second venting opening 153 can also be designed with the same principle.

接著,請參照第2D圖所示,其顯示的是第1圖所示的電漿氣體分散盤170的剖面放大圖,其包括一第一電漿氣體分散盤170A、一第二電漿氣體分散盤170B以及一第三電漿氣體分散盤170C,且利用一石英固定環178夾持固定,其中第一電漿氣體分散盤170A及第三電漿氣體分散盤170C均由絕緣材質(例如石英)所構成。第一電漿氣體分散盤170A包括複數個以第二距離d2互相間隔排列且具第五孔徑r5(介於0.5mm以及2.5mm之間)並貫穿第一電漿氣體分散盤170A的第三排氣孔172;第二電漿氣體分散盤170B設置於第一電漿氣體分散盤170A下方,且第二電漿氣體分散盤170B包括複數個以第二距離d2互相間隔排列且具第六孔徑r6(介於0.5mm以及5mm之間)並貫穿第二電漿氣體分散盤170B的第四排氣孔174,每一 第四排氣孔174對應於每一第三排氣孔172;第三電漿氣體分散盤170C,設置於第二電漿氣體分散盤170B與氣相沉積用的噴灑頭150的第二階氣盤150B之間,且第三電漿氣體分散盤170C包括複數個以第二距離d2互相間隔排列並貫穿第三電漿氣體分散盤170C的偏壓電極177,其內部設置有具第七孔徑r7的第五排氣孔176。此外,第三排氣孔172的孔徑小於第四排氣孔174的孔徑。 Next, referring to FIG. 2D, there is shown a cross-sectional enlarged view of the plasma gas dispersion disk 170 shown in FIG. 1, which includes a first plasma gas dispersion disk 170A and a second plasma gas dispersion. The disk 170B and a third plasma gas dispersion disk 170C are sandwiched and fixed by a quartz fixing ring 178, wherein the first plasma gas dispersion disk 170A and the third plasma gas dispersion disk 170C are made of an insulating material (for example, quartz). Composition. The first plasma gas dispersion disk 170A includes a plurality of third rows arranged at a second distance d2 and spaced apart from each other and having a fifth aperture r5 (between 0.5 mm and 2.5 mm) and penetrating through the first plasma gas dispersion disk 170A. The air hole 172; the second plasma gas dispersing disc 170B is disposed under the first plasma gas dispersing disc 170A, and the second plasma gas dispersing disc 170B includes a plurality of second spaced distances d2 spaced apart from each other and having a sixth aperture r6 (between 0.5 mm and 5 mm) and through the fourth venting opening 174 of the second plasma gas dispersing disc 170B, each The fourth exhaust hole 174 corresponds to each of the third exhaust holes 172; the third plasma gas dispersing disc 170C is disposed on the second plasma gas dispersing disc 170B and the second step gas of the vapor deposition head 150 Between the discs 150B, and the third plasma gas dispersing disc 170C includes a plurality of bias electrodes 177 arranged at a second distance d2 and spaced through the third plasma gas dispersing disc 170C, and a seventh aperture r7 is disposed therein. The fifth venting opening 176. Further, the diameter of the third exhaust hole 172 is smaller than the diameter of the fourth exhaust hole 174.

接著,請參照第2E圖及第2E’圖。其中,第2E圖顯示的是上述偏壓電極177及電漿產生部的詳細剖面圖,其中偏壓電極177包括一金屬電極177B以及上、下夾持金屬電極177B的介電層177A、177C。如第2E圖所示,電漿氣體經第五排氣孔176通過偏壓電極177時,會被金屬電極177B施加一偏壓,接著經氣相沉積用的噴灑頭150的第二階氣盤150B上的第一開口166進入第一階氣盤150A上的第二凹穴152,形成複數個矩陣排列的電漿源,然後再經由每一第二凹穴152內的第二排氣孔154將電漿均勻噴灑出來。第2E圖所顯示的是一種圓柱形電漿產生部,其電極177B是平面電極。在根據本新型的其他實施例中,可將平面電極之圓柱形電漿產生部修改為同心球形之上、下電極,如第2E’圖所示,形成碗狀之電漿產生部在同電位面上各點至電極177B的距離D相等,相較圓柱形電漿產生部有較均勻之電位分佈,電漿密度亦較均勻,電漿反應產生的熱可均勻分散, 不易集中於特定點,且可消除圓柱形底部周圍之死角,減少製程應用時particle之產生。 Next, please refer to FIG. 2E and FIG. 2E'. 2E is a detailed cross-sectional view of the bias electrode 177 and the plasma generating portion, wherein the bias electrode 177 includes a metal electrode 177B and dielectric layers 177A, 177C sandwiching the metal electrode 177B. As shown in FIG. 2E, when the plasma gas passes through the bias electrode 177 through the fifth vent hole 176, a bias voltage is applied by the metal electrode 177B, followed by a second-order gas disk of the shower head 150 for vapor deposition. The first opening 166 on the 150B enters the second recess 152 on the first-order air disk 150A to form a plurality of matrix-arranged plasma sources, and then through the second exhaust hole 154 in each of the second recesses 152. Spray the plasma evenly. Fig. 2E shows a cylindrical plasma generating portion whose electrode 177B is a planar electrode. In other embodiments according to the present invention, the cylindrical plasma generating portion of the planar electrode may be modified to be a concentric spherical upper and lower electrode, as shown in FIG. 2E', and the bowl-shaped plasma generating portion is formed at the same potential. The distance D from each point on the surface to the electrode 177B is equal, and has a relatively uniform potential distribution compared with the cylindrical plasma generating portion, the plasma density is relatively uniform, and the heat generated by the plasma reaction can be uniformly dispersed. It is not easy to concentrate on a specific point, and can eliminate the dead angle around the bottom of the cylinder, reducing the generation of particles in the process application.

接著,請參照第2F圖,其顯示的是沿第2A圖所示的第二階氣盤150B的A-A’剖面線所呈現的主氣體供應管160和歧管164的剖面示意圖。如第2F圖所示,本新型為了解決第一製程氣體在主氣體供應管160內流速不均的缺點,故本新型所揭露的主氣體供應管160在鄰近第二階氣盤150的第二下表面150B2處具有一第一傾斜管壁161,使得主氣體供應管160的橫截面隨著與進氣口165的距離 Next, referring to Fig. 2F, there is shown a schematic cross-sectional view of the main gas supply pipe 160 and the manifold 164 which are shown along the A-A' section line of the second-order air disk 150B shown in Fig. 2A. As shown in FIG. 2F, in order to solve the disadvantage that the flow rate of the first process gas is uneven in the main gas supply pipe 160, the main gas supply pipe 160 disclosed in the present invention is adjacent to the second gas disk 150. The lower surface 150B2 has a first inclined pipe wall 161 such that the cross section of the main gas supply pipe 160 varies with the intake port 165.

增加而逐漸減小。第一傾斜管壁161上具有複數個以第一距離d1彼此互相間隔排列的氣孔163,而原本垂直於第二上表面150B1且連接於氣孔163的歧管164,更可設計成包括一彎曲部164A及一垂直部164B的彎曲歧管164’,其中彎曲部164A與通過第二上表面150B1的第一法線N1間夾一銳角α,而垂直部164B則垂直於第二上表面150B1,藉此使得進入主氣體供應管160內的第一製程氣體較容易流入彎曲部164A。此外,更可在歧管164及/或彎曲歧管164’所連接的氣孔邊緣的下風處上形成一阻流塊167,以增加進入歧管164及/或彎曲歧管164’內的第一製程氣體流量。同樣地,分支氣體供應管162也可依照上述方式設計,在此將不再贅述。 Increase and gradually decrease. The first inclined pipe wall 161 has a plurality of air holes 163 spaced apart from each other by a first distance d1, and the manifold 164 which is originally perpendicular to the second upper surface 150B1 and connected to the air holes 163 is further configured to include a bent portion. 164A and a curved portion 164' of a vertical portion 164B, wherein the curved portion 164A is separated from the first normal line N1 passing through the second upper surface 150B1 by an acute angle α, and the vertical portion 164B is perpendicular to the second upper surface 150B1. This makes it easier for the first process gas entering the main gas supply pipe 160 to flow into the curved portion 164A. In addition, a baffle 167 may be formed on the downwind of the vent of the manifold 164 and/or the curved manifold 164' to increase the number of entries into the manifold 164 and/or the curved manifold 164'. A process gas flow. Similarly, the branch gas supply pipe 162 can also be designed in the above manner, and will not be described herein.

接著,請參照第3圖,其顯示的是第1圖所示的承載座140的俯視圖。如第3圖所示,承載座140表面承載一待 沉積薄膜於其表面的基板200,且承載座140上包括一呈環狀體之阻氣環145環繞於其周圍。在另一實施例中,阻氣環145與承載座140間隔一距離。阻氣環上包括複數個彼此互相間隔的抽引流道148,此抽引流道148可設置於阻氣環145之上表面或下表面,並內凹於該環狀體,且每一抽引流道148的方向均對應於渦旋氣流的切線方向。換句話說,每一抽引流道148的方向與阻氣環145之環狀體之圓心向圓周之徑向具有一夾角,因而使第一製程氣體或第二製程氣體構成的電漿在抽氣系統運作時,經由抽引流道148被抽離腔體100,藉此增加第一排氣孔153及/或第二排氣孔排氣時所造成的順時針或逆時針渦旋的效果,如圖中環狀體內部之兩圓弧箭頭所示,此渦旋氣流大致環繞環狀體之圓心流動,使反應氣體可更均勻地分佈於腔體100內。 Next, please refer to FIG. 3, which shows a plan view of the carrier 140 shown in FIG. 1. As shown in Figure 3, the surface of the carrier 140 carries A substrate 200 is deposited on the surface of the substrate, and the carrier 140 includes a gas barrier ring 145 having an annular shape surrounding the periphery thereof. In another embodiment, the choke ring 145 is spaced a distance from the carrier 140. The choke ring includes a plurality of pumping passages 148 spaced apart from each other, and the pumping passages 148 may be disposed on the upper surface or the lower surface of the choke ring 145 and recessed in the annular body, and each of the pumping passages The direction of 148 corresponds to the tangential direction of the vortex flow. In other words, the direction of each of the drawing channels 148 is at an angle to the radial direction of the center of the annular body of the gas block ring 145, thereby causing the plasma of the first process gas or the second process gas to be pumped. When the system is in operation, it is evacuated from the cavity 100 via the drawing flow path 148, thereby increasing the effect of clockwise or counterclockwise vortex caused by the first exhaust hole 153 and/or the second exhaust hole being exhausted, such as As indicated by the two circular arc arrows inside the annular body, the vortex flow generally flows around the center of the annular body, so that the reaction gas can be more evenly distributed in the cavity 100.

如第1圖所示,本實施例所揭示的第一進氣系統300,其包括原子層沉積模式所需的第一前驅物氣體供應源310、第二前驅物氣體供應源320、潔淨氣體供應源330、第一製程氣體導管125,其一端連接第二階氣盤150B的第一製程氣體進氣口165,而另一相異端則連接一高壓控制閥350、一第一高壓管315連接於第一前驅物氣體供應源310與高壓控制閥350之間、一第二高壓管325連接於第二前驅物氣體供應源320與高壓控制閥350之間、以及一第三高壓管335連接於潔淨氣體供應源330與高壓控制閥350之間。其中,第一進氣系統300 藉由控制高壓控制閥350切換第一前驅物氣體、第二前驅物氣體或潔淨氣體供應進入第一製程氣體進氣口165。潔淨氣體可選自不會與第一前驅物氣體和第二前區域氣體產生化學反應的惰性氣體,例如氮氣或鈍氣。 As shown in FIG. 1, the first air intake system 300 disclosed in this embodiment includes a first precursor gas supply source 310, a second precursor gas supply source 320, and a clean gas supply required for the atomic layer deposition mode. The source 330, the first process gas conduit 125, one end of which is connected to the first process gas inlet 165 of the second-order gas disk 150B, and the other phase is connected to a high-pressure control valve 350, and a first high-pressure pipe 315 is connected to Between the first precursor gas supply source 310 and the high pressure control valve 350, a second high pressure pipe 325 is connected between the second precursor gas supply source 320 and the high pressure control valve 350, and a third high pressure pipe 335 is connected to the clean The gas supply source 330 is between the high pressure control valve 350. Wherein, the first air intake system 300 The first precursor gas, the second precursor gas, or the clean gas supply is switched into the first process gas inlet 165 by controlling the high pressure control valve 350. The clean gas may be selected from inert gases that do not chemically react with the first precursor gas and the second precursor gas, such as nitrogen or blunt gas.

請參照第4圖,其顯示的是根據本新型以進行第一薄膜沉積模式時,薄膜沉積裝置內的製程氣體流動示意圖。如上所述,本新型所揭示的第一薄膜沉積模式是原子層沉積製程,當第一薄膜沉積模式啟動時,第一進氣系統300中的第一前驅物氣體供應源310被開啟,使得第一前驅物氣體自第一高壓管315經高壓控制閥350進入第一製程氣體導管125,然後進入氣相沉積用的噴灑頭150中的第二階氣盤150B的進氣口165,接著再通過主氣體供應管160和分支氣體供應管162,並藉由連接於主氣體供應管160和分支氣體供應管162的歧管164將第一前驅物氣體導入第一凹穴151內,然後再經由每一第一凹穴151內的第一排氣孔153使第一前驅物氣體被均勻噴灑於基板200表面。之後,先關閉第一前驅物氣體供應源310,然後開啟潔淨氣體供應源330,以如上所述的方式將潔淨氣體沿第三高壓管335導入氣相沉積用的噴灑頭150內,並且藉由抽氣泵500使得殘留的第一前驅物氣體以及潔淨氣體經由抽氣管550被抽出腔體100。接著,先關閉潔淨氣體供應源330,然後開啟第二前驅物氣體供應源320,使第二前驅物氣體供應源320以如上所述的方式將第二前驅物氣體沿第二高壓管325導 入氣相沉積用的噴灑頭150內,並噴灑於附著有第一前驅物的基板200表面,使第二前驅物與基板200表面的第一前驅物進行反應,形成所要的薄膜。最後,先關閉第二前驅物氣體供應源320,然後開啟潔淨氣體供應源330,以如上所述的方式將潔淨氣體沿第三高壓管335導入氣相沉積用的噴灑頭150內,並且開啟抽氣泵500,使得殘留的第二前驅物氣體以及潔淨氣體經由抽氣管550被抽出腔體100,以上便可完成一個原子層沉積製程循環。上述的原子層沉積製程循環次數,可視所需要的薄膜厚度,多次重複進行。 Referring to FIG. 4, there is shown a schematic diagram of process gas flow in a thin film deposition apparatus in accordance with the present invention for performing a first thin film deposition mode. As described above, the first thin film deposition mode disclosed by the present invention is an atomic layer deposition process, and when the first thin film deposition mode is activated, the first precursor gas supply source 310 in the first intake system 300 is turned on, so that A precursor gas enters the first process gas conduit 125 from the first high pressure pipe 315 via the high pressure control valve 350, and then enters the gas inlet 165 of the second stage gas disk 150B in the vapor deposition head 150, and then passes through The main gas supply pipe 160 and the branch gas supply pipe 162, and introduce the first precursor gas into the first pocket 151 by the manifold 164 connected to the main gas supply pipe 160 and the branch gas supply pipe 162, and then pass each The first exhaust hole 153 in the first recess 151 causes the first precursor gas to be uniformly sprayed on the surface of the substrate 200. Thereafter, the first precursor gas supply source 310 is turned off first, then the clean gas supply source 330 is turned on, and the clean gas is introduced into the vapor deposition head 150 for vapor deposition along the third high pressure pipe 335 in the manner as described above. The air pump 500 causes the residual first precursor gas and the clean gas to be drawn out of the cavity 100 via the exhaust pipe 550. Next, the clean gas supply source 330 is turned off first, and then the second precursor gas supply source 320 is turned on, so that the second precursor gas supply source 320 guides the second precursor gas along the second high pressure pipe 325 in the manner described above. The inside of the vapor deposition head 150 is sprayed onto the surface of the substrate 200 to which the first precursor is attached, and the second precursor is reacted with the first precursor on the surface of the substrate 200 to form a desired film. Finally, the second precursor gas supply source 320 is turned off, then the clean gas supply source 330 is turned on, and the clean gas is introduced into the vapor deposition head 150 along the third high pressure pipe 335 in the manner described above, and the pumping is started. The air pump 500 causes the residual second precursor gas and the clean gas to be withdrawn from the cavity 100 via the exhaust pipe 550, and an atomic layer deposition process cycle can be completed. The number of atomic layer deposition process cycles described above can be repeated multiple times depending on the desired film thickness.

如第1圖所示,本實施例所揭示的第二進氣系統400包括一第二製程氣體供應源410、一第四高壓管415以及一高壓控制閥450,藉由控制高壓控制閥450,在第二薄膜沉積模式啟動時將第二製程氣體經由第四高壓管415輸送至進氣室180的第二製程氣體導管115,然後進入進氣室180內。 As shown in FIG. 1 , the second intake system 400 disclosed in this embodiment includes a second process gas supply source 410 , a fourth high pressure pipe 415 , and a high pressure control valve 450 . By controlling the high pressure control valve 450 , The second process gas is delivered to the second process gas conduit 115 of the inlet chamber 180 via the fourth high pressure pipe 415 when the second thin film deposition mode is activated, and then enters the intake chamber 180.

請參照第5圖,其顯示的是根據本新型以進行第二薄膜沉積模式時,薄膜沉積裝置內的製程氣體流動示意圖。如上所述,本新型所揭示的第二薄膜沉積模式是電漿輔助化學氣相沉積製程,當第二薄膜沉積模式被啟動時,第二進氣系統400的第二製程氣體供應源被開啟,且第二製程氣體在高壓控制閥450控制下,經由第四高壓管415進入第二製程氣體導管115,並輸入進氣室180內。進入進氣室180的第二製程氣體190先經第三排氣孔172通過第一電漿氣體分散盤170A,然後經過 第四排氣孔174通過第二電漿氣體分散盤170B,接著進入第三電漿氣體分散盤170C的第五排氣孔176並被偏壓電極177施加一偏壓。接著,經氣相沉積用的噴灑頭150的第二階氣盤150B上的第一開口166進入第一階氣盤150A上的第二凹穴152,形成複數個矩陣排列的電漿源,然後再經由每一第二凹穴152內的第二排氣孔154將電漿均勻噴灑於基板200表面,形成一想要的電漿輔助的化學氣相沉積薄膜。本實施例的第二製程氣體例如包括矽甲烷(silane)、氬氣、氫氣、氧氣其中之一或其組合。 Referring to FIG. 5, there is shown a schematic diagram of process gas flow in a thin film deposition apparatus in accordance with the present invention for performing a second thin film deposition mode. As described above, the second thin film deposition mode disclosed by the present invention is a plasma-assisted chemical vapor deposition process, and when the second thin film deposition mode is activated, the second process gas supply source of the second intake system 400 is turned on, And the second process gas enters the second process gas conduit 115 via the fourth high pressure pipe 415 under the control of the high pressure control valve 450, and is input into the intake chamber 180. The second process gas 190 entering the intake chamber 180 passes through the first plasma gas dispersion disk 170A through the third exhaust hole 172, and then passes through The fourth exhaust hole 174 passes through the second plasma gas dispersion disk 170B, then enters the fifth exhaust hole 176 of the third plasma gas dispersion disk 170C and is biased by the bias electrode 177. Next, the first opening 166 on the second-order air disk 150B of the vapor deposition head 150 enters the second cavity 152 on the first-order air disk 150A to form a plurality of matrix-arranged plasma sources, and then The plasma is evenly sprayed onto the surface of the substrate 200 through the second venting opening 154 in each of the second recesses 152 to form a desired plasma-assisted chemical vapor deposited film. The second process gas of the present embodiment includes, for example, one of silane, argon, hydrogen, oxygen, or a combination thereof.

第6A以及6B圖顯示一實施例係利用本新型的薄膜沉積裝置以形成半導體元件之各步驟結構示意圖。 6A and 6B are views showing the structure of each step of forming a semiconductor element by using the thin film deposition apparatus of the present invention.

請先參照第6A圖,半導體元件之形成方法包括提供一半導體基底10,在半導體基底10上形成一磊晶疊層1000,依序包括一半導體基底10、一緩衝層20、一第一半導體層30、一主動層40、一第二半導體層600。在本實施例中,第一半導體層30包含n型氮化鎵層(n-GaN),第二半導體層600包含p型氮化鎵層(p-GaN),主動層40包含氮化鎵系列的材料所形成之多重量子井結構(Multiple Quantum Well,MQW)用以發出光。然後利用本新型的薄膜沉積裝置100,在第二半導體層600表面以第一薄膜沉積模式,例如為前述之原子層沉積法(ALD)沉積一厚度介於1~10nm的金屬層620,其中金屬層620與第二半導體層600為歐姆接觸。此金屬層620之材料可選 自銅、箔或鎳。然後利用本新型的薄膜沉積裝置以一第二薄膜沉積模式,例如為前述之電漿輔助化學氣相沉積法(PECVD),於溫度小於攝氏350度C的條件下,在上述的金屬層620表面沉積一厚度介於1~5nm的石墨烯層640,以形成一包含金屬層620與石墨烯層640的複合電流擴散層,其中金屬層620與石墨烯層640為歐姆接觸用以提高橫向電流散佈的能力。 Referring to FIG. 6A, a method of forming a semiconductor device includes providing a semiconductor substrate 10, and forming an epitaxial layer 1000 on the semiconductor substrate 10, including a semiconductor substrate 10, a buffer layer 20, and a first semiconductor layer. 30. An active layer 40 and a second semiconductor layer 600. In this embodiment, the first semiconductor layer 30 includes an n-type gallium nitride layer (n-GaN), the second semiconductor layer 600 includes a p-type gallium nitride layer (p-GaN), and the active layer 40 includes a gallium nitride series. The multiple Quantum Well (MQW) formed by the material is used to emit light. Then, using the thin film deposition apparatus 100 of the present invention, a metal layer 620 having a thickness of 1 to 10 nm is deposited on the surface of the second semiconductor layer 600 in a first thin film deposition mode, for example, the aforementioned atomic layer deposition method (ALD). Layer 620 is in ohmic contact with second semiconductor layer 600. The material of the metal layer 620 is optional From copper, foil or nickel. And then using the second thin film deposition apparatus of the present invention in a second thin film deposition mode, such as the aforementioned plasma assisted chemical vapor deposition (PECVD), at a temperature of less than 350 ° C, on the surface of the metal layer 620 described above. A graphene layer 640 having a thickness of 1 to 5 nm is deposited to form a composite current diffusion layer comprising a metal layer 620 and a graphene layer 640, wherein the metal layer 620 is in ohmic contact with the graphene layer 640 for improving lateral current dispersion. Ability.

其次,請參照第6B圖,薄膜沉積利用習知的微影及蝕刻製程,去除部分的金屬層620、石墨烯層640、第二半導體層600以及主動層40,露出第一半導體層30,接著分別在石墨烯層640與露出的第一半導體層30上分別形成第一電極61與第二電極62用以引入外部電流。 Next, referring to FIG. 6B, the thin film deposition removes a portion of the metal layer 620, the graphene layer 640, the second semiconductor layer 600, and the active layer 40 by using a conventional lithography and etching process to expose the first semiconductor layer 30, and then A first electrode 61 and a second electrode 62 are respectively formed on the graphene layer 640 and the exposed first semiconductor layer 30 to introduce an external current.

第7A~7C圖顯示另一實施例係利用本新型的薄膜沉積裝置以形成半導體元件之各步驟結構示意圖。 7A to 7C are views showing the structure of each step of forming a semiconductor element by using the thin film deposition apparatus of the present invention.

請先參照第7A圖,半導體元件之形成方法包括提供一半導體基底10,在半導體基底10上形成一磊晶疊層1000,依序包含一緩衝層20、一第一半導體層30、一主動層40以及一第二半導體層600。在本實施例中,第一半導體層30包含n型氮化鎵層(n-GaN),主動層40包含氮化鎵系列的材料所形成之多重量子井結構(Multiple Quantum Well,MQW)用以發出光,第二半導體層600包含p型氮化鎵層(p-GaN)。然後利用本新型的薄膜沉積裝置100在第二半導體層600表面以第 一薄膜沉積模式,例如為前述之原子層沉積法(ALD)沉積一厚度介於1~10nm的金屬層620。此金屬層620之材料可選自銅、箔或鎳。 Referring to FIG. 7A, the method for forming a semiconductor device includes providing a semiconductor substrate 10, and forming an epitaxial layer 1000 on the semiconductor substrate 10, sequentially including a buffer layer 20, a first semiconductor layer 30, and an active layer. 40 and a second semiconductor layer 600. In this embodiment, the first semiconductor layer 30 includes an n-type gallium nitride layer (n-GaN), and the active layer 40 includes a multiple quantum well structure (MQW) formed by a material of a gallium nitride series. The light is emitted, and the second semiconductor layer 600 includes a p-type gallium nitride layer (p-GaN). Then, using the thin film deposition apparatus 100 of the present invention, the surface of the second semiconductor layer 600 is In a thin film deposition mode, for example, a metal layer 620 having a thickness of 1 to 10 nm is deposited by the aforementioned atomic layer deposition method (ALD). The material of the metal layer 620 can be selected from copper, foil or nickel.

其次,請參照第7B圖,然後利用本新型的薄膜沉積裝置以一第二薄膜沉積模式,例如為前述之電漿輔助化學氣相沉積法(PECVD),於溫度約攝氏700~1000度C的條件下,使碳原子穿透金屬層620而到達第二半導體層600的表面,在第二半導體層600與金屬層620之間形成一厚度介於1~5nm的石墨烯層650,其中,石墨烯層650與第二半導體層600形成歐姆接觸。 Next, please refer to FIG. 7B, and then use the thin film deposition apparatus of the present invention in a second thin film deposition mode, such as the aforementioned plasma assisted chemical vapor deposition (PECVD), at a temperature of about 700 to 1000 degrees C. Under the condition, the carbon atoms are passed through the metal layer 620 to reach the surface of the second semiconductor layer 600, and a graphene layer 650 having a thickness of 1 to 5 nm is formed between the second semiconductor layer 600 and the metal layer 620, wherein the graphite The olefin layer 650 forms an ohmic contact with the second semiconductor layer 600.

最後,請參照第7C圖,利用蝕刻製程去除金屬層620,露出石墨烯層650以形成一透明的電流擴散層,用以提高橫向電流散佈的能力。接著,利用習知的微影及蝕刻製程,去除部分的石墨烯層650、第二半導體層600以及主動層40,以露出第一半導體層30,接著分別在石墨烯層650與露出的第一半導體層30上分別形成第一電極61與第二電極62用以引入外部電流。 Finally, referring to FIG. 7C, the metal layer 620 is removed by an etching process to expose the graphene layer 650 to form a transparent current spreading layer for improving the lateral current spreading capability. Then, a portion of the graphene layer 650, the second semiconductor layer 600, and the active layer 40 are removed by a conventional lithography and etching process to expose the first semiconductor layer 30, followed by the graphene layer 650 and the exposed first A first electrode 61 and a second electrode 62 are formed on the semiconductor layer 30 to introduce an external current, respectively.

綜上所述,本新型實施例已提供一種適用於原子層沉積及電漿輔助化學氣相沉積的噴灑頭以及一種含有噴灑頭的薄膜沉積裝置,可在同一腔體內視需要切換不同沉積模式的薄膜沉積製程,解決現有無法不同模式的薄膜沉積製程於同一腔體的缺點。 In summary, the novel embodiment has provided a sprinkler head suitable for atomic layer deposition and plasma assisted chemical vapor deposition, and a thin film deposition device including a sprinkler head, which can switch between different deposition modes in the same cavity as needed. The thin film deposition process solves the shortcomings of existing thin film deposition processes that cannot be in different modes in the same cavity.

雖然本新型已以較佳實施例揭露如上,然其並非用以限定本新型,任何所屬技術領域中具有通常知識者,在不脫離本新型之精神和範圍內,當可更動與組合上述各種實施例。 Although the present invention has been disclosed in the preferred embodiments as described above, it is not intended to limit the present invention, and any of the above-described various embodiments may be modified and combined without departing from the spirit and scope of the present invention. example.

100‧‧‧薄膜沉積裝置 100‧‧‧film deposition apparatus

110‧‧‧上腔體 110‧‧‧Upper cavity

110A‧‧‧上腔體上部件 110A‧‧‧Upper upper body parts

110B‧‧‧上腔體下部件 110B‧‧‧Upper upper part

115‧‧‧第二製程氣體導管 115‧‧‧Second process gas conduit

120‧‧‧下腔體 120‧‧‧ lower cavity

125‧‧‧第一製程氣體導管 125‧‧‧First Process Gas Pipeline

130‧‧‧固定裝置 130‧‧‧Fixed devices

135‧‧‧偏壓電極 135‧‧‧ bias electrode

140‧‧‧承載座 140‧‧‧Hosting

145‧‧‧阻氣環 145‧‧‧ gas barrier

150‧‧‧氣相沉積用的噴灑頭 150‧‧‧spray head for vapor deposition

150A‧‧‧第一階氣盤 150A‧‧‧first air disc

150B‧‧‧第二階氣盤 150B‧‧‧second order air disc

151‧‧‧第一凹穴 151‧‧‧ first recess

152‧‧‧第二凹穴 152‧‧‧Second pocket

153‧‧‧第一排氣孔 153‧‧‧First vent

154‧‧‧第二排氣孔 154‧‧‧Second vent

160‧‧‧主氣體供應管 160‧‧‧Main gas supply pipe

162‧‧‧分支氣體供應管 162‧‧‧Branch gas supply pipe

164‧‧‧歧管 164‧‧‧Management

165‧‧‧第一製程氣體進氣口 165‧‧‧First process gas inlet

166‧‧‧第一開口 166‧‧‧ first opening

170‧‧‧電漿氣體分散盤 170‧‧‧ Plasma gas dispersion plate

170A‧‧‧第一電漿氣體分散盤 170A‧‧‧First plasma gas dispersion plate

170B‧‧‧第二電漿氣體分散盤 170B‧‧‧Second plasma gas dispersion plate

170C‧‧‧第三電漿氣體分散盤 170C‧‧‧The third plasma gas dispersion plate

172‧‧‧第三排氣孔 172‧‧‧ third vent

174‧‧‧第四排氣孔 174‧‧‧fourth vent

176‧‧‧第五排氣孔 176‧‧‧ fifth vent

177‧‧‧偏壓電極 177‧‧‧ bias electrode

178‧‧‧石英固定環 178‧‧‧Quartz retaining ring

180‧‧‧進氣室 180‧‧‧Intake room

190‧‧‧第二製程氣體 190‧‧‧Second process gas

200‧‧‧基板 200‧‧‧Substrate

300‧‧‧第一供氣系統 300‧‧‧First gas supply system

310‧‧‧第一前驅物氣體供應源 310‧‧‧ First source of precursor gas

315‧‧‧第一高壓管 315‧‧‧First high pressure pipe

320‧‧‧第二前驅物氣體供應源 320‧‧‧Second precursor gas supply

325‧‧‧第二高壓管 325‧‧‧Second high pressure tube

330‧‧‧潔淨氣體供應源 330‧‧‧Clean gas supply

335‧‧‧第三高壓管 335‧‧‧ third high pressure pipe

350‧‧‧高壓控制閥 350‧‧‧High pressure control valve

400‧‧‧第二供氣系統 400‧‧‧Second gas supply system

410‧‧‧第二製程氣體供應源 410‧‧‧Second process gas supply

415‧‧‧第四高壓管 415‧‧‧ fourth high pressure pipe

450‧‧‧高壓控制閥 450‧‧‧High pressure control valve

500‧‧‧抽氣泵 500‧‧‧Air pump

550‧‧‧抽氣管 550‧‧‧Exhaust pipe

900‧‧‧腔體 900‧‧‧ cavity

Claims (10)

一種薄膜沉積用的引流元件,包括:   一環狀體包含一上表面及與該上表面相對的一下表面;及 複數個抽引流道位於該上表面或該下表面,並內凹於該環狀體,可供一第一製程氣體經由該些抽引流道向該環狀體之外部流出;其中 一該抽引流道具有一抽引流道方向與該環狀體之圓心向圓周之徑向具有一夾角。A drainage element for film deposition, comprising: an annular body comprising an upper surface and a lower surface opposite to the upper surface; and a plurality of extraction channels located on the upper surface or the lower surface and recessed in the ring a body, wherein a first process gas flows out to the outside of the annular body through the pumping flow paths; wherein the pumping flow prop has an angle of the drawing flow path and an angle between a center of the annular body and a circumference of the annular body . 如申請專利範圍第1項所述的薄膜沉積用的引流元件,其中該第一製程氣體在該環狀體之內側形成一渦旋氣流,大致環繞該圓環狀體之圓心流動。The drainage element for film deposition according to claim 1, wherein the first process gas forms a swirling airflow inside the annular body, and substantially flows around a center of the annular body. 如申請專利範圍第2項所述的薄膜沉積用的引流元件,其中該抽引流道方向對應於該渦旋氣流的一切線方向。The drainage element for film deposition according to claim 2, wherein the direction of the extraction flow path corresponds to a direction of the line of the vortex flow. 一種薄膜沉積裝置,包括: 一腔體; 一承載座,設置於該腔體內,用以承載一基板;及 一薄膜沉積用的引流元件,選自申請專利範圍第1~3項所述之薄膜沉積用的引流元件之任一,設置於該腔體內的該承載座上方。A thin film deposition apparatus comprising: a cavity; a carrier disposed in the cavity for carrying a substrate; and a drainage component for film deposition, selected from the film of claim 1 to 3 Any one of the drainage elements for deposition is disposed above the carrier in the cavity. 如申請專利範圍第4項所述的薄膜沉積裝置,其中該引流元件與承載座貼合或間隔一距離。The thin film deposition apparatus of claim 4, wherein the drainage element is attached or spaced apart from the carrier. 如申請專利範圍第4項所述的薄膜沉積裝置,更包括一噴灑頭,設置於該腔體內的該承載座上方,用以分佈該第一製程氣體於該腔體內。The thin film deposition apparatus of claim 4, further comprising a sprinkler head disposed above the carrier in the cavity for distributing the first process gas in the cavity. 如申請專利範圍第4項所述的薄膜沉積裝置,更包括一抽氣系統,該抽氣系統運作時,將該第一製程氣體經由該些抽引流道抽離該腔體。The thin film deposition apparatus of claim 4, further comprising a pumping system, wherein the pumping system operates to draw the first process gas away from the cavity via the pumping channels. 如申請專利範圍第6項所述的薄膜沉積裝置,其中該噴灑頭更可提供一第二製程氣體用以形成一電漿於該腔體內。The thin film deposition apparatus of claim 6, wherein the sprinkler head further provides a second process gas for forming a plasma in the cavity. 如申請專利範圍第8項所述的薄膜沉積裝置,其中該第一製程氣體用以於該腔體內進行原子層沉積(ALD)及該電漿用以於該腔體內進行電漿輔助化學氣相沉積(PECVD)。The thin film deposition apparatus of claim 8, wherein the first process gas is used for atomic layer deposition (ALD) in the cavity, and the plasma is used for plasma-assisted chemical vapor phase in the cavity. Deposition (PECVD). 如申請專利範圍第6項所述的薄膜沉積裝置,其中該噴灑頭包括複數個第一排氣孔及複數個第二排氣孔,該些第一排氣孔與該些第二排氣孔之孔徑大小不同。The thin film deposition apparatus of claim 6, wherein the sprinkler head comprises a plurality of first exhaust holes and a plurality of second exhaust holes, the first exhaust holes and the second exhaust holes The aperture size is different.
TW104210577U 2015-06-30 2015-06-30 Guide element for thin-film deposition and thin-film deposition apparatus comprising the same TWM519316U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104210577U TWM519316U (en) 2015-06-30 2015-06-30 Guide element for thin-film deposition and thin-film deposition apparatus comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104210577U TWM519316U (en) 2015-06-30 2015-06-30 Guide element for thin-film deposition and thin-film deposition apparatus comprising the same

Publications (1)

Publication Number Publication Date
TWM519316U true TWM519316U (en) 2016-03-21

Family

ID=56086788

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104210577U TWM519316U (en) 2015-06-30 2015-06-30 Guide element for thin-film deposition and thin-film deposition apparatus comprising the same

Country Status (1)

Country Link
TW (1) TWM519316U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790768B (en) * 2020-10-12 2023-01-21 芬蘭商班尼克公司 An atomic layer deposition apparatus
TWI802005B (en) * 2020-09-24 2023-05-11 日商國際電氣股份有限公司 Substrate processing apparatus, method and program for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI802005B (en) * 2020-09-24 2023-05-11 日商國際電氣股份有限公司 Substrate processing apparatus, method and program for manufacturing semiconductor device
TWI790768B (en) * 2020-10-12 2023-01-21 芬蘭商班尼克公司 An atomic layer deposition apparatus

Similar Documents

Publication Publication Date Title
US20200279721A1 (en) Semiconductor reaction chamber showerhead
KR101044355B1 (en) Gas head and thin-film production apparatus
US20170002463A1 (en) Showerhead and a thin-film deposition apparatus containing the same
KR101515896B1 (en) Gas shower device having gas curtain and apparatus for depositing film using the same
US20070221129A1 (en) Apparatus for depositing atomic layer using gas separation type showerhead
TW201542860A (en) CVD apparatus with gas dilivery ring
TWM519316U (en) Guide element for thin-film deposition and thin-film deposition apparatus comprising the same
TWI671431B (en) Showerhead for thin-film deposition and thin-film deposition apparatus comprising the same
TW201700784A (en) A showerhead for thin-film deposition and the thin-film deposition apparatus containing the same
KR100484945B1 (en) Semiconductor device fabrication apparatus having multi-hole angled gas injection system
TW202111763A (en) Methods and apparatus for dual channel showerheads
TW201500577A (en) Reaction device and manufacture method for chemical vapor deposition
TW201700181A (en) Showerhead for thin-film deposition and thin-film deposition apparatus comprising the same
WO2023093455A1 (en) Intake distribution mechanism and cvd reaction device having same
TWI709661B (en) Semiconductor light-emitting device and the method thereof
TWI652372B (en) Semiconductor light-emitting device and the method thereof
TWM512591U (en) Thin-film deposition apparatus
JP2023046391A (en) System and apparatus for gas distribution
JP2020510307A (en) Diffuser design for fluidity CVD
TW202126848A (en) Metal organic chemical vapor deposition reactor reducing the complexity of the reactor and increasing the luminous intensity of light-emitting diodes
TW201700783A (en) A showerhead for thin-film deposition and the thin-film deposition apparatus containing the same
JP2007179829A (en) Mask cleaning device for organic el element, and manufacturing method of organic el display using it
TW202129715A (en) High temperature dual channel showerhead
US20230294116A1 (en) Dual channel showerhead assembly
CN218372508U (en) Gas distribution device